聚类分析数学建模
数学建模聚类分析
层次聚类
要点一
总结词
一种基于距离的聚类算法,通过构建层次结构来对数据进 行聚类。
要点二
详细描述
层次聚类算法的基本思想是,通过不断将相近的数据点合 并成新的集群,或者将现有的集群分裂成更小的集群,来 构建一个层次结构。算法首先将每个数据点视为一个独立 的集群,然后按照距离的远近逐步合并或分裂集群,直到 达到预设的停止条件。层次聚类算法有多种,其中最常用 的是凝聚层次聚类和分裂层次聚类。
密度峰值聚类
总结词
一种基于密度的聚类算法,通过识别密度峰值点来对 数据进行聚类。
详细描述
密度峰值聚类算法的基本思想是,通过识别数据集中的 密度峰值点来对数据进行聚类。算法首先计算每个数据 点在其邻域内的密度,并将密度最大的点视为密度峰值 点。然后,算法将每个密度峰值点作为中心点,将与其 相近的数据点归入同一个集群。通过这种方式,密度峰 值聚类算法能够识别出任意形状的集群,并处理异常值 和噪声点。与DBSCAN算法相比,密度峰值聚类算法 的计算复杂度较低,因此在处理大规模数据集时具有更 好的性能。
DBSCAN聚类
总结词
一种基于密度的聚类算法,通过识别高密度区域和低 密度区域来对数据进行聚类。
详细描述
DBSCAN聚类算法的基本思想是,通过识别高密度区 域和低密度区域来对数据进行聚类。算法首先从任意一 个未被访问过的数据点开始,搜索其邻域内的所有点, 如果邻域内的点数超过预设的阈值,则将该点标记为核 心点,并将其所在区域视为一个集群。然后,算法继续 搜索核心点的邻域内的点,并将这些点标记为边界点和 噪声点。通过这种方式,DBSCAN算法能够识别出任 意形状的集群,并处理异常值和噪声点。
通过分析不同群体的用户特征和行为模式,电商企业可以 制定更加精准的营销策略和个性化推荐方案,提高用户满 意度和忠诚度。
数学建模里的聚类分析
聚类分析聚类,或称分集,即所谓“物以类聚”,它是按某种相似规则对给定样本集、指标簇进行某种性质的划分,使之成为不同的类.将数据抽象化为样本矩阵()ij n m X X ⨯=,ij X 表示第i 个样本的第j 个变量的值.聚类目的,就是从数据出发,将样本或变量分成类.其方法大致有如下几个.(1) 聚类法.即谱系聚类法.将n 个样本看成n 类,将性质最接近的两类并为一新类,得1-n 类;再从1-n 类中找出最接近的两类加以合并,得2-n 类;继之,最后所有样本都成一类,得一聚类谱系,从谱系中可确定划分多少类,每类含有哪些样本.(2) 分解法.它是系统聚类的逆过程,将所有样本视为一类,按某种最优准则将它分成两类,继之,每一类都分到只含一个样本为止.(3) 动态聚类.即快速聚类法.将n 个样本粗糙地分成若干类,然后用某种最优准则进行调整,直至不能调整为止.(4) 有序样本聚类.按时间顺序,聚在一类的样本必须是次序相邻的样本.(5) 模糊聚类.它是将模糊数学用于样本聚类.(6) 运筹学聚类.它是将聚类问题化为线性规划、动态规划、整数规划模型的聚类.(7) 神经网络聚类.它是将样本按自组织特征映射的方法进行,也是我们要加以叙述的一个重点.(8) 预测中聚类.它是聚类在预测中的应用,以弥补非稳定信号回归的预测与分析.这里主要介绍谱系聚类法和快速聚类法. 一、距离定义样本矩阵()ij n m X x ⨯=,是m 维空间中n 个点,以距离度量样本之间的贴近度,就是距离聚类方法.最常用的第i 个与第j个样本的Minkowski 距离为p mk p jk ik ijx x d /11)||(∑=-=式中p 为一正整数.当2=p , ij d 就是欧几里德距离;当1=p ,ij d 就是绝对距离,或称“布洛克(cityblock )”距离.而切比雪夫距离为||max 1jk ik mk ij x x d -=≤≤设m m C ⨯是变量的协方差矩阵,i x ,j x 为第i 行与第j 行m 个变量构成的向量,则马哈兰罗比斯距离定义为1()()T ij i j i j d x x C x x -=-- 根据距离的定义,就获得距离矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn n n n n d d d d d d d d d d 212222111211 由距离性质可知,d 为实对称矩阵,ij d 越小,两样本就越相似,其中01211====nn d d d ,根据)(j i d ij ≠的n 个点分类,依聚类准则分为不同的类.对d 常用的系统聚类准则有: 1、类间距离定义(1) 最短距离;,min p qpq ij i Gj GD d ∈∈= (2) 最长距离;,maxpqpq ij i G j GD d ∈∈=(3) 质心距离;(,)pq p q D d x x = (4) 平均距离;1p qpq iji G j G p qD d n n ∈∈=∑∑(5) 平方距离:2()()p q T pqp q p q p qn n D x x x x n n =--+2.类间距离的递推公式(1)最短距离:min{,}rk pk qk D D D = (2)最长距离:max{,}rk pk qk D D D = (3)类平均距离:p q rk pk qk rrn n D D D n n =+(4)重心距离:2222pqp q rkpkqkpq r r r rn n n n D D D D n n n n =+-⋅(5)离差平方和距离:2222p k q k krkpk qk pq r kr kr kn n n n n D D D D n n n n n n ++=+-+++二、谱系聚类法例: 假如抽取5个样本,每个样本只测一个指标,即数据为x =[1,0;2,0;4.5,0;6,0;8,0] 试以最短距离准则进行距离聚类说明.解 这时,样本间的绝对距离、欧几里德距离或切比雪夫距离均一致,见表3.1.以最短距离准则聚类.根据定义,当令p Ω与q Ω中分别有pn 与q n 个样本,则最短距离为:},|min{),(q p ij nearj i d q p Ω∈Ω∈=δ于是,对于某步,假定具有样本为p n 的第p 集合与样本为q n 的第q 集合,聚成为具有样本为q p s n n n +=的第s 集合,则第k 集合与第s 集合的最短距离,可写为)},(),,(min{),(q k p k s k near near nearδδδ=(1)表1 绝对距离数据表中数据1、2、4.5、6、8视为二叉树叶子,编号为1、2、3、4、5.当每一个样本看成一类时,则式子(1)变为ij neard j i =),(δ,最小距离为1,即1与2合聚于6号,得表2.表中5.2)5.2,5.3min()}2,3(),1,3(min{)6,3(===δδδnear near near表2 一次合聚表2中最小距离为1.5,即4.5与6合聚于7,得表3.表中(6,7)min{(6,4.5),(6,6)}min(2.5,4) 2.5near nearnearδδδ===.表3 二次合聚表3中最小距离为2,即{4.5,6}元素(为7号)与8(为5号)合聚于8号,得表4.表中5.2)6,4,5.2min()}8,6(),6,6(),5.4,6(min{)8,6(===δδδδnear near near near表4 三次合聚最后集合{1,2}与{4.5,6,8}聚成一集丛.此例的Matlab 程序如下:x =[1,0;2,0;4.5,0;6,0;8,0])();'sin ',();'',(z dendrogram gle y linkage z CityBlock x pdist y ==绘得最短距离聚类谱系如图1所示,由图看出分两类比较合适.1号、2号数据合聚于6号,最小聚距为1;3号、4号数据合聚于7号,最小聚距为1.5;7号于5号数据合聚于8号,最小聚距为2;最后6号和8号合聚,最小聚距为2.5。
数学建模-聚类分析
满足输出;不满足循环;
(7)重复;
初始聚类中心的选择
初始聚类中心的选取决定着计算的迭代 次数,甚至决定着最终的解是否为全局最优, 所以选择一个好的初始聚类中心是很有必要 的。
(1)方法一:选取前k个样品作为初始凝聚点。
(2)方法二: 选择第一个样本点作为第一个聚类 中心。然后选取距离第一个点最远的点作为第二个 聚 类中心。……
数据变换:进行[0,1]规格化得到
初始类个数的选择; 初始类中心的选择;
设k=3,即将这15支球队分成三个集团。现抽取日 本、巴林和泰国的值作为三个类的种子,即初始化三 个类的中心为 A:{0.3, 0, 0.19}; B:{0.7, 0.76, 0.5}; C:{1, 1, 0.5};
样品到类中心的距离; 归类;
计算所有球队分别对三个中心点的欧氏 距离。下面是用程序求取的结果:
第一次聚类结果: A:日本,韩国,伊朗,沙特; B:乌兹别克斯坦,巴林,朝鲜; C:中国,伊拉克,卡塔尔,阿联酋,泰 国,越南,阿曼,印尼。
重新计算类中心;
下面根据第一次聚类结果,采用k-均值法调整各个类的 中心点。
A类的新中心点为:{(0.3+0+0.24+0.3)/4=0.21,
数据变换
(5)极差正规化变换:
x*ij
=
xij
min 1t n
xij
Rj
i 1,,2,...,,n; j 1,..., m
(6)对数变换x*:ij = log xij
i 1,,2,...,,n; j 1,..., m
k
样品间的距离
(1)绝对值距离:
m
dij
xit x jt
t 1
银行风险管理中的数学建模方法研究
银行风险管理中的数学建模方法研究随着金融市场的不断发展,银行风险管理的重要性也日益凸显。
银行作为金融机构,其经营活动必然会面临各种各样的风险,而科学合理的风险管理方法也就变得至关重要了。
在银行风险管理中,数学建模方法已经成为了一种常用的手段,它可以帮助银行有效地识别、评估和控制各种风险,提高银行的稳健性和盈利能力。
本文将从以下几个方面,对银行风险管理中的数学建模方法进行综述和研究。
一、银行风险分类及数学模型选择首先,我们需要了解银行的常见风险类型,根据国际惯例,银行的风险主要有信用风险、市场风险、操作风险和流动性风险等。
针对不同的风险类型,银行需要选择不同的数学模型。
1. 信用风险模型信用风险是指因借款人或客户未能按照约定的还款计划进行偿付,导致银行遭受的损失,因此,信用风险模型的本质就是对借款人和客户的违约概率进行预测和度量。
常见的信用风险模型包括基于Logistic回归、神经网络、决策树等的评级模型和预测模型,其中评级模型常用于客户的信用评估和分类,预测模型则用于预测未来违约率。
2. 市场风险模型市场风险是指由于市场利率、汇率、股票价格等外部市场因素的波动导致的银行投资组合损失。
市场风险模型的选择主要取决于银行的投资策略和投资组合的构成,例如对股票、债券、外汇等不同资产类别,采用VaR、Expected Shortfall等风险度量指标,或者对固定收益产品采用债券定价模型等进行风险度量。
3. 操作风险模型操作风险是指由于银行内部人员、系统、流程等因素的错误或意外而导致银行损失。
常用的操作风险模型包括LDA、AMA等模型,其中LDA模型主要是基于统计学的方法,包括分布假设、估计方程等,而AMA模型则是更加模型化的金融工程方法,它可以对操作风险事件的时序、复杂程度等多个方面进行度量和分析。
4. 流动性风险模型流动性风险是指银行面临的资金流动性风险,它主要包括流动性溢价、资产负债管理、清算、融资成本等方面。
数学建模各种分析方法
现代统计学1.因子分析(Factor Analysis)因子分析的基本目的就是用少数几个因子去描述许多指标或因素之间的联系,即将相关比较密切的几个变量归在同一类中,每一类变量就成为一个因子(之所以称其为因子,是因为它是不可观测的,即不是具体的变量),以较少的几个因子反映原资料的大部分信息。
运用这种研究技术,我们可以方便地找出影响消费者购买、消费以及满意度的主要因素是哪些,以及它们的影响力(权重)运用这种研究技术,我们还可以为市场细分做前期分析。
2.主成分分析主成分分析主要是作为一种探索性的技术,在分析者进行多元数据分析之前,用主成分分析来分析数据,让自己对数据有一个大致的了解是非常重要的。
主成分分析一般很少单独使用:a,了解数据。
(screening the data),b,和cluster analysis一起使用,c,和判别分析一起使用,比如当变量很多,个案数不多,直接使用判别分析可能无解,这时候可以使用主成份发对变量简化。
(reduce dimensionality)d,在多元回归中,主成分分析可以帮助判断是否存在共线性(条件指数),还可以用来处理共线性。
主成分分析和因子分析的区别1、因子分析中是把变量表示成各因子的线性组合,而主成分分析中则是把主成分表示成个变量的线性组合。
2、主成分分析的重点在于解释个变量的总方差,而因子分析则把重点放在解释各变量之间的协方差。
3、主成分分析中不需要有假设(assumptions),因子分析则需要一些假设。
因子分析的假设包括:各个共同因子之间不相关,特殊因子(specific factor)之间也不相关,共同因子和特殊因子之间也不相关。
4、主成分分析中,当给定的协方差矩阵或者相关矩阵的特征值是唯一的时候,的主成分一般是独特的;而因子分析中因子不是独特的,可以旋转得到不同的因子。
5、在因子分析中,因子个数需要分析者指定(spss根据一定的条件自动设定,只要是特征值大于1的因子进入分析),而指定的因子数量不同而结果不同。
聚类分析(数学建模)
分类
俗语说,物以类聚、人以群分。 但什么是分类的根据呢? 比如,要想把中国的县分成若干类,就有很多 种分类法; 可以按照自然条件来分, 比如考虑降水、土地、日照、湿度等各方面; 也可以考虑收入、教育水准、医疗条件、基础 设施等指标; 既可以用某一项来分类,也可以同时考虑多项 指标来分类。
应用范围有限,要求用户制定分类数目(要告知),只能对 观测量(样本)聚类,而不能对变量聚类,且所使用的聚类变 量必须都是连续性变量。
数据标准化处理:
存储中间过程数据
数据标准 化处理, 并存储。
指定5类
收敛标准值
存储最终结果输出情况,在数据文件中(QCL-1、QCL-2)
初始聚心选项,输出方差分析表
得到矩阵
G 7 G 8 D3 G 7 0 G8 12 .80 0
最后合并为一个大类。这就是按最短距离定义类间距离的 系统聚类方法。最长距离法类似!
最长距离(Furthest Neighbor )
• x11• •
x21•
d12
• • •
•
20
组间平均连接(Between-group Linkage)
系统聚类法
Hierarchical Cluster
系统聚类法优点: 既可以对观测量(样品)也可对变量进行 聚类,既可以连续变量也可以是分类变量,提 供的距离计算方法和结果显示方法也很丰富。
聚类分析
1、系统聚类法------(分层聚类)系统聚类法是应 用最广泛的一种(Hierarchical Cluster过程) 1)、 聚类原则:都是相近的聚为一类,即距 离最近或最相似的聚为 一类。 2)、 分层聚类的方法可以用于样本聚类(Q) 型,也可以用于变量聚类(R型)。
数学建模数据处理方法
数学建模数据处理方法数学建模是解决实际问题的重要方法,而数据处理是数学建模中不可或缺的一环。
数据处理方法的好坏直接影响到模型的准确性和可靠性,因此需要对数据进行准确、全面的处理和分析。
下面将从数据采集、数据清洗、数据分析三个方面介绍数学建模中的数据处理方法。
一、数据采集数据采集是数学建模中首先需要完成的工作。
数据采集工作的质量对最终结果的精确度和代表性具有至关重要的影响。
数据采集必须具有相应数据的覆盖范围,数据即时性、真实性和准确性。
采集数据的方法主要有以下几种:1.问卷调查法:通过问卷调查的方式获得数据,是一个经典的数据采集方法。
问卷设计要考虑问题的准确性、问卷的结构和便于回答等因素,其缺点在于有误差和回答方式有主观性。
2.实地调查法:通过实地调查的方式获得数据。
实地调查法拥有远高于其它数据采集方法的数据真实性和准确性,但是它也较为费时费力走,不易操作。
3.网络调查法:通过网络调查的方式获得数据,是应用最广的一种调查方法。
以网络搜索引擎为代表的网络工具可提供大量的调查对象。
在采用网络调查时要考虑到样本的代表性,避免过多的重复样本、无效样本。
此外,由于网络调查法易遭受假冒调查等欺骗行为,结果不能完全符合事实情况。
二、数据清洗在数据采集后,需要对数据进行清洗,以确保数据的准确性和完整性。
数据清洗是数据处理过程中的一项重要工作,它能大大提高数据的质量,保证数据的准确性、真实性和完整性。
数据清洗的过程中主要包括以下几个方面的工作:1.清洗脏数据:包括数据中的重复、缺失、无效和异常值等。
其中缺失值和异常值是数据清洗的重点,缺失值需要根据数据具体情况处理,可采用去除、填充、插值等方式,异常值的处理就是通过人工或自动识别的方式找出这些数据并去除或修正。
2.去除重复数据:在数据采集时出现的重复数据需要进行去重处理,在处理过程中需要注意保持数据的完整性和准确性。
3.清洗无效数据:清洗无效数据是指对数据进行筛选、排序、分组等操作,以得到有意义的数据,提高数据的价值和质量。
数学建模在气象预报中的应用
数学建模在气象预报中的应用气象预报一直以来都是人们关注的焦点之一,而数学建模在气象预报中的应用则是提高预报准确性的重要途径之一。
数学建模通过分析气象数据和模拟气象系统,能够帮助我们更好地理解和预测气象现象。
本文将探讨数学建模在气象预报中的应用,并介绍相关的模型和方法。
一、数据预处理在气象预报中,数据的准确性和完整性对于数学建模至关重要。
通常,气象数据会包括温度、湿度、气压、风速等多个指标,这些指标的收集和准确性将直接影响最后的预报结果。
因此,数据预处理是数学建模的第一步,从地面观测站、卫星数据和雷达资料中获取的数据需要进行质量控制、插值和平滑处理。
同时,还需要考虑数据之间的关联性,例如降雨和温度之间的关系,以及海洋表面温度和气候变化的关系等。
二、气象模型数学建模过程中需要选择合适的气象模型来描述大气系统的运动和变化。
常用的气象模型包括数值天气预报模型、环流模式和季节预测模型等。
1. 数值天气预报模型数值天气预报模型是基于物理方程组和热力动力学原理建立的,用于模拟大气运动和变化的数学模型。
它通过对大气中的质量、动量、能量进行离散化求解,可以提供天气预报的数值结果。
目前常用的数值天气预报模型有欧洲中期天气预报中心开发的ECMWF模型、美国天气预报中心的GFS模型等。
2. 环流模式环流模式是用来模拟大气环流系统以及它们之间的相互作用和变化的数学模型。
环流模式可以帮助我们理解全球范围内的大气运动规律和气候变化趋势。
例如,通过环流模式可以研究厄尔尼诺现象和南方涛动等气候现象的形成和演化规律。
3. 季节预测模型季节预测模型是一种用来预测长期气候趋势和季节性气候变化的数学模型。
该模型结合了大气-海洋相互作用、太阳辐射和陆地过程等因素,可以对未来几个月到几年的气候变化进行预测。
季节预测模型对于农业、水资源管理和防灾减灾等领域有着重要的应用价值。
三、数据分析和预测数学建模在气象预报中的应用还包括数据分析和预测。
通过对历史气象数据的统计分析和建模,可以得出一些规律和趋势,进而预测未来的气象变化。
数学建模中统计学常用方法
1。
1多元回归1、方法概述:在研究变量之间的相互影响关系模型时候,用到这类方法,具体地说:其可以定量地描述某一现象和某些因素之间的函数关系,将各变量的已知值带入回归方程可以求出因变量的估计值,从而可以进行预测等相关研究。
2、分类分为两类:多元线性回归和非线性线性回归;其中非线性回归可以通过一定的变化转化为线性回归,比如:y=lnx 可以转化为y=u u=lnx来解决;所以这里主要说明多元线性回归应该注意的问题。
3、注意事项在做回归的时候,一定要注意两件事:(1)回归方程的显著性检验(可以通过sas和spss来解决)(2)回归系数的显著性检验(可以通过sas和spss来解决)检验是很多学生在建模中不注意的地方,好的检验结果可以体现出你模型的优劣,是完整论文的体现,所以这点大家一定要注意.4、使用步骤:(1)根据已知条件的数据,通过预处理得出图像的大致趋势或者数据之间的大致关系;(2)选取适当的回归方程;(3)拟合回归参数;(4)回归方程显著性检验及回归系数显著性检验(5)进行后继研究(如:预测等)这种模型的的特点是直观,容易理解。
这体现在:动态聚类图可以很直观地体现出来!当然,这只是直观的一个方面!2、分类聚类有两种类型:(1) Q型聚类:即对样本聚类;(2) R型聚类:即对变量聚类;聚类方法:(1)最短距离法(2)最长距离法(3)中间距离法(4) 重心法(5)类平均法(6)可变类平均法(7) 可变法(8)利差平均和法在具体做题中,适当选取方法;3、注意事项在样本量比较大时,要得到聚类结果就显得不是很容易,这时需要根据背景知识和相关的其他方法辅助处理。
还需要注意的是:如果总体样本的显著性差异不是特别大的时候,使用的时候也要注意!4、方法步骤(1)首先把每个样本自成一类;2)选取适当的衡量标准,得到衡量矩阵,比如说:距离矩阵或相似性矩阵,找到矩阵中最小的元素,将该元素对应的两个类归为一类,(4)重复第2步,直到只剩下一个类;(4)重复第2步,直到只剩下一个类;补充:聚类分析是一种无监督的分类,下面将介绍有监督的“分类”。
数学建模聚类分析因子分析实例
多元统计分析中的降维方法在四川省社会福利中的应用由于计算机的发展和日益广泛的使用,多元分析方法也很快地应用到社会学、农业、医学、经济学、地质、气象等各个领域。
在国外,从自然科学到社会科学的许多方面,都已证实了多元分析方法是一种很有用的数据处理方法;在我国,多元分析对于农业、气象、国家标准和误差分析等许多方面的研究工作都取得了很大的成绩,引起了广泛的注意。
在许多领域的研究中,为了全面系统地分析问题,对研究对象进行综合评价,我们常常需要考虑衡量问题的多个指标(即变量),由于变量之间可能存在着相关性,如果采用一元统计方法,把多个变量分开,一次分析一个变量,就会丢失大量的信息,研究结果也会偏差很大。
因此需要采用多元统计分析的方法,同时对所有变量的观测数据进行分析。
多元统计分析就是一种同时研究多个变量之间的相互关系,经过对变量的综合处理,充分提取变量之间的信息,进行综合分析和评价的统计方法。
多元统计分析法主要包括降维、分类、回归及其他统计思想。
一.多元统计分析方法中降维的方法1.概述多元统计分析方法是同时对多个变量的观察数据做综合处理和分析。
在不损失有价值信息的情况下,简化观测数据或数据结构,尽可能简单地将被研究对象描述出来,使得对复杂现象的解释变得更容易些。
同时,采用多元统计分析中的聚类分析或判别分析可以对变量或样品进行分类与分组。
根据所测量的特征和分类规则将一些“类似的”对象或变量分组。
多元统计分析也可以研究变量间依赖性。
即对变量间关系的本质进行研究。
是否所有的变量都相互独立?还是一个变量或多个变量依赖于其他变量?它们又是怎样依赖的?通过观测变量数据的散点图,我们可以建立多元回归统计模型,确定出变量之间具体的依赖关系,进而可以根据某些变量的观测值预测另一个或另一些变量的值对事物现象的发展作预测。
最后我们需要构造假设,并对所建立的以多元总体参数形式陈述的多种特殊统计假设进行检验。
在多元统计分析方法中数据简化或结构简化,实质上就是数学中的降维方法。
如何使用数学模型解决实际生活中的问题
如何使用数学模型解决实际生活中的问题数学模型是一种抽象的表示方法,可以用来解决实际生活中的各种问题。
在日常生活中,我们常常遇到一些复杂的情境,如果能够运用数学模型来解决,将会事半功倍。
本文将探讨如何使用数学模型解决实际生活中的问题。
第一步,问题拆解。
将一个大问题拆解成多个小问题,然后使用数学模型逐个解决这些小问题。
例如,我们假设有一个大型超市需要优化货架摆放的位置,以提高商品销售额。
首先,我们可以将这个问题拆解为以下几个小问题:商品受众群体分析、产品陈列方式、销售数据分析等。
通过拆解问题,我们可以对每个小问题进行具体分析和解决。
第二步,数学建模。
对于每个小问题,我们需要选择合适的数学模型进行建模。
例如,针对商品受众群体分析,我们可以使用统计学中的聚类分析方法,将顾客按照购买行为和偏好进行分类,然后根据不同类别的顾客需求和购买力来优化商品陈列位置。
而销售数据分析可以使用时间序列分析方法,对历史销售数据进行分析,预测未来销售趋势,并做出相应的货架摆放调整。
通过数学建模,我们可以将复杂的实际问题转化为具体的数学模型来解决。
第三步,模型求解。
在得到数学模型后,我们需要运用数学方法对模型进行求解。
具体求解方法因模型而异,可以使用线性规划、最优化等数学方法。
例如,对于货架摆放问题,我们可以使用线性规划方法,在考虑各个商品的销售额、陈列面积和顾客流量等因素的基础上,得到最优的货架摆放方案。
求解过程中,我们需要根据实际数据进行计算和优化,以得到最合理、最优的解决方案。
第四步,结果评估。
求解完数学模型后,我们需要对结果进行评估,看是否满足实际需求。
评估方法可以是对比实际数据和模型预测结果的差异,或是通过试验验证模型的有效性。
如果结果不尽如人意,我们可以再次调整数学模型或参数,进行优化求解,直到得到满意的结果。
综上所述,使用数学模型解决实际生活中的问题是一种科学、高效的方法。
通过问题拆解、数学建模、模型求解和结果评估,我们可以将复杂的实际问题转化为具体的数学问题,并通过数学方法求解,找到最佳解决方案。
数学建模模拟题,图论,回归模型,聚类分析,因子分析等 (1)
11.1抗生素显著性检验问题摘要在已知抗生素效果情况服从正态分布,且方差相同条件下。
通过用SPSS13.0软件编写程序,进行单因素方差分析。
检验五种抗生素之间是否存在明显差异。
关键词:抗生素方差分析显著性检验一问题重述抗生素注入人体后会与人体血浆蛋白质结合,以致减少了药效。
现在将常用的抗生素注入到牛的体内,得到抗生素与血浆蛋白质结合的百分比。
在总体服从正态分布,且方差相同的条件下分析五种抗生素效果是否存在显著性差异。
二问题分析题目显示各类抗生素效果情况服从正态分布,为了进一步说明抗生素使用效果的差异,需要检查不同抗生素是否有显著性差异,即对数据进行显著性检验。
首先,应该提出抗生素之间没有显著性差异的假设。
然后通过SPSS13.0版本软件进行单因素方差检验[1]。
验证假设是否成立。
三模型假设四符号说明五模型建立与求解题目显示各类抗生素与血浆蛋白质结合的百分比情况属于正态总体,要对各类抗生素是否存在显著性差异。
应用软件SPSS13.0进行单因素方差检验。
其检验步骤如下:Step1. 提出假设:H:各类抗生素之间没有显著性差异;H:各类抗生素之间有显著性差异。
1α0.05。
Step2. 选定显著性水平=Step3. 用软件SPSS13.0进行单因素方差检验用SPSS13.0编写程序得到问题的解:即不同抗生素效果明显不同。
(各抗生素之间具体分析见附录一)六模型评价与改进参考文献[1]薛薇 ,《SPSS统计分析方法及应用》,出版地:电子工业出版社,2009。
[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。
[编号] 作者,资源标题,网址,访问时间(年月日)。
附录附录一PSS13.0编写程序得到问题的解:11.2化肥与小麦种子的不同对小麦产量的影响问题摘要化肥与小麦的品种的差异将影响小麦的产量,进而影响农民的生活水平。
本文建立数学模型,就化肥的不同,小麦品种的不同这两种因素定量分析化肥与小麦品种对小麦实际产量的影响。
聚类分析(数学建模)
相应的样本距离 或小类距离
指明是样本(0)还 是小类(n)
下面第几 步用到
聚类分析的第几步
垂直冰柱图 显示层次聚 类分析
从冰柱图最 后一行开始 观察,第一 列表示类数
29
类的个数的确定
由适当的阈值确定; 根据数据点的散布直观地确定类的个数; 根据统计量确定分类个数;
类的个数的确定
根据谱系图确定分类个数的准则:
各类重心间的距离必须很大; 类中保包含的元素不要太多; 类的个数必须符合实际应用; 如果采用几种不同的聚类方法处理,则在各 种聚类图中应该发现相同的类。
一、聚类分析的基本概念
研究对样品或指标进行分类的一种多元统 计方法,是依据研究对象的个体的特征进行 分类的方法。 聚类分析把分类对象按一定规则分成若干 类,这些类非事先给定的,而是根据数据 特征确定的。在同一类中这些对象在某种 意义上趋向于彼此相似,而在不同类中趋 向于不相似。 职能是建立一种能按照样品或变量的相似 程度进行分类的方法。
数据标准化处理:
存储中间过程数据
数据标准 化处理, 并存储。
指定5类
收敛标准值
存储最终结果输出情况,在数据文件中(QCL-1、QCL-2)
初始聚心选项,输出方差分析表
初始聚类中心表
最终聚类中心表
具体城市看后表
聚类结果:QCL-1说明聚类结果,QCL-2说明聚类的长度情况
主要城市日照时数
得到矩阵
G 7 G 8 D3 G 7 0 G8 12.80 0
最后合并为一个大类。这就是按最短距离定义类间距离的 系统聚类方法。最长距离法类似!
最长距离(Furthest Neighbor )
数学建模四大模型归纳
四类基本模型1 优化模型1.1 数学规划模型线性规划、整数线性规划、非线性规划、多目标规划、动态规划。
1.2 微分方程组模型阻滞增长模型、SARS 传播模型。
1.3 图论与网络优化问题最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。
1.4 概率模型决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。
1.5 组合优化经典问题● 多维背包问题(MKP)背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。
如何将尽可能多的物品装入背包。
多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。
如何选取物品装入背包,是背包中物品的总价值最大。
多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。
该问题属于NP 难问题。
● 二维指派问题(QAP)工作指派问题:n 个工作可以由n 个工人分别完成。
工人i 完成工作j 的时间为ij d 。
如何安排使总工作时间最小。
二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。
二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。
●旅行商问题(TSP)旅行商问题:有n个城市,城市i与j之间的距离为d,找一条经过n个城ij市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。
●车辆路径问题(VRP)车辆路径问题(也称车辆计划):已知n个客户的位置坐标和货物需求,在可供使用车辆数量及运载能力条件的约束下,每辆车都从起点出发,完成若干客户点的运送任务后再回到起点,要求以最少的车辆数、最小的车辆总行程完成货物的派送任务。
TSP问题是VRP问题的特例。
●车间作业调度问题(JSP)车间调度问题:存在j个工作和m台机器,每个工作由一系列操作组成,操作的执行次序遵循严格的串行顺序,在特定的时间每个操作需要一台特定的机器完成,每台机器在同一时刻不能同时完成不同的工作,同一时刻同一工作的各个操作不能并发执行。
大学生数学建模--常用模型与算法
数学建模常用模型与算法一、常用模型☐(一)、评价模型:☐AHP(层次分析法)(确定权重)、模糊评价、聚类分析、因子分析、主成份分析、回归分析、神经网络、多指标综合评价、熵值法(确定权重)等☐(二)、预测模型:☐指数平滑法、灰色预测法、回归模型、神经网络预测、时间序列模型、马尔科夫预测、差分微分方程☐(三)、统计模型:☐方差分析、均值比较的假设检验☐(四)、方程模型:☐常微分方程、差分方程、偏微分方程、以及各种方程的求解(数值解和解析解)☐(五)运筹优化类:☐线性规划、非线性规划、目标规划、整数规划、图论模型(最短路、最大流、遍历问题等)、排队论、对策论、以及各种模型的算法☐(六)其他模型:☐随机模拟模型、等二、十大算法1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理)。
数学建模之模糊评价与模糊聚类
一、模糊评价模糊评价法是应用模糊理论和模糊关系合成的原理,通过多个因素对被评价事物隶属等级状况进行综合性评价的一种方法。
运用模糊评价法,通过多因素 或多指标,既对被评价事物的变化区间作出某种划分,又对事物属于各评价等级 的程度作出分析,从而更深入和客观地对被评价事物进行描述。
特点:①模糊评价法的结果是一个向量,而不是一个数值,即被评价事物的状况是通过被评价事物的等级隶属度来表示。
②模糊评价法可以是一种多层的评价,即可以先对被评价事物的某一层面进行模糊评价,再将各层面的模糊评价结果进行模糊合成,得出总的模糊评价结果。
③模糊评价法具有指标或因素的自然可综合性。
由于模糊评价法只需确定各指标的等级隶属度,既可用于主观指标,又可用于客观指标,以此而无需专门对指标进行无量纲处理。
1.1模糊评价的应用①人事考核中的应用, ②单位员工的年终评定,③昆山公安信息化建设效绩的评估(下载文档), ④我国商业银行内部控制评价体系研究(下载文档), ⑤石化行业业绩评价(下载文档)等。
1.2一级模糊综合评判模型的建立步骤①确定因素集及评语集确定被评价对象的因素集U ,{}12=,,,n U u u u L ,评语集{}12,,,m V v v v =L ; ②构造模糊关系矩阵R ,进行单因素评判。
用ij r 表示U 中的因素i u 对应于V 中等级j v 的隶属关系,则有111212122212=,01m m ij n n nm r r r r r r R r r r r ⎛⎫⎪ ⎪≤≤ ⎪⎪⎝⎭L LM M M M L③确定各因素的权重用i a 表示第i 个因素的权重,11ni i a ==∑,则评价因素权向量A 为()12,,,n A a a a =L 。
④综合评判由模糊关系矩阵R 得到一个模糊变换为:()(),R T F U F V →则评判的综合结果为()11121212221212,,,m m n n n nm r r r r rr B A R a a a r r r ⎛⎫⎪ ⎪== ⎪⎪⎝⎭L Lo L o M M M M L 。
相关性分析 聚类分析
• 相关系数: Pearson 只适用于服从正态分布的等间隔 测度的离 散或连续变量。(例如变量是时间) Spearman 和Kendall`s tau-b 非等间隔测度,分布不明的变量。
• 显著性检验 双侧检验(Two-tailed) 事先不知道变量相关方向(正相关还是负相 关)时选择此项。 • 单侧检验(One-tailed) 事先知道相关方向则选择此项。 • 相关系数右上方使用“*”,表示其检验值 要<0.05才算通过检验;用“**”表示其检 验值要<0.01才算通过检验。
• • • •
SPSS
• SPSS全称是“Statistical Package for Social Science”,即“社会科学统计软件 包”。 • SPSS可以进行回归分析,尺度分析,相关 性分析,聚类分析,判别分析,因子分析, 时间序列分析等等。 • 这节课介一组有关12盎司啤酒成分和价格的数 据,变量包括beername(啤酒名称)、 calorie (热量卡路里) 、 sodium (纳含量) 、 alcohol (酒精含量) 、 cost (价格)。 要求根据12盎司啤酒的各成分含量及12盎 司啤酒的价格对20种啤酒进行分类。
• 分析(Analysis) →分类(Classify) →分层聚 类(Hierarchical Cluster) • Q型聚类选个案,R型聚类选变量。 • 统计量: 相似性矩阵:表格形式给出任意两个样本 的相关指数。
• 方法: • 聚类方法:组间聚类,组内聚类,最近邻元素 法,最远邻元素法 • 度量标准:平方Euclidean距离,Euclidean距 离,Pearson相关性。 • 标准化:如果参与聚类的变量的量纲不同会导致 错误的聚类结果。因此在聚类过程进行 之前必须对变量进行标准化。常用的是Z 分数法和全距从 0-1。 • 这是常用的几种方法,具体问题根据具体结果选 择方法。
数学建模方法概述
这一步骤也是从高到低逐层进行的。
层次分析法的应用:
企业合理利用资金问题; 填报志愿; 选择外出旅游的理想交通工具等
基本思想:
先将n个样本各自看成一类,共有n类,然后规定样本 之间的距离和类与类之间的距离。开始时,由于n个样本各 自成一类,故类与类之间的距离就是样本间的距离,将距 离最小的一对并成一个新类,计算新类与其他类的距离, 再将距离最近的类合并。
点击添加文本
建模步骤:
1.建立模型:找出目标函数及相应的限定条件
点击添加文本 2.模型的求解:可利用Lingo 软件进行求解模型。
3.结果分析
4.灵敏度分析:改变个别相关系数观察最优解是否会 发生变化。
点击添加文本
非线性规划问题可看作是线性规划问题的一 种自然推广,凡是目标函数和约束条件中包含有 非线性函数的数学规划问题都称为非线性规划问 题。主要分为有约束非线性规划和无约束线性规 划。
D(r, k ) min{d (r, k ) r Gr , k Gk , k r} min{d ( j, k ) j Gp Gq , k Gk , k j} min{min{d ( j, k ) j Gp , k Gk }, min{d ( j, k ) j Gq , k Gk }} min{D( p, k ), D(q, k )}
统 计 聚 类 模 型
原理关键词: 相似系数 距离
聚类步骤:
步骤1:定义样本间的距离(如取最简单的欧几里得距离)。开始 时,每个样本看作一类,有 d (i, j) D(i, j) 步骤2:选择 {D(i, j)} 中最小者设为 为一个新类,得新类 Gr Gp Gq 步骤3:计算新类与其他类的距离 点击添加文本
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
得到新矩阵
G6 G1 G2 G5
D1 GG16
0 13.12
0
G2 24.06 11.67 0
G5 2.21 12.80 23.54 0
合并类6和类5,得到新类7
类7与剩余的1、2之间的距离分别为:
d(5,6)1=min(d51,d61)=min(12.80,13.12)=12.80 d(5,6)2=min(d52,d62)=min(23.54,24.06)=23.54
二、距离
每个样本有p个指标,因此每个样本可以看成 p维空间中的一个点,n个样本就组成p维空间 中的n个点,这时很自然想到用距离来度量n 个样本间的接近程度。
用 dij 表示第i个样本与第j个样本之间的距 离。一切距离应满足以下条件:
dij 0, 对于一切i, j dij 0,等价于样本i与样本j的指标相同 dij=d ji,对于一切i, j dij dik dkj , 对于一切i, j, k
聚类分析
分类
俗语说,物以类聚、人以群分。 但什么是分类的根据呢? 比如,要想把中国的县分成若干类,就有很多
种分类法; 可以按照自然条件来分, 比如考虑降水、土地、日照、湿度等各方面; 也可以考虑收入、教育水准、医疗条件、基础
设施等指标; 既可以用某一项来分类,也可以同时考虑多项
指标来分类。
指定5类
收敛标准值
存储最终结果输出情况,在数据文件中(QCL-1、QCL-2)
初始聚心选项,输出方差分析表
初始聚类中心表
最终聚类中心表 具体城市看后表
聚类结果:QCL-1说明聚类结果,QCL-2说明聚类的长度情况
主要城市日照时数
注:连续变量
SPSS提供不同类间距 离的测量方法
三维或者更高维的情况也是类似;只不过三维以 上的图形无法直观地画出来而已。在饮料数据中, 每种饮料都有四个变量值。这就是四维空间点的 问题了。
两个距离概念
按照远近程度来聚类需要明确两个概念:一个是点和点之间的距 离,一个是类和类之间的距离。
点间距离有很多定义方式。最简单的是歐氏距离,还有其他的距 离。
⒉相似系数 夹角余弦 相关系数
① 夹角余弦
两变量的夹角余弦定义为:
② 相关系数
两变量的相关系数定义为:
系统聚类方法
1 、最短距离(Nearest Neighbor)
x11• x12•
d13
x21•
x22•
16
三、系统聚类法基本步骤
1. 选择样本间距离的定义及类间距离的定义;
2. 计算n个样本两两之间的距离,得到距离矩阵
饮料数据(drink.sav )
16种饮料的热量、咖啡因、钠及价格四种变量
如何度量远近?
如果想要对100个学生进行分类,如果仅仅知道 他们的数学成绩,则只好按照数学成绩来分类; 这些成绩在直线上形成100个点。这样就可以把 接近的点放到一类。
如果还知道他们的物理成绩,这样数学和物理成 绩就形成二维平面上的100个点,也可以按照距 离远近来分类。
聚类分析的第几步
下面第几 步用到
垂直冰柱图 显示层次聚 类分析
从冰柱图最 后一行开始 观察,第一 列表示类数
两步聚类法
TwoStep Cluster
一种探索性的聚类方法,是随着人工智能的发展起来的智能聚 类方法中的一种。用于解决海量数据或具有复杂类别结构的聚类分 析问题。
两步聚类法特点:
1、同时处理离散变量和连续变量的能力 2、自动选择聚类数 3、通过预先选取样本中的部分数据构建聚类模型 4、可以处理超大样本量的数据
1)、 聚类原则:都是相近的聚为一类,即距 离最近或最相似的聚为 一类。
2)、 分层聚类的方法可以用于样本聚类(Q) 型,也可以用于变量聚类(R型)。
2、非系统聚类法-----(快速聚类法----K-均值聚类 法)(K-means Cluster)
3、两步聚类法-----一种探索性的聚类方法 (TwoStep Cluster)
四、系统聚类的参数选择
㈠聚类类别:
㈡统计
㈢图:树型谱系图 冰柱谱系图
㈣聚类方法
1.Between-groups linkage 类间平均法
两类距离为两类元素两两之间平均平方距离
2.Within-groups linkage 类内平均法
两类距离为合并后类中可能元素两两之间平均平方距离
3.Nearest neighbor
聚类分析
对于一个数据,人们既可以对变量(指标)进行 分类(相当于对数据中的列分类),也可以对观测值 (事件,样品)来分类(相当于对数据中的行分 类)。
比如学生成绩数据就可以对学生按照理科或文科 成绩(或者综合考虑各科成绩)分类,
当然,并不一定事先假定有多少类,完全可以按 照数据本身的规律来分类。
x1 x2 x3 x4 x5 x6 x7
辽宁1 7.90 39.77 8.49 12.94 19.27 11.05 2.04 浙江2 7.68 50.37 11.35 13.30 19.25 14.59 2.75 河南3 9.42 27.93 8.20 8.14 16.17 9.42 1.55 甘肃4 9.16 27.98 9.01 9.32 15.99 9.10 1.82 青海5 10.06 28.64 10.52 10.05 16.18 8.39 1.96
D
3. 构造个类,每类只含有一个样本;
dij
4. 合并符合类间距离定义要求的两类为一个新类;
5. 计算新类与当前各类的距离。若类的个数为1,则转 到步骤6,否则回到步骤4;
6.画出聚类图;
7.决定类的个数和类。
系统聚类分析的方法
系统聚类法的聚类原则决定于样品间的距离 以及类间距离的定义,类间距离的不同定义 就产生了不同的系统聚类分析方法。
得到新矩阵
G7 G1 G2
D2 GG17
0 12.80
0
G2 23.54 11.67 0
合并类1和类2,得到新类8
此时,我们有两个不同的类:类7和类8。 它们的最近距离
d(7,8) =min(d71,d72)=min(12.80,23.54)=12.80
得到矩阵
G7 G8
D3 G7 0
当然还有一些和距离相反但起同样作用的概念,比如相似性等, 两点越相似度越大,就相当于距离越短。
由一个点组成的类是最基本的类;如果每一类都由一个点组成, 那么点间的距离就是类间距离。但是如果某一类包含不止一个点, 那么就要确定类间距离,
类间距离是基于点间距离定义的:比如两类之间最近点之间的距 离可以作为这两类之间的距离,也可以用两类中最远点之间的距 离作为这两类之间的距离;当然也可以用各类的中心之间的距离 来作为类间距离。在计算时,各种点间距离和类间距离的选择是 通过统计软件的选项实现的。不同的选择的结果会不同,但一般 不会差太多。
一、聚类分析的基本概念
研究对样品或指标进行分类的一种多元统 计方法,是依据研究对象的个体的特征进行 分类的方法。
聚类分析把分类对象按一定规则分成若干 类,这些类非事先给定的,而是根据数据 特征确定的。在同一类中这些对象在某种 意义上趋向于彼此相似,而在不同类中趋 向于不相似。
职能是建立一种能按照样品或变量的相似 程度进行分类的方法。
x8
13.29 14.87 9.76 11.35 10.81
将每一个省区视为一个样本,先计算5个省区之间 的出欧下式三距角离阵,)用D0表示距离矩阵(对
0
浙江 2 11.67 0
D0 河南 3 13.80 24.63 0
甘肃 4 13.12 24.06 2.20 0
根据谱系图确定分类个数的准则:
各类重心间的距离必须很大; 类中保包含的元素不要太多; 类的个数必须符合实际应用; 如果采用几种不同的聚类方法处理,则在各
种聚类图中应该发现相同的类。
聚类分析
1、系统聚类法------(分层聚类)系统聚类法是应 用最广泛的一种(Hierarchical Cluster过程)
简单介绍基本原理
分两步进行
第一步:预聚类。对记录进行初始的归类,用户自定义最大 类别数。通过构建和修改特征树(CT Free)完成。
第二步:正式聚类。对第一步完成的初步聚类进行再聚类并 确定最终的聚类方案,系统根据一定的统计标准确定聚类的 类别数目。
t 1
chebychev distance 切比雪夫距离
d Max xit x jt t
明氏距离在实际中应用的很多, 但也存在一些缺点:
1、量纲的问题; 处理办法:标准化
2、指标间的相关问题;
改进的办法,采用马氏距离
Mahalanobis 马氏距离 dij (M ) ( Xi X j )S 1( Xi X j )
本章要介绍的分类的方法称为聚类分析(cluster analysis)。对变量的聚类称为R型聚类,而对观 测值聚类称为Q型聚类。这两种聚类在数学上是对 称的,没有什么不同。
聚类分析的基本思想是认为我们所研究的样本或指标(变 量)之间存在着程度不同的相似性(亲疏关系)。于是根据 一批样本的多个观测指标,具体找出一些彼此之间相似程度 较大的样本(或指标)聚合为一类,把另外一些彼此之间相 似程度较大的样本(或指标)又聚合为另一类,关系密切的 聚合到一个小的分类单位,关系疏远的聚合到一个大的分类 单位,直到把所有样本(或指标)都聚合完毕,把不同的类 型一一划分出来,形成一个由小到大的分类系统。最后把整 个分类系统画成一张谱系图,用它把所有样本(或指标)间 的亲疏关系表示出来。这种方法是最常用的、最基本的一种, 称为系统聚类分析。
常见的距离有:
minkowski distance (明氏距离):
1
d
tp1xit x jt
q
q