聚类分析 数学建模
数学建模聚类分析

层次聚类
要点一
总结词
一种基于距离的聚类算法,通过构建层次结构来对数据进 行聚类。
要点二
详细描述
层次聚类算法的基本思想是,通过不断将相近的数据点合 并成新的集群,或者将现有的集群分裂成更小的集群,来 构建一个层次结构。算法首先将每个数据点视为一个独立 的集群,然后按照距离的远近逐步合并或分裂集群,直到 达到预设的停止条件。层次聚类算法有多种,其中最常用 的是凝聚层次聚类和分裂层次聚类。
密度峰值聚类
总结词
一种基于密度的聚类算法,通过识别密度峰值点来对 数据进行聚类。
详细描述
密度峰值聚类算法的基本思想是,通过识别数据集中的 密度峰值点来对数据进行聚类。算法首先计算每个数据 点在其邻域内的密度,并将密度最大的点视为密度峰值 点。然后,算法将每个密度峰值点作为中心点,将与其 相近的数据点归入同一个集群。通过这种方式,密度峰 值聚类算法能够识别出任意形状的集群,并处理异常值 和噪声点。与DBSCAN算法相比,密度峰值聚类算法 的计算复杂度较低,因此在处理大规模数据集时具有更 好的性能。
DBSCAN聚类
总结词
一种基于密度的聚类算法,通过识别高密度区域和低 密度区域来对数据进行聚类。
详细描述
DBSCAN聚类算法的基本思想是,通过识别高密度区 域和低密度区域来对数据进行聚类。算法首先从任意一 个未被访问过的数据点开始,搜索其邻域内的所有点, 如果邻域内的点数超过预设的阈值,则将该点标记为核 心点,并将其所在区域视为一个集群。然后,算法继续 搜索核心点的邻域内的点,并将这些点标记为边界点和 噪声点。通过这种方式,DBSCAN算法能够识别出任 意形状的集群,并处理异常值和噪声点。
通过分析不同群体的用户特征和行为模式,电商企业可以 制定更加精准的营销策略和个性化推荐方案,提高用户满 意度和忠诚度。
聚类分析在数学建模中的应用

聚类分析在数学建模中的应用聚类分析是一种无监督学习方法,主要用于发现数据中的潜在分组或模式。
它在数学建模中起着重要的作用,能够帮助研究人员在未知的数据集中发现隐藏的结构和关联。
本文将介绍聚类分析在数学建模中的应用,并详细讨论其几个典型的应用场景。
1.生物医学研究中的应用:聚类分析在生物医学研究中被广泛应用于基因表达数据、蛋白质相互作用网络、疾病分类等方面。
例如,基因表达数据通常具有高维度和复杂性,聚类分析可以将不同的基因分组,找到相关基因集合,从而帮助研究人员发现与特定疾病相关的生物过程和信号通路。
在药物研发过程中,聚类分析还可以帮助研究人员识别潜在药物靶点和候选靶向药物。
2.社交网络分析中的应用:聚类分析在社交网络分析中发挥着重要作用。
通过对社交网络数据进行聚类分析,可以将社交网络中的用户划分为不同的群体或社区,并发现隐藏的社交群体结构。
这可以帮助研究人员了解社交网络用户的行为、兴趣和关系,并为灵活的社交网络设计和推荐系统提供支持。
3.图像分析中的应用:聚类分析在图像分析中也有广泛的应用。
通过对图像数据进行聚类分析,可以将图像分组为具有相似特征的集合,从而实现图像分类、图像和图像压缩等任务。
例如,对于大规模的图像库,聚类分析可以帮助研究人员将图像分组为具有相似主题或特征的集合,从而提高图像的效率和精度。
4.金融风险管理中的应用:聚类分析在金融风险管理中也有着重要的应用。
通过对风险因素进行聚类分析,可以帮助金融机构识别风险因素的潜在结构和关联,并评估不同风险因素之间的相互作用。
这对于制定有效的风险管理策略和规避潜在风险非常重要。
例如,聚类分析可以帮助银行发现具有相似信用风险的客户群体,并采取相应的措施来降低风险。
5.消费者行为分析中的应用:聚类分析在消费者行为分析中也有重要的应用。
通过对消费者数据进行聚类分析,可以将消费者划分为不同的行为类型或偏好群体,并发现不同群体之间的行为模式和趋势。
这可以帮助企业了解消费者的需求和喜好,并制定相应的市场营销策略。
数学建模里的聚类分析

聚类分析聚类,或称分集,即所谓“物以类聚”,它是按某种相似规则对给定样本集、指标簇进行某种性质的划分,使之成为不同的类.将数据抽象化为样本矩阵()ij n m X X ⨯=,ij X 表示第i 个样本的第j 个变量的值.聚类目的,就是从数据出发,将样本或变量分成类.其方法大致有如下几个.(1) 聚类法.即谱系聚类法.将n 个样本看成n 类,将性质最接近的两类并为一新类,得1-n 类;再从1-n 类中找出最接近的两类加以合并,得2-n 类;继之,最后所有样本都成一类,得一聚类谱系,从谱系中可确定划分多少类,每类含有哪些样本.(2) 分解法.它是系统聚类的逆过程,将所有样本视为一类,按某种最优准则将它分成两类,继之,每一类都分到只含一个样本为止.(3) 动态聚类.即快速聚类法.将n 个样本粗糙地分成若干类,然后用某种最优准则进行调整,直至不能调整为止.(4) 有序样本聚类.按时间顺序,聚在一类的样本必须是次序相邻的样本.(5) 模糊聚类.它是将模糊数学用于样本聚类.(6) 运筹学聚类.它是将聚类问题化为线性规划、动态规划、整数规划模型的聚类.(7) 神经网络聚类.它是将样本按自组织特征映射的方法进行,也是我们要加以叙述的一个重点.(8) 预测中聚类.它是聚类在预测中的应用,以弥补非稳定信号回归的预测与分析.这里主要介绍谱系聚类法和快速聚类法. 一、距离定义样本矩阵()ij n m X x ⨯=,是m 维空间中n 个点,以距离度量样本之间的贴近度,就是距离聚类方法.最常用的第i 个与第j个样本的Minkowski 距离为p mk p jk ik ijx x d /11)||(∑=-=式中p 为一正整数.当2=p , ij d 就是欧几里德距离;当1=p ,ij d 就是绝对距离,或称“布洛克(cityblock )”距离.而切比雪夫距离为||max 1jk ik mk ij x x d -=≤≤设m m C ⨯是变量的协方差矩阵,i x ,j x 为第i 行与第j 行m 个变量构成的向量,则马哈兰罗比斯距离定义为1()()T ij i j i j d x x C x x -=-- 根据距离的定义,就获得距离矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn n n n n d d d d d d d d d d 212222111211 由距离性质可知,d 为实对称矩阵,ij d 越小,两样本就越相似,其中01211====nn d d d ,根据)(j i d ij ≠的n 个点分类,依聚类准则分为不同的类.对d 常用的系统聚类准则有: 1、类间距离定义(1) 最短距离;,min p qpq ij i Gj GD d ∈∈= (2) 最长距离;,maxpqpq ij i G j GD d ∈∈=(3) 质心距离;(,)pq p q D d x x = (4) 平均距离;1p qpq iji G j G p qD d n n ∈∈=∑∑(5) 平方距离:2()()p q T pqp q p q p qn n D x x x x n n =--+2.类间距离的递推公式(1)最短距离:min{,}rk pk qk D D D = (2)最长距离:max{,}rk pk qk D D D = (3)类平均距离:p q rk pk qk rrn n D D D n n =+(4)重心距离:2222pqp q rkpkqkpq r r r rn n n n D D D D n n n n =+-⋅(5)离差平方和距离:2222p k q k krkpk qk pq r kr kr kn n n n n D D D D n n n n n n ++=+-+++二、谱系聚类法例: 假如抽取5个样本,每个样本只测一个指标,即数据为x =[1,0;2,0;4.5,0;6,0;8,0] 试以最短距离准则进行距离聚类说明.解 这时,样本间的绝对距离、欧几里德距离或切比雪夫距离均一致,见表3.1.以最短距离准则聚类.根据定义,当令p Ω与q Ω中分别有pn 与q n 个样本,则最短距离为:},|min{),(q p ij nearj i d q p Ω∈Ω∈=δ于是,对于某步,假定具有样本为p n 的第p 集合与样本为q n 的第q 集合,聚成为具有样本为q p s n n n +=的第s 集合,则第k 集合与第s 集合的最短距离,可写为)},(),,(min{),(q k p k s k near near nearδδδ=(1)表1 绝对距离数据表中数据1、2、4.5、6、8视为二叉树叶子,编号为1、2、3、4、5.当每一个样本看成一类时,则式子(1)变为ij neard j i =),(δ,最小距离为1,即1与2合聚于6号,得表2.表中5.2)5.2,5.3min()}2,3(),1,3(min{)6,3(===δδδnear near near表2 一次合聚表2中最小距离为1.5,即4.5与6合聚于7,得表3.表中(6,7)min{(6,4.5),(6,6)}min(2.5,4) 2.5near nearnearδδδ===.表3 二次合聚表3中最小距离为2,即{4.5,6}元素(为7号)与8(为5号)合聚于8号,得表4.表中5.2)6,4,5.2min()}8,6(),6,6(),5.4,6(min{)8,6(===δδδδnear near near near表4 三次合聚最后集合{1,2}与{4.5,6,8}聚成一集丛.此例的Matlab 程序如下:x =[1,0;2,0;4.5,0;6,0;8,0])();'sin ',();'',(z dendrogram gle y linkage z CityBlock x pdist y ==绘得最短距离聚类谱系如图1所示,由图看出分两类比较合适.1号、2号数据合聚于6号,最小聚距为1;3号、4号数据合聚于7号,最小聚距为1.5;7号于5号数据合聚于8号,最小聚距为2;最后6号和8号合聚,最小聚距为2.5。
数学建模-聚类分析

满足输出;不满足循环;
(7)重复;
初始聚类中心的选择
初始聚类中心的选取决定着计算的迭代 次数,甚至决定着最终的解是否为全局最优, 所以选择一个好的初始聚类中心是很有必要 的。
(1)方法一:选取前k个样品作为初始凝聚点。
(2)方法二: 选择第一个样本点作为第一个聚类 中心。然后选取距离第一个点最远的点作为第二个 聚 类中心。……
数据变换:进行[0,1]规格化得到
初始类个数的选择; 初始类中心的选择;
设k=3,即将这15支球队分成三个集团。现抽取日 本、巴林和泰国的值作为三个类的种子,即初始化三 个类的中心为 A:{0.3, 0, 0.19}; B:{0.7, 0.76, 0.5}; C:{1, 1, 0.5};
样品到类中心的距离; 归类;
计算所有球队分别对三个中心点的欧氏 距离。下面是用程序求取的结果:
第一次聚类结果: A:日本,韩国,伊朗,沙特; B:乌兹别克斯坦,巴林,朝鲜; C:中国,伊拉克,卡塔尔,阿联酋,泰 国,越南,阿曼,印尼。
重新计算类中心;
下面根据第一次聚类结果,采用k-均值法调整各个类的 中心点。
A类的新中心点为:{(0.3+0+0.24+0.3)/4=0.21,
数据变换
(5)极差正规化变换:
x*ij
=
xij
min 1t n
xij
Rj
i 1,,2,...,,n; j 1,..., m
(6)对数变换x*:ij = log xij
i 1,,2,...,,n; j 1,..., m
k
样品间的距离
(1)绝对值距离:
m
dij
xit x jt
t 1
数学建模各种分析方法

现代统计学1.因子分析(Factor Analysis)因子分析的基本目的就是用少数几个因子去描述许多指标或因素之间的联系,即将相关比较密切的几个变量归在同一类中,每一类变量就成为一个因子(之所以称其为因子,是因为它是不可观测的,即不是具体的变量),以较少的几个因子反映原资料的大部分信息。
运用这种研究技术,我们可以方便地找出影响消费者购买、消费以及满意度的主要因素是哪些,以及它们的影响力(权重)运用这种研究技术,我们还可以为市场细分做前期分析。
2.主成分分析主成分分析主要是作为一种探索性的技术,在分析者进行多元数据分析之前,用主成分分析来分析数据,让自己对数据有一个大致的了解是非常重要的。
主成分分析一般很少单独使用:a,了解数据。
(screening the data),b,和cluster analysis一起使用,c,和判别分析一起使用,比如当变量很多,个案数不多,直接使用判别分析可能无解,这时候可以使用主成份发对变量简化。
(reduce dimensionality)d,在多元回归中,主成分分析可以帮助判断是否存在共线性(条件指数),还可以用来处理共线性。
主成分分析和因子分析的区别1、因子分析中是把变量表示成各因子的线性组合,而主成分分析中则是把主成分表示成个变量的线性组合。
2、主成分分析的重点在于解释个变量的总方差,而因子分析则把重点放在解释各变量之间的协方差。
3、主成分分析中不需要有假设(assumptions),因子分析则需要一些假设。
因子分析的假设包括:各个共同因子之间不相关,特殊因子(specific factor)之间也不相关,共同因子和特殊因子之间也不相关。
4、主成分分析中,当给定的协方差矩阵或者相关矩阵的特征值是唯一的时候,的主成分一般是独特的;而因子分析中因子不是独特的,可以旋转得到不同的因子。
5、在因子分析中,因子个数需要分析者指定(spss根据一定的条件自动设定,只要是特征值大于1的因子进入分析),而指定的因子数量不同而结果不同。
聚类分析 数学建模

x8
13.29 14.87 9.76 11.35 10.81
将每一个省区视为一个样本,先计算5个省区之间 的出欧下式三距角离阵,)用D0表示距离矩阵(对称阵,故给
1
2
3
4 5
辽宁
1
0
浙江 2 11.67 0
D0 河南 3 13.80 24.63 0
甘肃 4 13.12 24.06 2.20 0
指标来分类。
一、聚类分析的基本概念
研究对样品或指标进行分类的一种多元统 计方法,是依据研究对象的个体的特征进行 分类的方法。
聚类分析把分类对象按一定规则分成若干 类,这些类非事先给定的,而是根据数据 特征确定的。在同一类中这些对象在某种 意义上趋向于彼此相似,而在不同类中趋 向于不相似。
职能是建立一种能按照样品或变量的相似 程度进行分类的方法。
以下用dij表示样品X(i)和X(j)之间的距离,当样
品间的亲疏关系采用相似系数Cij时,
令
d
2 ij
1 Ci2j
;
以下用D(p,q)表示类Gp和Gq之间的距离。
3.重心法(CENtroid method)
4.类平均法(AVErage method)
例
为了研究辽宁等5省1991年城镇居民生活消费情况 的分布规律,根据调查资料做类型分类,用最短 距离做类间分类。数据如下:
TwoStep Cluster
一种探索性的聚类方法,是随着人工智能的发展起来的智能聚 类方法中的一种。用于解决海量数据或具有复杂类别结构的聚类分 析问题。
p
x x d
2
it
jt
t 1
数学建模 四大模型总结

四类基本模型1 优化模型1.1 数学规划模型线性规划、整数线性规划、非线性规划、多目标规划、动态规划。
1.2 微分方程组模型阻滞增长模型、SARS 传播模型。
1.3 图论与网络优化问题最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。
1.4 概率模型决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。
1.5 组合优化经典问题● 多维背包问题(MKP)背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。
如何将尽可能多的物品装入背包。
多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。
如何选取物品装入背包,是背包中物品的总价值最大。
多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。
该问题属于NP 难问题。
● 二维指派问题(QAP)工作指派问题:n 个工作可以由n 个工人分别完成。
工人i 完成工作j 的时间为ij d 。
如何安排使总工作时间最小。
二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。
二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。
● 旅行商问题(TSP)旅行商问题:有n 个城市,城市i 与j 之间的距离为ij d ,找一条经过n 个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。
● 车辆路径问题(VRP)车辆路径问题(也称车辆计划):已知n 个客户的位置坐标和货物需求,在可供使用车辆数量及运载能力条件的约束下,每辆车都从起点出发,完成若干客户点的运送任务后再回到起点,要求以最少的车辆数、最小的车辆总行程完成货物的派送任务。
TSP 问题是VRP 问题的特例。
● 车间作业调度问题(JSP)车间调度问题:存在j 个工作和m 台机器,每个工作由一系列操作组成,操作的执行次序遵循严格的串行顺序,在特定的时间每个操作需要一台特定的机器完成,每台机器在同一时刻不能同时完成不同的工作,同一时刻同一工作的各个操作不能并发执行。
大学数学类专业课程大全

大学数学类专业课程大全一、高等数学1. 微积分微积分是数学中最基础的一门课程,通过学习微积分可以更好地理解函数、极限、导数、积分等概念。
2. 线性代数线性代数是一门关于线性方程组、行列式、向量空间与线性变换等内容的课程,其在几何学、计算机科学、物理学等领域都有广泛的应用。
3. 概率论与数理统计概率论与数理统计是一门基础课程,其通过介绍随机事件、随机变量、概率分布、统计推断等概念,让学生深入了解随机性的规律与应用。
二、工程数学1. 工程数学分析工程数学分析是一门介绍基本数学概念,如极限、连续性、微积分等内容,并通过实例让学生了解这些概念在工程领域的应用。
2. 微分方程微分方程是一门介绍微分方程理论与方法的课程,内容包括常微分方程、偏微分方程、数值方法等,并讲授微分方程在工科和自然科学中的应用。
3. 数值计算方法数值计算方法是一门计算数学的课程,其重点介绍各种数值算法,如数值积分、数值解线性方程组、非线性方程组、微分方程初值问题、边值问题等。
三、应用数学1. 微分几何微分几何是一门介绍流形、张量场、黎曼流形等内容,并讨论这些概念在物理和工程中的应用。
2. 数学建模数学建模是一门将数学理论与实际问题相结合的课程,其内容包括数据收集、分析、建模、验证及方案评估等。
3. 图论与组合优化图论与组合最优化是一门介绍图论、组合优化、算法设计、计算复杂性等概念的课程,重点讲解在领域和工程中的应用。
四、统计学1. 因子分析与聚类分析因子分析与聚类分析是一门介绍统计模型和分析方法的课程,包括因子分析、聚类分析、判别分析等相关概念和方法,这些方法都广泛应用于数据分析和统计处理。
2. 时间序列分析时间序列分析是一门介绍时间序列概念、程序方法、模型检验等方法的课程,这些方法广泛应用于金融、宏观经济和自然灾害等领域。
3. 非参数统计非参数统计是一门介绍绝对差、秩、核估计、分位数等方法的课程,这些方法广泛应用于数据分析和统计推断。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.1.2 特征变量(指标)的提取
分类就是把各种属性差异比较小的样品合在 一类;各种属性差异大的样品分为不同的类,为 了能对事物进行科学准确的分类,在分类前,我 们必须对所需要分类的事物进行定量的特征变量 提取。
4.1.2 特征变量(指标)的提取 该如何提取事物的特征变量呢? ①所提取的特征变量要求能全面地反映样品的各 种属性, ②当然也不是特征变量越多越好,一般要求能在 反映样品本质的、主要的属性条件下,在不失去 主要信息的条件下,尽量减少特征变量的个数。 这样不但使分类中数学处理简单,而且便于 抓住本质和主要的属性,分类结果更好。
聚类分析的应用
聚类分析方法应用相当广泛,已经被广泛用 于考古学、地质勘探调查、天气预报、作物品 种分类、土壤分类、微生物分类,就是在经济 管理、社会经济统计部门,也用聚类分析法进 行定量分类。
4.1
聚类分析方法形成思路
4.1.1 分类依据形成思想 依据:同类事物具有很强的相似性 如何对事物进行定量分类呢?我们知道,同类 事物具有很强的相似性,因此我们可以用相似性 统计量这个度量标准作为事物分类的依据。 一种等价说法是同类事物之间的距离应很小, 因此我们也可以用距离统计量作为分类的依据。
综上所述,显然 越小表示样品间的距离越小,差 异就越小,两者越相似。按距离公式,将所有样品 两两间的距离 求出,即 ( ),可构成距 离矩阵
式中, 称矩阵。
(4.9) ,显然D为一实对
4.3.2 相似系数统计量
若将每个样品视为m维空间的一个向量,则 两样品间的相似程度可以用这两个向量间的夹角 余弦表示,即
设有 个样品, 个特征变量,设第 个样品,
第 个变量的观测值为 由此可构成一个 阶矩阵为
。
将式(4.1)中每个变量 换,称为标准化。
(4.1) 根据以下公式变
对每个变量的标准化计算公式为
(4.2)
式中, 标准化后变量的平均值为0,标准离差为1。
4.2.2 变量的正规化
对每个变量施行以下变换,称为正规化。
聚类分析的发展
在古老的分类学中,人们主要靠经验和专 业知识进行定性分类,如黑人、白人、黄种人, 我们凭视觉感观就能作出分类,很少利用数学 方法。 随着科学技术的迅速发展,分类要求越来 越高,以致靠经验和专业知识不能进行确切的 科学分类,于是数学这个定量化的有力工具便 被引进到分类学中来,形成了数值分类学。 近20年来,多元统计分析技术被引进到分 类学中,于是从数值分类学中逐渐地分离出聚 类分析这个新的分支。
(
)
(4.10)
式(4.10)中, 称为向量间夹角余弦。显 然, 。式中 是第 样品第 个变量的 观测值。 越接近1,则说明第 个样品与第 个样品越相似,式(4.10)把所有样品两两间 的夹角余弦求出来,就得夹角余弦矩阵
该矩阵为一实对称矩阵。 同样,变量之间也可以求其夹角余弦,以表 示它们的亲疏程度。
4.2
关于变量的数据预处理
由于所研究的各个变量的量纲往往不一致, 即使统一了量纲有时原始数据的大小也有悬殊, 为避免有些特征变量受到压抑,在分类前,可 首先对原始数据进行预处理。 通常是对变量施行必要的变换,使其所有 变量尺度均匀化。均匀化的方法很多,这里仅 介绍常用的几种。
4.2.1 变量的标准化
由此可看出,两个样品之间的距离越小, 它们之间的相似程度越高;反之,距离越大, 则表明两样品的相似程度越低。因此,可以用 样品间的距离来对样品进行分类。 在聚类分析中,对于定量变量,最常用的 距离是明考夫斯基(Minkowski)距离
(4.5)
当
时,则分别得到
(1)绝对值距离
(4.6)
(2)欧氏(Euclid)距离
(4.11)
式(4.11)中, ; 为第 个样品 第 个变量的观测值。按上式分别求出 个变量 两两间的相关系数构成相关矩阵。
显然 为对称方阵,主对角线上的元素为1, 且 , 越接近1,则表明变量 与 相关 程度越高,越密切; 越接近0,变量 与 相关 程度越小。
在实际工作中,当需要研究样品与样品之间
③ 此外,选上的特征变量应在全部样品中变化
显著,即方差比较大,如果某个特征变量反映 的是个主要的属性,但是在要进行分类的所有 样品中没有显著差别,基本相等,这样的特征 变量也应去掉。
④ 选上的特征变量之间应尽量不相关,每个特
征量反映的侧面应有明显差异。反应属性基本 重复、相关、非常密切的特征变量应简化,去 掉完全重复的。
(4.7)
(3)切比雪夫(Chebyshev)距离
(4.8)
值得注意的是在采用明考夫斯基距离时, 一定要采用相同量纲的变量。如果变量的量纲 不同,原始数据变异范围相差悬殊时,建议首 先进行数据的标准化处理,然后再计算距离。
在明考夫斯基距离中,最常用的是欧氏距离。 它的主要优点是当坐标轴进行正交旋转时,欧氏 距离是保持不变的,因此,如果对原坐标系进行 平移和旋转变换,则变换后样本点间的相似情况 (即它们间的距离)完全同于变换前的情形。此 外,在采用明考夫斯基距离时,还应尽可能地避 免变量的多重相关性。显而易见,多重相关性所 造成的信息重叠,会片面强调某些变量的重要性。
(4.3)
式中, 和 大和最小值。显然, 分别为第 个变量的最 。
4.2.3 变量的规格化
对每个变量施行以下变换,称为规格化。
(4.4) 式中, 为第 个变量的最大值。显然 。
注:
数据的预处理以不丢失原有信息为前提。 三种预处理方法的选择应根据现有数据的特 点来考虑。
4.3 分类统计量的确定 及其聚类方法的选择
4.3.3 相关系数统计量 相关系数概念的引入是在定义协方差矩阵时引 入,它主要是用于表征两个随机变量之间的线 性相关程度。 如对于二维随机变量,可用 表示随机变量 与 的协方差,记为
进而还可引进相关系数的概念,用其值的大小 来描述随机变量 与 相关程度,记为
可以证明如下结论: 1.当 =0 ,则 与 不相关。 2.当| | 越大,则 与 联系越紧密。 一般,设第 个变量与第 个变量(指样本的 第 个变量与第 个变量)间的相关系数定义为
第四章
聚类分析方法
引入
人类认识世界的一种重要方法是将认识对象 进行分类。在许多工程问题中,我们对研究对象 的类属是未知的,或者知之甚少,这时,就需要 对研究对象进行分类,它是在没有“先验”知识 的情况下进行分类的,具有相当的任意性。
比如在生物学中,为了研究生物的演变,需 要对生物进行分类,生物学家根据各种生物的特 征,将它们归属于不同的界、门、纲、目、科、 属、种之中。事实上,分门别类地对事物进行研 究,要远比在一个混杂多变的集合中更清晰、明 了和细致,这是因为同一类事物具有很大的相似 性。
4.3.1 距离系数统计量
设有n个样品分别测定了m个特征变量。如果 将n个样品看成m维空间中的一个点(或者看成m 维空间的n个点矢),则在 m 维空间可定义一种 距离,该距离应满足如下四个条件,若表示第个 样品和第个样品之间的距离,则有
a) 时,样品i和j恒等; b)对一切谓分类,一般地说就是把相似程度大的 并成一类,而把相似程度小的分为不同的类, 因此如何定量地表示样品间的相似程度,这是 聚类分析中需要解决的一个重要问题。 目前已设计了大量的表示相似程度的统计 量,Moore l972年就列出了40个,实际上超 过这个数。但是常用的主要还是距离统计量、 相似系数统计量和相关系数统计量。下面主要 介绍常用的这几种统计量。
2.分解法 它的聚类过程恰好和聚合法相反,开始把 全体样品看成一类,然后分成二类,……,一 直到每个样品为一类或分到不能再分时为止, 通常要设计一个分类函数(目标函数)来控制 整个分类过程。 3.调优法 开始人为将样品作初始分类,在一定准则下 判断这个分类是否最优,如果不是最优,则对 分类进行修改,再判断修改后的分类是否最优, 若仍不是最优,再作修改,不断重复上述步骤, 一直到分类方案最优为止。
关系时,一般用距离系数统计量或者相似系数统 计量作为分类计算依据,这种方法又称为Q型聚 类法;当需要研究变量与变量之间的关系时,常 用相关系数统计量作为分类计算依据,这种方法 又称R型聚类法。
4.3.4 选择适当的聚类方法 聚类分析的核心, 一是选取一种距离或相似系数作为分类统 计量; 二是需要确定一种聚类方法。聚类方法虽 然也有很多种,但是,就其聚类过程的主要特点 可以分为三大类:聚合法、分解法和调优法。 1.聚合法 开始把每个样品看成自成一类,计算各类之 间的相似程度的统计量,把最相似的两类合并为 一类,再计算各类相似程度统计量,把最相似的 两类合并,照此继续下去,一直到所有样品都聚 合成一类为止,最后人为确定合适的分类数,得 到分类结果。