6.牛顿运动定律 两类动力学问题
牛顿第二定律的应用——解决动力学的两类基本问题
牛顿第二定律的应用(解决动力学的两类基本问题)知识要点:1. 进一步学习分析物体的受力情况,达到能结合物体的运动情况进行受力分析。
2. 掌握应用牛顿运动定律解决问题的基本思路和方法。
重点、难点解析:(一)牛顿第一定律内容:物体总保持静止或匀速直线运动状态,直到有外力迫使它改变这种状态为止。
(二)牛顿第三定律1. 内容:两个物体之间的作用力和反作用力总是大小相等、方向相反、作用在同一直线上。
2. 理解作用力与反作用力的关系时,要注意以下几点:(1)作用力与反作用力同时产生,同时消失,同时变化,无先后之分。
(2)作用力与反作用力总是大小相等,方向相反,作用在同一直线上(与物体的大小,形状,运动状态均无关系。
)(3)作用力与反作用力分别作用在受力物体和施力物体上,其作用效果分别体现在各自的受力物体上,所以作用力与反作用力产生的效果不能抵消。
(作用力与反作用力能否求和?)(4)作用力与反作用力一定是同种性质的力。
(平衡力的性质呢?)(三)牛顿第二定律1、内容:物体的加速度与物体所受合外力成正比,跟物体质量成反比,加速度方向跟合外力的方向相同。
2、数学表达式:F合=ma3、关于牛顿第二定律的理解:(1)同体性:F合=ma是对同一物体而言的(2)矢量性:物体加速度方向与所受合外力方向一致(3)瞬时性:物体的加速度与所受合外力具有瞬时对应关系牛顿第二定律的应用(一)在共点力作用下物体的平衡1:平衡状态:物体处于静止或匀速直线运动状态,称物体处于平衡状态。
2:平衡条件:在共点力作用下物体的平衡条件是:F合=0。
==(其中F x合为物体在x轴方向上所受的合外力,F y合为物体在y轴方向上所受的合外力)(二)两类动力学的基本问题1. 从受力情况确定运动情况根据物体的受力情况,可由牛顿第二定律求出物体的加速度,再通过运动学的规律确定物体的运动情况。
2. 从运动情况确定受力情况根据物体的运动情况,可由运动学公式求出物体的加速度,再通过牛顿第二定律确定物体所受的外力。
【高考第一轮复习物理】牛顿运动定律知识梳理
牛顿运动定律是力学的基础,也是高中重点知识,对整个物理学也有重大意义。
本章考查的重点是牛顿第二定律,而牛顿第一定律和第三定律在牛顿第二定律的应用中得到了广泛的体现。
从近几年高考看,要求准确理解牛顿第一定律;加深理解牛顿第二定律,熟练掌握其应用,尤其是物体受力分析的方法;理解牛顿第三定律;理解和掌握运动和力的关系;理解超重和失重。
本章内容的高考试题每年都有,对本章内容单独命题大多以选择、填空形式出现,趋向于用牛顿运动定律解决生活、科技、生产实际问题。
经常与电场、磁场联系,构成难度较大的综合性试题,运动学的知识往往和牛顿运动定律连为一体,考查推理能力和综合分析能力。
一(1)一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。
(2)物理意义:①揭示了物体不受外力作用时的运动规律,②揭示了力不是维持运动的原因,③揭示了一切物体都具有惯性.物体具有保持匀速直线运动状态或静止状态的性质叫惯性。
1.物体具有保持匀速直线运动状态或静止状态的性质叫惯性。
2.一切物体都有惯性,物体在任何状态下都有惯性.惯性是物体固有的属性,是不能被克服的。
3.质量是物体惯性大小的量度质量大的物体,运动状态难改变,惯性大;质量小的物体,运动状态容易改变,惯性小.惯性不是力,不能说物体受惯性二:物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上。
作用力和反作用力的关系:同时性;相等性;反向性;同性质。
作用力、反作用力和一对平衡力的关系三1、物体的加速度跟所受的合力成正比,跟物体的质量成反比,加速度的方向跟合力的方向相同。
2、公式:4、用牛顿第二定律解题方法一.“合成法”若物体只受两个力作用产生加速度时,根据平行四边形定则求合力.运用三角形的有关知识,列出分力、合力及加速度之间的关系求解.二.“正交分解法”步骤:1、明确加速度方向2、分析受力3、建坐标系F m a合4、建立方程常把力正交分解在加速度方向和垂直加速度方向上,有Fx=ma(沿加速度方向)Fy=0(垂直于加速度方向)有时也把加速度分解在相互垂直的两个方向上,有Fx=maxFy=may5.两类动力学问题(1).已知物体的受力情况求物体的运动情况(2).已知物体的运动情况求物体的受力情况6.整体法与隔离法应用(1)如果不要求知道各物体之间的相互作用力,而且各物体具有相同的加速度,用整体法解决。
牛顿第二定律 两类动力学问题
题型二
建立“运动模型”解决 动力学问题
例 2 原地起跳时,先屈腿下蹲,然后突然蹬地,从开始 蹬地到离地是加速过程(视为匀加速),加速过程中重 心上升的距离为“加速距离”.离地后重心继续上 升,在此过程中重心上升的最大距离称为“竖直高 度”.某同学身高 1.8 m,质量 80 kg,在某一次运 动会上,他参加跳高比赛时“加速距离”为 0.5 m, 起跳后身体横着越过(背越式)2.15 m 高的横杆, 试估 算人的起跳速度 v 和起跳过程中地面对人的平均作 用力.(g 取 10 m/s2)
第 2 课时
牛顿第二定律
两类动力学问题
课前考点自清
一、牛顿第二定律 1.内容:物体加速度的大小跟作用力成 正比 ,跟物体的 质量成 反比 。加速度的方向与作用力方向 相同.
2.表达式: F=ma 3.适用范围
.
(1) 牛顿第二定律只适用于 惯性 参考系 ( 相对 地面静止或 匀速直线运动 运动的参考系). (2)牛顿第二定律只适用于宏观 物体 (相对于分 子、原子)、低速运动(远小于光速)的情况.
答案 C
题型互动探究
题型一 牛顿运动定律在动力学两类基本问题中的应用 例 1 科研人员乘气球进行科学考察,气球、座舱、压舱物 和科研人员的总质量为 990 kg.气球在空中停留一段时间 后,发现气球漏气而下降,及时堵住,堵住时气球下降 速度为 1 m/s,且做匀加速运动,4 s 内下降了 12 m,已 知气球安全着陆的速度为 2 m/s.为使气球安全着陆. 向舱 外缓慢抛出重 101 kg 的重物.若空气阻力和泄漏气体的 质量可忽略,重力加速度 g 取 9.89 m/s2,求抛掉重物后 气球达到安全着陆速度的时间.
【高考佐证 1】质量为 1 kg 的物体静止在水平面上, 物体与水平面之间的动摩擦因数为 0.2.对物体施加一 个大小变化、方向不变的水平拉力 F,使物体在水平 面上运动了 3t0 的时间.为使物体在 3t0 时间内发生的 位移最大,力 F 随时间的变化情况应该为下面四个图 中的 ( )
牛顿运动定律的应用—动力学两类基本问题
牛顿运动定律的应用—动力学两类基本问题1.动力学两类基本问题是指已知物体的受力情况求其运动情况和已知物体的运动情况求其受力情况,解决这两类基本问题的思路方法示意图如下:其中受力分析是基础,牛顿第二定律和运动学公式是工具,加速度是连接力和运动的桥梁.2.解题关键(1)两类分析——物体的受力分析和物体的运动过程分析;(2)两个桥梁——加速度是联系运动和力的桥梁;速度是各物理过程间相互联系的桥梁.3.两类动力学问题的解题步骤类型1已知物体受力情况,分析物体运动情况【题型1】如图所示滑沙游戏中,做如下简化:游客从顶端A点由静止滑下8s后,操纵刹车手柄使滑沙车匀速下滑至底端B点,在水平滑道上继续滑行直至停止.已知游客和滑沙车的总质量m=70kg,倾斜滑道AB长l AB=128m,倾角θ=37°,滑沙车底部与沙面间的动摩擦因数μ=0.5.滑沙车经过B点前后的速度大小不变,重力加速度g取10m/s2,sin37°=0.6,cos37°=0.8,不计空气阻力.(1)求游客匀速下滑时的速度大小;(2)求游客匀速下滑的时间;(3)若游客在水平滑道BC段的最大滑行距离为16m,则他在此处滑行时,需对滑沙车施加多大的水平制动力?【题型2】如图所示为四旋翼无人机,它是一种能够垂直起降的小型遥控飞行器,目前正得到越来越广泛的应用.一架质量为m=2 kg的无人机,其动力系统所能提供的最大升力F=36 N,运动过程中所受空气阻力大小恒定,无人机在地面上从静止开始,以最大升力竖直向上起飞,在t=5 s时离地面的高度为75 m(g取10 m/s2).(1)求运动过程中所受空气阻力大小;(2)假设由于动力系统故障,悬停的无人机突然失去升力而坠落.无人机坠落地面时的速度为40 m/s,求无人机悬停时距地面高度;(3)假设在第(2)问中的无人机坠落过程中,在遥控设备的干预下,动力系统重新启动提供向上最大升力.为保证安全着地,求无人机从开始下落到恢复升力的最长时间.类型2已知物体运动情况,分析物体受力情况【题型3】如图甲所示,一质量m=0.4 kg的小物块,以v0=2 m/s的初速度,在与斜面平行的拉力F作用下,沿斜面向上做匀加速运动,经t=2 s的时间物块由A点运动到B点,A、B之间的距离L=10 m.已知斜面倾角θ=30°,物块与斜面之间的动摩擦因数μ=33.重力加速度g取10 m/s2.求:(1)物块到达B点时速度和加速度的大小;(2)拉力F的大小;(3)若拉力F与斜面夹角为α,如图乙所示,试写出拉力F的表达式(用题目所给物理量的字母表示).【题型4】如图甲所示,质量m=1kg的物块在平行斜面向上的拉力F作用下从静止开始沿斜面向上运动,t=0.5s时撤去拉力,利用速度传感器得到其速度随时间的变化关系图象(v -t图象)如图乙所示,g取10m/s2,求:(1)2s内物块的位移大小x和通过的路程L;(2)沿斜面向上运动的两个阶段加速度大小a1、a2和拉力大小F.针对训练1.如图所示,某次滑雪训练,运动员站在水平雪道上第一次利用滑雪杖对雪面的作用获得水平推力F =100 N 而由静止向前滑行,其作用时间为t 1=10 s ,撤除水平推力F 后经过t 2=15 s ,他第二次利用滑雪杖对雪面的作用获得同样的水平推力,第二次利用滑雪杖对雪面的作用距离与第一次相同.已知该运动员连同装备的总质量为m =75 kg ,在整个运动过程中受到的滑动摩擦力大小恒为f =25 N ,求:(1)第一次利用滑雪杖对雪面作用获得的速度大小及这段时间内的位移大小;(2)该运动员(可视为质点)第二次撤除水平推力后滑行的最大距离.2.如图所示,质量M =10 kg 的木楔ABC 静置于粗糙水平地面上,木楔与地面间的动摩擦因数μ=0.2.在木楔的倾角θ为37°的斜面上,有一质量m =1.0 kg 的物块由静止开始从A 点沿斜面下滑,当它在斜面上滑行距离s =1 m 时,其速度v =2 m/s ,在这过程中木楔没有动.(sin 37°=0.6,cos 37°=0.8,重力加速度g =10 m/s 2)求:(1)物块与木楔间的动摩擦因数μ1;(2)地面对木楔的摩擦力的大小和方向;(3)在物块沿斜面下滑时,如果对物块施加一平行于斜面向下的推力F =5 N ,则地面对木楔的摩擦力如何变化?(不要求写出分析、计算的过程)3.在水平地面上有一质量为10 kg 的物体,在水平拉力F 的作用下由静止开始运动,10 s 后拉力大小减为F 4,方向不变,再经过20 s 停止运动.该物体的速度与时间的关系如图所示(g =10 m/s 2).求:(1)整个过程中物体的位移大小;(2)物体与地面的动摩擦因数.4.如图甲所示,光滑平台右侧与一长为L =2.5 m 的水平木板相接,木板固定在地面上,现有一小滑块以初速度v 0=5 m/s 滑上木板,恰好滑到木板右端静止。
牛顿运动定律:两类问题(含答案)
力与运动的两类问题【学习目标】1.明确用牛顿运动定律解决的两类问题;2.掌握应用牛顿运动定律解题的基本思路和方法.【要点梳理】要点一、根据运动情况来求力运动学有五个参量0v 、v、t、a、x,这五个参量只有三个是独立的。
运动学的解题方法就是“知三求二”。
所用的主要公式:0v v at =+①——此公式不涉及到位移,不涉及到位移的题目应该优先考虑此公式2012x v t at =+②——此公式不涉及到末速度,不涉及到末速度的题目应该优先考虑此公式212x vt at =-③——此公式不涉及到初速度,不涉及到初速度的题目应该优先考虑此公式02v v x t +=④——此公式不涉及到加速度,不涉及到加速度的题目应该优先考虑此公式2202v v x a-=⑤——此公式不涉及到时间,不涉及到时间的题目应该优先考虑此公式根据运动学的上述5个公式求出加速度,再依据牛顿第二定律F ma =合,可以求物体所受的合力或者某一个力。
要点二、根据受力来确定运动情况先对物体进行受力分析,求出合力,再利用牛顿第二定律F ma =合,求出物体的加速度,然后利用运动学公式0v v at=+①2012x v t at =+②212x vt at =-③02v v x t +=④2202v v x a -=⑤求运动量(如位移、速度、时间等)要点三、两类基本问题的解题步骤1.根据物体的受力情况确定物体运动情况的解题步骤①确定研究对象,对研究对象进行受力分析和运动分析,画出物体的受力图.②求出物体所受的合外力.③根据牛顿第二定律,求出物体加速度.④结合题目给出的条件,选择运动学公式,求出所需的物理量.2.根据物体的运动情况确定物体受力情况的解题步骤①确定研究对象,对研究对象进行受力分析和运动分析,并画出受力图.②选择合适的运动学公式,求出物体的加速度.③根据牛顿第二定律列方程,求物体所受的合外力.④根据力的合成与分解的方法,由合力求出所需的力.要点四、应注意的问题1.不管是根据运动情况确定受力还是根据受力分析物体的运动情况,都必须求出物体的加速度。
最新人教版 高一物理 必修一 用牛顿运动定律解决问题(一) 导学案(部分答案)
用牛顿运动定律解决问题(一)组题人:一、两类动力学问题(1)已知物体的受力情况求物体的运动情况根据物体的受力情况求出物体受到的合外力,然后应用牛顿第二定律F=ma求出物体的加速度,再根据初始条件由运动学公式就可以求出物体的运动情况––物体的速度、位移或运动时间。
(2)已知物体的运动情况求物体的受力情况根据物体的运动情况,应用运动学公式求出物体的加速度,然后再应用牛顿第二定律求出物体所受的合外力,进而求出某些未知力。
求解以上两类动力学问题的思路,可用如下所示的框图来表示:(3)在匀变速直线运动的公式中有五个物理量,其中有四个矢量v0、v1、a、s,一个标量t。
在动力学公式中有三个物理量,其中有两个矢量F、a,一个标量m。
运动学和动力学中公共的物理量是加速度a。
在处理力和运动的两类基本问题时,不论由力确定运动还是由运动确定力,关键在于加速度a,a是联结运动学公式和牛顿第二定律的桥梁。
二、应用牛顿第二定律解题的一般步骤:1确定研究对象:依据题意正确选取研究对象2分析:对研究对象进行受力情况和运动情况的分析,画出受力示意图和运动情景图3列方程:选取正方向,通常选加速度的方向为正方向。
方向与正方向相同的力为正值,方向与正方向相反的力为负值,建立方程4解方程:用国际单位制,解的过程要清楚,写出方程式和相应的文字说明,必要时对结果进行讨论三、整体法与隔离法处理连接体问题1.连接体问题所谓连接体就是指多个相互关联的物体,它们一般具有相同的运动情况(有相同的速度、加速度),如:几个物体或叠放在一起,或并排挤放在一起,或用绳子、细杆联系在一起的物体组(又叫物体系).2.隔离法与整体法(1)隔离法:在求解系统内物体间的相互作用力时,从研究的方便性出发,将物体系统中的某部分分隔出来,单独研究的方法.(2)整体法:整个系统或系统中的几个物体有共同的加速度,且不涉及相互作用时,将其作为一个整体研究的方法.3.对连接体的一般处理思路(1)先隔离,后整体.(2)先整体,后隔离典例剖析典例一、由受力情况确定运动情况【例1】将质量为0.5 kg的小球以14 m/s的初速度竖直上抛,运动中球受到的空气阻力大小恒为2.1 N,则球能上升的最大高度是多少?解析通过对小球受力分析求出其上升的加速度及上升的最大高度.以小球为研究对象,受力分析如右图所示.在应用牛顿第二定律时通常默认合力方向为正方向,题目中求得的加速度为正值,而在运动学公式中一般默认初速度方向为正方向,因而代入公式时由于加速度方向与初速度方向相反而代入负值.根据牛顿第二定律得mg +Ff =ma ,a =mg +Ff m=0.5×9.8+2.10.5m/s2=14m/s2上升至最大高度时末速度为0,由运动学公式0-v20=2ax 得最大高度x =02-v202a =0-1422×(-14) m =7 m.答案 7 m 1.受力情况决定了运动的性质,物体具体的运动状况由所受合外力决定,同时还与物体运动的初始条件有关. 2.受力情况决定了加速度,但与速度没有任何关系.【例2】如图所示,在倾角θ=37°的足够长的固定的斜面底端有一质量m =1kg 的物体,物体与斜面间动摩擦因数μ=0.25.现用轻细绳将物体由静止沿斜面向上拉动,拉力F =10N ,方向平行斜面向上,经时间t =4s 绳子突然断了,求:(1)绳断时物体的速度大小.(2)从绳子断了开始到物体再返回到斜面底端的运动时间.(sin 37°=0.60,cos 37°=0.80,g =10 m/s2)解析 (1)物体受拉力向上运动过程中,受拉力F 、斜面的支持力FN 、重力mg 和摩擦力Ff ,如右图所示,设物体向上运动的加速度为a1,根据牛顿第二定律有:F-mgsin θ-Ff=ma1因Ff=μFN ,FN=mgcos θ 解得a1=2 m/s2t=4 s 时物体的速度大小为v1=a1t=8 m/s.(2)绳断时物体距斜面底端的位移m t a x 1621211==绳断后物体沿斜面向上做匀减速直线运动,设运动的加速度大小为a2,受力如上图所示,则根据牛顿第二定律,对物体沿斜面向上运动的过程有:mgsin θ+Ff=ma2 Ff=μmgcos θ 解得a2=8 m/s2物体做减速运动的时间s t a v1212==减速运动的位移m t a x 4222212==此后物体将沿着斜面匀加速下滑,设物体下滑的加速度为a3,受力如右图所示,根据牛顿第二定律对物体加速下滑的过程有:mgsin θ-Ff=ma3 Ff=μmgcos θ解得a3=4 m/s2设物体由最高点到斜面底端的时间为t3,所以物体向下匀加速运动的位移:2332121t a x x =+解得s t 2.3103≈= 所以物体返回到斜面底端的时间为t 总=t2+t3=4.2 s典例二、由运动情况确定受力情况【例3】民用航空客机的机舱除通常的舱门外还设有紧急出口,发生意外情况的飞机在着陆后,打开紧急出口的舱门,会自动生成一个由气囊组成的斜面,机舱中的乘客就可以沿斜面迅速滑行到地面上来.若某型号的客机紧急出口离地面高度为4m ,构成斜面的气囊长度为5 m .要求紧急疏散时乘客从气囊上由静止下滑到达地面的时间不超过2 s ,则(1)乘客在气囊上下滑的加速度至少为多大?(2)气囊和下滑乘客间的动摩擦因数不得超过多少?(g =10 m/s2) 解析(1)设h =4 m ,L =5 m ,t =2 s ,斜面倾角为θ,则Lh=θsin .乘客在气囊上下滑过程,由221at L = 解得: a =2.5 m/s2(2)乘客下滑过程受力分析如右图则有:FN=mgcos θ ,Ff =μFN = μmgcos θ 由牛顿第二定律可得:mgsin θ- Ff=ma代入数据解得:1211=μ规律总结:物体的加速度由物体所受的合力决定,两者大小、方向及变化一一对应;速度大小的变化情况取决于加速度的方向与速度方向的关系,当两者同向时,速度变大,当两者反向时,速度变小。
牛顿运动定律及其应用 6
m1 + m2
D、 a1=a, 、 ,
m1 + m2 m1 a2 = − a m2
方法总结: 确定物体在某一时刻的瞬时加速度,关键在于:
1、正确确定该瞬时物体受到的作用力,还要注意 正确确定该瞬时物体受到的作用力, 分析物体在这一瞬时前、后的受力及其变化情况。 分析物体在这一瞬时前、后的受力及其变化情况。 明确两种基本模型的特点。 2、明确两种基本模型的特点。 轻绳不需要形变恢复时间,在瞬时问题中, ⑴轻绳不需要形变恢复时间,在瞬时问题中,其 弹力可以突变,成为零或别的值。 弹力可以突变,成为零或别的值。 轻弹簧(或橡皮绳)需要较长的形变恢复时间, ⑵轻弹簧(或橡皮绳)需要较长的形变恢复时间, 在瞬时间问题中,其弹力不能突变,大小不变。 在瞬时间问题中,其弹力不能突变,大小不变。
练习、如图示,倾斜索道与水平方向夹角为 , 练习、如图示,倾斜索道与水平方向夹角为θ,已 知tg θ=3/4,当载人车厢匀加速向上运动时,人对 ,当载人车厢匀加速向上运动时, 厢底的压力为体重的1.25倍,这时人与车厢相对静 厢底的压力为体重的 倍 A) 止,则车厢对人的摩擦力是体重的 ( A. 1/3倍 倍 C. 5/4倍 倍 B.4/3倍 倍 D.1/4倍 倍 θ
1
a2
例5 、在运动的升降机中天花板上用细线悬挂一个 物体A,下面吊着一个轻质弹簧秤( 物体 ,下面吊着一个轻质弹簧秤(弹簧秤的质量 不计) 弹簧秤下吊着物体B,如下图所示, 不计),弹簧秤下吊着物体 ,如下图所示,物体 A和B的质量相等,都为 =5kg,某一时刻弹簧秤 的质量相等, 和 的质量相等 都为m= , 的读数为40N, 设 g=10 m/s2 , 则细线的拉力等于 的读数为 , _____ ,若将细线剪断,在剪断细线瞬间物体 的 若将细线剪断,在剪断细线瞬间物体A的 80N 向下 加速度是 18 m/s2 ,方向 ______ ; 2 m/s2 ; 物体B的加速度是 物体 的加速度是 A 向下 方向 _____ 。
高三物理牛顿运动定律知识点梳理
高三物理牛顿运动定律知识点梳理1、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态从现在起为止。
理解要点:(1)运动是物体的一种功用,物体的运动不需要力来维持;(2)它归纳地揭示了运动与力的关系,即力是改变物体运动状态的究其原因,(运动状态指物体的音速)又根据加速度定义:,有速度变化就一定有加速度,所以可以说:力是使物体产生加速度的动因。
(不能说“力是产生速度的其原因”、“力是维持速度的原因在于”,也不能说“力是改变角速度的原因”。
);(3)定律说明了任何物体都有一个极其重要的属性——惯性;一切物体都有保持原有运动状态原先的性质,这就是惯性。
惯性反映了物体运动状态改变的难易程度(惯性大的物体运动状态不光束容易改变)。
质量是物体惯性大小的量度。
(4)牛顿第一定律是牛顿第二定律的基础,物体不受外力和物体所受合外力为零是有区别的,所以不能把牛顿第一定律当成牛顿第九第二定律在F=0时的特例,波义耳卡文迪什第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。
2、牛顿第二定律:物体的加速度跟压强成正比,跟物体的可靠性成反比。
公式F=ma.理解要点:(1)牛顿第二定律矛盾定量揭示了力与运动的关系,即知道了力,可根据牛顿第二运动定律研究其效果,分析出更物体的运动规律;反过来,知道了运动,可根据牛顿第二运动定律研究其受力情况,为设计运动,控制运动提供了理论基础;(2)牛顿第二法则揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬时效果是加速度而不是速度;(3)牛顿第二定律F=ma定义了力的基本单位——牛顿(使质量为1kg的物体产生1m/s2的压强的作用力为1N,即1N=1kg.m/s2.(5)应用牛顿第二定律解题的步骤:①明确研究对象。
可以以某一个物体为对象,也可以以几个物体组成的质点组为对象。
牛顿运动定律八大题型
一:两类基本问题
类型二:已知运动求受力
【例2】一个滑雪的人,质量m=50kg,以 v0=2m/s的初速度沿山坡匀加速滑下,山 坡的倾角θ=370,在t=5s的时间内滑下的 路程x=60m,求滑雪人与山坡之间的动 摩擦因数μ(不计空气阻力)。
拓展1:若滑雪者以16m/s的初速度从坡底向上冲,试求 t1=1.0s和t2=3.0s两个时刻,滑雪者距离坡底的距离? 拓展2:若滑雪者回到坡底后仍能在水平面上继续滑行, 且μ值不变,不计转弯消耗,求它最后停在何处?
六:连接体问题
【变式1】光滑水平面上静止叠放着n个 完全相同的木块,质量均为m。今给第一 个木块一个水平方向的恒力F的作用,使 得n个木块一起向右做加速运动,如图所 示。求此时第k和k+1个木块之间的相互 作用力大小。
二:变加速问题
【变式】如图所示,自由下落的 小球,从它接触竖直放置的弹簧 开始,到小球速度为零的过程中, 小球的速度和加速度的变化情况 是( ) A.加速度变大,速度变小 B.加速度变小,速度变大 C.加速度先变小后变大,速度先变大后变小 D.加速度先变小后变大,速度先变小后变大
二:变加速问题
【拓展】质量为40kg的雪 撬在倾角θ=37°的斜面 上向下滑动(如图甲), 所受的空气阻力与速度成 正比。今测得雪撬运动的 v-t图像如图7乙所示,且 AB是曲线的切线,B点 坐标为(4,15),CD是 曲线的渐近线。试求空气 的阻力系数k和雪撬与斜 坡间的动摩擦因数μ。
二:瞬时性问题
【变式】如图所示,两根轻弹簧与两个质量都 为m的小球连接成的系统,上面一根弹簧的上端 固定在天花板上,两小球之间还连接了一根不 可伸长的细线。该系统静止,细线受到的拉力 大小等于4mg。在剪断了两球之间的细线的瞬间, 球A的加速度和球B的加速度分别是( )
第三章:牛顿运动定律(3.2_牛顿第二定律、两类动力学问题)讲解
2012年物理一轮精品复习学案:第2节 牛顿第二定律、两类动力学问题【考纲知识梳理】一、牛顿第二定律1、内容:牛顿通过大量定量实验研究总结出:物体的加速度跟物体所受的合外力成正比,跟物体的质量成反比,加速度的方向和合外力的方向相同。
这就是牛顿第二定律。
2、其数学表达式为:m Fa =ma F =牛顿第二定律分量式:⎩⎨⎧==yy x x ma F ma F用动量表述:t PF ∆=合3、牛顿定律的适用范围:(1)只适用于研究惯性系中运动与力的关系,不能用于非惯性系;(2)只适用于解决宏观物体的低速运动问题,不能用来处理微观粒子高速运动问题; 二、两类动力学问题1.由受力情况判断物体的运动状态;2.由运动情况判断的受力情况 三、单位制1、单位制:基本单位和导出单位一起组成了单位制。
(1)基本单位:所选定的基本物理量的(所有)单位都叫做基本单位,如在力学中,选定长度、质量和时间这三个基本物理量的单位作为基本单位: 长度一cm 、m 、km 等; 质量一g 、kg 等; 时间—s 、min 、h 等。
(2)导出单位:根据物理公式和基本单位,推导出其它物理量的单位叫导出单位。
2、由基本单位和导出单位一起组成了单位制。
选定基本物理量的不同单位作为基本单位,可以组成不同的单位制,如历史上力学中出现了厘米·克·秒制和米·千克·秒制两种不同的单位制,工程技术领域还有英尺·秒·磅制等。
【要点名师精解】一、对牛顿第二定律的理解1、牛顿第二定律的“四性”(1)瞬时性:对于一个质量一定的物体来说,它在某一时刻加速度的大小和方向,只由它在这一时刻所受到的合外力的大小和方向来决定.当它受到的合外力发生变化时,它的加速度随即也要发生变化,这便是牛顿第二定律的瞬时性的含义.例如,物体在力F1和力F2的共同作用下保持静止,这说明物体受到的合外力为零.若突然撤去力F2,而力F1保持不变,则物体将沿力F1的方向加速运动.这说明,在撤去力F2后的瞬时,物体获得了沿力F1方向的加速度a1.撤去力F2的作用是使物体所受的合外力由零变为F1,而同时发生的是物体的加速度由零变为a1.所以,物体运动的加速度和合外力是瞬时对应的.(2)矢量性(加速度的方向与合外力方向相同);合外力F是使物体产生加速度a的原因,反之,a是F产生的结果,故物体加速度方向总是与其受到的合外力方向一致,反之亦然。
人教版高一物理必修1第四章牛顿运动定律应用动力学的两类基本问题专题专项训练习题集(含解析)
高一物理必修1第四章牛顿运动定律应用动力学的两类基本问题专题专项训练习题集【知识点梳理】1.力和运动关系的两类基本问题包括已知物体的受力情况确定物体的运动情况和已知物体的运动情况确定物体的受力情况。
2.加速度a是联系力和运动的桥梁,牛顿第二定律表达式(F=ma)和匀变速直线运动公式(v=v0+at,x=v0t+at2/2,v2-v02=2ax等)中,均包含有一个共同的物理量—加速度a,因此此类问题的解题方法是根据题目涉及的物理量从匀变速直线运动的公式中选择一个合适的公式与牛顿第二定律的表达式组成方程组求解即可。
即此方法简称为照图填空(分析物体的受力,画出物体的受力图,按照物体的受力图填写牛顿第二定律表达式F=ma中合力的空),按量选择(根据运动涉及的物理量选择一个匀变速直线运动公式)。
3.此类问题的题型分为物体运动的一个过程简称为单程和物体运动的多个过程简称为多程,对于解决多程的问题时,每个过程都需要组一个方程组,同时一定要联系多个过程中间时刻的速度。
【典题训练】1.一架救灾直升机从距离地面16m的高处让一箱物资由静止开始竖直落下,经2s物资落地,已知物资的质量为10kg,它下落过程中所受空气阻力可认为大小不变。
求空气阻力的大小。
(取g=10m/s2)2.质量m=2kg的物体静止在水平面上,物体与水平面间的动摩擦因数为0.25,现在对物体施加一个大小F=20N、与水平方向夹角θ=37°角的斜向上的拉力。
已知sin37°=0.6,cos37°=0.8,取g=10m/s2,求物体在拉力作用下4s内通过的位移大小。
3.如图所示,物体质量m=2kg,受到与水平方向成θ=37°角斜向下、大小F=20N的推力作用,在水平面上做匀速直线运动。
(g取10m/s2,sin37°=0.6,cos37°=0.8)求:(1)物体与地面间动摩擦因素(2)若改用同样大小的力F沿水平方向推动物体,物体的加速度多大?(3)若改用同样大小的力F沿与水平方向成370斜向上拉动物体,物体的加速度多大?4.如图所示,一质量为m的物体放在动摩擦因数为µ粗糙的水平地面上,第一次用与水平面成θ角斜向上的拉力F1的作用下由静止开始向右运动,第二次用与水平面也成θ角斜向下的推力F2的作用下由静止开始向右运动。
高三物理 动力学两类基本问题
(1)空气阻力与小球重力大小的比值mfg; (2)小球从抛出到落到地面所经过的时间 t.
思路点拨:根据运动情况确定加速度利用牛顿第二定律结合运动中的受力情况求解. 规范解答:(1)从抛出到最高点,2a1h=v20(1 分) 代入数据求得 a1=12 m/s2(1 分) 根据牛顿第二定律:mg+f=ma1(1 分) mfg=0.2.(1 分) (2)上升过程所用时间 t1=va10=1 s(1 分) 下落过程加速度 a2=mgm-f=mg-m0.2mg=8 m/s2(1 分) 下落过程所用时间 t2,则有 h+H=12a2t22(1 分) 得 t2=2 s(1 分) 总时间 t=t1+t2=3 s.(2 分)
8s 3g.
答案:(1)0.5 (2)
8s 3g
考点二:连接体问题的应用
【例2】 (综合题)如图所示,倾角为θ的光滑斜面固 定在水平地面上,质量为m的物块A叠放在物体B 上,物体B的上表面水平.当A随B一起沿斜面下 滑时,A、B保持相对静止.求B对A的支持力N和 摩擦力f.
解析:当A随B一起沿斜面下滑时,物块A受到竖直向下的重力mg、B对A竖直向上的支 持力N和水平向左的摩擦力f的作用而一起做加速运动,如图(甲). 设B的质量为M,以A、B为整体,根据牛顿第二定律,有 (m+M)·gsin θ=(m+M)a,得a=gsin θ. 将加速度沿水平方向和竖直方向进行分解,如图(乙)所示,则ax=acos θ=gsin θcos θ, ay=asin θ=gsin2 θ
(1)小球的加速度;
(2)最初2 s内小球的位移.
解析:(1)小球在斜杆上受力分析如图所示. 垂直杆方向:Fcos θ=mgcos θ+N① 沿杆方向:Fsin θ-mgsin θ-f=ma② 其中:f=μN③ ①②③联立,并代入数据,得 a=0.4 m/s2. (2)最初 2 s 内的位移 s=12at2=0.8 m.
牛顿第二定律及应用(一)牛顿第二定律的理解及动力学两类基本问题
学案12 牛顿第二定律及应用(一)牛顿第二定律的理解及动力学两类基本问题一、概念规律题组1.下列对牛顿第二定律的表达式F =ma 及其变形公式的理解,正确的是( ) A.由F =ma 可知,物体所受的合力与物体的质量成正比,与物体的加速度成反比B.由m =Fa 可知,物体的质量与其所受的合力成正比,与其运动的速度成反比C.由a =Fm 可知,物体的加速度与其所受的合力成正比,与其质量成反比D.由m =Fa可知,物体的质量可以通过测量经的加速度和它所受的合力而求出2.下列说法正确的是( )A .物体所受合力为零时,物体的加速度可以不为零B .物体所受合力越大,速度越大C .速度方向、加速度方向、合力方向总是相同的D .速度方向可与加速度方向成任何夹角,但加速度方向总是与合力方向相同图13.如图1所示,质量为20 kg 的物体,沿水平面向右运动,它与水平面间的动摩擦因数为0.1,同时还受到大小为10 N 的水平向右的力的作用,则该物体(g 取10 m /s 2)( ) A .受到的摩擦力大小为20 N ,方向向左 B .受到的摩擦力大小为20 N ,方向向右 C .运动的加速度大小为1.5 m /s 2,方向向左 D .运动的加速度大小为0.5 m /s 2,方向向右 4.关于国秒单位制,下列说法正确的是( ) A .kg ,m /s ,N 是导出单位 B .kg ,m ,h 是基本单位C .在国际单位制中,质量的单位可以是kg ,也可以是gD .只有在国际单位制中,牛顿第二定律的表达式才是F =ma二、思想方法题组图25.(2011·淮南模拟)如图2所示,两个质量相同的物体1和2紧靠在一起,放在光滑水平面上,如果它们分别受到水平推力F 1和F 2的作用,而且F 1>F 2,则1施于2的作用力大小为( ) A .F 1 B .F 2 C .12(F 1+F 2) D .12(F 1-F 2)图36.如图3所示,在光滑水平面上,质量分别为m 1和m 2的木块A 和B 之下,以加速度a 做匀速直线运动,某时刻空然撤去拉力F ,此瞬时A 和B 的加速度a 1和a 2,则( ) A .a 1=a 2=0 B .a 1=a ,a 2=0C .a 1=m 1m 1+m 2a ,a 2=m 2m 1+m 2aD .a 1=a ,a 2=-m 1m 2a一、对牛顿第二定律的理解矢量性公式F=ma是矢量式,任一时刻,F与a总同向瞬时性a与F对应同一时刻,即a为某时刻的加速度时,F为该时刻物体所受的合外力因果性F是产生加速度a的原因,加速度a是F作用的结果同一性有三层意思:(1)加速度a是相对同一个惯性系的(一般指地面);(2)F=ma中,F、m、a对应同一个物体或同一个系统;(3)F=ma中,各量统一使用国际单位独立性(1)作用于物体上的每一个力各自产生的加速度都满足F=ma(2)物体的实际加速度等于每个力产生的加速度的矢量和(3)力和加速度在各个方向上的分量也满足F=ma即F x=ma x,F y=ma y【例1】(2010·上海·11)将一个物体以某一速度从地面竖直向上抛出,设物体在运动过程中所受空气阻力大小不变,则物体()A.刚抛出时的速度最大B.在最高点的加速度为零C.上升时间大于下落时间D.上升时的加速度等于下落时的加速度[规范思维]【例2】(2009·宁夏理综·20)如图4所示,一足够长的木板静止在光滑水平面上,一物块静止在木板上,木板和物块间有摩擦.现用水平力向右拉木板,当物块相对木板滑动了一段距离但仍有相对运动时,撤掉拉力,此后木板和物块相对于水平面的运动情况为()图4A.物块先向左运动,再向右运动B.物块向左运动,速度逐渐增大,直到做匀速运动C.木板向右运动,速度逐渐变小,直到做匀速运动D.木板和物块的速度都逐渐变小,直到为零[规范思维][针对训练1] (2009·上海综合·7)图5如图5所示为蹦极运动的示意图.弹性绳的一端固定在O点,另一端和运动员相连.运动员从O点自由下落,至B点弹性绳自然伸直,经过合力为零的C点到达最低点D,然后弹起.整个过程中忽略空气阻力.分析这一过程,下列表述正确的是()①经过B点时,运动员的速率最大②经过C点时,运动员的速率最大③从C点到D点,运动员的加速度增大④从C点到D点,运动员的加速度不变A.①③B.②③C.①④D.②④二、动力学两类基本问题1.分析流程图2.应用牛顿第二定律的解题步骤(1)明确研究对象.根据问题的需要和解题的方便,选出被研究的物体.(2)分析物体的受力情况和运动情况.画好受力分析图,明确物体的运动性质和运动过程.(3)选取正方向或建立坐标系.通常以加速度的方向为正方向或以加速度方向为某一坐标轴的正方向.(4)求合外力F合.(5)根据牛顿第二定律F合=ma列方程求解,必要时还要对结果进行讨论.特别提醒(1)物体的运动情况是由所受的力及物体运动的初始状态共同决定的.(2)无论是哪种情况,加速度都是联系力和运动的“桥梁”.(3)如果只受两个力,可以用平行四边形定则求其合力;如果物体受力较多,一般用正交分解法求其合力.如果物体做直线运动,一般把力分解到沿运动方向和垂直于运动方向;当求加速度时,要沿着加速度的方向处理力即一般情况不分解加速度;特殊情况下当求某一个力时,可沿该力的方向分解加速度.【例3】如图6图6所示,一质量为m的物块放在水平地面上.现在对物块施加一个大小为F的水平恒力,使物块从静止开始向右移动距离x后立即撤去F,物块与水平地面间的动摩擦因数为μ,求:(1)撤去F时,物块的速度大小;(2)撤去F后,物块还能滑行多远.【例4】(2010·安徽理综·22)图7质量为2 kg的物体在水平推力F的作用下沿水平面做直线运动,一段时间后撤去F,其运动的v-t图象如图7所示.g取10 m/s2,求:(1)物体与水平面间的动摩擦因数μ;(2)水平推力F的大小;(3)0~10 s内物体运动位移的大小.[规范思维][针对训练2] (2009·江苏·13)航模兴趣小组设计出一架遥控飞行器,其质量m=2 kg,动力系统提供的恒定升力F=28 N.试飞时,飞行器从地面由静止开始竖直上升.设飞行器飞行时所受的阻力大小不变,g取10 m/s2.(1)第一次试飞,飞行器飞行t1=8 s时到达高度H=64 m,求飞行器所受阻力f的大小.(2)第二次试飞,飞行器飞行t2=6 s时遥控器出现故障,飞行器立即失去升力.求飞行器能达到的最大高度h.(3)为了使飞行器不致坠落到地面,求飞行器从开始下落到恢复升力的最长时间t3.【基础演练】1.(2011·海南华侨中学月考)在交通事故的分析中,刹车线的长度是很重要的依据,刹车线是汽车刹车后,停止转动的轮胎在地面上发生滑动时留下来的痕迹.在某次交通事故中,汽车的刹车线的长度是14 m,假设汽车轮胎与地面间的动摩擦因数恒为0.7,g取10 m/s2,则汽车开始刹车时的速度为()A.7 m/s B.10 m/s C.14 m/s D.20 m/s2.(2011·吉林长春调研)竖直向上飞行的子弹,达到最高点后又返回原处,假设整个运动过程中,子弹受到的阻力与速度的大小成正比,则子弹在整个运动过程中,加速度大小的变化是()A.始终变大B.始终变小C.先变大后变小D.先变小后变大3.如图8甲所示,在粗糙水平面上,物体A在水平向右的外力F的作用下做直线运动,其速度—时间图象如图乙所示,下列判断正确的是()图8A.在0~1 s内,外力F不断增大B.在1~3 s内,外力F的大小恒定C.在3~4 s内,外力F不断增大D.在3~4 s内,外力F的大小恒定图94.(2009·广东理基·4)建筑工人用图9所示的定滑轮装置运送建筑材料,质量为70.0 kg的工人站在地面上,通过定滑轮将20.0 kg的建筑材料以0.500 m/s2的加速度拉升,忽略绳子和定滑轮的质量及定滑轮的摩擦,则工人对地面的压力大小为(g取10 m/s2)()A.510 N B.490 NC.890 N D.910 N图105.如图10所示,足够长的传送带与水平面间夹角为θ,以速度v0逆时针匀速转动.在传送带的上端轻轻放置一个质量为m的小木块,小木块与传送带间的动摩擦因数μ<tanθ.则图中能客观地反映小木块的速度随时间变化关系的是()图116.(2011·福建福州质检)商场搬运工要把一箱苹果沿倾角为θ的光滑斜面推上水平台,如图11所示.他由斜面底端以初速度v0开始将箱推出(箱与手分离),这箱苹果刚好能滑上平台.箱子的正中间是一个质量为m的苹果,在上滑过程中其他苹果对它的作用力大小是()A.mg B.mg sinθC.mg cosθ D.0题号 1 2 3 4 5 6答案7.在某一旅游景区,建有一山坡滑草运动项目.该山坡可看成倾角θ=30°的斜面,一名游客连同滑草装置总质量m=80 kg,他从静止开始匀加速下滑,在时间t=5 s内沿斜面滑下的位移x=50 m.(不计空气阻力,取g=10 m/s2).问:(1)游客连同滑草装置在下滑过程中受到的摩擦力F f为多大?(2)滑草装置与草皮之间的动摩擦因数μ为多大?(3)设游客滑下50 m后进入水平草坪,试求游客在水平面上滑动的最大距离.【能力提升】图128.如图12所示,有一长度x=1 m、质量M=10 kg的平板小车静止在光滑的水平面上,在小车一端放置一质量m=4 kg的小物块,物块与小车间的动摩擦因数μ=0.25,要使物块在2 s内运动到小车的另一端,求作用在物块上的水平力F是多少?(g取10 m/s2)图139.质量为10 kg的物体在F=200 N的水平推力作用下,从粗糙斜面的底端由静止开始沿斜面运动,斜面固定不动,与水平地面的夹角θ=37°,如图13所示.力F作用2 s后撤去,物体在斜面上继续上滑了1.25 s后,速度减为零.求:物体与斜面间的动摩擦因数μ和物体的总位移x.(已知sin 37°=0.6,cos 37°=0.8,g=10 m/s2)10.(2010.天星调研)图14如图14所示,长为L的薄木板放在长为L的正方形水平桌面上,木板的两端与桌面的两端对齐,一小木块放在木板的中点,木块、木板质量均为m,木块与木板之间、木板与桌面之间的动摩擦因数都为μ.现突然施加水平外力F在薄木板上将薄木板抽出,最后小木块恰好停在桌面边上,没从桌面上掉下.假设薄木板在被抽出的过程中始终保持水平,且在竖直方向上的压力全部作用在水平桌面上.求水平外力F的大小.学案12牛顿第二定律及应用(一)牛顿第二定律的理解及动力学两类基本问题【课前双基回扣】1.CD[牛顿第二定律的表达式F=ma表明了各物理量之间的数量关系,即已知两个量,可求第三个量,但物体的质量是由物体本身决定的,与受力无关;作用在物体上的合力,是由和它相互作用的物体作用产生的,与物体的质量和加速度无关.故排除A、B,选C、D.]2.D [由牛顿第二定律F =ma 知,F 合为零,加速度为零,由惯性定律知速度不一定为零;对某一物体,F 合越大,a 越大,由a =ΔvΔt知,a 大只能说明速度变化率大,速度不一定大,故A 、B 项错误;F 合、a 、Δv 三者方向一定相同,而速度方向与这三者方向不一定相同,故C 项错误,D 项正确.] 3.AD4.BD [所谓导出单位,是利用物理公式和基本单位推导出来的,力学中的基本单位只有三个,即kg 、m 、s ,其他单位都是由这三个基本单位衍生(推导)出来的,如“牛顿”(N)是导出单位,即1 N =1 kg·m/s 2(F =ma ),所以题中A 项错误,B 项正确.在国际单位制中,质量的单位只能是kg ,C 错误.在牛顿第二定律的表达式中,F =ma (k =1)只有在所有物理量都采用国际单位制时才能成立,D 项正确.]5.C [将物体1、2看做一个整体,其所受合力为:F 合=F 1-F 2,设质量均为m ,由第二定律得F 1-F 2=2ma ,所以a =F 1-F 22m以物体2为研究对象,受力情况如右图所示..由牛顿第二定律得F 12-F 2=ma ,所以F 12=F 2+ma =F 1+F 22.] 6.D [两物体在光滑的水平面上一起以加速度a 向右匀速运动时,弹簧的弹力F 弹=m 1a ,在力F 撤去的瞬间,弹簧的弹力来不及改变,大小仍为m 1a ,因此对A 来讲,加速度此时仍为a ;对B 物体,取向右为正方向,-m 1a =m 2a 2,a 2=-m 1m 2a ,所以只有D 项正确.]思维提升1.牛顿第二定律是一个实验定律,其公式也就不能像数学公式那样随意变换成不同的表达式.2.a =Δv Δt 是a 的定义式,a =Fm 是a 的决定式,a 虽可由a =Δv Δt进行计算,但a 决定于合外力F 与质量m .3.在牛顿运动定律的应用中,整体法与隔离法的结合使用是常用的一种方法. 4.对于弹簧弹力和细绳弹力要区别开.5.在牛顿运动定律的应用中,整体法与隔离法的结合使用是常用的一种方法,其常用的一种思路是:利用整体法求出物体的加速度,再利用隔离法求出物体间的相互作用力. 【核心考点突破】例1 A [最高点速度为零,物体受重力,合力不可能为零,加速度不为零,故B 项错.上升时做匀减速运动,h =12a 1t 21,下落时做匀加速运动,h =12a 2t 22,又因为a 1=mg +f m ,a 2=mg -f m,所以t 1<t 2,故C 、D 错误.根据能量守恒,开始时只有动能,因此开始时动能最大,速度最大,故A 项正确.][规范思维] 物体的加速度与合外力存在瞬时对应关系;加速度由合外力决定,合外力变化,加速度就变化. 例2 BC [由题意可知,当撤去外力,物块与木板都有向右的速度,但物块速度小于木板的速度,因此,木板给物块的动摩擦力向右,使物块向右加速,反过来,物块给木板的动摩擦力向左,使木板向右减速运动,直到它们速度相等,没有了动摩擦力,二者以共同速度做匀速运动,综上所述,选项B 、C 正确.][规范思维] 正确建立两物体的运动情景,明确物体的受力情况,进而确定加速度的大小方向,再进行运动状态分析.例3 (1) 2(F -μmg )x m (2)(Fμmg-1)x解析 (1)设撤去F 时物块的速度大小为v ,根据牛顿第二定律,物块的加速度 a =F -μmg m又由运动学公式v 2=2ax ,解得v = 2(F -μmg )xm(2)撤去F 后物块只受摩擦力,做匀减速运动至停止,根据牛顿第二定律,物块的加速度a ′=-μmg m =-μg 由运动学公式v ′2-v 2=2a ′x ′,且v ′=0解得x ′=(Fμmg-1)x[规范思维] 本题是已知物体的受力情况,求解运动情况,受力分析是求解的关键.如果物体的加速度或受力情况发生变化,则要分段处理,受力情况改变时的瞬时速度即是前后过程的联系量.多过程问题画出草图有助于解题.例4 (1)0.2 (2)6 N (3)46 m解析 (1)设物体做匀减速直线运动的时间为Δt 2、初速度为v 20、末速度为v 2t 、加速度为a 2,则a 2=v 2t -v 20Δt 2=-2 m/s 2①设物体所受的摩擦力为F f ,根据牛顿第二定律,有 F f =ma 2② F f =-μmg ③联立②③得μ=-a 2g=0.2④(2)设物体做匀加速直线运动的时间为Δt 1、初速度为v 10、末速度为v 1t 、加速度为a 1,则a 1=v 1t -v 10Δt 1=1 m/s 2⑤根据牛顿第二定律,有F +F f =ma 1⑥ 联立③⑥得F =μmg +ma 1=6 N(3)解法一 由匀变速直线运动位移公式,得x =x 1+x 2=v 10Δt 1+12a 1Δt 21+v 20Δt 2+12a 2Δt 22=46 m 解法二 根据v -t 图象围成的面积,得x =(v 10+v 1t 2×Δt 1+12×v 20×Δt 2)=46 m[规范思维] 本题是牛顿第二定律和运动图象的综合应用.本题是已知运动情况(由v -t 图象告知运动信息)求受力情况.在求解两类动力学问题时,加速度是联系力和运动的桥梁,受力分析和运动过程分析是两大关键,一般需列两类方程(牛顿第二定律,运动学公式)联立求解. [针对训练]1.B 2.(1)4 N (2)42 m (3)322s(或2.1 s)【课时效果检测】1.C 2.B 3.BC 4.B 5.D [m 刚放上时,mg sin θ+μmg cos θ=ma 1.当m 与带同速后,因带足够长,且μ<tan θ,故m 要继续匀加速.此时,mg sin θ-μmg cos θ=ma 2,a 2<a 1,故D 正确.]6.C [以箱子和里面所有苹果作为整体来研究,受力分析得,Mg sin θ=Ma ,则a =g sin θ,方向沿斜面向下;再以质量为m 的苹果为研究对象,受力分析得,合外力F =ma =mg sin θ,与苹果重力沿斜面的分力相同,由此可知,其他苹果给它的力的合力应与重力垂直于斜面的分力相等,即mg cos θ,故C 正确.]7.(1)80 N (2)315(3)100 3 m8.16 N解析 由下图中的受力分析,根据牛顿第二定律有F -F f =ma 物① F f ′=Ma 车②其中F f =F f ′=μmg ③由分析图结合运动学公式有x 1=12a 车t 2④x 2=12a 物t 2⑤x 2-x 1=x ⑥由②③解得a 车=1 m/s 2⑦ 由④⑤⑥⑦解得a 物=1.5 m/s 2所以F =F f +ma 物=m (μg +a 物)=4×(0.25×10+1.5) N =16 N. 9.0.25 16.25 m解析 设力F 作用时物体沿斜面上升的加速度大小为a 1撤去力F 后其加速度大小变为a 2,则: a 1t 1=a 2t 2①有力F 作用时,物体受力为:重力mg 、推力F 、支持力F N1、摩擦力F f1,如图所示.在沿斜面方向上,由牛顿第二定律可得: F cos θ-mg sin θ-F f1=ma 1②F f1=μF N1′=μ(mg cos θ+F sin θ)③撤去力F 后,物体受重力mg 、支持力F N2、摩擦力F f2,在沿斜面方向上,由牛顿第二定律得: mg sin θ+F f2=ma 2④F f2=μF N2′=μmg cos θ⑤联立①②③④⑤式,代入数据得:a 2=8 m/s 2 a 1=5 m/s 2 μ=0.25物体运动的总位移x =12a 1t 21+12a 2t 22=⎝⎛⎭⎫12×5×22+12×8×1.252 m =16.25 m 10.6μmg解析 设小木块离开薄木板之前的过程,所用时间为t ,小木块的加速度大小为a 1,移动的距离为x 1,薄木板被抽出后,小木块在桌面上做匀减速直线运动,所用时间为t ′,设其加速度大小为a 2,移动的距离为x 2,有 μmg =ma 1① μmg =ma 2②即有a 1=a 2=μg ③根据运动学规律有x 1=x 2,t =t ′④所以x 1=12μgt 2⑤x 2=12μgt 2⑥根据题意有x 1+x 2=12L ⑦解得t 2=L2μg⑧设小木块没有离开薄木板的过程中,薄木板的加速度为a ,移动的距离为x ,有 x =12at 2⑨ 根据题意有x =x 1+12L ⑩联立⑤⑧⑨⑩得a =3μg ⑪对薄木板,根据牛顿第二定律得F -3μmg =ma , 解得F =6μmg . 易错点评1.应用牛顿第二定律时,要注重对定律“四性”的理解.特别是“瞬时性”是常考要点之一;此外“独立性”也是解题中经常用到的.2.解决动力学两类基本问题的关键是找到加速度这一桥梁,除此之外,还应注意受力分析和运动过程分析,最好能画出受力分析图和运动过程草图.。
浅谈牛顿运动定律动力学的两大典型模型
浅谈牛顿运动定律动力学的两大典型模型山西省柳林县联盛中学校 033300牛顿运动定律动力学两大典型问题为传送带模型和板块模型。
这两大模型一直是力学中考查动力学的核心模型。
这两类问题不仅是历年高考的高频考点,而且在每年高考备考中又是学生复习的重难点。
以下我结合自己在高三复习中就这两大模型的特点,常见题型,解题方法和注意事项谈一些看法,有不妥之处请各位同行多多指教。
一、传送带模型传送带广泛应用于生产生活中,在很多方面提高了生产、生活的效率。
传送带模型是力学中最常出现的一种典型的模型。
1、模型特点传送带模型包括水平传送带、倾斜传送带和组合传送带三种模型。
2、解题关键对被传动的物体(如滑块、工件、煤块等)所受的摩擦力进行正确的分析判断,进而结合初始状态对其运动性质做出正确的分析3、解题思路(1)先判断物体的所受摩擦力方向(2)判断物体与传送带共速前的受力情况与运动情况(3)判断物体与传送带共速之后的运动性质(4)由速度关系、位移关系列方程组求解4、常见题型(1)求解物块从有限长度的传送带的一端到另一端运动的时间(2)求解小物块滑上传送带后相对传送带的位移或在传送带上留下划痕的长度(3)辨别或作出小物块在传送带上运动的速度时间图像(4)求解物块在传送带运动中从一端到另一端电机多消耗的电能或产生的热量5、解题注意事项(1)对于匀速转动的传送带,若传送带足够长,其上放置的物块的运动性质一般是两种形式;若传送带的长度是有限长,其上物块的运动性质可能是一种形式,也可能是两种形式。
(2)对于有限长度L的传送带必须讨论物体在其上运动性质是否是单一的运动形式。
其判断依据是当物体的速度等于传送带的速度时,先计算出物块发生的位移x,再比较位移x和传送带长度L的大小关系。
若x大于L,则物块的运动性质只有一种形式;若x小于L,则物块的运动性质有两种形式;(3)对于有限长度的倾斜传送带,二者达到共速时,经计算若物块发生的位移x小于传送带长度L时,在确定共速后物块的运动性质必须先分析物块重力沿斜面向下的分力与最大静摩擦力的大小关系。
牛顿第二定律典型题型归纳 -完整获奖版
牛顿第二定律典型题型归纳一. 重难点解析:1. 动力学两类基本问题应用牛顿运动定律解决的问题主要可分为两类:(1)已知受力情况求运动情况。
(2)已知运动情况求受力情况。
分析解决这两类问题的关键是抓住受力情况和运动情况之间联系的桥梁——加速度。
基本思路流程图:基本公式流程图为:2. 动力学问题的处理方法(1)正确的受力分析。
对物体进行受力分析,是求解力学问题的关键,也是学好力学的基础。
(2)受力分析的依据。
①力的产生条件是否存在,是受力分析的重要依据之一。
②力的作用效果与物体的运动状态之间有相互制约的关系,结合物体的运动状态分析受力情况是不可忽视的。
③由牛顿第三定律(力的相互性)出发,分析物体的受力情况,可以化难为易。
3. 解题思路及步骤(1)由物体的受力情况求解物体的运动情况的一般方法和步骤。
①确定研究对象,对研究对象进行受力分析,并画出物体的受力图。
②根据力的合成与分解的方法,求出物体所受合外力(包括大小和方向)③根据牛顿第二定律列方程,求出物体的加速度。
④结合给定的物体运动的初始条件,选择运动学公式,求出所需的运动参量。
(2)由物体的运动情况求解物体的受力情况。
解决这类问题的基本思路是解决第一类问题的逆过程,具体步骤跟上面所讲的相似,但需特别注意:①由运动学规律求加速度,要特别注意加速度的方向,从而确定合力的方向,不能将速度的方向与加速度的方向混淆。
②题目中求的力可能是合力,也可能是某一特定的作用力。
即使是后一种情况,也必须先求出合力的大小和方向,再根据力的合成与分解知识求分力。
4. 解题方法牛顿运动定律是解决动力学问题的重要定律,具体应用的方法有好多,高中物理解题常用的方法有以下几种:(1)正交分解法:表示方法为减少矢量的分解,建立坐标系时,确定x轴正方向有两种方法:①分解力而不分解加速度。
分解力而不分解加速度,通常以加速度a的方向为x轴正方向,建立直角坐标系,将物体所受的各个力分解在x轴和y轴上,分别得x轴和y轴的合力。
2022年高考一轮复习 第3章 牛顿运动定律 第3课时 动力学的两类基本问题
时间。下列关系正确的是
()
A.t1=t2
B.t2>t3
C.t1<t2
D.t1=t3
[解析] 设想还有一根光滑固定细杆 ca,则 ca、Oa、da 三 细杆交于圆的最低点 a,三杆顶点均在圆周上,根据等时圆模型 可知,由 c、O、d 无初速度释放的小滑环到达 a 点的时间相等, 即 tca=t1=t3;而由 c→a 和由 O→b 滑动的小滑环相比较,滑行 位移大小相同,初速度均为零,但加速度 aca>aOb,由 x=12at2 可 知,t2>tca,故选项 A 错误,B、C、D 均正确。
[典例] 新能源环保汽车在设计阶段要对各项性能进行测 试。某次新能源汽车性能测试中,如图甲显示的是牵引力传感器 传回的实时数据,但由于机械故障,速度传感器只传回了第 25 s 以后的数据,如图乙所示。已知汽车质量为 1 500 kg,若测试平 台是水平的,且汽车由静止开始做直线运动,所受阻力恒定。求:
考点二 动力学的图像问题 1.常见的动力学图像及问题类型
2.解题策略 (1)问题实质是力与运动的关系,解题的关键在于弄清图像 斜率、截距、交点、拐点、面积的物理意义。 (2)应用物理规律列出与图像对应的函数方程式,进而明确 “图像与公式”“图像与物体”间的关系,以便对有关物理问 题作出准确判断。
[解析] (1)由题图所示 v-t 图像可知, 加速度:a=ΔΔvt =84 m/s2=2 m/s2; 加速时间:t1=4 s, 加速位移:x1=v2t1=82×4 m=16 m, 匀速位移:x2=x-x1=100 m-16 m=84 m, 匀速时间:t2=xv2=884 s=10.5 s, 跑完 100 m 时间 t=t1+t2=14.5 s。
(1)运动员加速过程中的加速度大小 a 及跑完 100 m 所用的时间 t; (2)在加速阶段绳子对轮胎的拉力大小 T 及运动员与地面间的摩 擦力大小 f 人。
运用牛顿定律应注意四方面的问题
运用牛顿定律应注意四方面的问题作者:刘万强来源:《物理教学探讨》2007年第18期牛顿运动定律是掌握力学部分其他知识和电磁学部分知识的基础,必须正确地理解,并能够熟练地运用。
笔者在教学过程中从四个方面对牛顿运动定律的应用进行了探索,在此整理成文,以供参考。
1正确理解牛顿第二定律的两个特性——矢量性和瞬时性1.1矢量性力和加速度都是矢量,物体加速度方向由物体所受合外力的方向决定。
牛顿第二定律数学表达式∑F=ma中,等号不仅表示左右两边数值相等,也表示方向一致,即物体加速度方向与所受合外力方向相同。
1.2瞬时性当物体(质量一定)所受外力发生突然变化时,作为由力决定的加速度的大小和方向也要同时发生突变;当合外力为零时,加速度同时为零,加速度与合外力保持一一对应关系。
牛顿第二定律是一个瞬时对应的规律,表明了力的瞬间效应。
例1一物体放在光滑水平面上,初速度为零,先对物体施加一向东的恒力F0(如图1),历时1s;随即把此力改为向西,大小不变,历时1s;接着又把此力改为向东,大小不变,历时1s;如此反复,只改变力的方向,共历时60s。
在此60s内关于物体的运动,下列说法正确的是()A.物体时而向东运动,时而向西运动,在60s末静止于初始位置之东B.物体时而向东运动,时而向西运动,在60s末静止于初始位置C.物体时而向东运动.时而向西运动,在60s末继续向东运动D.物体一直向东运动,从不向西运动,在60s末静止于初始位置之东解析本题关键在于抓住牛顿第二定律的矢量性和瞬时性,当水平恒力改为向西时,加速度也改为向西,物体立即做匀减速运动,但速度方向仍然向东,加速度大小不变,经1s速度为零,第3s运动与第1s相同为物体向东的加速运动;第2s与第4s物体运动情况相同为向东减速运动……如此重复下去。
由此可知,物体时而向东加速、时而向东减速,在60s末,物体刚好停止,故D正确。
说明正确理解牛顿第二定律,着重理解a和F的矢量性、瞬时性,同时还应注意理解力与运动的关系。
6、两类问题(整头法与格力法)课件
1 A.2μmg C.2μmg
B.μmg D.3μmg
第三章 牛顿运动定律
创新大课堂
考基知识整合 考向层级导学 考能学科素养 考场频考频练
课时作业
[针对训练] 3.如图所示,一质量为M=5 kg的斜面放 在光滑水平面上,斜面高度为H=1 m,M与m 之间的动摩擦因数为0.8,m的质量为1 kg,起 初m在M竖直面上的最高点.现在使M受到一个 大小为60 N的水平恒力F的作用,并且同时释放 m,F作用持续了0.5 s后撤去,求从撤去F到m落 地,M的位移为多少?
A.μF C.32m(g+a)
B.2μF D.m(g+a)
第三章 牛顿运动定律
创新大课堂
考基知识整合 考向层级导学 考能学科素养 考场频考频练
课时作业
[解析] 本题考查力和运动的关系,意在考查学生对牛顿 第二定律、整体法和隔离法的应用.由于A、B相对静止,故
A、B之间的摩擦力为静摩擦力,A、B错误.设民工兄弟一只
第三章 牛顿运动定律
创新大课堂
考基知识整合 考向层级导学 考能学科素养 考场频考频练
课时作业
频考二 整体法与隔离法的应用
3.(2016·哈尔滨三中月考)如图所示,质量为m1和m2的两 物块放在光滑的水平地面上.用轻质弹簧将两物块连接在一
起.当用水平力F作用在m1上时,两物块均以加速度a做匀加 速运动,此时,弹簧伸长量为x,若用水平力F′作用在m1上 时,两物块均以加速度a′=2a做匀加速运动.此时弹簧伸长
第三章 牛顿运动定律
创新大课堂
考基知识整合 考向层级导学 考能学科素养 考场频考频练
课时作业
3.解题思路 (1)分析所研究的问题适合应用整体法还是隔离法. (2)对整体或隔离体进行受力分析,应用牛顿第二定律确 定整体或隔离体的加速度. (3)结合运动学方程解答所求解的未知物理量.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六讲牛顿运动定律两类动力学问题
一、知识梳理
二、疑难探究
1. 牛顿第一定律的理解与应用
例1. 伽利略根据小球在斜面上运动的实验和理想实验,提出了惯性的概念,从而奠定了牛顿力学的基础。
早期物理学家关于惯性有下列说法,其中正确的是()
A.物体抵抗运动状态变化的性质是惯性
B.没有力的作用,物体只能处于静止状态
C.行星在圆周轨道上保持匀速率运动的性质是惯性
D.运动物体如果没有受到力的作用,将继续以同一速度沿同一直线运动
例2.就一些实际生活中的现象,某同学试图从惯性角度加以解释,其中正确的是()
A.采用了大功率的发动机后,某些赛车的速度甚至能超过某些老式螺旋桨飞机的速度。
这表明,可以通过科学进步使小质量的物体获得大惯性
B.射出枪膛的子弹在运动相当长一段距离后连一件棉衣也穿不透,这表明它的惯性小了
C.货运列车运行到不同的车站时,经常要摘下或加挂一些车厢,这会改变它的惯性
D.摩托车转弯时,车手一方面要控制适当的速度,另一方面要将身体稍微向里倾斜,通过调控人和车的惯性达到急转弯的目的
小结
牛顿第一定律的理解
(1)惯性的两种表现形式
①物体在不受外力或所受的合外力为零时,惯性表现为使物体保持原来的运动状态不变(静止或匀速直线运动)。
②物体受到外力时,惯性表现为运动状态改变的难易程度。
惯性大,物体的运动状态较难改变;惯性
小,物体的运动状态容易改变。
(2)对牛顿第一定律的四点说明
①明确惯性的概念:牛顿第一定律揭示了一切物体所具有的一种固有属性——惯性。
②揭示力的本质:力是改变物体运动状态的原因,而不是维持物体运动状态的原因。
③理想化状态:牛顿第一定律描述的是物体不受外力时的状态,而物体不受外力的情形是不存在的。
在实际情况中,如果物体所受的合外力等于零,与物体不受外力时的表现是相同的。
④与牛顿第二定律的关系:牛顿第一定律和牛顿第二定律是相互独立的。
力是如何改变物体运动状态的问题由牛顿第二定律来回答。
牛顿第一定律是经过科学抽象、归纳推理总结出来的,而牛顿第二定律是一条实验定律。
二、牛顿第三定律的理解与应用
例1. 手拿一个锤头敲在一块玻璃上把玻璃打碎了。
对此,下列说法正确的是( )
A .锤头敲玻璃的力大于玻璃对锤头的作用力,所以玻璃才碎裂
B .锤头受到的力大于玻璃受到的力,只是由于锤头能够承受比玻璃更大的力才没有碎裂
C .锤头和玻璃之间的作用力应该是等大的,只是由于锤头能够承受比玻璃更大的力才没有碎裂
D .因为不清楚锤头和玻璃的其他受力情况,所以无法判断它们之间的相互作用力的大小
例2. 建筑工人用如图所示的定滑轮装置运送建筑材料。
质量为70.0 kg 的工人站在
地面上,通过定滑轮将20.0 kg 的建筑材料以0.500 m/s 2的加速度拉升,忽略绳子和定
滑轮的质量及定滑轮的摩擦,则工人对地面的压力大小为(g 取10 m/s 2)( )
A .510 N
B .490 N
C .890 N
D .910 N
小结
顿第三定律的理解
(1)作用力与反作用力的“六同、三异、二无关”
①六同:大小相同、性质相同、同一直线、同时产生、同时变化、同时消失。
②三异:方向相反、不同物体、不同效果。
③二无关:与物体的运动状态无关,与物体是否受其他力无关。
(2)
例1. 如图所示,A 、B 两小球分别连在轻绳两端,B 球另一端用弹簧固定在倾角为30°的光滑斜面上。
A 、
B 两小球的质量分别为m A 、m B ,重力加速度为g ,若不计弹簧质量,在绳被剪断瞬间,A 、B 两球的加速度大小分别为( )
A .都等于g 2 B. g 2和0C. g 2和m A m
B ·g 2D. m A m B ·g 2和g 2
注意:(1)求解瞬时加速度问题时应抓住“两点”
①物体的受力情况和运动情况是时刻对应的,当外界因素发生变化时,需要重新进行受力分析和运动分析。
②加速度可以随着力的突变而突变,而速度的变化需要一个过程的积累,不会发生突变。
(2)两类模型
①刚性绳(或接触面)——不发生明显形变就能产生弹力的物体,剪断(或脱离)后,其弹力立即消失,不需要形变恢复时间。
②弹簧(或橡皮绳)——两端同时连接(或附着)有物体的弹簧(或橡皮绳),特点是形变量大,其形变恢复需要较长时间,在瞬时性问题中,其弹力的大小往往可以看成保持不变。
小结
牛顿第二定律的理解
1.牛顿第二定律的五个特性
2.合力、加速度、速度间的决定关系
(1)物体所受合力的方向决定了其加速度的方向,只要合力不为零,不管速度是大是小,或是零,物体都有加速度,只有合力为零时,加速度才为零。
一般情况下,合力与速度无必然的联系。
(2)合力与速度同向时,物体加速运动;合力与速度反向时,物体减速运动。
(3)a =Δv Δt 是加速度的定义式,a 与Δv 、Δt 无直接关系;a =F m 是加速度的决定式,a ∝F ,a ∝1m。
4. 两类基本动力学问题
例1. 如图所示,一质量为m 的物块放在水平地面上。
现在对物块施加一个大小为F 的水平恒力,使物块从静止开始向右移动距离x 后立即撤去F ,物块与水平地面间的动摩擦因数为μ,求:
(1)撤去F 时,物块的速度大小;
(2)撤去F 后,物块还能滑行多远。
例2. 质量为2 kg 的物体在水平推力F 的作用下沿水平面做直线运动,一段时间后撤去F ,其运动的ʋ-t 图象如图所示。
g 取10 m/s 2,求:
(1)物体与水平面间的动摩擦因数μ;
(2)水平推力F 的大小;
(3)0~10 s 内物体运动位移的大小。
注意:在求解两类动力学问题时,加速度是联系力和运动的桥梁,受力分析和运动过程分析是两大关键,一般需列两类方程(牛顿第二定律,运动学公式)联立求解。
小结
(1)解决两类基本问题的方法
分析解决这两类问题的关键:应抓住受力情况和运动情况之间联系的桥梁——加速度。
(2)两类动力学问题的解题步骤
三、跟踪训练
1. 我国《道路交通安全法》中规定:各种小型车辆前排乘坐的人(包括司机)必须系好安全带,下列说法正确的是()
A.系好安全带可以减小惯性
B.是否系好安全带对人和车的惯性没有影响
C.系好安全带可以防止因车的惯性而造成的伤害
D.系好安全带可以防止因人的惯性而造成的伤害
2. 一物体受绳的拉力作用由静止开始前进,先做加速运动,然后改做匀速运动,最后改做减速运动,则下列说法中正确的是()
A.加速前进时,绳拉物体的力大于物体拉绳的力
B.减速前进时,绳拉物体的力小于物体拉绳的力
C.只有在匀速前进时,绳拉物体的力与物体拉绳的力大小才相等
D.不管物体如何前进,绳拉物体的力与物体拉绳的力大小总相等
3. 物体静止在斜面上,如图所示,下列说法正确的是()
A.物体对斜面的压力和斜面对物体的支持力是一对平衡力
B.物体对斜面的摩擦力和斜面对物体的摩擦力是一对作用力与反作用力
C.物体所受重力和斜面对物体的作用力是一对平衡力
D.物体所受重力可以分解为沿斜面向下的力和对斜面的压力
4. 如图所示,一足够长的木板静止在光滑水平面上,一物块静止在木板上,木板和物块间有摩擦。
现用水平力向右拉木板,当物块相对木板滑动了一段距离但仍有相对运动时,撤掉拉力,此后木板和物块相对于水平面的运动情况为()
A.物块先向左运动,再向右运动
B.物块向右运动,速度逐渐增大,直到做匀速运动
C.木板向右运动,速度逐渐变小,直到做匀速运动
D.木板和物块的速度都逐渐变小,直到为零
5.如图所示,车内绳AB与绳BC拴住一小球,BC水平,车由原来的静止状态变为向右加速直线运动,小球仍处于图中所示的位置,则()
A.AB绳、BC绳拉力都变大
B.AB绳拉力变大,BC绳拉力变小
C.AB绳拉力变大,BC绳拉力不变
D.AB绳拉力不变,BC绳拉力变大
6如图所示,放在光滑面上的木块受到两个水平力F1与F2的作用而静止不
动,现保持F1大小和方向不变,F2方向不变,使F2随时间均匀减小到零,再均匀增加到原来的大小,在这个过程中,能正确描述木块运动情况的图象是()
飞行器从地面由静止开始竖直上升,设飞行器飞行时所受的阻力大小不变,g取10 m/s2。
(1)第一次试飞,飞行器飞行t1=6 s时到达高度H=36 m,求飞行器所受阻力大小;
(2)第二次试飞,飞行器飞行t2=5 s时遥控器出现故障,飞行器立即失去升力,求飞行器能达到的最大高度h;(计算结果保留小数点后两位有效数字)
(3)第二次试飞中,为了使飞行器不致坠落地面,求飞行器从开始下落到恢复升力的最长时间t3。
(计算
结果保留两位有效数字)。