二次函数比较大小、图象练习解析
初三二次函数知识点和练习
二次函数的图象与解析式一、二次函数的图象1.二次函数图象与系数的关系 (1)a 决定抛物线的开口方向及开口大小 正负性决定开口方向,绝对值大小决定开口大小.a 越大,抛物线开口越小;温馨提示:几条抛物线的解析式中,若a 相等,则其形状相同,图象经过平移、中心对称(旋转180︒)a 不变.(2)b 和a 共同决定抛物线对称轴的位置(口诀:左同右异)(3)c 的大小决定抛物线与y 轴交点的位置(抛物线与y 轴的交点坐标为()0c ,) 2.二次函数的图形信息(1)根据抛物线的开口方向判断a 的正负性. (2)根据抛物线的对称轴判断2ba-的大小. (3)根据抛物线与y 轴的交点,判断c 的大小.(4)根据抛物线与x 轴有无交点,判断24b ac -的正负性.(5)根据抛物线所经过的已知坐标的点,可得到关于a b c ,,的等式. (6)根据抛物线的顶点,判断244ac b a-的大小2.二次函数图象的画法若是无图,建议画出图象然后根据图象来分析进行解答,数形结合是解答压轴题的终极方法,因为二次函数的图象能极大的方便做题,简易绘图法:根据以下五条就可以画图二次函数的简易图象 ①a 的正负性,看图形的开口方向是往上还是往下 ②c 的正负性,看图象与y 轴的交点是在正半轴还是负半轴 ③△的正负性,看图象与x 轴有无交点 ④对称轴的位置,看a 和b 的符号是否一致 压轴题绘图法:因为压轴题的作图需要精准,以帮助解答,所以需要画出带刻度的坐标系 ①利用对称轴公式,计算出对称轴,然后画出图形的对称轴②将对称轴代入解析式,算出顶点的纵坐标(若不为整数,则舍弃这一步) ③找出与y 轴交点,并利用对称轴画出对称点,④令0y =,算出与x 轴两个交点(若不为整数,则舍弃这一步) ⑤利用对称轴画出一条尽量对称且平滑的曲线三、二次函数的图象及性质1. 二次函数2y ax bx c =++0a ≠()或2()y a x h k =-+(0a ≠)的性质(1)开口方向:00a a >⇔⎧⎨<⇔⎩向上向下(2)对称轴:2bx a=-(或x h =) (3)顶点坐标:24(,)24b ac b a a--(或(,)h k )(4)最值:0a >时有最小值244ac b a -(或k )(如图1); 0a <时有最大值244ac b a-(或k )(如图2);⑸单调性:二次函数2y ax bx c =++(0a ≠)的变化情况(增减性) ①如图1所示,当0a >时,对称轴左侧2bx a<-,y 随着x 的增大而减小,在对称轴的右侧2bx a>-, y 随x 的增大而增大;②如图2所示,当0a >时,对称轴左侧2bx a<-, y 随着x 的增大而增大,在对称轴的右侧2b x a>-, y 随x 的增大而减小;⑹与坐标轴的交点:①与y 轴的交点:(0,C );②与x 轴的交点:使方程20ax bx c ++=(或2()0a x h k -+=)成立的x 值.考点一:根据二次函数的定义确定参数的值☞考点说明:根据二次函数的定义反求参数,一般情况下会结合在综合题中处,也有可能以填空题的形式出现,考察点在二次项系数不为零【例1】 函数()()2223ay a x a x a -=++-+.当______a =,它为二次函数;当____a =,它为一次函数.【例2】 若抛物线2(1)mmy m x -=-开口向下,则______m =考点二:二次函数的对称轴☞考点说明:在求二次函数的对称轴时,根据解析式的不同,求法也不尽相同,并不仅仅只有2bx a=-的这一种求法,需灵活掌握,一般情况下,以选择、填空出现的可能性较大。
二次函数的图象与性质大题(五大题型)—2024年中考数学(全国通用)解析版
二次函数的图象与性质大题(五大题型)通用的解题思路:题型一.二次函数的性质二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c (a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.③抛物线y=ax2+bx+c(a≠0)的图象可由抛物线y=ax2的图象向右或向左平移|﹣|个单位,再向上或向下平移||个单位得到的.题型二.二次函数图象与系数的关系二次函数y=ax2+bx+c(a≠0)①二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;|a|还可以决定开口大小,|a|越大开口就越小.②一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab<0),对称轴在y轴右侧.(简称:左同右异)③.常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).④抛物线与x轴交点个数.△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac <0时,抛物线与x轴没有交点.题型三.待定系数法求二次函数解析式(1)二次函数的解析式有三种常见形式:①一般式:y=ax2+bx+c(a,b,c是常数,a≠0);②顶点式:y=a(x﹣h)2+k(a,h,k是常数,a≠0),其中(h,k)为顶点坐标;③交点式:y=a(x﹣x1)(x﹣x2)(a,b,c是常数,a≠0);(2)用待定系数法求二次函数的解析式.在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.题型四.抛物线与x轴的交点求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x 的一元二次方程即可求得交点横坐标.(1)二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系.△=b2﹣4ac决定抛物线与x轴的交点个数.△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.(2)二次函数的交点式:y=a(x1)(x﹣x2)(a,b,c是常数,a≠0),可直接得到抛物线与x轴的交点坐标(x1,0),(x2,0).题型五.二次函数综合题(1)二次函数图象与其他函数图象相结合问题解决此类问题时,先根据给定的函数或函数图象判断出系数的符号,然后判断新的函数关系式中系数的符号,再根据系数与图象的位置关系判断出图象特征,则符合所有特征的图象即为正确选项.(2)二次函数与方程、几何知识的综合应用将函数知识与方程、几何知识有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件.(3)二次函数在实际生活中的应用题从实际问题中分析变量之间的关系,建立二次函数模型.关键在于观察、分析、创建,建立直角坐标系下的二次函数图象,然后数形结合解决问题,需要我们注意的是自变量及函数的取值范围要使实际问题有意义.题型一.二次函数的性质(共3小题)1.(2024•石景山区校级模拟)在平面直角坐标系xOy 中,1(A x ,1)y ,2(B x ,2)y 是抛物线2(0)y x bx b =−+≠上任意两点,设抛物线的对称轴为直线x h =. (1)若抛物线经过点(2,0),求h 的值;(2)若对于11x h =−,22x h =,都有12y y >,求h 的取值范围;(3)若对于121h x h −+……,221x −−……,存在12y y <,直接写出h 的取值范围. 【分析】(1)根据对称轴2bx a=−进行计算,得2b h =,再把(2,0)代入2(0)y x bx b =−+≠,即可作答.(2)因为1(A x ,1)y ,2(B x ,2)y 是抛物线2(0)y x bx b =−+≠上的点,所以把11x h =−,22x h =分别代入,得出对应的1y ,2y ,再根据12y y >联立式子化简,计算即可作答;(3)根据121h x h −+……,221x −−……,存在12y y <,得出当221h −<−<−或者211h −<+<−,即可作答. 【解答】解:(1)抛物线的对称轴为直线x h =, 22b bh ∴=−=−, 即2b h =,∴抛物线22y x hx =−+,把(2,0)代入22y x hx =−+, 得0422h =−+⨯, 解得1h =;(2)由(1)知抛物线22y x hx =−+,1(A x ,1)y ,2(B x ,2)y 是抛物线22y x hx =−+上任意两点,221(1)2(1)1y h h h h ∴=−−+−=−,22(2)220y h h h =−+⨯=,对于11x h =−,22x h =,都有12y y >, 210h ∴−>,解得1h >或1h <−;(3)1(A x ,1)y ,2(B x ,2)y 是抛物线22y x hx =−+上任意两点,对于121h x h −+……,221x −−……,存在12y y <,且1(2,)h y −关于直线x h =的对称点为1(2,)h y +,1(1,)h y +关于直线x h =的对称点为1(1,)h y −,∴当221h −<−<−时,存在12y y <,解得01h <<,当221h −<+<−时,存在12y y <, 解得43h −<<−,当211h −<+<−时,存在12y y <, 解得32h −<<−,当211h −<−<−时,存在12y y <, 解得10h −<<,综上,满足h 的取值范围为41h −<<且0h ≠.【点评】本题考查了二次函数的图象性质、增减性,熟练掌握二次函数的图象和性质是解决本题的关键. 2.(2024•鹿城区校级一模)已知二次函数223y x tx =−++. (1)若它的图象经过点(1,3),求该函数的对称轴. (2)若04x ……时,y 的最小值为1,求出t 的值.(3)如果(2,)A m n −,(,)C m n 两点都在这个二次函数的图象上,直线2y mx a =+与该二次函数交于1(M x ,1)y ,2(N x ,2)y 两点,则12x x +是否为定值?若是,请求出该定值;若不是,请说明理由.【分析】(1)把(1,3)代入解析式求出12t =,再根据对称轴公式求出对称轴; (2)根据抛物线开口向下,以及0x =时3y =,由函数的性质可知,当4x =时,y 的最小值为1,然后求t 即可;(3)(2,)A m n −,(,)C m n 两点都在这个二次函数的图象上,有对称轴公式得出1m t −=,再令2232x tx mx a −++=+,并转化为一般式,然后由根与系数的关系求出122x x +=−.【解答】解:(1)将(1,3)代入二次函数223y x tx =−++,得3123t =−++, 解得12t =, ∴对称轴直线为21122t x t =−==−⨯; (2)当0x =时,3y =,抛物线开口向下,对称轴为直线x t =, ∴当x t =时,y 有最大值,04x ……时,y 的最小值为1,∴当4x =时,16831y t =−++=,解得74t =; (3)12x x +是定值,理由:(2,)A m n −,(,)C m n 两点都在这个二次函数的图象上, 212m mx t m −+∴===−, 1m t ∴−=,令2232x tx mx a −++=+, 整理得:22()30x m t x a +−+−=,直线2y mx a =+与该二次函数交于1(M x ,1)y ,2(N x ,2)y 两点, 1x ∴,2x 是方程22()30x m t x a +−+−=的两个根,122()2()21m t x x m t −∴+=−=−−=−是定值. 【点评】本题考查了二次函数的性质,二次函数图象上点的坐标特征等知识,关键是掌握二次函数的性质. 3.(2024•拱墅区一模)在平面直角坐标系中,抛物线2(2)2y ax a x =−++经过点(2,)A t −,(,)B m p . (1)若0t =,①求此抛物线的对称轴;②当p t <时,直接写出m 的取值范围;(2)若0t <,点(,)C n q 在该抛物线上,m n <且5513m n +<−,请比较p ,q 的大小,并说明理由. 【分析】(1)①当0t =时,点A 的坐标为(2,0)−,将其代入函数解析式中解得1a =−,则函数解析式为抛物线的解析式为22y x x =−−+,再根据求对称轴的公式2bx a=−即可求解; ②令0y =,求出抛物线与x 轴交于(2,0)−和(1,0),由题意可得0p <,则点B 在x 轴的下方,以此即可解答; (2)将点A 坐标代入函数解析式,通过0t <可得a 的取值范围,从而可得抛物线开口方向及对称轴,根据点B ,C 到对称轴的距离大小关系求解.【解答】解:(1)①当0t =时,点A 的坐标为(2,0)−,抛物线2(2)2y ax a x =−++经过点(2,0)A −, 42(2)20a a ∴+++=,1a ∴=−,∴抛物线的解析式为22y x x =−−+, ∴抛物线的对称轴为直线112(1)2x −=−=−⨯−;②令0y =,则220x x −−+=, 解得:11x =,22x =−,∴抛物线与x 轴交于(2,0)−和(1,0),点(2,0)A −,(,)B m p ,且0p <, ∴点(,)B m p 在x 轴的下方,2m ∴<−或1m >.(2)p q <,理由如下:将(2,)t −代入2(2)2y ax a x =−++得42(2)266t a a a =+++=+,0t <, 660a ∴+<, 1a ∴<−,∴抛物线开口向下,抛物线对称轴为直线(2)1122a x a a −+=−=+, 1a <−,110a∴−<<, 1111222a ∴−<+<, m n <且5513m n +<−,∴1312102m n +<−<−, ∴点(,)B m p 到对称轴的距离大于点(,)C n q 到对称轴的距离,p q ∴<.【点评】本题考查二次函数的综合应用,解题关键是掌握二次函数的性质,掌握二次函数与方程及不等式的关系.题型二.二次函数图象与系数的关系(共8小题)4.(2023•南京)已知二次函数223(y ax ax a =−+为常数,0)a ≠. (1)若0a <,求证:该函数的图象与x 轴有两个公共点. (2)若1a =−,求证:当10x −<<时,0y >.(3)若该函数的图象与x 轴有两个公共点1(x ,0),2(x ,0),且1214x x −<<<,则a 的取值范围是 .【分析】(1)证明240b ac −>即可解决问题. (2)将1a =−代入函数解析式,进行证明即可. (3)对0a >和0a <进行分类讨论即可.【解答】证明:(1)因为22(2)43412a a a a −−⨯⨯=−, 又因为0a <,所以40a <,30a −<, 所以24124(3)0a a a a −=−>,所以该函数的图象与x 轴有两个公共点. (2)将1a =−代入函数解析式得,2223(1)4y x x x =−++=−−+,所以抛物线的对称轴为直线1x =,开口向下. 则当10x −<<时,y 随x 的增大而增大, 又因为当1x =−时,0y =, 所以0y >.(3)因为抛物线的对称轴为直线212ax a−=−=,且过定点(0,3), 又因为该函数的图象与x 轴有两个公共点1(x ,0),2(x ,0),且1214x x −<<<, 所以当0a >时,230a a −+<, 解得3a >, 故3a >.当0a <时,230a a ++<,解得1a <−, 故1a <−.综上所述,3a >或1a <−. 故答案为:3a >或1a <−.【点评】本题考查二次函数的图象和性质,熟知二次函数的图象和性质是解题的关键.5.(2024•南京模拟)在平面直角坐标系xOy 中,点1(1,)y ,2(3,)y 在抛物线222y x mx m =−+上. (1)求抛物线的顶点(,0)m ; (2)若12y y <,求m 的取值范围;(3)若点0(x ,0)y 在抛物线上,若存在010x −<<,使102y y y <<成立,求m 的取值范围. 【分析】(1)利用配方法将已知抛物线解析式转化为顶点式,可直接得到答案; (2)由12y y <,得到221296m m m m −+<−+,解不等式即可; (3)由题意可知012032m m +⎧<⎪⎪⎨+⎪>⎪⎩或112132m m −+⎧<⎪⎪⎨−+⎪>⎪⎩,解不等式组即可.【解答】解:(1)抛物线222()y x mx m x m =−+=−. ∴抛物线的顶点坐标为(,0)m .故答案为:(,0)m ;(2)点1(1,)y ,2(3,)y 在抛物线222y x mx m =−+上,且12y y <, 221296m m m m ∴−+<−+,2m ∴<;(3)点0(x ,0)y 在抛物线上,存在010x −<<,使102y y y <<成立, ∴012032m m +⎧<⎪⎪⎨+⎪>⎪⎩或112132m m −+⎧<⎪⎪⎨−+⎪>⎪⎩,解得302m <<. 【点评】本题考查了二次函数与系数的关系,二次函数图象上点的坐标特征,熟知二次函数的性质是解题的关键.6.(2024•北京一模)在平面直角坐标系中,已知抛物线23y ax bx =++经过点(2,3)a −. (1)求该抛物线的对称轴(用含有a 的代数式表示);(2)点(2,)M t m −,(2,)N t n +,(,)P t p −为该抛物线上的三个点,若存在实数t ,使得m n p >>,求a 的取值范围.【分析】(1)将点(2,3)a −代入抛物线23y ax bx =++中,然后根据二次函数的对称轴公式代入数值,即可得出答案;(2)分类讨论当0a >和0a <,利用数形结合以及二次函数的性质就可以得出a 的取值范围. 【解答】解(1)抛物线23y ax bx =++经过点(2,3)a −, ∴把(2,3)a −代入23y ax bx =++得2(2)233a a ab ⨯−−+=,22b a ∴=,2223y ax a x ∴=++,∴抛物线的对称轴222a x a a=−=−,答:抛物线的对称轴为:x a =−;(2)①当0a >时,抛物线开口方向向上,对称轴0x a =−<,在x 轴的负半轴上,所以越靠近对称轴函数值越小, ∴当0t <时,(2,)M t m −,(2,)N t n +,(,)P t p −在抛物线上,22t t ∴−<+,∴此时p m n >>与题干m n p >>相矛盾,故舍去, ∴当0t >时,(2,)M t m −,(2,)N t n +,(,)P t p −在抛物线上,22t t ∴−<+,∴此时m n <与题干m n p >>相矛盾,故舍去;②当0a <时,抛物线开口方向向下,对称轴0x a =−>,在x 轴的正半轴上,所以越靠近对称轴函数值越大, ∴当0t >时,点M 、N 分别在对称轴同侧时,(2,)M t m −,(2,)N t n +,(,)P t p −在抛物线上,22t t ∴−<+, .m n p >>,∴此时02a t <−<−,即20t a −<<,2t ∴>,∴当0t >时,点M 、N 分别在对称轴两侧时,(2,)M t m −,(2,)N t n +,(,)P t p −在抛物线上,22t t t ∴−<<+,p m n ∴>>与题干m n p >>相矛盾,故舍去,∴当0t <时,且点M 、N 分别在对称轴两侧时,(2,)M t m −,(2,)N t n +,(,)P t p −在抛物线上,22t t t ∴−<<+,n m ∴>与题干m n p >>相矛盾,故舍去,当0t <时,且点M 、N 分别在对称轴同侧时, (2,)M t m −,(2,)N t n +,(,)P t p −在抛物线上,22t t t ∴−<<+,n m ∴>与题干m n p >>相矛盾,故舍去,答:a 的取值范围为20(2)t a t −<<>.7.(2024•张家口一模)某课外小组利用几何画板来研究二次函数的图象,给出二次函数解析式2y x bx c =++,通过输入不同的b ,c 的值,在几何画板的展示区内得到对应的图象.(1)若输入2b =,3c =−,得到如图①所示的图象,求顶点C 的坐标及抛物线与x 轴的交点A ,B 的坐标; (2)已知点(1,10)P −,(4,0)Q .①若输入b ,c 的值后,得到如图②的图象恰好经过P ,Q 两点,求出b ,c 的值;②淇淇输入b ,嘉嘉输入1c =−,若得到二次函数的图象与线段PQ 有公共点,求淇淇输入b 的取值范围.【分析】(1)将2b =,3c =−,代入函数解析式,进行求解即可; (2)①待定系数法进行求解即可;②将1c =−代入解析式,得到抛物线必过点(0,1)−,求出1x =−和4x =的函数值,根据抛物线与线段PQ 有公共点,列出不等式进行求解即可. 【解答】解:(1)2y x bx c =++,解:当2b =,3c =−时,2223(1)4y x x x =+−=+−, ∴顶点C 的坐标为:(1,4)−−;当0y =时,2230x x +−=,即(3)(1)0x x +−=, 解得:13x =−,21x =, (3,0)A ∴−,(1,0)B ;(2)①抛物线恰好经过P ,Q则:1101640b c b c −+=⎧⎨++=⎩,解得:54b c =−⎧⎨=⎩;②当1c =−时,21y x bx =+−, 当0x =时,1y =−, ∴抛物线过(0,1)−,当1x =−时,11y b b =−−=−,当点(1,)b −−在点P 上方,或与点P 重合时,抛物线与线段PQ 有公共点,即:10b −…, 解得:10b −…;当4x =时,1641415y b b =+−=+,当点(4,154)b +在点Q 上方,或与点Q 重合时,抛物线与线段PQ 有公共点,即:1540b +…,154b ≥−; 综上:10b −…或154b ≥−. 【点评】本题考查二次函数的综合应用.正确的求出函数解析式,熟练掌握二次函数的图象和性质是解题的关键.8.(2024•浙江模拟)设二次函数24(y ax ax c a =−+,c 均为常数,0)a ≠,已知函数值y 和自变量x 的部分对应取值如下表所示:(1)判断m ,n 的大小关系,并说明理由; (2)若328m n −=,求p 的值;(3)若在m ,n ,p 这三个数中,只有一个数是负数,求a 的取值范围.【分析】(1)根据所给函数解析式,可得出抛物线的对称轴为直线2x =,据此可解决问题. (2)根据(1)中发现的关系,可求出m 的值,据此即可解决问题. (3)根据m 和n 相等,所以三个数中的负数只能为p ,据此可解决问题. 【解答】解:(1)m n =.因为二次函数的解析式为24y ax c =+, 所以抛物线的对称轴为直线422ax a−=−=, 又因为1522−+=, 所以点(1,)m −与(5,)n 关于抛物线的对称轴对称, 故m n =.(2)因为m n =,328m n −=, 所以8m =.将(0,3)和(1,8)−代入函数解析式得:348c a a c =⎧⎨++=⎩,解得13a c =⎧⎨=⎩所以二次函数的解析式为243y x x =−+.将2x =代入函数解析式得,224231p =−⨯+=−.(3)由(1)知,m n =, 所以m ,n ,p 中只能p 为负数. 将(0,3)代入函数解析式得,3c =, 所以二次函数解析式为243y ax ax =−+. 将1x =−代入函数解析式得,53m a =+. 将2x =代入函数解析式得,43p a =−+.则430530a a −+<⎧⎨+≥⎩,解得34a >,所以a 的取值范围是34a >. 【点评】本题考查二次函数图象与系数的关系及二次函数图象上点的坐标特征,熟知二次函数的图象和性质是解题的关键.9.(2024•北京模拟)在平面直角坐标系xOy 中,抛物线2(26)1y x m x =+−+经过点1(,)m y −,2(,)m y ,3(2,)m y +.(1)若13y y =,求抛物线的对称轴; (2)若231y y y <<,求m 的取值范围. 【分析】(1)利用对称轴意义即可求解;(2m 的不等式组,解不等式组即可.【解答】解:(1)抛物线2(26)1y x m x =+−+经过点1(,)m y −,2(,)m y ,3(2,)m y +,13y y =, ∴该抛物线的对称轴为:直线22m m x −++=,即直线1x =; (2)当0m >时,可知点1(,)m y −,2(,)m y ,3(2,)m y +从左至右分布, 231y y y <<,∴232232m m m m m m ++⎧−<⎪⎪⎨−++⎪−>⎪⎩,解得12m <<; 当0m <时,3m m m ∴<−<−+,21y y ∴>,不合题意,综上,m 的取值范围是12m <<.【点评】本题考查了二次函数图象上点的坐标特征,二次函数的性质,熟练掌握二次函数的性质是解题的关键.10.(2024•浙江模拟)在平面直角坐标系xOy 中,抛物线2(y ax bx c a =++,b ,c 为常数,且0)a ≠经过(2,4)A −−和(3,1)B 两点.(1)求b 和c 的值(用含a 的代数式表示);(2)若该抛物线开口向下,且经过(23,)C m n −,(72,)D m n −两点,当33k x k −<<+时,y 随x 的增大而减小,求k 的取值范围;(3)已知点(6,5)M −,(2,5)N ,若该抛物线与线段MN 恰有一个公共点时,结合函数图象,求a 的取值范围.【分析】(1)把(2,4)A −−和(3,1)B 代入2y ax bx c =++,即可求解;(2)先求出对称轴为:直线2x =,结合开口方向和增减性列出不等式即可求解; (3)分0a >时,0a <时,结合图象即可求解.【解答】解:(1)把(2,4)A −−和(3,1)B 代入2y ax bx c =++,得:424931a b c a b c −+=−⎧⎨++=⎩,解得:162b a c a =−⎧⎨=−−⎩;(2)抛物线经过(23,)C m n −,2,)m n −两点, ∴抛物线的对称轴为:直线237222m mx −+−==,抛物线开口向下,当33k x k −<<+时,y 随x 的增大而减小,32k ∴−…,即5k …; (3)①当0a >时,6x =−,5y …,即2(6)(1)(6)625a a a ⨯−+−⨯−−−…, 解得:1336a …,抛物线不经过点N ,如图①,抛物线与线段MN 只有一个交点,结合图象可知:1336a …;②当0a <时,若抛物线的顶点在线段MN 上时,则2244(62)(1)544ac b a a a a a−−−−−==,解得:11a =−,2125a =−, 当11a =−时,111112222(1)a −=−=⨯−, 此时,定点横坐标满足116222a−−……,符合题意; 当11a =−时,如图②,抛物线与线段MN 只有一个交点,如图③,当2125a =−时,11111312222()25a −=−=⨯−,此时顶点横坐标不满足116222a−−……,不符合题意,舍去; 若抛物线与线段MN 有两个交点,且其中一个交点恰好为点N 时,把(2,5)N 代入2(1)62y ax a x a =+−−−,得:252(1)262a a a =⨯+−⨯−−, 解得:54a =−,当54a =−时,如图④,抛物线和线段MN 有两个交点,且其中一个交点恰好为点N ,结合图象可知:54a <−时,抛物线与线段MN 有一个交点,综上所述:a 的取值范围为:1336a …或1a =−或54a <−.【点评】本题考查二次函数的性质和图象,根据题意画出图象,分类讨论是解题的关键.11.(2024•海淀区校级模拟)在平面直角坐标系xOy 中,点(0,3),1(6,)y 在抛物线2(0)y ax bx c a =++≠上. (1)当13y =时,求抛物线的对称轴;(2)若抛物线2(0)y ax bx c a =++≠经过点(1,1)−−,当自变量x 的值满足12x −……时,y 随x 的增大而增大,求a 的取值范围;(3)当0a >时,点2(4,)m y −,2(,)m y 在抛物线2y ax bx c =++上.若21y y c <<,请直接写出m 的取值范围.【分析】(1)当13y =时,(0,3),(6,3)为抛物线上的对称点,根据对称性求出对称轴;(2)把(0,3),(1,1)−−代入抛物线解析式得出a ,b 的关系,然后求出对称轴,再分0a >和0a <,由函数的增减性求出a 的取值范围;(3)先画出函数图象,再根据21y y c <<确定m 的取值范围. 【解答】解:(1)当13y =时,(0,3),(6,3)为抛物线上的对称点, 0632x +∴==, ∴抛物线的对称轴为直线3x =;(2)2(0)y ax bx c a =++≠过(0,3),(1,1)−−,3c ∴=,31a b −+=−, 4b a =+,∴对称轴为直线422b a x a a+=−=−,①当0a >时,12x −……时,y 随x 的增大而增大,∴412a a+−−…, 解得4a …,04a ∴<…;②当0a <时,12x −……时,y 随x 的增大而增大,∴422a a+−…, 解得45a −…, ∴405a −<…,综上:a 的取值范围是405a −<… 或04a <…;(3)点(0,3)在抛物线2y ax bx c =++上,3c ∴=,点2(4,)m y −,2(,)m y 在抛物线2y ax bx c =++上, ∴对称轴为直线422m mx m −+==−, ①如图所示:21y y c <<,6m ∴<且06232m +−>=, 56m ∴<<;②如图所示:21y y c <<,46m ∴−>, 10m ∴>,综上所述,m 的取值范围为56m <<或10m >.【点评】本题考查二次函数图象与系数的关系以及二次函数图象上点的坐标特征,关键是利用数形结合和分类讨论的思想进行解答.题型三.待定系数法求二次函数解析式(共3小题)12.(2024•保山一模)如图,抛物线2y ax bx c =++过(2,0)A −,(3,0)B ,(0,6)C 三点;点P 是第一象限内抛物线上的动点,点P 的横坐标是m ,且132m <<. (1)试求抛物线的表达式;(2)过点P 作PN x ⊥轴并交BC 于点N ,作PM y ⊥轴并交抛物线的对称轴于点M ,若12PM PN =,求m 的值.【分析】(1)将A ,B ,C 三点坐标代入函数解析式即可解决问题. (2)用m 表示出PM 和PN ,建立关于m 的方程即可解决问题. 【解答】解:(1)由题知,将A ,B ,C 三点坐标代入函数解析式得,4209306a b c a b c c −+=⎧⎪++=⎨⎪=⎩,解得116a b c =−⎧⎪=⎨⎪=⎩,所以抛物线的表达式为26y x x =−++.(2)将x m =代入抛物线得表达式得,26y m m =−++, 所以点P 的坐标为2(,6)m m m −++. 令直线BC 的函数解析式为y px q =+,则306p q q +=⎧⎨=⎩,解得26p q =−⎧⎨=⎩,所以直线BC 的函数解析式为26y x =−+. 因为132m <<,且抛物线的对称轴为直线12x =,所以12PM m =−. 又因为点N 坐标为(,26)m m −+,所以226(26)3PN m m m m m =−++−−+=−+. 因为12PM PN =, 所以211(3)22m m m −=−+,解得m =, 又因为132m <<,所以m =. 【点评】本题考查待定系数法求二次函数解析式及二次函数的图象和性质,熟知待定系数法及二次函数的图象和性质是解题的关键.13.(2024•东营区校级一模)如图,在平面直角坐标系xOy 中,直线28y x =−+与抛物线2y x bx c =−++交于A ,B 两点,点B 在x 轴上,点A 在y 轴上. (1)求抛物线的函数表达式;(2)点C 是直线AB 上方抛物线上一点,过点C 分别作x 轴,y 轴的平行线,交直线AB 于点D ,E .当38DE AB =时,求点C 的坐标.【分析】(1)根据一次函数解析式求出A ,B 两点坐标,再将A ,B 两点坐标代入二次函数解析式即可解决问题.(2)根据AOB ECD ∆∆∽得到CD 与OB 的关系,建立方程即可解决问题. 【解答】解:(1)令0x =得,8y =, 所以点A 的坐标为(0,8); 令0y =得,4x =, 所以点B 的坐标为(4,0);将A ,B 两点坐标代入二次函数解析式得,81640c b c =⎧⎨−++=⎩,解得28b c =⎧⎨=⎩,所以抛物线的函数表达式为228y x x =−++. (2)因为//CD x 轴,//CE y 轴, 所以AOB ECD ∆∆∽, 则CD DEOB AB=. 因为38DE AB =,4OB =, 所以32CD =. 令点C 坐标为2(,28)m m m −++, 则点D 坐标为21(2m m −,228)m m −++所以2211()222CD m m m m m =−−=−+,则213222m m −+=,解得1m =或3.当1m =时,2289m m −++=; 当3m =时,2285m m −++=; 所以点C 的坐标为(1,9)或(3,5).【点评】本题考查待定系数法求二次函数解析式及二次函数图象上点的坐标特征,熟知待定系数法及二次函数的图象和性质是解题的关键.14.(2024•南关区校级二模)已知二次函数2y x bx c =++的图象经过点(0,3)A −,(3,0)B .点P 在抛物线2y x bx c =++上,其横坐标为m .(1)求抛物线的解析式;(2)当23x −<<时,求y 的取值范围;(3)当抛物线2y x bx c =++上P 、A 两点之间部分的最大值与最小值的差为34时,求m 的值; (4)点M 在抛物线2y x bx c =++上,其横坐标为1m −.过点P 作PQ y ⊥轴于点Q ,过点M 作MN x ⊥轴于点N ,分别连结PM ,PN ,QM ,当PQM ∆与PNM ∆的面积相等时,直接写出m 的值. 【分析】(1)依据题意,将A 、B 两点代入解析式求出b ,c 即可得解;(2)依据题意,结合(1)所求解析式,再配方可得抛物线的最值,进而由23x −<<可以判断得解; (3)依据题意,分类讨论计算可以得解;(4)分别写出P 、Q 、M 、N 的坐标,PQM ∆与PNM ∆的面积相等,所以Q 到PM 的距离等于N 到PM 的距离,可得m 的值.【解答】解:(1)由题意,将(0,3)A −,(3,0)B 代入解析式2y x bx c =++得,3c =−,930b c ++=,2b ∴=−,3c =−,∴抛物线的解析式为223y x x =−−;(2)由题意,抛物线2223(1)4y x x x =−−=−−,∴抛物线223y x x =−−开口向上,当1x =时,y 有最小值为4−,当2x =−时,5y =;当3x =时,0y =, ∴当23x −<<时,45y −<…;(3)由题意得,2(,23)P m m m −−,(0,3)A −,①当0m <时,P 、A 两点之间部分的最大值为223m m −−,最小值为3−, 2323(3)4m m ∴−−−−=,解得:1m =−②当02m ……时,P 、A 两点之间部分的最大值为3−,最小值为223m m −−或4−, 显然最小值是4−时不合题意, ∴最小值为223m m −−, 233(23)4m m ∴−−−−=, 解得:32m =或12m =, 32m =时,P 、A 两点之间部分的最小值为4−,故舍去, ③当2m <时,P 、A 两点之间部分的最大值为223m m −−,最小值为4−, 2323(4)4m m ∴−−−−=,解得:1m =+,12+<,故舍去,综上,满足题意得m 的值为:1或12; (4)由题意得,2(1,4)M m m −−,(1,0)N m −,2(0,23)Q m m −−, 设PM y kx b =+,代入P 、M 两点, 2223(1)4mk b m m m k b m ⎧+=−−⎨−+=−⎩, 解得:1k =−,23b m m =−−,23PM y x m m =−+−−,PQM ∆与PNM ∆的面积相等,Q ∴到23PM y x m m =−+−−的距离与N 到23PM y x m m =−+−−的距离相等,Q 到23PM y x m m =−+−−的距离=,N 到23PMy x m m =−+−−的距离=, 2|||4|m m ∴−=−+,当2m <−时,24m m −=−,解得:m =,当20m −……时,24m m −=−,解得:m =,当02m <…时,24m m =−,解得:m =当2m <时,24m m =−,解得:m =综上,满足题意得m . 【点评】本题考查了二次函数,关键是注意分类讨论. 题型四.抛物线与x 轴的交点(共14小题)15.(2024•秦淮区校级模拟)已知函数2(2)2(y mx m x m =−−−为常数). (1)求证:不论m 为何值,该函数的图象与x 轴总有公共点.(2)不论m . (3)在22x −……的范围中,y 的最大值是2,直接写出m 的值. 【分析】(1)分两种情况讨论,利用判别式证明即可;(2)当1x =时,0y =,当0x =时,2y =−,即可得到定点坐标;(3)利用抛物线过两个定点,得到函数y 随x 增大而增大,代入解析式求出m 值即可. 【解答】解:(1)①当0m =时,函数解析式为22y x =−,此一次函数与x 轴有交点; ②当0m ≠时,函数解析式为2(2)2y mx m x =−−−,令0y =,则有2(2)20mx m x −−−=,△2222(2)4(2)44844(2)0m m m m m m m m =−−⨯−=−++=++=+…. ∴不论m 为何值,该函数的图象与x 轴总有公共点.(2)222(2)222()22y mx m x mx mx x m x x x =−−−=−+−=−+−, 当1x =时,0y =, 当0x =时,2y =−,∴不论m 为何值,该函数的图象经过的定点坐标是(1,0).(0,2)−故答案为:(1,0),(0,2)−,(3)若0m =,函数22y x =−,y 随x 增大而增大,当2x =时,2y =,与题干条件符; 当0m ≠时,函数2(2)2y mx m x =−−−是二次函数,①当0m >时,抛物线过(1,0),(0,2)−两点,当22x −……的范围中时,y 随x 的增大而增大, ∴当2x =时,2y =,即242(2)2m m =−−−,解得0m =(舍去).②当0m <时,抛物线过(1,0),(0,2)−两点,其增减性依旧是y 随x 的增大而增大和①相同.综上分析,0m =.【点评】本题考查了二次函数的图象与性质,熟练掌握二次函数的性质是解答本题的关键.16.(2024•柳州模拟)如图,在平面直角坐标系中,二次函数2y x bx c =++的图象与x 轴交于A ,B 两点,B 点的坐标为(3,0),与y 轴交于点(0,3)C −,点D 为抛物线的顶点. (1)求这个二次函数的解析式; (2)求ABD ∆的面积【分析】(1)利用待定系数法求解即可; (2)先求出点A 和点D 坐标,再根据||2D ABD AB y S ∆⋅=解析求解即可.【解答】解:(1)将(3,0)B ,(0,3)C −代入2y x bx c =++得0933b c c =++⎧⎨=−⎩,解得23b c =−⎧⎨=−⎩,∴二次函数的解析式为:223y x x =−−;(2)将223y x x =−−配方得顶点式2(1)4y x =−−, ∴顶点(1,4)D −,在223y x x =−−中,当2230y x x =−−=时, 解得1x =−或3x =, (1,0)A ∴−,4AB ∴=, ∴||44822D ABD AB y S ∆⋅⨯===. 【点评】本题主要考查了抛物线与x 轴的交点,二次函数的性质,二次函数图象上点的坐标特征,待定系数法求二次函数解析式,熟练掌握二次函数的性质是解答本题的关键.17.(2024•安阳模拟)如图,在平面直角坐标系xOy 中,抛物线2y ax bx c =++与抛物线21y x x =−+−的形状相同,且与x 轴交于点(1,0)−和(4,0).直线2y kx =+分别与x 轴、y 轴交于点A ,B ,交抛物线2y ax bx c =++于点C ,D (点C 在点D 的左侧). (1)求抛物线的解析式;(2)点P 是直线2y kx =+上方抛物线上的任意一点,当2k =时,求PCD ∆面积的最大值; (3)若抛物线2y ax bx c =++与线段AB 有公共点,结合函数图象请直接写出k 的取值范围.【分析】(1)根据题意直接求出二次函数解析式即可;(2)求出直线与抛物线的交点C ,D 坐标,过点P 作y 轴的平行线交CD 于点H ,交x 轴于点G ,设点P坐标为(m ,234)(12)m m m −++−<<,则点(,22)H m m +,求出PH ,由三角形的面积公式求出关于m 的函数解析式,再根据函数的性质求最值; (3)分0k >和0k <两种情况讨论即可.【解答】解:(1)抛物线2y ax bx c =++与抛物线21y x x =−+−的形状相同,1a ∴=−,抛物线2y ax bx c =++与x 轴交于点(1,0)−和(4,0), ∴抛物线的解析式为2(1)(4)34y x x x x =−+−=−++;(2)当2k =时,联立方程组22234y x y x x =+⎧⎨=−++⎩,解得10x y =−⎧⎨=⎩或26x y =⎧⎨=⎩, (1,0)C ∴−,(2,6)D ,过点P 作y 轴的平行线交CD 于点H ,交x 轴于点G ,如图,设点P 坐标为(m ,234)(12)m m m −++−<<, ∴点(,22)H m m +,2234(22)2PH m m m m m ∴=−++−+=−++,221331273(2)()22228PCD S PH m m m ∆∴=⨯=−++=−−+, 302−<,12m −<<, ∴当12m =时,S 有最大值,最大值为278. PCD ∴∆面积的最大值为278; (3)令0x =,则2y =, ∴点B 坐标为(0,2),令0y =,则20kx +=, 解得2x k=−,∴点A 坐标为2(k−,0), 若抛物线2y ax bx c =++与线段AB 有公共点, 当0k >时,如图所示,则21k−<−, 解得02k <<; 当0k <时,如图所示:则24k−>, 解得102k −<<;综上所述,k 的取值范围为02k <<或102k −<<.【点评】本题考查抛物线与x 轴的交点,待定系数法求函数解析式,二次函数图象上点的坐标特征,一次函数图象上点的坐标特征,二次函数的最值等知识,关键是对这些知识的掌握和运用.18.(2024•西湖区校级模拟)已知21()y ax a b x b =+++和22()(y bx a b x a a b =+++≠且0)ab ≠是同一直角坐标系中的两条抛物线.(1)当1a =,3b =−时,求抛物线21()y ax a b x b =+++的顶点坐标; (2)判断这两条抛物线与x 轴的交点的总个数,并说明理由;(3)如果对于抛物线21()y ax a b x b =+++上的任意一点(,)P m n 均有22n a b +….当20y …时,求自变量x 的取值范围.【分析】(1)把a ,b 的值代入配方找顶点即可解题;(2)分别令10y =,20y =,解方程求出方程的解,然后根据条件确定交点的个数即可解题;(3)现根据题意得到0a <,且24()224ab a b a b a−+=+,然后得到30b a =−>,借助图象求出不等式的解集即可.【解答】解:(1)当1a =,3b =−时,2221()23(1)4y ax a b x b x x x =+++=−−=−−, ∴顶点坐标为(1,4)−;(2)3个,理由为:令10y =,则2()0ax a b x b +++=, 即()(1)0ax b x ++=, 解得:1bx a=−,21x =−, 令20y =,则2()0bx a b x a +++=, 即()(1)0bx a x ++=, 解得:1ax b=−,21x =−, 又a b ≠且0ab ≠,∴两条抛物线与x 轴的交点总个数为3个;(3)抛物线21()y ax a b x b =+++上的任意一点(,)P m n 均有22n a b +…,0a ∴<,且24()224ab a b a b a−+=+,整理得:30b a =−>,∴22()y bx a b x a =+++的开口向上,且抛物线与x 轴交点的横坐标为113x =,21x =−, 如图所示,借助图象可知当13x …或1x −…时,20y ….【点评】本题考查二次函数的图象和性质,掌握配方法求顶点坐标,二次函数和一元二次方程的关系是解题的关键.19.(2024•三元区一模)抛物线23y ax bx =++与x 轴相交于点(1,0)A ,(3,0)B ,与y 轴正半轴相交于点C . (1)求抛物线的解析式;(2)点1(M x ,1)y ,2(N x ,2)y 是抛物线上不同的两点. ①当1x ,2x 满足什么数量关系时,12y y =; ②若12122()x x x x +=−,求12y y −的最小值. 【分析】(1)用待定系数法即可求解;(2)①若12y y =,则M 、N 关于抛物线对称轴对称,即可求解;②22121122121212(43)(43)()()4()y y x x x x x x x x x x −=−+−−+=+−+−,而12122()x x x x +=−,得到12y y −的函数表达式,进而求解.【解答】解:(1)设抛物线的表达式为:12()()y a x x x x =−−, 即2(1)(3)(43)y a x x a x x =−−=−+, 即33a =, 解得:1a =,故抛物线的表达式为:243y x x =−+;(2)如图,。
二次函数详解(附习题、答案)
二次函数详解(附习题、答案)一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。
:2. 2y ax c =+的性质: 上加下减。
】3. ()2y a x h =-的性质:左加右减。
4. ()2y a x h k =-+的性质:?三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ~⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,.五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.【六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标)..注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b 】在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧;当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.<ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:@根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;~()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+./5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-.,② 当0∆=时,图象与x 轴只有一个交点;③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.`⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:二次函数图像参考:,十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少2-32y=-2x 2y=3(x+4)22y=3x 2y=-2(x-3)2二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:…已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如: 如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )y y y y1 10 x o-1 x 0 x 0 -1 x A B C D3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。
二次函数的图象和性质(解析版)
第04讲 二次函数的图象和性质(重点题型方法与技巧)目录类型一:二次函数的定义 类型二:二次函数的图象与性质 类型三:二次函数的解析式 类型四:二次函数的平移问题类型一:二次函数的定义函数y =ax 2+bx +c 为二次函数的前提条件是a ≠0.在解二次函数的相关问题时,一定不能忽视“二次项系数不为0”这一隐含条件,尤其是二次项系数含字母的二次函数,应特别注意.典型例题例题1.(2022·浙江丽水·九年级期中)下列函数中,是二次函数的是( ) A .y =21x +x +1 B .y =x 2-(x +1)2C .y =-12x 2+3x +1 D .y =3x +1【答案】C 【详解】A. y =21x +x +1,不是二次函数,故该选项不正确,不符合题意; B. y =x 2-(x +1)221x ,不是二次函数,故该选项不正确,不符合题意;C. y =-12x 2+3x +1,是二次函数,故该选项正确,符合题意;D. y =3x +1,不是二次函数,故该选项不正确,不符合题意; 故选C点评:例题1考查了二次函数的定义,掌握二次函数的定义是解题的关键.根据二次函数的定义逐项分析即可,二次函数的定义:一般地,形如2y ax bx c =++(a b c 、、是常数,0a ≠)的函数,叫做二次函数.例题2.(2022·安徽宿州·九年级期末)如果()()221y m x m x =-+-是关于x 的二次函数,则m 的取值范围是( )A .1m ≠B .2m ≠C .2m ≠且1m ≠D .全体实数【答案】B【详解】∵()()221y m x m x =-+-是关于x 的二次函数,∴20m -≠, ∴2m ≠, 故选B .点评:例题2主要考查了二次函数的定义,正确把握二次函数的定义是解题的关键.例题3.(2022·全国·九年级课时练习)下列实际问题中的y 与x 之间的函数表达式是二次函数的是( ) A .正方体集装箱的体积3m y ,棱长x mB .小莉驾车以108km h 的速度从南京出发到上海,行驶x h ,距上海y kmC .妈妈买烤鸭花费86元,烤鸭的重量y 斤,单价为x 元/斤D .高为14m 的圆柱形储油罐的体积3m y ,底面圆半径x m 【答案】D【详解】A.由题得:3y x =,不是二次函数,故此选项不符合题意; B.由题得:108y x =,不是二次函数,故此选项不符合题意; C.由题得:86y x=,不是二次函数,故此选项不符合题意; D.由题得:214y x π=,是二次函数,故此选项符合题意. 故选:D .点评:例题3考查二次函数的定义,形如2(0)y ax bx c a =++≠的形式为二次函数,掌握二次函数的定义是解题的关键.根据题意,列出关系式,即可判断是否是二次函数.例题4.(2021·广西南宁·九年级期中)若12m y x x -=+是关于x 的二次函数,则m =_______ 【答案】3【详解】解:∵函数12m y x x -=+是关于x 的二次函数, ∴12m -=, 解得:3m =. 故答案为:3.点评:例题4考查了二次函数的定义,一般地,形如y=ax2+bx+c (a 、b 、c 是常数,a≠0)的函数,叫做二次函数.例题5.(2021·北京市宣武外国语实验学校九年级期中)某工厂今年八月份医用防护服的产量是50万件,计划九月份和十月份增加产量,如果月平均增长率为x ,那么十月份医用防护服的产量y (万件)与x 之间的函数表达式为______. 【答案】()2501=+y x【详解】解:十月份医用防护服的产量y (万件)与x 之间的函数表达式为 ()2501=+y x故答案为:()2501=+y x点评:例题5考查的是列二次函数关系式,掌握“两次变化后的量=原来量⨯(1+增长率)2”是解本题的关键.某工厂今年八月份医用防护服的产量是50万件,月平均增长率为x ,则九月份的产量为()501x +万件,十月份医用防护服的产量为()2501x +万件,从而可得答案.例题6.(2021·全国·九年级专题练习)已知函数()()221y m m x mx m =-+++,m 是常数.()1若这个函数是一次函数,求m 的值;()2若这个函数是二次函数,求m 的值.【答案】(1)1m =;()20m ≠且1m ≠.【详解】(1)依题意得200m m m ⎧-=⎨≠⎩∴010m m m ==⎧⎨≠⎩或 ∴1m =;()2依题意得20m m -≠,∴0m ≠且1m ≠.点评:例题6主要考查了一次函数及二次函数的定义,关键是掌握一次函数y=kx+b 的定义条件是:k 、b 为常数,k≠0,自变量次数为1;二次函数y=ax2+bx+c 的定义条件是a≠0,b 、c 为常数,自变量的最高次数是2.同类题型演练1.(2022·全国·九年级单元测试)下列函数中,是二次函数的是( )A .2832y x x =++B .81y x =+C .8y x=D .28y x =【答案】A【详解】A 、2832y x x =++是二次函数,符合题意; B 、81y x =+是一次函数,不合题意; C 、8y x=是反比例函数,不合题意; D 、28y x =不是二次函数,不合题意; 故选A .2.(2021·河南·油田十中九年级阶段练习)若函数()1334m y m x x -=++-是二次函数,则m 的值为( )A .-3B .3或-3C .3D .2或-2【答案】C【详解】解:∵函数()1334m y m x x -=++-是二次函数,∴12m -=且m +3≠0, 解得:m =3, 故选:C .3.(2022·全国·九年级课时练习)下列实际问题中,可以看作二次函数模型的有( )①正常情况下,一个人在运动时所能承受的每分钟心跳的最高次数b 与这个人的年龄a 之间的关系为b =0.8(220-a );②圆锥的高为h ,它的体积V 与底面半径r 之间的关系为V =13πr 2h (h 为定值);③物体自由下落时,下落高度h 与下落时间t 之间的关系为h =12gt 2(g 为定值);④导线的电阻为R ,当导线中有电流通过时,单位时间所产生的热量Q 与电流I 之间的关系为Q =RI 2(R 为定值). A .1个 B .2个C .3个D .4个【答案】C【详解】形如y=ax 2+bx+c (a 、b 、c 是常数且a≠0)的函数是二次函数,由二次函数的定义可得②③④是二次函数,故选C .4.(2022·全国·九年级课时练习)已知函数y =(m ﹣2)x 2+mx ﹣3(m 为常数). (1)当m _______时,该函数为二次函数; (2)当m _______时,该函数为一次函数. 【答案】 ≠2 =2【详解】解:(1)∵函数y =(m ﹣2)x 2+mx ﹣3为二次函数, ∴m ﹣2≠0, ∴m ≠2.( 2 )∵函数y =(m ﹣2)x 2+mx ﹣3为一次函数, ∴m ﹣2=0,m ≠0, ∴m =2.故答案为:(1)≠2;(2)=25.(2021·山东滨州·九年级期中)某商店从厂家以每件21元的价格购进一批商品,该商店可以自行定价,若每件商品的售价为x 元,则可卖出()35010x -件,那么卖出商品所赚钱y 元与售价x 元之间的函数关系为________.【答案】2105607350y x x =-+-【详解】解:由题意得:每件商品的盈利为:()21x -元, 所以:()()2135010y x x =--2102103507350x x x =-++-2105607350x x =-+-故答案为:2105607350y x x =-+-6.(2022·全国·九年级课时练习)根据下面的条件列出函数解析式,并判断列出的函数是否为二次函数: (1)如果两个数中,一个比另一个大5,那么,这两个数的乘积p 是较大的数m 的函数;(2)一个半径为10cm 的圆上,挖掉4个大小相同的正方形孔,剩余的面积S (cm 2)是方孔边长x (cm )的函数;(3)有一块长为60m 、宽为40m 的矩形绿地,计划在它的四周相同的宽度内种植阔叶草,中间种郁金香,那么郁金香的种植面积S (cm 2)是草坪宽度a (m )的函数. 【答案】(1)p = m 2﹣5m ,是二次函数 (2)S =100π﹣4x 2,是二次函数(3)S =4a 2﹣200a +2400;是二次函数【详解】(1)解:这两个数的乘积p 与较大的数m 的函数关系为:p =m (m ﹣5)=m 2﹣5m ,是二次函数; (2)解:剩余的面积S (cm 2)与方孔边长x (cm )的函数关系为:S =100π﹣4x 2,是二次函数;(3)解:郁金香的种植面积S (cm 2)与草坪宽度a (m )的函数关系为:S =(60﹣2a )(40﹣2a )=4a 2﹣200a +2400,是二次函数;7.(2019·湖北·黄州区宝塔中学九年级阶段练习)已知函数()()24323mm y m x m x +-=++++(其中0x ≠).()1当m 为何值时,y 是x 的二次函数?()2当m 为何值时,y 是x 的一次函数?【答案】()1当m 为2时,y 是x 的二次函数;()2当m 为3-117-±121-±y 是x 的一次函数.【详解】()1根据题意得30m +≠且242m m +-=,解得2m =, 即当m 为2时,y 是x 的二次函数;()2当30m +=时,即3m =-时,y 是x 的一次函数;当240m m +-=且20m +≠时,y 是x 的一次函数,解得117m -±=; 当241m m +-=且320m m +++≠时,y 是x 的一次函数,解得121m -±=; 即当m 为3-117-±121-±时,y 是x 的一次函数. 类型二:二次函数的图象与性质二次函数的解析式中,a 决定抛物线的形状和开口方向,h 、k 仅决定抛物线的位置.若两个二次函数的图象形状完全相同且开口方向相同,则它们的二次项系数a 必相等.典型例题例题1.(2022·浙江湖州·九年级期末)对于二次函数y =x 2-4x -1的图象,下列叙述正确的是( ) A .开口向下B .对称轴为直线x =2C .顶点坐标为(-2,-5)D .当x ≥2时,y 随x 增大而减小【答案】B【详解】解:∵224125y x x x =--=--(), ∴该函数图象开口向上,对称轴为直线2x =,顶点坐标为(2,-5), ∴当2x ≥时,y 随x 的增大而增大,故选项B 符合题意, 故选:B .点评:例题1考查二次函数的图象和性质,解答本题的关键是明确题意,利用二次函数的性质解答. 例题2.(2021·天津市晟楷中学九年级阶段练习)抛物线()2235y x =--的顶点坐标是( ) A .(3,5)-- B .(3,5)- C .(3,5)- D .(3,5)【答案】C【详解】解:抛物线()2235y x =--的顶点坐标是()3,5-,故选:C .点评:例题2考查了求抛物线的顶点坐标,解题的关键是熟练掌握抛物线的顶点坐标的求法.例题3.(2022·甘肃·张掖市第一中学九年级期末)如图所示的二次函数2y ax bx c =++的图象中,刘星同学观察得出了下面四条信息:(1)240b ac ->;(2)c >1;(3)20a b -<;(4)0a b c ++<.你认为其中错误的有( )A .2个B .3个C .4个D .1个【答案】D【详解】解:(1)根据图示知,该函数图象与x 轴有两个交点, ∴240b ac ∆=->; 故本选项正确;(2)由图象知,该函数图象与y 轴的交点在点(0,1)以下, ∴1c <;故本选项错误; (3)由图示,知对称轴12bx a=->-;又函数图象的开口方向向下, ∴0a <,∴2b a -<-,即20a b -<, 故本选项正确;(4)根据图示可知,当x =1,即0y a b c =++<,∴0a b c ++<;故本选项正确;综上所述,其中错误的是(2),共有1个; 故选:D .点评:例题3主要考查二次函数图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用是解题的关键.由抛物线与x 轴交点情况判断24b ac -与0的关系,由抛物线与y 轴的交点判断c 与1的关系,然后根据对称轴及a 的范围推理2a b -的符号,根据当x =1的函数值判断a b c ++的符号.例题4.(2022·全国·九年级专题练习)若点A (﹣1,y 1)、B (1,y 2)、C (4,y 3)为二次函数y =﹣x 2+4x +5的图象上的三点,则y 1,y 2,y 3的大小关系是____(用“>”号连接). 【答案】y 2>y 3>y 1【详解】解:∵二次函数y =﹣x 2+4x +5中a =﹣1, ∴函数图象开口向下,∵y =﹣x 2+4x +5=﹣(x ﹣2)2+9, ∴函数的对称轴为直线x =2,∵A (﹣1,y 1)、B (1,y 2)、C (4,y 3),∴A 点到对称轴的距离为3,B 点到对称轴的距离为1,C 点到对称轴的距离为2, ∴y 2>y 3>y 1, 故答案为:y 2>y 3>y 1.点评:例题4考查了二次函数的图象性质,由解析式求出对称轴是解题关键.求出函数的对称轴为直线x =2,由于函数开口向下,则函数图象上的点离对称轴越远所对应的函数值越小,由此即可求解. 例题5.(2021·福建漳州·模拟预测)已知抛物线25y x bx =-++与x 轴交于A ,B 两点. (1)若抛物线的对称轴是直线x =2. ①求抛物线的解析式;②对称轴上是否存在一点P ,使点B 关于直线OP 的对称点B '恰好落在对称轴上.若存在,请求出点P 的坐标;若不存在,请说明理由.(2)当b ≥4,0≤x ≤2时,函数y 的最大值满足5≤y ≤13,求b 的取值范围. 【答案】(1)①245y x x =-++;②存在,点P (2,217)或P (2,2217-) (2)4≤b ≤6【详解】(1)解:①抛物线25y x bx =-++的对称轴为直线()212b bx =-=⨯-,抛物线的对称轴是直线x =2, ∴22b=,解得b =4, ∴抛物线的解析式为245y x x =-++; ②存在.理由如下:抛物线的对称轴与x 轴交于点C ,若点P 在x 轴上方,点B 关于OP 对称的点B '在对称轴上,连结OB ′、PB ,则OB '=OB ,PB '=PB ,如图所示:对于245y x x =-++,令y =0,则2450x x -++=,即2450x x --=, 解得125,1x x ==-, ∴A (﹣1,0),B (5,0), ∴OB '=OB =5,∴在Rt B OC '∆中,90B CO '∠=︒,5,2OB OC '==,则22225221B C B O OC ''--= ∴(21B ',设点P (2,m ),由22BP B P '=,得()2222921mm +=-,即(22921m m +=,解得217m =, ∴P (2221), 同理,当点P 在x 轴下方时,P (2,221, 综上所述,点P (2,2217)或P (2,217-; (2)解:∵抛物线25y x bx =-++的对称轴为直线2bx =, ∴当b ≥4时,22bx =≥, ∵抛物线开口向下,在对称轴左边,y 随x 的增大而增大, ∴当0≤x ≤2时,取x =2,y 有最大值,即y =﹣4+2b +5=2b +1,∵5≤y≤13,∴5≤2b+1≤13,解得2≤b≤6,又∵b≥4,∴4≤b≤6.点评:例题5考查二次函数的综合应用,涉及到二次函数的图像与性质,勾股定理的应用,轴对称性质,二次函数最值问题,二次函数增减性应用等知识点,解题的关键是熟练掌握二次函数的图像与性质、轴对称性质等相关知识,灵活运用数形结合思想、分类讨论思想解决问题.(1)①根据抛物线的对称轴公式即可求出解析式;②如图,若点P在x轴上方,点B关于OP对称的点B'在对称轴上,连接OB′、PB,根据轴对称的性质得到OB'=OB,PB'=PB,求出点B的坐标,利用勾股定理得到B′(2,21),再根据PB'=PB,列出方程解答,同理得到点P在x轴下方时的坐标即可;(2)当b≥4时,确定对称轴的位置,再结合开口方向,确定当0≤x≤2时,函数的增减性,从而得到当x=2时,函数取最大值,再根据函数值y的最大值满足5≤y≤13,列出不等式解答即可.同类题型演练1.(2022·全国·九年级课时练习)下列关于二次函数y=2x2的说法正确的是()A.它的图象经过点(-1,-2)B.它的图象的对称轴是直线x=2C.当x<0时,y随x的增大而增大≤≤2时,y有最大值为8,最小值为0D.当-1x【答案】D【详解】解:二次函数y=2x2,当x=-1时,y=2,故它的图象不经过点(-1,-2),故选项A不合题意;二次函数y=2x2的图象的对称轴是直线y轴,故选项B不合题意;当x<0时,y随x的增大而减小,故选项C不合题意;二次函数y=2x2,在-1≤x≤2的取值范围内,当x=2时,有最大值8;当x=0时,y有最小值为0,故选项D 符合题意;故选:D.2.(2021·江苏·南通市八一中学九年级阶段练习)抛物线2314y x的顶点坐标是()A.(1,4)B.(1,﹣4)C.(﹣1,4)D.(﹣1,﹣4)【详解】解:根据题意得:抛物线2314y x 的顶点坐标是(﹣1,﹣4).故选:D3.(2021·福建·平潭翰英中学九年级期中)二次函数y =ax 2+bx +c (a ≠0)的图象如图,给出下列四个结论:①4ac ﹣b 2<0;②4a +c <2b ;③3b +2c <0;④m (am +b )+b <a (m ≠﹣1),其中正确结论的个数是( )A .①②B .①③④C .②③④D .①④【答案】B【详解】解:∵函数图象与x 轴有两个交点, ∴方程ax 2+bx +c =0有两个不相等的实数根, ∴b 2−4ac >0, ∴4ac −b 2<0, 故①正确;∵函数图象与x 轴的一个交点的横坐标在0至1之间, ∴函数图象与x 轴的另一个交点的横坐标在-2至-3之间, 由图象可知:当x =−2时,y >0, ∴4a −2b +c >0, ∴4a +c >2b , 故②错误; ∵12ba-=-, ∴b =2a ,∵当x =1时,y <0, ∴a +b +c <0,∴102b bc ++<,3b +2c <0,∵由函数图象可知x =−1时,该二次函数取得最大值, ∴a −b +c >am 2+bm +c (m ≠−1), ∴m (am +b )<a −b , 故④正确;∴正确的有①③④三个, 故选:B .4.(2021·黑龙江·肇源县第五中学九年级期中)已知抛物线21y x x =--与经过点(m ,1),则代数式m ²-m +2019的值为_____. 【答案】2021【详解】解:∵抛物线2=1y x x +-经过点(,1)P m ∴21=1m m --,即22m m -=∴²2019m m -+=2+2019=2021. 故答案为:2021.5.(2022·全国·九年级课时练习)已知点A (-1,y 1),B (2 ,y 2),C (5,y 3)在二次函数y =x 2﹣6x +c 的图象上,则y 1, y 2, y 3的大小关系是_____________ (按照从小到大用<连接). 【答案】231y y y <<【详解】解:∵二次函数y =x 2-6x +c 中a =1>0, ∴抛物线开口向上,有最小值. ∵63221b x a -=-=-=⨯, ∴离对称轴水平距离越远,函数值越大, ∵3(1)5332-->->-, ∴231y y y <<; 故答案为:231y y y <<.6.(2022·福建三明·九年级期末)平面直角坐标系中,抛物线221y x ax a -++-=(a 为常数)的顶点为A . (1)当抛物线经过点(1,2),求抛物线的函数表达式;(2)求顶点A 的坐标(用含字母a 的代数式表示),判断顶点A 是在x 轴上方还是下方,并说明理由; (3)当x ≥0时,抛物线221y x ax a -++-=(a 为常数)的最高点到直线y =3a 的距离为5,求a 的值. 【答案】(1)241y x x =-+-(2)()2,1a a a -+,顶点A 在x 轴上方,理由见解析(3)222+-1【详解】(1)解:当抛物线221y x ax a -++-=(a 为常数)经过点(1,2), ∴2121a a =-++-, 整理得2a =.将2a =代入221y x ax a -++-=中, ∴抛物线的函数表达式为241y x x =-+-;(2)解:∵抛物线221y x ax a -++-=(a 为常数)的顶点为A , ∴()2221b ax a a =-=-=⨯-, 将x a =代入221y x ax a -++-=中, 得到222211y a a a a a =-++-=-+,∴顶点为A 的坐标为()2,1a a a -+;顶点A 在x 轴上方,理由如下:∵2213124a a a ⎛⎫-+=-+ ⎪⎝⎭,2102a ⎛⎫-≥ ⎪⎝⎭,∴2314a a -+≥, ∴顶点A 在x 轴上方.(3)解:由(2)可知,抛物线221y x ax a -++-=的对称轴为x a =,顶点坐标为()2,1a a a -+,①当0a >时,对称轴在y 轴右侧,如图所示,∵x ≥0时图象的最高点是顶点()2,1a a a -+,且最高点到直线y =3a 的距离为5,∴2135a a a -+-=,即2415a a -+=,若2415a a -+=,解得12222,222a a =+=-(不合题意,舍去), 若2415a a -+=-,()222a -=-,原方程无解; ②当0a =时,对称轴是y 轴,如图所示,∵x ≥0时图象的最高点是顶点0,1,最高点到直线y =3a 的距离不可能为5, ∴此种情况不存在;③当0a <时,对称轴在y 轴左侧,如图所示,∵x ≥0时图象的最高点是()0,1a -,且最高点到直线y =3a 的距离为5, ∴135a a --=,解得1a =-. 综上所述,a 的值为222+或-1.类型三:二次函数的解析式用待定系数法可求出二次函数的解析式,确定二次函数一般需要三个独立条件,根据不同条件选择不同的设法:(1)设一般式:y =ax 2+bx +c (a ≠0),若已知条件是图象上的三个点,则设所求二次函数为y =ax 2+bx +c ,将已知条件代入解析式,得到关于a ,b ,c 的三元一次方程组,解方程组求出a ,b ,c 的值,解析式便可得出. (2)设顶点式:y =a (x -h )2+k ,若已知二次函数图象的顶点坐标或对称轴方程与最大值(或最小值),设所求二次函数为y =a (x -h )2+k ,将已知条件代入,求出待定系数,最后将解析式化为一般形式.(3)设交点式:y =a (x -x 1)(x -x 2)(a ≠0),若已知二次函数图象与x 轴的两个交点的坐标为(x 1,0),(x 2,0),设所求二次函数为y =a (x -x 1)(x -x 2),将第三个点的坐标(m ,n )(其中m ,n 为已知数)或其他已翻条件代入,求出待定系数a ,最后将解析式化为一般形式.典型例题例题1.(2021·江苏·九年级专题练习)已知二次函数的图象的顶点是(1,2)-,且经过点(0,5)-,则二次函数的解析式是( ). A .23(1)2y x =-+- B .23(1)2y x =+- C .23(1)2y x =--- D .23(1)2=--y x【答案】C【详解】解:设该抛物线解析式是:y =a (x -1)2﹣2(a ≠0). 把点(0,-5)代入,得 a (0-1)2﹣2=-5, 解得a=-3.故该抛物线解析式是23(1)2y x =---. 故答案选:C点评:例题1主要考查了待定系数法求抛物线的解析式,难度不大,需要掌握抛物线的顶点式. 例题2.(2020·内蒙古·乌海市海南区教育局教研室九年级期中)若抛物线的顶点为点(2,3)且抛物线经过点(3,1),那么抛物线解析式是( ) A .y=4(x -2)2 -3 B .y=-2(x -2)2+3C .y=-2(x -2)2-3D .y= -225(x -2)2+3 【答案】B【详解】∵抛物线的顶点为(2,3), ∴设抛物线的解析式为y=a (x -2)2+3, ∵经过点(3,1), ∴代入得:1=a (3-2)2+3, 解得:a=-2, 即y=-2(x -2)2+3, 故选B .点评:例题2考查了求抛物线的解析式的应用,解题的关键是注意抛物线解析式的设法.设抛物线的解析式为y=a (x-2)2+3,把点(3,1)代入得出1=a (3-2)2+3,求出a 即可.例题3.(2020·吉林·九年级阶段练习)将二次函数2y x x =+的图象沿x 轴翻折后,所得图象的函数解析式是( ) A .2y x x =+ B .2y x xC .2y x x =-+D .2y x x =--【答案】D【详解】∵2211()24y x x x =+=+-,∴二次函数2y x x =+的图象顶点坐标为(-12,-14),∴将二次函数2y x x =+的图象沿x 轴翻折后,所得图象的顶点坐标为(-12,14),且图形开口方向相反,开口大小相等,故a=1,∴翻折后图象的函数解析式为2211()24x y x x =-++=--,故选:D.点评:例题3考查翻折的性质,求函数解析式,将二次函数的一般形式化为顶点式.先求出二次函数2y x x =+的图象顶点坐标,利用翻折得到所得函数的顶点坐标为(-12,14),a=1,由此得到函数的解析式. 例题4.(2022·湖北襄阳·九年级期末)已知一个二次函数的图象开口向上,顶点坐标为()0,5-,那么这个二次函数的解析式可以是________.(只需写一个). 【答案】25y x =-(答案不唯一)【详解】解:∵二次函数的图象开口向上, ∴二次函数()()20=-+≠y a x h k a 中0a >, ∵顶点坐标为()0,5-,∴这个二次函数的解析式可以是25y x =- 故答案为:25y x =-(答案不唯一)点评:例题4主要考查了待定系数法求函数解析式,熟练掌握抛物线的顶点式是解题的关键.根据二次函数的图象开口向上,可得0a >,再由顶点坐标为()0,5-,即可求解例题5.(2022·河南新乡·九年级期末)小刚在用描点法画抛物线C 1:2y ax bx c =++时,列出了下面的表格:x … 0 1 2 3 4 … y…36763…请根据表格中的信息,写出抛物线C 1的解析式:______. 【答案】243y x x =-++【详解】解:把(0,3)(1,6)(2,7)代入y =ax 2+bx +c 中得: 36427c a b c a b c ⎧⎪++⎨⎪++⎩===, 解得:143a b c -⎧⎪⎨⎪⎩===,∴抛物线C 1的解析式为:y =-x 2+4x +3, 故答案为:y =-x 2+4x +3.点评:例题5考查了二次函数的性质,待定系数法求二次函数解析式,解题的关键是准确熟练地进行计算. 例题6.(2022·河北·保定市清苑区北王力中学九年级期末)在下图的平面直角坐标系中,已知抛物线22y x mx =-与x 轴的一个交点为A (4,0).(1)求抛物线的表达式及顶点B 的坐标;(2)将05x ≤≤时函数的图象记为G ,点P 为G 上一动点,求P 点纵坐标的取值范围;(3)在(2)的条件下,若经过点C (4,-4)的直线0y kx b k =+≠()与图象G 有两个公共点,结合图象直接写出b 的取值范围.【答案】(1)24y x x =-,B (2,-4) (2)45P y -≤≤ (3)40b -<≤【详解】(1)解:∵A (4,0)在抛物线22y x mx =-上 ∴1680m -=,解得2m =.∴24y x x =-,即()224y x =-- ∴顶点坐标为B (2,-4). (2)解:如图所示, 当2x =时,y 有最小值-4; 当5x =时,y 有最大值5∴点P 纵坐标的P y 的取值范围是45P y -≤≤.(3)解:如图所示: b 的取值范围为−4<b ≤0,直线0y kx b k =+≠()与图象G 有两个公共点.点评:例题6主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.关键是利用数形结合的思想把代数和几何图形结合起来.(1)根据待定系数法可求抛物线的表达式及顶点D 的坐标;(2)根据二次函数的增减性和对称性可求P 点纵坐标P y 的取值范围; (3)先画出函数图象,再结合图象写出b 的取值范围.同类题型演练1.(2022·全国·九年级专题练习)已知抛物线与二次函数y =2x 2的图象的开口大小相同,开口方向相反,且顶点坐标为(﹣1,2021),则该抛物线对应的函数表达式为( ) A .y =﹣2(x ﹣1)2 +2021B .y =2(x ﹣1)2 +2021C .y =﹣2(x +1)2+2021D .y =2(x +1)2+2021【答案】C【详解】解:∵抛物线的顶点坐标为(﹣1,2021), ∴设抛物线的解析式为y =a (x +1)2+2021,∵抛物线y =a (x +1)2+2021与二次函数y =2x 2的图象的开口大小相同,开口方向相反, ∴a =﹣2,∴抛物线的解析式为y =﹣2(x +1)2+2021. 故选:C .2.(2022·全国·九年级专题练习)抛物线()()213y x x =+-关于y 轴对称后所得到的抛物线解析式为( ) A .()()213y x x =-+- B .()()213y x x =-- C .()()213y x x =-+ D .()()213y x x =--+【答案】C【详解】∵拋物线()()()2213=2-1-8y x x x =+-,∴顶点坐标为(1,-8),关于y 轴对称后顶点坐标为(-1,-8),且开口向上, ∴该抛物线的解析式为()()()221-823-1y x x x =+=+; 故选:C .3.(2021·江苏·九年级专题练习)已知点()2,3在抛物线22y ax ax c =-+上,则下列四个点中,一定也在该抛物线上的是( ) A .()0,3 B .()0,3-C .()3,2D .()2,3--【答案】A【详解】解:将点(2,3)代入抛物线22y ax ax c =-+, 可得y=c=3, ∴223y ax ax =-+. 当x=0时,y=c=3;当x=3时,y=9a -6a+3=3a+3; 当x=-2时,y=4a+4a+3=8a+3;故(0,3)一定在该抛物线上, 故选:A .4.(2021·山东·威海市实验中学九年级期末)抛物线2y ax bx =+经过点A (2,0),该抛物线顶点在直线2y x =-+上,则该抛物线解析式为______. 【答案】22y x x =-+【详解】∵抛物线2y ax bx =+经过点()0,0 ,A (2,0), ∴顶点横坐标为1, ∵顶点在直线y =-x +2上, ∴y =-1+2=1, ∴顶点坐标(1,1),∵y =ax 2+bx 过点A (2,0),(1,1),∴1420a b a b +=⎧⎨+=⎩,∴12a b =-⎧⎨=⎩,∴22y x x =-+. 故答案为:22y x x =-+.5.(2022·全国·九年级专题练习)如图1,在平面直角坐标系xOy 中,抛物线y =ax 2+bx +c 与x 轴分别相交于A 、B 两点,与y 轴相交于点C ,下表给出了这条抛物线上部分点(x ,y )的坐标值:x … ﹣1 0 1 2 3 … y…343…则这条抛物线的解析式为_______. 【答案】2y x 2x 3=-++【详解】根据表格可得到点(-1,0)、(0,3)、(3,0) 设抛物线的解析式为(1)(3)y a x x =+- 将(0,3)代入解析式得33a =- 解得1a =-∴解析式为2(1)(3)23y x x x x =-+-=-++故答案为:2y x 2x 3=-++.6.(2021·黑龙江·肇源县第五中学九年级期中)如图,抛物线2y ax bx c =++(a ≠0)与直线y =x +1相交于A (-1,0),B (4,n )两点,且抛物线经过点C (5,0).(1)求抛物线的解析式;(2)点P 是直线AB 上方抛物线上的一个动点(不与点A 、点B 重合),过点P 作直线PD ⊥x 轴于点D ,交直线AB 于点E ,设点P 的横坐标为m .①求线段PE 长的最大值,并求此时P 点坐标;②是否存在点P 使BEC △为等腰三角形?若存在,请直接写出m 的值;若不存在,请说明理由. 【答案】(1)245y x x =-++ (2)①PE 有最大值254,点P 的坐标为335,24⎛⎫⎪⎝⎭;②存在,413或0或34 【详解】(1)解:由题意,抛物线2y ax bx c =++的解析式可化为(1)(5)y a x x =+-, 将点()4,B n 代入直线1y x =+ 得:415n =+=,将点(4,5)B 代入(1)(5)y a x x =+- 得:(41)(45)5a +⨯-=, 解得1a =-,则抛物线的解析式为2(1)(5)45y x x x x =-+-=-++, 即245y x x =-++;(2)①由题意:设2(,45)P m m m -++,(,1)E m m +, 点P 在点E 的上方,则()2223254513424PE m m m m m m =-++-+=-++=-⎫ ⎪⎭+⎛⎝-∵ -1<0∴当m =32时,PE 有最大值,最大值为254当m =32时,235454m m -++=,此时点P 的坐标为(32,354);②存在,m 的值为4130或34.(4,5),(5,0),(,1)B C E m m +,222(54)(05)26BC ∴=-+-=,2222(4)(15)2(4)BE m m m =-++-=-,22222(5)(10)(5)(1)CE m m m m =-++-=-++,由等腰三角形的定义,分以下三种情况:(ⅰ)当BC BE =时,BEC △为等腰三角形,则22BC BE =,即22(4)26m -=, 解得413m =413m =(ⅰ)当BC CE =时,BEC △为等腰三角形,则22BC CE =,即22(5)(1)26m m -++=, 解得0m =或4m =(舍去);(ⅰ)当BE CE =时,BEC △为等腰三角形,则22BE CE =,即2222(4)(5)(1)m m m -=-++,解得34m =;综上,m 的值为4130或34.类型四:二次函数的平移问题(1)抛物线在平移的过程中,a 的值不发生变化,变化的只是顶点的位置,且与平移方向有关. (2)涉及抛物线的平移时,首先将表达式转化为顶点式y =a (x -h )2+k 的形式.(3)抛物线的移动主要看顶点的移动,y =ax 2的顶点是(0,0),y =ax 2+k 的顶点是(0,k ),y =a (x -h )2的顶点是(h ,0),y =a (x -h )2+k 的顶点是(h ,k ).我们只需在坐标系中画出这几个顶点,即可轻松地看出平移的方向.(4)抛物线的平移口诀:自变量加减左右移,函数值加减上下移.典型例题例题1.(2021·黑龙江·兰西县第三中学九年级期中)将抛物线2y x 向右平移2个单位,再向上平移1个单位,所得抛物线相应的函数表达式是( )A .2(2)1y x =++B .2(2)1y x =+-C .22()1y x =-+D .2(2)1y x =--【答案】C 【详解】∵抛物线2y x 的顶点坐标为(0,0),∴2yx 向右平移2个单位,再向上平移1个单位后的图象的顶点坐标为(2,1),∴得到新抛物线的解析式是22()1y x =-+, 故选:C .点评:例题1考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.例题2.(2022·内蒙古赤峰·九年级期末)将抛物线()2325y x =++向下平移1个单位,再向右平移两个单位后的顶点坐标是( ) A .(-4,4) B .(0,4) C .(0,6) D .(-4,-6)【答案】B【详解】解:将抛物线()2325y x =++向下平移1个单位,再向右平移两个单位后的解析式为: ()232251,y x =+-+- 即234,y x =+∴抛物线的顶点坐标为:()0,4, 故选:B点评:例题2考查二次函数图象的平移,解题关键是掌握二次函数图象的平移规律,掌握二次函数的顶点式.例题3.(2021·湖北·襄阳市樊城区青泥湾中学九年级阶段练习)要得到抛物线22(4)1y x =-+,可以将抛物线22y x =( )A .向左平移4个单位长度,再向上平移1个单位长度B .向左平移4个单位长度,再向下平移1个单位长度C .向右平移4个单位长度,再向上平移1个单位长度D .向右平移4个单位长度,再向下平移1个单位长度 【答案】C【详解】解:∵y =2(x -4)2+1的顶点坐标为(4,1),y =2x 2的顶点坐标为(0,0), ∴将抛物线y =2x 2向右平移4个单位,再向上平移1个单位,可得到抛物线y =2(x -4)2+1.故选:B .点评:例题3考查了二次函数图象与几何变换,解答时注意抓住点的平移规律和求出关键点顶点坐标. 例题4.(2022·天津滨海新·九年级期末)抛物线()223y x =+-可以由抛物线2y x 先向左平移2个单位,再向下平移___________个单位得到的. 【答案】3 【详解】解:抛物线2y x 向左平移2个单位,向下平移3个单位得到的函数图象的解析式为:()223y x =+-. 故答案为:3.点评:例题4考查的是二次函数的图象平移变换,熟知函数图象平移变换的法则是解答此题的关键. 例题5.(2022·江苏·九年级专题练习)已知抛物线2(1)y a x h =-+,经过点(0,3)-和(3,0). (1)求a 、h 的值;(2)将该抛物线向上平移2个单位长度,再向右平移1个单位长度,得到新的抛物线,直接写出新的抛物线相应的函数表达式. 【答案】(1)14a h =⎧⎨=-⎩;(2)242y x x =-+【详解】(1)解:将点(0,3)-和(3,0)代入抛物线2(1)y a x h =-+得:22(01)3(31)0a h a h ⎧-+=-⎨-+=⎩解得:14a h =⎧⎨=-⎩,∴1a =,4h =-;(2)解:∵原函数的表达式为:2(1)4y x =--,向上平移2个单位长度,再向右平移1个单位长度,得∴平移后的新函数表达式为:22(11)42=42y x x x =---+-+即242y x x =-+;点评:例题5考查了待定系数法确定解析式,顶点式的函数平移,口诀:“左加右减,上加下减”,正确的计算和牢记口诀是解题的关键同类题型演练1.(2021·福建·平潭翰英中学九年级期中)将抛物线y = x 2先向左平移5个单位,再向下平移4个单位,得到新抛物线的解析式是( ) A . y =()25x +-4 B . y =()25x ++4 C . y =()25x --4 D . y =()25x -+4【答案】A。
二次函数的图像及性质(内有经典例题及详解)
二次函数的图象和性质一、选择题1. (2011湖北鄂州,15,3分)已知函数()()()()22113513x x y x x ⎧--⎪=⎨--⎪⎩≤>,则使y=k 成立的x 值恰好有三个,则k 的值为( ) A .0 B .1 C .2 D .3【答案】D2. (2011广东广州市,5,3分)下列函数中,当x >0时y 值随x 值增大而减小的是( ).A .y = x 2B .y = x -1C . y = 34xD .y = 1x【答案】D3. (2011山东滨州,7,3分)抛物线()223y x =+-可以由抛物线2y x =平移得到,则下列平移过程正确的是( )A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位 【答案】B4. (2011山东德州6,3分)已知函数))((b x a x y --=(其中a b >)的图象 如下面右图所示,则函数b ax y +=的图象可能正确的是第6题图5. (2011山东菏泽,8,3分)如图为抛物线2y ax bx c =++的图像,A 、B 、C 为抛物线与坐标轴的交点,且OA =OC =1,则下列关系中正确的是A .a +b =-1B . a -b =-1C . b <2aD . ac <0【答案】B6. (2011山东泰安,20 ,3分)若二次函数y=ax 2+bx+c 的x 与y 的部分对应值如下表:X -7 -6 -5 -4 -3 -2 y-27-13-3353则当x =1时,y 的值为A.5B.-3C.-13D.-27 【答案】D7. (2011山东威海,7,3分)二次函数223y x x =--的图象如图所示.当y <0时,自变量x 的取值范围是( ). A .-1<x <3B .x <-1C . x >3D .x <-1或x >3【答案】A8. (2011山东烟台,10,4分)如图,平面直角坐标系中,两条抛物线有相同的对称轴,则下列关系正确的是( )A .m =n ,k >hB .m =n ,k <hC .m >n ,k =hD .m <n ,k =h【答案】A9. (2011浙江温州,9,4分)已知二次函数的图象(0≤x≤3)如图所示.关于该函数在所给自变量取值范围内,下列说法正确的是( )A.有最小值0,有最大值3 B.有最小值-1,有最大值0C.有最小值-1,有最大值3 D.有最小值-1,无最大值【答案】D10.(2011四川重庆,7,4分)已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则下列结论中正确的是( )A.a>0 B.b<0 C.c<0 D.a+b+c>0【答案】D11.(2011台湾台北,6)若下列有一图形为二次函数y=2x2-8x+6的图形,则此图为何?【答案】A12. (2011台湾台北,32)如图(十四),将二次函数228999931+-=x x y 的图形画在坐标平面上,判断方程式0899993122=+-x x 的两根,下列叙述何者正确?A .两根相异,且均为正根B .两根相异,且只有一个正根C .两根相同,且为正根D .两根相同,且为负根 【答案】A13. (2011台湾全区,28)图(十二)为坐标平面上二次函数c bx ax y ++=2的图形,且此图形通(-1 ,1)、(2 ,-1)两点.下列关于此二次函数的叙述,何者正确?A .y 的最大值小于0B .当x =0时,y 的值大于1C .当x =1时,y 的值大于1D .当x =3时,y 的值小于0 【答案】D14. (2011甘肃兰州,5,4分)抛物线221y x x =-+的顶点坐标是A .(1,0)B .(-1,0)C .(-2,1)D .(2,-1)【答案】A15. (2011甘肃兰州,9,4分)如图所示的二次函数2y ax bx c =++的图象中,刘星同学观察得出了下面四条信息:(1)240b ac ->;(2)c >1;(3)2a -b <0;(4)a +b +c <0。
初中数学中考一轮复习专题5 二次函数重点、考点知识、方法总结及真题练习
【答案】 【解析】解:(1)把 A(0,﹣1)代入 y1=a(x﹣2)2,得:﹣1=4a,即 a=﹣ ,
∴二次函数解析式为 y1=﹣ (x﹣2)2=﹣ a2+a﹣1;
设直线 AB 解析式为 y=kx+b,
把 A(0,﹣1),B(2,0)代入得:
,
解得:k= ,b=﹣1,
则直线 AB 解析式为 y= x﹣1;
选叏的五点为:顶点、不 y 轴的交点 0,c 、以及 0,c 关于对称轴对称的点 2h ,c 、 不 x 轴的交点 x1 ,0 , x2 ,0 (若不 x 轴没有交点,则叏两组关于对称轴对称的点).
画草图时应抓住以下几点:开口斱向,对称轴,顶点,不 x 轴的交点,不 y 轴的交点.
4. 二次函数 y ax2 bx c 的性质
正斱形的面积,∴y=﹣x2+36.
3.抛物线 y=x2﹣2x+3 的顶点坐标是
.
【答案】(1,2)
【解析】解:∵y=x2﹣2x+3=x2﹣2x+1﹣1+3=(x﹣1)2+2,
∴抛物线 y=x2﹣2x+3 的顶点坐标是(1,2).
4.已知抛物线 y=﹣2(x+1)2﹣3,如果 y 随 x 的增大而减小,那么 x 的叏值范围
D. y=1﹣ x2
【解析】解:把每一个函数式整理为一般形式, A、y=(x﹣1)(x+2)=x2+x﹣2,是二次函数,故 A 丌符合题意; B、y= (x+1)2= x2+x+ ,是二次函数,故 B 丌符合题意;
C、y=2(x+3)2﹣2x2=12x+18,是一次函数,故 C 符合题意; D、y=1﹣ x2=﹣ x2+1,是二次函数,故 D 丌符合题意. 故选:C.
二次函数的图像和性质、解析式求法(学生版)
例1.1.3若 是二次函数,则 的值是__________.
例1.1.4二次函数y=ax2+bx-1(a≠0)的图象经过点(1,1),则代数式1-a-b的值为( )
A.-3
B.-1
C.2
D.5
随练1.1已知函数① ,② ,③ ,④ ,⑤ ,其中二次函数的个数为()
随练1.2已知函数 ,当 _________时,它是二次函数.
4.已知抛物线经过两点,且这两点的纵坐标相等时,可用对称点式求解函数解析式(交点式可视为对称点式的特例).
一.考点:二次函数解析式的求法.
二.重难点:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与 轴有交点,即 时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.
随练5.1已知一个二次函数过 , , 三点,求二次函数的解析式.
随练5.2将二次函数 化为 的形式,结果为()
A.
B.
C.
D.
随练5.3已知二次函数的图象过坐标原点,它的顶点坐标是(1,-2),求这个二次函数的关系式.
随练5.4已知二次函数y=x2+bx+c经过点(3,0)和(4,0),则这个二次函数的解析式是____.
2.画草图时应抓住以下几点:开口方向,对称轴,顶点,与 轴的交点,与 轴的交点.
一.考点: 的图象和性质.
二.重难点: 的图象和性质,参数对图像的影响.
三.易错点:利用函数图像推断参数的取值范围或者利用参数的取值范围推断函数图像.
题模一:y=a^2+bx+c的图象和性质
例4.1.1已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()
二次函数图像与性质解析版版
二次函数的图像及性质知识点1.二次函数的定义:形如的函数叫二次函数。
限制条件(1)自变量的最高次数是;(2)二次项系数。
2.二次函数的解析式(表达式)——三种形式,重点是前两种。
(1)一般式:;(2)顶点式:y=a(x-h)2+k(a≠0),此时二次函数的顶点坐标为(,),对称轴是。
注意:顶点形式的最大优点是直接从解析式看出顶点坐标和对称轴,比较方便。
离开它用一般形式也可以。
※(3)交点式(两点式):设x1、x2是抛物线与x轴的两个交点的横坐标,则y=a(x-x1)(x-x2)此时抛物线的对称轴为直线x=221xx+。
注意:(1)当顶点在X轴上(即抛物线与X轴只有一个交点(0,x1))时,函数表达式为。
这个交点是抛物线的什么点?(2)是不是任意一个二次函数都可以写成交点形式?在什么条件下才有交点式?(3)利用这种形式只是解决相关问题要简便一些,直接用一般形式也可以。
实际上利用一般形式和顶点坐标公式可以解决二次函数的多数问题。
▲三种二次函数的解析式的联系:针对一般形式而言,顶点式:y=a(x-h)2+k(a≠0)中,h= ;k= 。
当Δ=b2-4ac 时,才有两根式。
3、二次函数y=ax2+bx+c(a≠0)的图象与性质 ----抛物线的特征---待定系数a,b,c的作用二次函数y=ax2+bx+c(a≠0)的图象是一条线,它是一个对称图形,抛物线与对称轴的交点叫抛物线的点。
不过这个结论成立的条件是自变量的取值范围是。
(1)形状----开口大小。
由决定,越大,开口越。
(2)开口方向:由决定。
当a>0时,函数开口方向向;当a<0时,函数开口方向向;(3)对称轴:直线x= ;注意:一次函数的图象是直线,但直线的解析式不一定是一次函数。
例如与坐标轴平行(垂直)的直线的解析式是X=K,或Y=K,它们为什么不是一次函数呢?▲(4)顶点坐标公式:(,);利用顶点坐标公式的注意事项:当求得顶点横坐标后,可以用纵坐标公式,也可以不用纵坐标公式,而直接将横坐标代入哪里求得纵坐标。
二次函数解析含答案
二次函数解析含答案一、选择题1.小明从如图所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:①c >0,②abc <0,③a -b +c >0,④2b >4a c ,⑤2a =-2b ,其中正确结论是( ).A .①②④B .②③④C .③④⑤D .①③⑤【答案】C【解析】【分析】 由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】①由抛物线交y 轴于负半轴,则c<0,故①错误;②由抛物线的开口方向向上可推出a>0;∵对称轴在y 轴右侧,对称轴为x=2b a ->0, 又∵a>0,∴b<0;由抛物线与y 轴的交点在y 轴的负半轴上,∴c<0,故abc>0,故②错误;③结合图象得出x=−1时,对应y 的值在x 轴上方,故y>0,即a−b+c>0,故③正确; ④由抛物线与x 轴有两个交点可以推出b 2−4ac>0,故④正确;⑤由图象可知:对称轴为x=2b a -=12则2a=−2b ,故⑤正确;故正确的有:③④⑤.故选:C【点睛】本题考查了二次函数图象与系数关系,观察图象判断图象开口方向、对称轴所在位置、与x 轴交点个数即可得出二次函数系数满足条件.2.要将抛物线2y x =平移后得到抛物线223y x x =++,下列平移方法正确的是( ) A .向左平移1个单位,再向上平移2个单位 B .向左平移1个单位,再向下平移2个单位C .向右平移1个单位,再向上平移2个单位D .向右平移1个单位,再向下平移2个单位【答案】A【解析】【分析】原抛物线顶点坐标为(0,0),平移后抛物线顶点坐标为(-1,2),由此确定平移办法.【详解】y=x 2+2x+3=(x+1)2+2,该抛物线的顶点坐标是(-1,2),抛物线y=x 2的顶点坐标是(0,0),则平移的方法可以是:将抛物线y=x 2向左平移1个单位长度,再向上平移2个单位长度. 故选:A .【点睛】此题考查二次函数图象与几何变换.解题关键是将抛物线的平移问题转化为顶点的平移,寻找平移方法.3.如图,二次函数y =ax 2+bx +c 的图象过点(-1,0)和点(3,0),有下列说法:①bc <0;②a +b +c >0;③2a +b =0;④4ac >b 2.其中错误的是( )A .②④B .①③④C .①②④D .②③④【答案】C【解析】【分析】 利用抛物线开口方向得到0a >,利用对称轴在y 轴的右侧得到0b <,利用抛物线与y 轴的交点在x 轴下方得到0c <,则可对A 进行判断;利用当1x =时,0y <可对B 进行判断;利用抛物线的对称性得到抛物线的对称轴为直线12b x a=-=,则可对C 进行判断;根据抛物线与x 轴的交点个数对D 进行判断.【详解】解:Q 抛物线开口向上, 0a ∴>,Q 对称轴在y 轴的右侧,a ∴和b 异号,0b ∴<,Q 抛物线与y 轴的交点在x 轴下方,0c ∴<,0bc ∴>,所以①错误;Q 当1x =时,0y <,0a b c ∴++<,所以②错误;Q 抛物线经过点(1,0)-和点(3,0),∴抛物线的对称轴为直线1x =, 即12b a-=, 20a b ∴+=,所以③正确;Q 抛物线与x 轴有2个交点,∴△240b ac =->,即24ac b <,所以④错误.综上所述:③正确;①②④错误.故选:C .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数2(0)y ax bx c a =++≠,二次项系数a 决定抛物线的开口方向和大小;一次项系数b 和二次项系数a 共同决定对称轴的位置(左同右异).常数项c 决定抛物线与y 轴交点(0,)c .抛物线与x 轴交点个数由△决定.4.如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (1,0),对称轴为直线x =﹣1,当y >0时,x 的取值范围是( )A .﹣1<x <1B .﹣3<x <﹣1C .x <1D .﹣3<x <1【答案】D【解析】【分析】 根据已知条件求出抛物线与x 轴的另一个交点坐标,即可得到答案.【详解】解:∵抛物线y =ax 2+bx +c 与x 轴交于点A (1,0),对称轴为直线x =﹣1,∴抛物线与x 轴的另一交点坐标是(﹣3,0),∴当y >0时,x 的取值范围是﹣3<x <1.所以答案为:D .【点睛】此题考查抛物线的性质,利用对称轴及图象与x 轴的一个交点即可求出抛物线与x 轴的另一个交点坐标.5.已知抛物线2:4W y x x c =-+,其顶点为A ,与y 轴交于点B ,将抛物线W 绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,若四边形''ABA B 为矩形,则c 的值为( )A .BC .32D .52【答案】D【解析】【分析】先求出A(2,c-4),B(0,c),'(24),'(0)A c B c ---,,,,结合矩形的性质,列出关于c 的方程,即可求解.【详解】∵抛物线2:4W y x x c =-+,其顶点为A ,与y 轴交于点B , ∴A(2,c-4),B(0,c),∵将抛物线W 绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,∴'(24),'(0)A c B c ---,,,, ∵四边形''ABA B 为矩形,∴''AA BB =,∴[][]2222(2)(4)(4)(2)c c c --+---=,解得:52c =. 故选D .【点睛】本题主要考查二次函数图象的几何变换以及矩形的性质,掌握二次函数图象上点的坐标特征,关于原点中心对称的点的坐标特征以及矩形的对角线相等,是解题的关键.6.在抛物线y =a (x ﹣m ﹣1)2+c (a≠0)和直线y =﹣12x 的图象上有三点(x 1,m )、(x 2,m )、(x 3,m ),则x 1+x 2+x 3的结果是( ) A .3122m -+ B .0 C .1 D .2 【答案】D【解析】【分析】 根据二次函数的对称性和一次函数图象上点的坐标特征即可求得结果.【详解】 解:如图,在抛物线y =a (x ﹣m ﹣1)2+c (a≠0)和直线y =﹣12x 的图象上有三点A(x 1,m )、B (x 2,m )、C (x 3,m ),∵y =a (x ﹣m ﹣1)2+c (a≠0)∴抛物线的对称轴为直线x =m+1, ∴232x x +=m+1, ∴x 2+x 3=2m+2, ∵A (x 1,m )在直线y =﹣12x 上, ∴m =﹣12x 1, ∴x 1=﹣2m , ∴x 1+x 2+x 3=﹣2m+2m+2=2,故选:D .【点睛】本题考查了二次函数的对称性和一次函数图象上点的坐标特征,解题的关键是利用数形结合思想画出函数图形.7.如图,在四边形ABCD 中,//AD BC ,DC BC ⊥,4cm DC =,6cm BC =,3cm AD = ,动点P ,Q 同时从点B 出发,点P 以2cm /s 的速度沿折线BA AD DC --运动到点C ,点Q 以1cm/s 的速度沿BC 运动到点C ,设P ,Q 同时出发s t 时,BPQ ∆的面积为2cm y ,则y 与t 的函数图象大致是( )A .B .C .D .【答案】B【解析】【分析】分三种情况求出y 与t 的函数关系式. 当0≤t≤2.5时:P 点由B 到A ;当2.5≤t≤4时,即P 点在AD 上时;当4≤t≤6时,即P 点从D 到C 时.即可得出正确选项.【详解】解:作AE ⊥BC 于E ,根据已知可得,AB 2=42+(6-3)2,解得,AB=5cm .下面分三种情况讨论:当0≤t≤2.5时:P 点由B 到A ,21442255y t t t ==gg g ,y 是t 的二次函数.最大面积= 5 cm 2; 当2.5≤t≤4时,即P 点在AD 上时,1422y t t =⨯=, y 是t 的一次函数且最大值=21448cm 2⨯⨯=; 当4≤t≤6时,即P 点从D 到C 时,()211226,2y t t t t =⋅-=-+y 是t 的二次函数 故符合y 与t 的函数图象是B .故选:B .【点睛】 此题考查了函数在几何图形中的运用.解答本题的关键在于分类讨论求出函数解析式,然后进行判断.8.函数25y ax bx =++(0)a ≠,当1x =与7x =时函数值相等,则8x =时,函数值等于( )A .5B .52-C .52D .-5【答案】A【解析】【分析】根据二次函数的对称性,求得函数25y ax bx =++(0)a ≠的对称轴,进而判断与8x =的函数值相等时x 的值,由此可得结果.【详解】∵函数25y ax bx =++(0)a ≠,当1x =与7x =时函数值相等,∴函数25y ax bx =++(0)a ≠的对称轴为:1742x +==, ∴8x =与0x =的函数值相等,∴当8x =时,250055y ax bx a b =++=⨯+⨯+=,即8x =时,函数值等于5,故选:A .【点睛】本题主要考查二次函数的图象和对称性.掌握二次函数的对称性和对称轴的求法,是解题的关键.9.一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( )A .原数与对应新数的差不可能等于零B .原数与对应新数的差,随着原数的增大而增大C .当原数与对应新数的差等于21时,原数等于30D .当原数取50时,原数与对应新数的差最大【答案】D【解析】【分析】设出原数,表示出新数,利用解方程和函数性质即可求解.【详解】解:设原数为m ,则新数为21100m , 设新数与原数的差为y 则2211100100y m m m m =-=-+, 易得,当m =0时,y =0,则A 错误∵10 100-<当1m50122100ba﹣﹣﹣===⎛⎫⨯ ⎪⎝⎭时,y有最大值.则B错误,D正确.当y=21时,21100m m-+=21解得1m=30,2m=70,则C错误.故答案选:D.【点睛】本题以规律探究为背景,综合考查二次函数性质和解一元二次方程,解题时要注意将数字规律转化为数学符号.10.抛物线y1=ax2+bx+c与直线y2=mx+n的图象如图所示,下列判断中:①abc<0;②a+b+c>0;③5a-c=0;④当x<或x>6时,y1>y2,其中正确的个数有()A.1 B.2 C.3 D.4【答案】C【解析】【分析】【详解】解:根据函数的开口方向、对称轴以及函数与y轴的交点可知:a>0,b<0,c>0,则abc<0,则①正确;根据图形可得:当x=1时函数值为零,则a+b+c=0,则②错误;根据函数对称轴可得:-2ba=3,则b=-6a,根据a+b+c=0可知:a-6a+c=0,-5a+c=0,则5a-c=0,则③正确;根据函数的交点以及函数图像的位置可得④正确.点睛:本题主要考查的就是函数图像与系数之间的关系,属于中等题目,如果函数开口向上,则a大于零,如果函数开口向下,则a小于零;如果函数的对称轴在y轴左边,则b 的符号与a相同,如果函数的对称轴在y轴右边,则b的符号与a相反;如果函数与x轴交于正半轴,则c大于零,如果函数与x轴交于负半轴,则c小于零;对于出现a+b+c、a-b+c、4a+2b+c、4a-2b+c等情况时,我们需要找具体的值进行代入从而得出答案;对于两个函数值的大小比较,我们一般以函数的交点为分界线,然后进行分情况讨论.11.已知二次函数y=ax2+bx+c的图像如图所示,则下列结论正确的个数有()①c>0;②b2-4ac<0;③ a-b+c>0;④当x>-1时,y随x的增大而减小.A.4个B.3个C.2个D.1个【答案】C【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断.【详解】解:由图象可知,a<0,c>0,故①正确;抛物线与x轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0,故③正确;由图象可知,图象开口向下,对称轴x>-1,在对称轴右侧, y随x的增大而减小,而在对称轴左侧和-1之间,是y随x的增大而减小,故④错误.故选:C.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a 共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.12.如图,坐标平面上,二次函数y=﹣x2+4x﹣k的图形与x轴交于A、B两点,与y轴交于C点,其顶点为D,且k>0.若△ABC与△ABD的面积比为1:4,则k值为何?( )A .1B .12C .43D .45【答案】D【解析】【分析】 求出顶点和C 的坐标,由三角形的面积关系得出关于k 的方程,解方程即可.【详解】解:∵y =﹣x 2+4x ﹣k =﹣(x ﹣2)2+4﹣k ,∴顶点D(2,4﹣k),C(0,﹣k),∴OC =k ,∵△ABC 的面积=12AB•OC =12AB•k ,△ABD 的面积=12AB(4﹣k),△ABC 与△ABD 的面积比为1:4, ∴k =14(4﹣k), 解得:k =45. 故选:D .【点睛】 本题考查了抛物线与x 轴的交点、抛物线的顶点式;根据三角形的面积关系得出方程是解决问题的关键.13.已知在平面直角坐标系中,有两个二次函数()()39m x x y =++及()()26y n x x =--图象,将二次函数()()39m x x y =++的图象按下列哪一种平移方式平移后,会使得此两个函数图象的对称轴重叠( )A .向左平移2个单位长度B .向右平移2个单位长度C .向左平移10个单位长度D .向右平移10个单位长度 【答案】D【解析】【分析】将二次函数解析式展开,结合二次函数的性质找出两二次函数的对称轴,二者做差后即可得出平移方向及距离.【详解】解:∵y =m (x +3)(x +9)=mx 2+12mx +27m ,y =n (x -2)(x -6)=nx 2-8nx +12n ,∴二次函数y =m (x +3)(x +9)的对称轴为直线x =-6,二次函数y =n (x -2)(x -6)的对称轴为直线x =4,∵4-(-6)=10,∴将二次函数y =m (x +3)(x +9)的图形向右平移10个单位长度,两图象的对称轴重叠.故选:D .【点睛】本题考查了二次函数图象与几何变换以及二次函数的性质,根据二次函数的性质找出两个二次函数的对称轴是解题的关键.14.四位同学在研究函数2y x bx c =++(,b c 是常数)时,甲发现当1x =时,函数有最小值;乙发现1-是方程20x bx c ++=的一个根;丙发现函数的最小值为3;丁发现当2x =时,4y =,已知这四位同学中只有一位发现的结论是错误的,则该同学是( ) A .甲B .乙C .丙D .丁【答案】B【解析】【分析】利用假设法逐一分析,分别求出二次函数的解析式,再判断与假设是否矛盾即可得出结论.【详解】解:A .假设甲同学的结论错误,则乙、丙、丁的结论都正确由乙、丁同学的结论可得 01442b c b c =-+⎧⎨=++⎩解得:1323b c ⎧=⎪⎪⎨⎪=-⎪⎩∴二次函数的解析式为:221212533636⎛⎫=+-=+ ⎪⎝⎭-y x x x ∴当x=16-时,y 的最小值为2536-,与丙的结论矛盾,故假设不成立,故本选项不符合题意;B .假设乙同学的结论错误,则甲、丙、丁的结论都正确由甲、丙的结论可得二次函数解析式为()213y x =-+当x=2时,解得y=4,当x=-1时,y=7≠0∴此时符合假设条件,故本选项符合题意;C . 假设丙同学的结论错误,则甲、乙、丁的结论都正确由甲乙的结论可得1201b b c⎧-=⎪⎨⎪=-+⎩ 解得:23b c =-⎧⎨=-⎩∴223y x x =--当x=2时,解得:y=-3,与丁的结论矛盾,故假设不成立,故本选项不符合题意; D . 假设丁同学的结论错误,则甲、乙、丙的结论都正确由甲、丙的结论可得二次函数解析式为()213y x =-+当x=-1时,解得y=7≠0,与乙的结论矛盾,故假设不成立,故本选项不符合题意. 故选B .【点睛】此题考查的是利用待定系数法求二次函数解析式,利用假设法求出b 、c 的值是解决此题的关键.15.如图,四边形ABCD 是正方形,8AB =,AC 、BD 交于点O ,点P 、Q 分别是AB 、BD 上的动点,点P 的运动路径是AB BC →,点Q 的运动路径是BD ,两点的运动速度相同并且同时结束.若点P 的行程为x ,PBQ △的面积为y ,则y 关于x 的函数图象大致为( )A .B .C .D .【答案】A【解析】【分析】 分点P 在AB 边和BC 边上两种情况画出图形,分别求出y 关于x 的函数关系式,再结合其取值范围和图象的性质判断即可.【详解】解:当点P 在AB 边上,即08x ≤≤时,如图1,由题意得:AP=BQ=x ,∠ABD =45°,∴ BP =8-x ,过点Q 作QF ⊥AB 于点F ,则QF =2222BQ x =, 则2122(8)22224y x x x x =-⋅=-+,此段抛物线的开口向下;当点P 在BC 边上,即882x <≤时,如图2,由题意得:BQ=x ,BP=x -8,∠CBD =45°, 过点Q 作QE ⊥BC 于点E ,则QE =2222BQ x =, 则2122(8)22224y x x x x =-⋅=-,此段抛物线的开口向上. 故选A. 【点睛】本题以正方形为依托,考查了动点问题的函数图象、正方形的性质、等腰直角三角形的性质和二次函数的图象等知识,分情况讨论、正确列出二次函数的关系式是解题的关键.16.在同一平面直角坐标系中,函数y=ax 2+bx 与y=bx+a 的图象可能是( )A .B .C .D .【答案】C【解析】试题解析:A 、对于直线y=bx+a 来说,由图象可以判断,a >0,b >0;而对于抛物线y=ax 2+bx 来说,对称轴x=﹣2b a<0,应在y 轴的左侧,故不合题意,图形错误. B 、对于直线y=bx+a 来说,由图象可以判断,a <0,b <0;而对于抛物线y=ax 2+bx 来说,图象应开口向下,故不合题意,图形错误.C 、对于直线y=bx+a 来说,由图象可以判断,a <0,b >0;而对于抛物线y=ax 2+bx 来说,图象开口向下,对称轴x=﹣2b a位于y 轴的右侧,故符合题意,D 、对于直线y=bx+a 来说,由图象可以判断,a >0,b >0;而对于抛物线y=ax 2+bx 来说,图象开口向下,a <0,故不合题意,图形错误.故选C .考点:二次函数的图象;一次函数的图象.17.抛物线2y ax bx c =++(,,a b c 是常数),0a >,顶点坐标为1(,)2m .给出下列结论:①若点1(,)n y 与点23(2)2n y -,在该抛物线上,当12n <时,则12y y <;②关于x 的一元二次方程210ax bx c m -+-+=无实数解,那么( )A .①正确,②正确B .①正确,②错误C .①错误,②正确D .①错误,②错误【答案】A【解析】【分析】①根据二次函数的增减性进行判断便可;②先把顶点坐标代入抛物线的解析式,求得m ,再把m 代入一元二次方程ax 2-bx+c-m+1=0的根的判别式中计算,判断其正负便可判断正误.【详解】解:①∵顶点坐标为1,2m ⎛⎫ ⎪⎝⎭,12n < ∴点(n ,y 1)关于抛物线的对称轴x=12的对称点为(1-n ,y 1), ∴点(1-n ,y 1)与2322n y ⎛⎫- ⎪⎝⎭,在该抛物线的对称轴的右侧图像上, 31(1)2022n n n ⎛⎫---=-< ⎪⎝⎭Q 3122n n ∴-<- ∵a >0,∴当x >12时,y 随x 的增大而增大, ∴y 1<y 2,故此小题结论正确; ②把1,2m ⎛⎫ ⎪⎝⎭代入y=ax 2+bx+c 中,得1142m a b c =++, ∴一元二次方程ax 2-bx+c-m+1=0中,△=b 2-4ac+4am-4a 2211444()4042b ac a a b c a a b a ⎛⎫=-+++-=+-< ⎪⎝⎭∴一元二次方程ax 2-bx+c-m+1=0无实数解,故此小题正确;故选A .【点睛】本题主要考查了二次函数图象与二次函数的系数的关系,第①小题,关键是通过抛物线的对称性把两点坐标变换到对称轴的一边来,再通过二次函数的增减性进行比较,第②小题关键是判断一元二次方程根的判别式的正负.18.如图,二次函数y =ax 2+bx +c 的图象过点A (3,0),对称轴为直线x =1,给出以下结论:①abc <0;②3a +c =0;③ax 2+bx ≤a +b ;④若M (﹣0.5,y 1)、N (2.5,y 2)为函数图象上的两点,则y 1<y 2.其中正确的是( )A .①③④B .①②3④C .①②③D .②③④【答案】C【解析】【分析】 根据二次函数的图象与性质即可求出答案.【详解】解:①由图象可知:a <0,c >0, 由对称轴可知:2b a ->0, ∴b >0,∴abc <0,故①正确;②由对称轴可知:2b a-=1, ∴b =﹣2a ,∵抛物线过点(3,0),∴0=9a+3b+c ,∴9a ﹣6a+c =0,∴3a+c =0,故②正确;③当x =1时,y 取最大值,y 的最大值为a+b+c ,当x 取全体实数时,ax 2+bx+c≤a+b+c ,即ax 2+bx≤a+b ,故③正确;④(﹣0.5,y 1)关于对称轴x =1的对称点为(2.5,y 1):∴y 1=y 2,故④错误;故选:C.【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.19.已知二次函数y=a(x﹣h)2+k的图象如图所示,直线y=ax+hk的图象经第几象限()A.一、二、三B.一、二、四C.一、三、四D.二、三、四【答案】D【解析】【分析】根据二次函数的图象和性质可得a<0,h<0,k>0,以此判断一次函数的图象所经过的象限即可.【详解】解:由函数图象可知,y=a(x﹣h)2+k中的a<0,h<0,k>0,∴直线y=ax+hk中的a<0,hk<0,∴直线y=ax+hk经过第二、三、四象限,故选:D.【点睛】本题考查了一次函数的图象的问题,掌握二次函数、一次函数的图象和性质是解题的关键.20.平移抛物线y=﹣(x﹣1)(x+3),下列哪种平移方法不能使平移后的抛物线经过原点()A.向左平移1个单位B.向上平移3个单位C.向右平移3个单位D.向下平移3个单位【答案】B【解析】【分析】先将抛物线解析式转化为顶点式,然后根据顶点坐标的平移规律即可解答.【详解】解:y=﹣(x﹣1)(x+3)=-(x+1)2+4A、向左平移1个单位后的解析式为:y=-(x+2)2+4,当x=0时,y=0,即该抛物线经过原点,故本选项不符合题意;B、向上平移3个单位后的解析式为:y=-(x+1)2+7,当x=0时,y=3,即该抛物线不经过原点,故本选项符合题意;C、向右平移3个单位后的解析式为:y=-(x-2)2+4,当x=0时,y=0,即该抛物线经过原点,故本选项不符合题意.;D、向下平移3个单位后的解析式为:y=-(x+1)2+1,当x=0时,y=0,即该抛物线经过原点,故本选项不符合题意.【点睛】本题考查了二次函数图像的平移,函数图像平移规律:上移加,下移减,左移加,右移减.。
二次函数 图像的性质 求解析式 知识点+例题+练习 (非常好 分类全面)
1.抛物线y=ax2+bx+c中,b=4a,它的图象如图,有以下结论:①c>0;②a+b+c> 0 ③a-b+c> 0 ④b2-4ac<0 ⑤abc< 0 ;其中正确的为()AA.①②B.①④C.①②③D.①③⑤2.当b<0时,一次函数y=ax+b与二次函数y=ax2+bx+c在同一坐标系内的图象可能是()B3.二次函数y=ax2+bx+c的图象如图所示,那么abc,b2-4ac, 2a+b,a+b+c 四个代数式中,值为正数的有( ) B 123A.4个B.3个C.2个D.1个4.在同一坐标系中,函数y= ax2+c与y= cx(a<c)图象可能是图所示的( )AA B C D5.函数y=x2+bx+c与y=x的图象如图,有以下结论:①b2﹣4c<0;②c﹣b+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确结论的个数为() C 134A.1B.2C.3D.46.如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0)下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(2,y2)是抛物线上的两点,则y1>y2.其中说法正确的是()DA.①②B.②③C.②③④D.①②④7.已知抛物线y =ax 2+bx +c(a ≠0)的图象如图所示,则下列结论: ①a ,b 同号; ②当x =1和x =3时,函数值相同; ③4a +b =0; ④当y =-2时,x的值只能取0; 其中正确的个数是( )23 A .1 B .2 C .3 D .4题型八、函数解析式的求法用待定系数法求二次函数的解析式(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=.一、已知抛物线上任意三点时,通常设解析式为一般式y=ax 2+bx+c ,然后解三元方程组求解; 1.已知抛物线过A (1,0)和B (4,0)两点,交y 轴于C 点且BC =5,求该二次函数的解析式。
二次函数y1y2y3比较大小例题
二次函数y1y2y3比较大小例题在数学中,二次函数是一种非常重要且常见的函数类型,其表达式通常为y=ax^2+bx+c,其中a、b、c为常数且a不等于0。
在二次函数中,我们常常需要比较不同的二次函数的大小关系,这涉及到对二次函数的深入理解和灵活运用。
为了更好地掌握二次函数y1y2y3比较大小的方法,我们可以通过以下例题进行深入探讨和分析。
例题1:已知y1=2x^2+3x+1,y2=-3x^2+5x-2,y3=x^2-4x+3,比较y1、y2、y3的大小关系。
解析:我们可以对y1、y2、y3分别求出它们的二次项系数a、一次项系数b 和常数项c,以便更好地比较它们的大小关系。
y1中a=2,b=3,c=1;y2中a=-3,b=5,c=-2;y3中a=1,b=-4,c=3。
接下来,我们可以利用“二次函数顶点法”来判断二次函数的大小关系。
对于二次函数y=ax^2+bx+c,其顶点横坐标为x=-b/2a,纵坐标为-(b^2-4ac)/4a。
根据顶点法,我们可以求出y1的顶点为(-3/4,-17/8),y2的顶点为(-5/6,29/12),y3的顶点为(2,-1)。
通过比较三个二次函数的顶点,可以得出y1<y3<y2的结论,即y1最小,y3次之,y2最大。
总结回顾:通过以上例题分析,我们学会了如何对二次函数进行比较大小的操作。
我们需要求出二次函数的系数a、b、c,然后利用顶点法来判断其大小关系。
在具体操作时,需要注意二次函数顶点的横纵坐标,从而得出正确的比较结论。
个人观点和理解:二次函数的比较并不是一件难事,但需要我们熟练掌握二次函数的相关知识和技巧。
通过多做类似的例题分析和练习,我们可以更加灵活地运用顶点法来比较不同二次函数的大小关系,从而提高自己的数学能力和解题水平。
结语:二次函数y1y2y3的比较大小,需要我们积极探索和思考,才能真正理解其内涵和运用方法。
希望通过对比赛例题的讲解,能够帮助大家更好地掌握二次函数的比较方法,提高数学解题能力。
初中数学《二次函数解析式》讲义及练习 (2)
板块考试要求A 级要求B 级要求C 级要求二次函数能根据实际情境了解二次函数的意义;会利用描点法画出二次函数的图像能通过对实际问题中的情境分析确定二次函数的表达式;能从函数图像上认识函数的性质;会确定图像的顶点、对称轴和开口方向;会利用二次函数的图像求出二次方程的近似解能用二次函数解决简单的实际问题;能解决二次函数与其他知识结合的有关问题一、二次函数的图像与系数关系1. a 决定抛物线的开口方向:当0a >时⇔抛物线开口向上;当0a <时⇔抛物线开口向下a 决定抛物线的开口大小:a 越大,抛物线开口越小; a 越小,抛物线开口越大.注:几条抛物线的解析式中,若a 相等,则其形状相同,即若a 相等,则开口及形状相同,若a 互为相反数,则形状相同、开口相反.2. b 和a 共同决定抛物线对称轴的位置.(对称轴为:2bx a=-)当0b =时,抛物线的对称轴为y 轴; 当,a b 同号时,对称轴在y 轴的左侧; 当,a b 异号时,对称轴在y 轴的右侧.3. c 的大小决定抛物线与y 轴交点的位置.(抛物线与y 轴的交点为()0c ,) 当0c =时,抛物线与y 轴的交点为原点; 当0c >时,交点在y 轴的正半轴; 当0c <时,交点在y 轴的负半轴.二、二次函数的三种表达方式(1)一般式:()20y ax bx c a =++≠ (2)顶点式:()2y a x h k =-+()0a ≠(3)双根式(交点式):()()()120y a x x x x a =--≠2.如何设点:⑴ 一次函数y ax b =+(0a ≠)图像上的任意点可设为()11x ax b +,.其中10x =时,该点为直线与y 轴交知识点睛中考要求第二讲二次函数的解析式点.⑵ 二次函数2y ax bx c =++(0a ≠)图像上的任意一点可设为()2111x ax bx c ++,.10x =时,该点为抛物线与y 轴交点,当12bx a=-时,该点为抛物线顶点. ⑶ 点()11x y ,关于()00x x ,的对称点为()010122x x y y --,. 4.如何设解析式:① 已知任意3点坐标,可用一般式求解二次函数解析式;② 已知顶点坐标或对称轴时,可用顶点式求解二次函数解析式;③ 已知抛物线与x 的两个交点坐标,可用交点式求解二次函数解析式.④ 已知抛物线经过两点,且这两点的纵坐标相等时,可用对称点式求解函数解析式(交点式可视为对称点式的特例)注:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.一、二次函数图象分布与系数的关系【例1】 ⑴(07济南)已知2y ax bx =+的图象如下左图所示,则y ax b =-的图象一定过( )A. 第一、二、三象限B. 第一、二、四象限C. 第二、三、四象限D. 第一、三、四象限⑵(07常州)若二次函数222y ax bx a =++-(a b ,为常数)的图象如下中图,则a 的值为( )A. 2-B. 2-C. 1D. 2⑶(07南宁)已知二次函数2y ax bx c =++的图象如下右图所示,则点()P a bc ,在第 象限. OyxyxAO yxO重、难点1. 灵活应用二次函数的三种表达形式,求二次函数解析式。
利用二次函数性质巧解比较大小问题
图象向上平移一个单位得到 , 观察两个函数
・44・
第 1 期 高中数学教与学
向量法魅力展示
邱邑峰
(江西省大余中学 , 341500 )
向量具有代数与几何形式的双重身份 , 它有着极其丰富的实际背景 , 在解题中具有 独特的功能 . 向量法的应用很广 , 也很巧妙 . 下面例举向量法在解决代数 、 几何等问题中 的应用 . 一、 在函数式求值问题中的应用 例 1 求 co s 5 °+ co s 77 °+ co s 149 °+
解 观察角的变化 , 前后相差 72 ° , 正好 是正五边形的一个外角 , 因此作一个边长为 1 的正五边形 A1 A2 A3 A4 A5 (如图 1 ) , 且 A1 A2 与 x
), 轴的夹角为 5 ° , 则 A1 A2 = ( co s 5 ° , sin 5 ° ), A2 A3 = ( co s 77 ° , sin 77 ° ), A3 A4 = ( co s 149 ° , sin 149 ° ), A4 A5 = ( co s 221 ° , sin 221 ° ). A5 A1 = ( co s 293 ° , sin 293 ° -
题 ) 对于非空集合 A, B , 定义运算 : A
| x ∈A ∪B ,且 x |
B = {x
A ∩ B }. 已知两个开区间 P 等于 ( )
M = ( a, b) , P = ( c, d ) , 其中 a, b, c, d满足 a + b < c + d, ab = cd < 0, 则 M
2 2 例 2 设 x1 , x2 ( x1 < x2 ) 是方程 a x + bx
二次函数图象信息题的四种常见类型
类型 4 根据抛物线的特征确定其他函数的图象
5.【中考·聊城】二次函数y=ax2+bx的图象如图所 示,那么一次函数y=ax+b的图象大致是( C)
同类变式
6.如图,A(-1,0),B(2,-3)两 点在一次函数y1
=-x+m与二次函数y2=ax2+bx -3的图象上.
(1)求m的值和二次函数的解析式. (2)设二次函数的图象交y 轴于点C,求△ABC的 面积.
类型 3 利用二次函数的图象求方程的解或不等式的解集
3.【中考·黄石】二次函数y=ax2+bx+c(a≠0)的图 象如图所示,则当函数值y>0时,x的3 C.-1<x<3 D.x<-1或x>3
同类变式
4.【中考·阜新】如图,二次函数y=ax2+bx+3 的图象经过点A(-1,0),B(3,0),那么一元 二次方程ax2+bx=0的根是____________.
习题课
专训 二次函数图象信息题 的四种常见类型
阶段方法技巧训练(一)
汇报人姓名
利用图象信息解决二次函数的问题主要是运 用数形结合思想将图象信息转换为数学语言,掌 握二次函数的图象和性质是解决此类问题的关键.
类型
1 根据抛物线的特征确定a,b,c及与其有关的代数式的符号
1.【2015·孝感】如图,二次函数y=ax2+bx+c(a≠0)的
单击添加大标 题
单击此处添加正文,文字是您思想的提炼,为了演示发布的良好效果,请言简意赅地阐述您的观 点。您的内容已经简明扼要,字字珠玑,但信息却千丝万缕、错综复杂,需要用更多的文字来表 述;但请您尽可能提炼思想的精髓,否则容易造成观者的阅读压力,适得其反。正如我们都希望 改变世界,希望给别人带去光明,但更多时候我们只需要播下一颗种子,自然有微风吹拂,雨露 滋养。恰如其分地表达观点,往往事半功倍。当您的内容到达这个限度时,或许已经不纯粹作用 于演示,极大可能运用于阅读领域;无论是传播观点、知识分享还是汇报工作,内容的详尽固然 重要,但请一定注意信息框架的清晰,这样才能使内容层次分明,页面简洁易读。如果您的内容 确实非常重要又难以精简,也请使用分段处理,对内容进行简单的梳理和提炼,这样会使逻辑框 架相对清晰。为了能让您有更直观的字数感受,并进一步方便使用,我们设置了文本的最大限度, 当您输入的文字到这里时,已濒临页面容纳内容的上限,若还有更多内容,请酌情缩小字号,但 我们不建议您的文本字号小于14磅,请您务必注意。
二次函数知识点及重点题练习答案解析
答案
基础训练
1
3
1.函数 y= 的大致图象是( B ).
【解析】取值验证可知,函数
1
y= 3 的大致图象是选项
B 中的图象.
答案
解析
2
2.若二次函数 y=-2x -4x+t 的图象的顶点在 x 轴上,则 t 的值是( C ).
A.-4
B.4
C.-2
D.2
【解析】∵二次函数的图象的顶点在 x 轴上,∴Δ=16+8t=0,可
2.五种常见幂函数的图象
答案
3.幂函数的性质
(1)当 α>0 时,幂函数 y=xα 的图象过点 (0,0) 和 (1,1) ,在(0,+∞)上
是 增函数 .在第一象限内,当 α>1 时,图象下凹,当 0<α<1 时,图象上凸.
(2)当 α<0 时,幂函数 y=xα 的图象过点 (1,1) ,在(0,+∞)上是 减函数 .
4
2
∴h(m)=
-2m +
2
17 3
4
, < m ≤ 1,
4
3
-3 + 4m + 2,0 < m ≤ .
4
点拨:解决二次函数最值问题的关键是抓住“三点一轴”,其中“三点”
是指区间的两个端点和抛物线的顶点,“一轴”指的是对称轴,结合配方法,
根据函数的单调性及分类讨论思想即可解题.
点拨
【追踪训练 2】已知函数 f(x)=-x2+2ax+1-a 在[0,1]上的最大值为 2,求
当 a≠0 时,f(x)图象的对称轴为直线
3-
x= ,
人教版 九年级数学讲义 二次函数的图像与性质(含解析)
第5讲二次函数的图象与性质知识定位讲解用时:2分钟A、适用范围:人教版初三,基础一般B、知识点概述:本讲义主要用于人教版初三新课,本节课我们主要学习二次函数的图象与性质,本节课的重点是掌握二次函数的平移法则,能够结合二次函数图象和性质判断a、b、c的之间的关系,而难点在于二次函数的图象和性质的综合考查,需要学生能够根据二次函数的图象与性质正确分析并解决问题。
希望同学们能够认真学习并掌握,为后面二次函数的应用打好基础。
知识梳理讲解用时:25分钟二次函数的图象(1)二次函数y=ax2(a≠0)的图象的画法:①列表:先取原点(0,0),然后以原点为中心对称地选取x值,求出函数值,列表;①描点:在平面直角坐标系中描出表中的各点;①连线:用平滑的曲线按顺序连接各点;①在画抛物线时,取的点越密集,描出的图象就越精确,但取点多计算量就大,故一般在顶点的两侧各取三四个点即可,连线成图象时,要按自变量从小到大(或从大到小)的顺序用平滑的曲线连接起来,画抛物线y=ax2(a≠0)的图象时,还可以根据它的对称性,先用描点法描出抛物线的一侧,再利用对称性画另一侧。
x…-223--112-0121232…2y x= (4)491140141494…(2)二次函数y=ax2+bx+c(a≠0)的图象二次函数y=ax2+bx+c(a≠0)的图象看作由二次函数y=ax2的图象向右或向左平移|ab2|个单位,再向上或向下平移|abac442-|个单位得到的。
12341234xyxyOO1212----图1图2向上()或向下()平移个单位向上()或向下()平移个单位向左()或向右()平移个单位向左()或向右()平移个单位课堂精讲精练【例题1】抛物线212y x =向左平移8个单位,再向下平移9个单位,所得的抛物线的解析式是___________________。
【答案】218232y x x =++【解析】本题考查了二次函数平移规则,根据二次函数的平移法则,“上加下减,左加右减”,可知平移后的函数解析式为()21892y x =+-,整理即为218232y x x =++讲解用时:2分钟解题思路:牢记平移法则即可。
专题1.2 二次函数的图象【六大题型】(举一反三)(浙教版)(解析版)
专题1.2 二次函数的图象【六大题型】【浙教版】【题型1 二次函数的配方法】 (1)【题型2 二次函数的五点绘图法】 (4)【题型3 二次函数的图象与各系数之间的关系】 (9)【题型4 二次函数图象的平移变换】 (12)【题型5 二次函数图象的对称变换】 (14)【题型6 利用对称轴、顶点坐标公式求值】 (16)【题型1 二次函数的配方法】【例1】(2022秋•饶平县校级期末)用配方法将下列函数化成y=a(x+h)2+k的形式,并指出抛物线的开口方向,对称轴和顶点坐标.(1)y=12x2﹣2x+3;(2)y=(1﹣x)(1+2x).【分析】(1)利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式;(2)化为一般式后,利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.【解答】解:(1)y=12x2﹣2x+3=12(x﹣2)2+1,开口向上,对称轴是直线x=2,顶点坐标(2,1);(2)y=(1﹣x)(1+2x)=﹣2x2+x+1=﹣2(x―14)2+98,开口向下,对称轴是直线x=14,顶点坐标(14,98).【变式1-1】(2022•西华县校级月考)用配方法确定下列二次函数图象的对称轴与顶点坐标.(1)y=2x2﹣8x+7;(2)y=﹣3x2﹣6x+7;(3)y=2x2﹣12x+8;(4)y=﹣3(x+3)(x﹣5).【分析】(1)利用配方法表示解析式配成顶点式,然后根据二次函数的性质写出抛物线的对称轴、顶点坐标;(2)利用配方法表示解析式配成顶点式,然后根据二次函数的性质写出抛物线的对称轴、顶点坐标;(3)利用配方法表示解析式配成顶点式,然后根据二次函数的性质写出抛物线的对称轴、顶点坐标;(4)利用配方法表示解析式配成顶点式,然后根据二次函数的性质写出抛物线的对称轴、顶点坐标.【解答】解:(1)y=2(x2﹣4x)+7=2(x2﹣4x+4﹣4)+7=2(x﹣2)2﹣1,对称轴为x=2,顶点坐标为(2,﹣1);(2)y=﹣3(x2+2x)+7=﹣3(x2+2x+1﹣1)+7=﹣3(x+1)2+10,对称轴为x=﹣1,顶点坐标为(﹣1,10);(3)y=2x2﹣12x+8=2(x2﹣6x+9﹣9)+8=2(x﹣3)2﹣10,对称轴为x=3,顶点坐标为(3,﹣10);(4)y=﹣3(x+3)(x﹣5)=﹣3(x2﹣2x﹣15)=﹣3(x2﹣2x+1﹣1﹣15)=﹣3(x﹣1)2+16 3,对称轴为x=1,顶点坐标为(1,163).【变式1-2】(2021•邵阳县月考)把下列二次函数化成顶点式,即y=a(x+m)2+k的形式,并写出他们顶点坐标及最大值或最小值.(1)y=﹣2x﹣3+1 2 x2(2)y=﹣2x2﹣5x+7(3)y=ax2+bx+c(a≠0)【分析】利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,可把一般式转化为顶点式,从而求出函数图象的顶点坐标及最值.【解答】解:(1)y=﹣2x﹣3+1 2 x2=12(x2﹣4x+4)﹣2﹣3=12(x﹣2)2﹣5,顶点坐标是(2,﹣5),最小值是﹣5;(2)y=﹣2x2﹣5x+7=﹣2(x2+52x+2516)+258+7=﹣2(x+54)2+818,顶点坐标是(―54,818),最大值是818;(3)y=ax2+bx+c=a(x2+bax+b24a2)―b24a+c=a(x+b2a)2+4ac b24a,顶点坐标是(―b2a,4ac b24a),当a<0时,最大值是4ac b24a;当a>0时,最小值是4ac b24a.【变式1-3】(2022•监利市期末)用配方法可以解一元二次方程,还可以用它来解决很多问题例如:因为5a2≥0,所以5a2+1≥1,即:当a=0时,5a2+1有最小值1.同样,因为﹣5(a2+1)≤0,所以﹣5(a2+1)+6≤6有最大值1,即当a=1时,﹣5(a2+1)+6有最大值6.(1)当x= 2 时,代数式﹣3(x﹣2)2+4有最 大 (填写大或小)值为 4 .(2)当x= 2 时,代数式﹣x2+4x+4有最 大 (填写大或小)值为 8 .(3)矩形花园的一面靠墙,另外三面的栅栏所围成的总长度是14m,当花园与墙相邻的边长为多少时,花园的面积最大?最大面积是多少?【分析】(1)由完全平方式的最小值为0,得到x=2时,代数式的最大值为4;(2)将代数式前两项提取﹣1,配方为完全平方式,根据完全平方式的最小值为0,即可得到代数式的最大值及此时x的值;(3)设垂直于墙的一边长为xm,根据总长度为14m,表示出平行于墙的一边为(14﹣2x)m,表示出花园的面积,整理后配方,利用完全平方式的最小值为0,即可得到面积的最大值及此时x的值.【解答】解:(1)∵(x﹣2)2≥0,∴当x=2时,(x﹣2)2的最小值为0,则当x=2时,代数式﹣3(x﹣2)2+4的最小值为4;(2)代数式﹣x2+4x+4=﹣(x﹣2)2+8,则当x=2时,代数式﹣x2+4x+4的最大值为8;(3)设垂直于墙的一边为xm,则平行于墙的一边为(14﹣2x)m,∴花园的面积为x(14﹣2x)=﹣2x2+14x=﹣2(x2﹣7x+494)+492=―2(x―72)2+492,则当边长为3.5米时,花园面积最大为492m2.故答案为:(1)2,大,4;(2)2,大,8;【题型2 二次函数的五点绘图法】【例2】(2022•东莞市模拟)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如下表:x…01234…y…52125…(1)求该二次函数的表达式;(2)当x=6时,求y的值;(3)在所给坐标系中画出该二次函数的图象.【分析】(1)由表格可知抛物线顶点坐标(2,1),设抛物线解析式为y=a(x﹣2)2+1,利用待定系数法即可解决问题.(2)把x=6代入(1)中的解析式即可.(3)利用描点法画出图象即可.【解答】解:(1)由表格可知抛物线顶点坐标(2,1),设抛物线解析式为y=a(x﹣2)2+1,∵x=0时,y=5,∴5=4a+1,∴a=1,∴二次函数解析式为y=(x﹣2)2+1即y=x2﹣4x+5.(2)当x=6时,y=(6﹣2)2+1=17.(3)函数图象如图所示,.【变式2-1】(2022•竞秀区一模)已知抛物线y=x2﹣2x﹣3(1)求出该抛物线顶点坐标.(2)选取适当的数据填入表格,并在直角坐标系内描点画出该抛物线的图象.x……y……【分析】(1)直接利用配方法求出二次函数的顶点坐标即可;(2)利用描点法画出二次函数的图象.【解答】解:(1)y=x2﹣2x﹣3=(x﹣1)2﹣4,故该抛物线顶点坐标为:(1,﹣4);(2)如图所示:x…﹣10123…y…0﹣3﹣4﹣30….【变式2-2】已知二次函数y=ax2﹣2的图象经过(﹣1,1).(1)求出这个函数的表达式;(2)画出该函数的图象;(3)写出此函数的开口方向、顶点坐标、对称轴.【分析】(1)直接把(﹣1,1)代入y=ax2﹣2中求出a的值即可得到抛物线解析式;(2)利用描点法画函数图象;(2)根据二次函数的性质求解.【解答】解:(1)把(﹣1,1)代入y=ax2﹣2得a﹣2=1,解得a=3,所以抛物线解析式为y=3x2﹣2;(2)如图:(3)抛物线的开口向上,顶点坐标为(0,﹣2),对称轴为y轴.【变式2-3】(2022•越秀区模拟如图,已知二次函数y=―12x2+bx+c的图象经过A(2,0)、B(0,﹣6)两点.(1)求这个二次函数的解析式;(2)求该二次函数图象的顶点坐标、对称轴以及二次函数图象与x 轴的另一个交点;(3)在右图的直角坐标系内描点画出该二次函数的图象及对称轴.【分析】(1)根据图象经过A (2,0)、B (0,﹣6)两点,把两点代入即可求出b 和c ,(2)把二次函数写成顶点坐标式,据此写出顶点坐标,对称轴等,(3)在坐标轴中画出图象即可.【解答】解:(1)∵的图象经过A (2,0)、B (0,﹣6)两点,∴―2+2b +c =0c =―6,解得b =4,c =﹣6,∴这个二次函数的解析式为y =―12x 2+4x ―6,(2)y =―12x 2+4x ―6=―12(x 2﹣8x +16)+8﹣6=―12(x ﹣4)2+2,∴二次函数图象的顶点坐标为(4,2)、对称轴为x =4、二次函数图象与x 轴相交时:0=―12(x ﹣4)2+2,解得:x =6或2,∴另一个交点为:(6,0),(3)作图如下.【题型3 二次函数的图象与各系数之间的关系】【例3】(2022春•玉山县月考)函数y=ax2﹣a与y=ax+a(a≠0)在同一坐标系中的图象可能是( )A.B.C.D.【分析】根据题目中的函数解析式、二次函数的性质和一次函数的性质,利用分类讨论的方法可以得到函数y=ax2﹣a与y=ax+a(a≠0)在同一坐标系中的图象可能是哪个选项中的图象.【解答】解:当a>0时,函数y=ax2﹣a的图象开口向上,顶点坐标为(0,﹣a),y=ax+a(a≠0)的图象经过第一、二、三象限,故选项A、D错误;当a<0时,函数y=ax2﹣a的图象开口向下,顶点坐标为(0,﹣a),y=ax+a(a≠0)的图象经过第二、三、四象限,故选项B错误,选项C正确;故选:C.【变式3-1】(2022•邵阳县模拟)二次函数y=ax2+b的图象如图所示,则一次函数y=ax+b的图象可能是( )A.B.C.D.【分析】直接利用二次函数图象得出a,b的符号,进而利用一次函数的图象性质得出答案.【解答】解:如图所示:抛物线开口向下,交y轴的正半轴,则a<0,b>0,故一次函数y=ax+b的图象经过第一、二、四象限.故选:C.【变式3-2】(2022•凤翔县一模)一次函数y=kx+k与二次函数y=ax2的图象如图所示,那么二次函数y=ax2﹣kx﹣k的图象可能为( )A.B.C.D.【分析】由二次函数y=ax2的图象知:开口向上,a>0,一次函数y=kx+k图象可知k>0,然后根据二次函数的性质即可得到结论.【解答】解:由二次函数y=ax2的图象知:开口向上,a>0,一次函数y=kx+k图象可知k>0,∴二次函数y=ax2﹣kx﹣k的图象开口向上,对称轴x=―k2a在y轴的右侧,交y轴的负半轴,∴B选项正确,故选:B.【变式3-3】(2022•澄城县三模)已知m,n是常数,且n<0,二次函数y=mx2+nx+m2﹣4的图象是如图中三个图象之一,则m的值为( )A.2B.±2C.﹣3D.﹣2【分析】可根据函数的对称轴,以及当x=0时,y的值来确定符合题意的函数式,进而确定m的值.【解答】解:∵y=mx2+nx+m2﹣4,∴x=―n2m,因为n<0,所以对称轴不可能是x=0,所以第一个图不正确.二,三两个图都过原点,∴m2﹣4=0,m=±2.第二个图中m>0,开口才能向上.对称轴为:x=―n2m>0,所以m可以为2.第三个图,m<0,开口才能向下,x=―n2m<0,而从图上可看出对称轴大于0,从而m=﹣2不符合题意.故选:A.【题型4 二次函数图象的平移变换】【例4】(2022•绍兴县模拟)把抛物线y=ax2+bx+c的图象先向右平移2个单位,再向上平移2个单位,所得的图象的解析式是y=(x﹣3)2+5,则a+b+c= 3 .【分析】先得到抛物线y=(x﹣3)2+5的顶点坐标为(3,5),通过点(3,5)先向左平移2个单位再向下平移2个单位得到点的坐标为(1,3),然后利用顶点式写出平移后的抛物线解析式,再把解析式化为一般式即可得到a、b和c的值.【解答】解:∵y=(x﹣3)2+5,∴顶点坐标为(3,5),把点(3,5)先向左平移2个单位再向下平移2个单位得到点的坐标为(1,3),∴原抛物线解析式为y=(x﹣1)2+3=x2﹣2x+4,∴a=1,b=﹣2,c=4.∴a+b+c=3,故答案为3.【变式4-1】(2022•澄城县二模)要得到函数y=﹣(x﹣2)2+3的图象,可以将函数y=﹣(x﹣3)2的图象( )A.向右平移1个单位,再向上平移3个单位B.向右平移1个单位,再向下平移3个单位C.向左平移1个单位,再向上平移3个单位D.向左平移1个单位,再向下平移3个单位【分析】根据抛物线顶点的变换规律得到正确的选项.【解答】解:抛物线y=﹣(x﹣3)2的顶点坐标是(3,0),抛物线y=﹣(x﹣2)2+3的顶点坐标是(2,3),所以将顶点(3,0)向左平移1个单位,再向上平移3个单位得到顶点(2,3),即将函数y=﹣(x﹣3)2的图象向左平移1个单位,再向上平移3个单位得到函数y=﹣(x﹣2)2+3的图象.故选:C.【变式4-2】(2022秋•滨江区期末)将抛物线y=ax2+bx﹣1向上平移3个单位长度后,经过点(﹣2,5),则4a﹣2b﹣1的值是 2 .【分析】根据二次函数的平移得出平移后的表达式,再将点(﹣2,5)代入,得到4a﹣2b=3,最后整体代入求值即可.【解答】解:将抛物线y=ax2+bx﹣1向上平移3个单位长度后,表达式为:y=ax2+bx+2,∵经过点(﹣2,5),代入得:4a﹣2b=3,则4a﹣2b﹣1=3﹣1=2.故答案为:2.【变式4-3】(2022•澄城县二模)二次函数y=(x﹣1)(x﹣a)(a为常数)图象的对称轴为直线x=2,将该二次函数的图象沿y轴向下平移k个单位,使其经过点(0,﹣1),则k的值为( )A.3B.4C.2D.6【分析】根据抛物线解析式得到抛物线与x轴的交点横坐标,结合抛物线的轴对称性质求得a的值,结合抛物线解析式求平移后图象所对应的二次函数的表达式,利用待定系数法求得k的值.【解答】解:由二次函数y=(x﹣1)(x﹣a)(a为常数)知,该抛物线与x轴的交点坐标是(1,0)和(a,0).∵对称轴为直线x=2,∴1a2=2.解得a=3.则该抛物线解析式是:y=x2﹣4x+3.∴抛物线向下平移k个单位后经过(0,﹣1),∴﹣1=3﹣k.∴k=4.故选:B.【题型5 二次函数图象的对称变换】【例5】(2022•绍兴县模拟)在同一平面直角坐标系中,若抛物线y=x2+(2a﹣b)x+b+1与y=﹣x2+(a+b)x+a﹣4关于x轴对称,则a+b的值为( )A.﹣5B.3C.5D.15【分析】根据关于x轴对称,函数y是互为相反数即可求得.【解答】解:∵抛物线y=x2+(2a﹣b)x+b+1与y=﹣x2+(a+b)x+a﹣4关于x轴对称,∴﹣y=﹣x2﹣(2a﹣b)x﹣b﹣1,∴―(2a―b)=a+b ―b―1=a―4,解得a=0,b=3,∴a+b=3,故选:B.【变式5-1】(2022•苍溪县模拟)抛物线y=﹣(x+2)2关于y轴对称的抛物线的表达式为 y=﹣(x﹣2)2 .【分析】写出顶点关于y轴对称的点,把它作为所求抛物线的顶点,这样就可确定对称后抛物线的解析式.【解答】解:抛物线y=﹣(x+2)2顶点坐标为(﹣2,0),其关于y轴对称的点的坐标为(2,0),∵两抛物线关于y轴对称时形状不变,∴抛物线y=﹣(x+2)2关于y轴对称的抛物线的表达式为y=﹣(x﹣2)2.故答案是:y=﹣(x﹣2)2.【变式5-2】(2022•蜀山区校级二模)在平面直角坐标系中,将抛物线y=x2+2x+3绕着原点旋转180°,所得抛物线的解析式是( )A.y=﹣(x﹣1)2﹣2B.y=﹣(x+1)2﹣2C.y=﹣(x﹣1)2+2D.y=﹣(x+1)2+2【分析】先利用配方法得到抛物线y=x2+2x+3的顶点坐标为(﹣1,2),再写出点(﹣1,2)关于原点的对称点为(1,﹣2),由于旋转180°,抛物线开口相反,于是得到抛物线y=x2+2x+3绕着原点旋转180°,所得抛物线的解析式是y=﹣(x﹣1)2﹣2.【解答】解:y=x2+2x+3=(x+1)2+2,抛物线y=x2+2x+3的顶点坐标为(﹣1,2),点(﹣1,2)关于原点的对称点为(1,﹣2),所以抛物线y=x2+2x+3绕着原点旋转180°,所得抛物线的解析式是y=﹣(x﹣1)2﹣2.故选:A.【变式5-3】(2022春•仓山区校级期末)在平面直角坐标系中,已知抛物线L1:y=kx2+4kx+8(k≠0)与抛物线L2关于x轴对称,且它们的顶点相距8个单位长度,则k的值是( )A.﹣1或3B.1或﹣2C.1或3D.1或2【分析】先求出抛物线L1的顶点坐标,再根据顶点相距8个单位长度列方程即可解得答案.【解答】解:∵y=kx2+4kx+8=k(x+2)2+8﹣4k,∴抛物线L1:y=kx2+4kx+8顶点为(﹣2,8﹣4k),∵抛物线L1:y=kx2+4kx+8(k≠0)与抛物线L2关于x轴对称,它们的顶点相距8个单位长度,∴8﹣4k=82或8﹣4k=―82,解得k=1或k=3,故选:C.【题型6 利用对称轴、顶点坐标公式求值】【例6】(2022•苍溪县模拟)已知二次函数y=(a﹣1)x2﹣x+a2﹣1图象经过原点,则a的取值为( )A.a=±1B.a=1C.a=﹣1D.a=0【分析】把(0,0)代入函数解析式求出a的值,再由a﹣1≠0求解.【解答】解:把(0,0)代入y=(a﹣1)x2﹣x+a2﹣1得0=a2﹣1,解得a=1或a=﹣1,∵a﹣1≠0,∴a=﹣1,故选:C.【变式6-1】(2022•合肥模拟)如果抛物线y=x2﹣6x+c﹣2的顶点到x轴的距离是4,则c的值等于 7或15 .【分析】根据抛物线y=x2﹣6x+c﹣2的顶点到x轴的距离是4,可知顶点的纵坐标的绝对值是4,然后计算即可.【解答】解:∵抛物线y=x2﹣6x+c﹣2的顶点到x轴的距离是4,∴|4×1×(c2)(6)24×1|=4,解得c1=7,c2=15,故答案为:7或15.【变式6-2】(2022•襄城区模拟)已知二次函数y=x2+bx+c的顶点在x轴上,点A(m﹣1,n)和点B (m+3,n)均在二次函数图象上,求n的值为 4 .【分析】根据题意得出b=﹣2(m+1),c=(m+1)2,即可得出y=x2﹣2(m+1)x+(m+1)2,把A 的坐标代入即可求得n的值.【解答】解:∵点A(m﹣1,n)和点B(m+3,n)均在二次函数y=x2+bx+c图象上,∴―b2=m1m32,∴b=﹣2(m+1),∵二次函数y=x2+bx+c的顶点在x轴上,∴b2﹣4c=0,∴[﹣2(m +1)]2﹣4c =0,∴c =(m +1)2,∴y =x 2﹣2(m +1)x +(m +1)2,把A 的坐标代入得,n =(m ﹣1)2﹣2(m +1)(m ﹣1)+(m +1)2=4,故答案为:4.【变式6-3】(2022•公安县期中)已知二次函数y =x 2+mx +m ﹣1,根据下列条件求m 的值.(1)图象的顶点在y 轴上.(2)图象的顶点在x 轴上.(3)二次函数的最小值是﹣1.【分析】(1)将二次函数配方成顶点式y =(x +m 2)2―m 24m 44,由图象的顶点在y 轴上可得―m 2=0,即m =0;(2)由图象的顶点在x 轴上可得m 24m 44=0,解之即可;(3)由二次函数的最小值是﹣1可得―m 24m 44=―1,解之即可.【解答】解:(1)y =x 2+mx +m ﹣1=x 2+mx +m 24―m 24+m ﹣1=(x +m 2)2―m 24m 44,∴抛物线的顶点坐标为(―m 2,―m 24m 44)∵图象的顶点在y 轴上,∴―m 2=0,即m =0;(2)∵图象的顶点在x 轴上,∴m 24m 44=0,解得m =2;(3)∵二次函数的最小值是﹣1,∴―m 24m 44=―1,解得:m =0或m =4.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)点M、N、P、G的坐标分别为:
M (-1,0) ,N (3,0) , P (0,-3) ,G (1,-4) 。
y
y=x2-2x-3
(2)线段OM= 1 ,
O
M
N
x
ON= 3 ,OP= 3 , P
MN= 4 。
G
抛物线上的面积问题
已知二次函数 y=x2-2x-3与x轴交于A、B两点
(A在B的左边),与y轴交于点C.
(1)求出点A、B、C的坐标
y
及A、B的距离
.N2
.N3
(2)求S△ABC
A
B
(3)在抛物线上(除点C外),
O
x
是否存在点N,使得 S△NAB = S△ABC, 若存在,求出点N的坐标,
பைடு நூலகம்
C
.N1
若不 存在,请说明理由。
① y=ax2+c ② y=ax2 ③y=a(x+m)2+k
④ y=a(x+m)2 ⑤y=ax2+bx
(2)①抛物线顶点在 x 轴上 y=a(x+m)2 ② 顶点在 y 轴上(对称轴是 y 轴) y=ax2+c
③图象经过原点 ④ 图象的顶点在原点 y=ax2 y=ax2+bx
1、如图,抛物线y=x2-2x-3,与x轴从左 至右交于点M、N,与y轴交于点P,顶 点为点G。则:
练习
(1)已知函数y= -x2-x-4,当函数值y随 x的增大而减小时,x的取值范围是 __X__≤1_______ (2)二次函数y=mx2-3x+2m-m2的图象 经过原点,则m= __2__。
(3)、已知二次函数y=2(x+1)2+1,(-2≤x≤1),则
y的最小值是 1 ,y的最大值是 9 。
练习:在二次函数y x2 2x a的图象上有三点的
坐标分别为(1,y1),(1,y2),(2,y3), 则y1,y2,y3的大小关系__________。
例3、已知点(2,y1),(4,y2 ),(1,y3 )在函数 y 2x2 8x 7的图象上,那么y1,y2,y3的大小关系 _________。
练习:在二次函数y x2 2x a的图象上有三点的坐标分别为 (1,y1),(1,y2),(2,y3),则y1,y2,y3的大小关系______
y=ax2
y=ax2+c 直线x=0
y=a(x+m)2 ∆=0
y=ax2+bx C=0
A
B
C
D
(1)你能说出上列的函数的图象对应是下面哪个的函数的
解析式?