数学建模之聚类分析

合集下载

数学建模聚类分析

数学建模聚类分析

层次聚类
要点一
总结词
一种基于距离的聚类算法,通过构建层次结构来对数据进 行聚类。
要点二
详细描述
层次聚类算法的基本思想是,通过不断将相近的数据点合 并成新的集群,或者将现有的集群分裂成更小的集群,来 构建一个层次结构。算法首先将每个数据点视为一个独立 的集群,然后按照距离的远近逐步合并或分裂集群,直到 达到预设的停止条件。层次聚类算法有多种,其中最常用 的是凝聚层次聚类和分裂层次聚类。
密度峰值聚类
总结词
一种基于密度的聚类算法,通过识别密度峰值点来对 数据进行聚类。
详细描述
密度峰值聚类算法的基本思想是,通过识别数据集中的 密度峰值点来对数据进行聚类。算法首先计算每个数据 点在其邻域内的密度,并将密度最大的点视为密度峰值 点。然后,算法将每个密度峰值点作为中心点,将与其 相近的数据点归入同一个集群。通过这种方式,密度峰 值聚类算法能够识别出任意形状的集群,并处理异常值 和噪声点。与DBSCAN算法相比,密度峰值聚类算法 的计算复杂度较低,因此在处理大规模数据集时具有更 好的性能。
DBSCAN聚类
总结词
一种基于密度的聚类算法,通过识别高密度区域和低 密度区域来对数据进行聚类。
详细描述
DBSCAN聚类算法的基本思想是,通过识别高密度区 域和低密度区域来对数据进行聚类。算法首先从任意一 个未被访问过的数据点开始,搜索其邻域内的所有点, 如果邻域内的点数超过预设的阈值,则将该点标记为核 心点,并将其所在区域视为一个集群。然后,算法继续 搜索核心点的邻域内的点,并将这些点标记为边界点和 噪声点。通过这种方式,DBSCAN算法能够识别出任 意形状的集群,并处理异常值和噪声点。
通过分析不同群体的用户特征和行为模式,电商企业可以 制定更加精准的营销策略和个性化推荐方案,提高用户满 意度和忠诚度。

聚类分析之系统聚类法

聚类分析之系统聚类法

系统聚类法过程
1
最短距离系统聚类法
根据五个学生的六门课的成绩,对这五个学生进行分类
ID 学生1 学生2 学生3 学生4 学生5
数学 65 77 67 80 74
物理 61 77 63 69 70
化学 72 76 49 75 80
语文 84 64 65 74 84
历史 81 70 67 74 81




重心法: (Centroid clustering)
D (G p , Gq ) d ( x p , xq )
两个类的重心如下:
xp
xp2
x p1 x p 2 2
D(G p , Gq )
xq
xq1 xq 2 2
xq 2
x p1
xq1
ID 1 2 3 4 5 6 7 8 9 10
数学 物理 65 76 67 84 74 78 66 77 83 86 61 77 63 95 70 84 71 71 100 94
绝对值距离:
p d ( x1 , x2 ) | x1k x2 k | 27 k 1
欧氏距离:
d ( x1 , x2 )
分类准则
距离近的样品聚为一类 数据的一般的格式
样品与样品之间的常用距离(样品i与样品j)
p 绝对值距离:d ( xi , x j ) | xik x jk | k 1
欧氏距离:d ( x i, xj )
2 ( x x ) ik jk k 1
1 q
p
p Minkowski距离: d ( xi , x j ) ( xik x jk )q k 1

数学建模里的聚类分析

数学建模里的聚类分析

聚类分析聚类,或称分集,即所谓“物以类聚”,它是按某种相似规则对给定样本集、指标簇进行某种性质的划分,使之成为不同的类.将数据抽象化为样本矩阵()ij n m X X ⨯=,ij X 表示第i 个样本的第j 个变量的值.聚类目的,就是从数据出发,将样本或变量分成类.其方法大致有如下几个.(1) 聚类法.即谱系聚类法.将n 个样本看成n 类,将性质最接近的两类并为一新类,得1-n 类;再从1-n 类中找出最接近的两类加以合并,得2-n 类;继之,最后所有样本都成一类,得一聚类谱系,从谱系中可确定划分多少类,每类含有哪些样本.(2) 分解法.它是系统聚类的逆过程,将所有样本视为一类,按某种最优准则将它分成两类,继之,每一类都分到只含一个样本为止.(3) 动态聚类.即快速聚类法.将n 个样本粗糙地分成若干类,然后用某种最优准则进行调整,直至不能调整为止.(4) 有序样本聚类.按时间顺序,聚在一类的样本必须是次序相邻的样本.(5) 模糊聚类.它是将模糊数学用于样本聚类.(6) 运筹学聚类.它是将聚类问题化为线性规划、动态规划、整数规划模型的聚类.(7) 神经网络聚类.它是将样本按自组织特征映射的方法进行,也是我们要加以叙述的一个重点.(8) 预测中聚类.它是聚类在预测中的应用,以弥补非稳定信号回归的预测与分析.这里主要介绍谱系聚类法和快速聚类法. 一、距离定义样本矩阵()ij n m X x ⨯=,是m 维空间中n 个点,以距离度量样本之间的贴近度,就是距离聚类方法.最常用的第i 个与第j个样本的Minkowski 距离为p mk p jk ik ijx x d /11)||(∑=-=式中p 为一正整数.当2=p , ij d 就是欧几里德距离;当1=p ,ij d 就是绝对距离,或称“布洛克(cityblock )”距离.而切比雪夫距离为||max 1jk ik mk ij x x d -=≤≤设m m C ⨯是变量的协方差矩阵,i x ,j x 为第i 行与第j 行m 个变量构成的向量,则马哈兰罗比斯距离定义为1()()T ij i j i j d x x C x x -=-- 根据距离的定义,就获得距离矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn n n n n d d d d d d d d d d 212222111211 由距离性质可知,d 为实对称矩阵,ij d 越小,两样本就越相似,其中01211====nn d d d ,根据)(j i d ij ≠的n 个点分类,依聚类准则分为不同的类.对d 常用的系统聚类准则有: 1、类间距离定义(1) 最短距离;,min p qpq ij i Gj GD d ∈∈= (2) 最长距离;,maxpqpq ij i G j GD d ∈∈=(3) 质心距离;(,)pq p q D d x x = (4) 平均距离;1p qpq iji G j G p qD d n n ∈∈=∑∑(5) 平方距离:2()()p q T pqp q p q p qn n D x x x x n n =--+2.类间距离的递推公式(1)最短距离:min{,}rk pk qk D D D = (2)最长距离:max{,}rk pk qk D D D = (3)类平均距离:p q rk pk qk rrn n D D D n n =+(4)重心距离:2222pqp q rkpkqkpq r r r rn n n n D D D D n n n n =+-⋅(5)离差平方和距离:2222p k q k krkpk qk pq r kr kr kn n n n n D D D D n n n n n n ++=+-+++二、谱系聚类法例: 假如抽取5个样本,每个样本只测一个指标,即数据为x =[1,0;2,0;4.5,0;6,0;8,0] 试以最短距离准则进行距离聚类说明.解 这时,样本间的绝对距离、欧几里德距离或切比雪夫距离均一致,见表3.1.以最短距离准则聚类.根据定义,当令p Ω与q Ω中分别有pn 与q n 个样本,则最短距离为:},|min{),(q p ij nearj i d q p Ω∈Ω∈=δ于是,对于某步,假定具有样本为p n 的第p 集合与样本为q n 的第q 集合,聚成为具有样本为q p s n n n +=的第s 集合,则第k 集合与第s 集合的最短距离,可写为)},(),,(min{),(q k p k s k near near nearδδδ=(1)表1 绝对距离数据表中数据1、2、4.5、6、8视为二叉树叶子,编号为1、2、3、4、5.当每一个样本看成一类时,则式子(1)变为ij neard j i =),(δ,最小距离为1,即1与2合聚于6号,得表2.表中5.2)5.2,5.3min()}2,3(),1,3(min{)6,3(===δδδnear near near表2 一次合聚表2中最小距离为1.5,即4.5与6合聚于7,得表3.表中(6,7)min{(6,4.5),(6,6)}min(2.5,4) 2.5near nearnearδδδ===.表3 二次合聚表3中最小距离为2,即{4.5,6}元素(为7号)与8(为5号)合聚于8号,得表4.表中5.2)6,4,5.2min()}8,6(),6,6(),5.4,6(min{)8,6(===δδδδnear near near near表4 三次合聚最后集合{1,2}与{4.5,6,8}聚成一集丛.此例的Matlab 程序如下:x =[1,0;2,0;4.5,0;6,0;8,0])();'sin ',();'',(z dendrogram gle y linkage z CityBlock x pdist y ==绘得最短距离聚类谱系如图1所示,由图看出分两类比较合适.1号、2号数据合聚于6号,最小聚距为1;3号、4号数据合聚于7号,最小聚距为1.5;7号于5号数据合聚于8号,最小聚距为2;最后6号和8号合聚,最小聚距为2.5。

数学建模-聚类分析

数学建模-聚类分析

满足输出;不满足循环;
(7)重复;
初始聚类中心的选择
初始聚类中心的选取决定着计算的迭代 次数,甚至决定着最终的解是否为全局最优, 所以选择一个好的初始聚类中心是很有必要 的。
(1)方法一:选取前k个样品作为初始凝聚点。
(2)方法二: 选择第一个样本点作为第一个聚类 中心。然后选取距离第一个点最远的点作为第二个 聚 类中心。……
数据变换:进行[0,1]规格化得到
初始类个数的选择; 初始类中心的选择;
设k=3,即将这15支球队分成三个集团。现抽取日 本、巴林和泰国的值作为三个类的种子,即初始化三 个类的中心为 A:{0.3, 0, 0.19}; B:{0.7, 0.76, 0.5}; C:{1, 1, 0.5};
样品到类中心的距离; 归类;
计算所有球队分别对三个中心点的欧氏 距离。下面是用程序求取的结果:
第一次聚类结果: A:日本,韩国,伊朗,沙特; B:乌兹别克斯坦,巴林,朝鲜; C:中国,伊拉克,卡塔尔,阿联酋,泰 国,越南,阿曼,印尼。
重新计算类中心;
下面根据第一次聚类结果,采用k-均值法调整各个类的 中心点。
A类的新中心点为:{(0.3+0+0.24+0.3)/4=0.21,
数据变换
(5)极差正规化变换:
x*ij
=
xij
min 1t n
xij
Rj
i 1,,2,...,,n; j 1,..., m
(6)对数变换x*:ij = log xij
i 1,,2,...,,n; j 1,..., m
k
样品间的距离
(1)绝对值距离:
m
dij
xit x jt
t 1

银行风险管理中的数学建模方法研究

银行风险管理中的数学建模方法研究

银行风险管理中的数学建模方法研究随着金融市场的不断发展,银行风险管理的重要性也日益凸显。

银行作为金融机构,其经营活动必然会面临各种各样的风险,而科学合理的风险管理方法也就变得至关重要了。

在银行风险管理中,数学建模方法已经成为了一种常用的手段,它可以帮助银行有效地识别、评估和控制各种风险,提高银行的稳健性和盈利能力。

本文将从以下几个方面,对银行风险管理中的数学建模方法进行综述和研究。

一、银行风险分类及数学模型选择首先,我们需要了解银行的常见风险类型,根据国际惯例,银行的风险主要有信用风险、市场风险、操作风险和流动性风险等。

针对不同的风险类型,银行需要选择不同的数学模型。

1. 信用风险模型信用风险是指因借款人或客户未能按照约定的还款计划进行偿付,导致银行遭受的损失,因此,信用风险模型的本质就是对借款人和客户的违约概率进行预测和度量。

常见的信用风险模型包括基于Logistic回归、神经网络、决策树等的评级模型和预测模型,其中评级模型常用于客户的信用评估和分类,预测模型则用于预测未来违约率。

2. 市场风险模型市场风险是指由于市场利率、汇率、股票价格等外部市场因素的波动导致的银行投资组合损失。

市场风险模型的选择主要取决于银行的投资策略和投资组合的构成,例如对股票、债券、外汇等不同资产类别,采用VaR、Expected Shortfall等风险度量指标,或者对固定收益产品采用债券定价模型等进行风险度量。

3. 操作风险模型操作风险是指由于银行内部人员、系统、流程等因素的错误或意外而导致银行损失。

常用的操作风险模型包括LDA、AMA等模型,其中LDA模型主要是基于统计学的方法,包括分布假设、估计方程等,而AMA模型则是更加模型化的金融工程方法,它可以对操作风险事件的时序、复杂程度等多个方面进行度量和分析。

4. 流动性风险模型流动性风险是指银行面临的资金流动性风险,它主要包括流动性溢价、资产负债管理、清算、融资成本等方面。

数学建模之文献检索

数学建模之文献检索

4、Google学术精细搜索
精细查找
inurl语法返回的网页链接中包含第一个关键字,后 面的关键字则出现在链接中或者网页文档中。inurl 语法和基本搜索的最大区别在于前者能提供非常精 确的专题资料。
例如:inurl:ppt 聚类分析
4、Google学术精细搜索
.doc .ppt 点击 可直 接下 载
4、Google学术精细搜索
4、Google学术精细搜索
4、Google学术精细搜索
文献类型的限定 查找内容+空格+filetype:文件名后缀
例如:聚类分析 filetype:pdf
支持13种非HTML文件的搜索:pdf, doc, rtf, ppt, xls, swf, ps等
4、Google学术精细搜索
ቤተ መጻሕፍቲ ባይዱ感谢您的关注!3、Google学术高级搜索
3、Google学术高级搜索
4、Google学术精细搜索
布尔逻辑运算符的使用---多个关键词
and:表示两个关键词并列;google中默认空格表示and not:排除检索:用-表示,但减号之前必须留一空格。 OR:必须大写
注意:所有符号均为英文状态下; 检索内容对大小写不敏感;
文献检索
背景
聚类分析:“物以类聚”的思想 根据聚类的条件不同,我们可以分为以下几种:
层次聚类法 模糊聚类法 K-means聚类法 图论聚类法
目录Google搜索引擎 大连大学图书馆 校苑数模网Google搜索引擎
Google 直接检索
Google学术 简单搜索
Google
Google 精细检索
Google高级搜索
1、Google简单搜索
1、Google简单搜索

数学建模各种分析方法

数学建模各种分析方法

现代统计学1.因子分析(Factor Analysis)因子分析的基本目的就是用少数几个因子去描述许多指标或因素之间的联系,即将相关比较密切的几个变量归在同一类中,每一类变量就成为一个因子(之所以称其为因子,是因为它是不可观测的,即不是具体的变量),以较少的几个因子反映原资料的大部分信息。

运用这种研究技术,我们可以方便地找出影响消费者购买、消费以及满意度的主要因素是哪些,以及它们的影响力(权重)运用这种研究技术,我们还可以为市场细分做前期分析。

2.主成分分析主成分分析主要是作为一种探索性的技术,在分析者进行多元数据分析之前,用主成分分析来分析数据,让自己对数据有一个大致的了解是非常重要的。

主成分分析一般很少单独使用:a,了解数据。

(screening the data),b,和cluster analysis一起使用,c,和判别分析一起使用,比如当变量很多,个案数不多,直接使用判别分析可能无解,这时候可以使用主成份发对变量简化。

(reduce dimensionality)d,在多元回归中,主成分分析可以帮助判断是否存在共线性(条件指数),还可以用来处理共线性。

主成分分析和因子分析的区别1、因子分析中是把变量表示成各因子的线性组合,而主成分分析中则是把主成分表示成个变量的线性组合。

2、主成分分析的重点在于解释个变量的总方差,而因子分析则把重点放在解释各变量之间的协方差。

3、主成分分析中不需要有假设(assumptions),因子分析则需要一些假设。

因子分析的假设包括:各个共同因子之间不相关,特殊因子(specific factor)之间也不相关,共同因子和特殊因子之间也不相关。

4、主成分分析中,当给定的协方差矩阵或者相关矩阵的特征值是唯一的时候,的主成分一般是独特的;而因子分析中因子不是独特的,可以旋转得到不同的因子。

5、在因子分析中,因子个数需要分析者指定(spss根据一定的条件自动设定,只要是特征值大于1的因子进入分析),而指定的因子数量不同而结果不同。

聚类分析(数学建模)

聚类分析(数学建模)
聚类分析
分类





俗语说,物以类聚、人以群分。 但什么是分类的根据呢? 比如,要想把中国的县分成若干类,就有很多 种分类法; 可以按照自然条件来分, 比如考虑降水、土地、日照、湿度等各方面; 也可以考虑收入、教育水准、医疗条件、基础 设施等指标; 既可以用某一项来分类,也可以同时考虑多项 指标来分类。
应用范围有限,要求用户制定分类数目(要告知),只能对 观测量(样本)聚类,而不能对变量聚类,且所使用的聚类变 量必须都是连续性变量。
数据标准化处理:
存储中间过程数据
数据标准 化处理, 并存储。
指定5类
收敛标准值
存储最终结果输出情况,在数据文件中(QCL-1、QCL-2)
初始聚心选项,输出方差分析表
得到矩阵
G 7 G 8 D3 G 7 0 G8 12 .80 0
最后合并为一个大类。这就是按最短距离定义类间距离的 系统聚类方法。最长距离法类似!
最长距离(Furthest Neighbor )
• x11• •
x21•
d12
• • •

20
组间平均连接(Between-group Linkage)
系统聚类法
Hierarchical Cluster
系统聚类法优点: 既可以对观测量(样品)也可对变量进行 聚类,既可以连续变量也可以是分类变量,提 供的距离计算方法和结果显示方法也很丰富。
聚类分析
1、系统聚类法------(分层聚类)系统聚类法是应 用最广泛的一种(Hierarchical Cluster过程) 1)、 聚类原则:都是相近的聚为一类,即距 离最近或最相似的聚为 一类。 2)、 分层聚类的方法可以用于样本聚类(Q) 型,也可以用于变量聚类(R型)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

聚类分析
聚类分析是将个对象按各自的特征将相似的对象归到同一个类或簇的一种方法,它的原则是同一个类中的对象有很大的相似性,而不同类间的对象有很大的相异性。

特点:
①适用于没有先验知识情况下的分类。

对于没有先前的经验或一些规则的对象进行分类,则显得很随意和主观,这时需要使用聚类分析法通过对象各自的特性来合理的分类;
②能处理多个维度或属性决定的分类。

例如,对于某个地区的全部家庭的富裕程度而言,通过家庭的收入和支出差可以简单分类,容易知道。

但是如果要求从家庭的收入、家庭的支出、家庭的固有资产、家庭所在地区的地段等多个变量来分析就比较复杂,然后解决这个问题可以使用聚类分析算法。

③聚类分析算法也是一种探索性分析方法,能够挖掘对象的潜在规律和特性,并根据相似性原则对事物进行分类。

几类距离公式:
()
()()
()
()
()()()211112
21
11.2.=,3.,4.||5.1||
6.2||7p q
pq ij
i G j G p q
pq p q T
p q
pq
p
q p
q
p q
p
q
q ij ik jk
k p
ij ik jk k p
ij ik jk
k D d
n n D d x x n n ward D x
x x x n n Minkowski d q x x d x x d x x ∈∈====
=
=
-+⎡
⎤=-⎢⎥⎣⎦
=-⎡
⎤=-⎢⎥⎣⎦∑∑∑∑∑类平均距离重心距离
离差平方和距离闵科夫斯基绝对值距离
欧氏距离
()
()(
)())1
||.8.p
ik jk ij k ik jk
ij x x Wiliams d L x x Mahalanobis d M =-=+=

兰式距离马氏距离其中是样品协方差
系统聚类法思想
先将每一个样本作为一个单独的类,然后计算各个样本之间的距离i S ,在将计算出来的距离i S 定义为类之间的距离j S ,以为j S 标准的距离,进行合理合并,形成新的一个类,在重新对新类和其他剩余的类进行计算其距离,循环执行合并动作,直到全部的样本都属于一个大类为止。

步骤:
①若有n 个样本点,计算出每两个样本点之间的距离ij d ,即矩阵()ij n n D d ⨯=; ②建立n 个类,每个类中仅有一个样本点,且每个类的平台高度都为0; ③将距离最近的两个类合并为新类,选取聚类图的平台高度为这两类之间的距离值;
④求出新类和目前各类之间的距离,如果类的个数等于1,执行步骤⑤,否则,返回执行步骤③;
⑤画出聚类图; ⑥确定类的数目和类, 例题:
设有5个销售员12345,,,,w w w w w ,他们的销售业绩由二维变量12(,)v v 描述,见表1。

表1 销售员业绩表
记销售员(1,2,3,4,5)i w i =的销售业绩为12(,)i i v v 。

若使用绝对值距离来测量点与点之间的距离,使用最短距离法来测量类与类之间的距离,即
{}2
1
(,),(,)min (,)i p
j q
i j ik jk p q i j w G k w G d w w v v D G G d w w ∈=∈=-=∑
①题中有5个样本点,计算出每两个样本点之间的距离ij d ,即矩阵D 为
014660355024040 ⎡⎤⎢⎥ ⎢⎥⎢⎥ ⎢⎥ ⎢⎥⎢⎥ ⎣⎦
②建立5个类{}112345,,,,H w w w w w =。

每个类的平台高度()(1,2,3,4,5)i f w i =都为0;
③将12,,w w 合并为新类6w ,选取新的平台高度为1,此时有
{}16345,,,H w w w w =;
④将34,,w w 合并为新类7w ,选取新的平台高度为2,此时有{}
2675,,H w w w =

⑤将67,,w w 合并为新类8w ,选取新的平台高度为3,此时有{}385,H w w =; ⑥将85,,w w 合并为新类9w ,选取新的平台高度为4,此时有{}49H w =; ⑦画出聚类图;
有聚类图可以看出,在这五个推销员中5w 的工作成绩最佳,34,w w 的工作成绩较好,而 12,w w 的工作成绩较差。

如有侵权请联系告知删除,感谢你们的配合!。

相关文档
最新文档