数学人教版七年级下册第六章平方根教案

合集下载

人教版七年级数学下册6.1.1《算术平方根》教案

人教版七年级数学下册6.1.1《算术平方根》教案

人教版七年级数学下册6.1.1《算术平方根》教案一. 教材分析《算术平方根》是人教版七年级数学下册第六章第一节的内容。

本节课主要让学生掌握算术平方根的定义,理解求一个数的算术平方根的方法,以及熟练运用算术平方根解决实际问题。

教材通过引入大量的生活实例,激发学生的学习兴趣,引导学生探究、发现算术平方根的规律,培养学生的抽象思维能力。

二. 学情分析七年级的学生已经掌握了实数的概念,具备了一定的数学基础。

但在计算能力和数学思维方面,学生之间存在较大差异。

因此,在教学过程中,要关注学生的个体差异,引导他们积极参与课堂活动,提高他们的数学素养。

三. 教学目标1.理解算术平方根的定义,掌握求一个数的算术平方根的方法。

2.能够运用算术平方根解决实际问题,提高学生的应用能力。

3.培养学生的抽象思维能力,提高学生的计算能力。

4.激发学生的学习兴趣,培养他们积极探究数学规律的精神。

四. 教学重难点1.算术平方根的定义及其求法。

2.运用算术平方根解决实际问题。

五. 教学方法1.情境教学法:通过生活实例,引导学生发现算术平方根的规律。

2.探究教学法:引导学生积极参与课堂讨论,自主发现算术平方根的求法。

3.练习法:通过大量练习,巩固学生对算术平方根的理解和运用。

六. 教学准备1.教学课件:制作精美的课件,辅助教学。

2.练习题:准备适量的一定难度的练习题,用于课堂练习和课后作业。

3.教学道具:准备一些实物,如正方形、长方形等,用于直观展示。

七. 教学过程1.导入(5分钟)利用生活实例,如衣服的尺码、房屋面积等,引导学生思考:如何快速找到一个数的平方根?从而引出本节课的主题——算术平方根。

2.呈现(10分钟)介绍算术平方根的定义,并通过PPT展示一些图片,让学生直观地感受算术平方根的应用。

3.操练(10分钟)让学生分组讨论,探索如何求一个数的算术平方根。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)出示一些练习题,让学生独立完成。

平方根人教版数学七年级下册教案3篇

平方根人教版数学七年级下册教案3篇

平方根人教版数学七年级下册教案3篇平方根人教版数学七年级下册教案1 人教版七年级数学下册《10.1平方根》教学设计PPT课件导学案教案课题: 10.1 平方根〔1〕教学目的 1.理解算术平方根的概念,会用根号表示正数的算术平方根,并理解算术平方根的非负性;2.理解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根;3.通过对实际生活中问题的解决,让学生体验数学与生活实际是严密联络着的,通过探究活动培养动手才能和激发学生学习数学的兴趣。

教学难点根据算术平方根的概念正确求出非负数的算术平方根。

知识重点算术平方根的概念。

教学过程〔师生活动〕设计理念情境导入同学们,20xx年10月15日,这是我们每个中国人值得骄傲的日子.因为这一天,“神舟”五号飞船载人航天飞行获得圆满成功,实现了中华民族千年的飞天梦想〔多媒体同时出示“神舟”五号飞船升空时的画面〕.那么,你们知道宇宙飞船分开地球进人轨道正常运行的速度是在什么范围吗?这时它的速度要大于第一宇宙速度〔米/秒〕而小于第二宇宙速度:〔米/秒〕.、的大小满足 .怎样求、呢?这就要用到平方根的概念,也就是本章的主要学习内容.这节课我们先学习有关算术平方根的概念.请看下面的问题.“神舟”五号成功发射和平安着陆,标志着我国在攀登世界科技顶峰的征程上又迈出具有重大历史意义的一步,是我们伟大祖国的荣耀.此内容有感染力,使学生对本章知识的应用价值有一个感性认识,同时激发学生的好奇心和学习的兴趣.这里的计算实际上是幂和乘方的指数求底数的问题,是乘方的逆运算,学生以前没有见过,由此引出了本章所要研究的主要内容,以及研究这些内容的大体思路.提出问题感知新知多媒体展示教科书第160页的问题〔问题略〕,然后提出问题:你是怎样算出画框的边长等于5dm的呢?〔学生考虑并交流解法〕这个问题相当于在等式扩=25中求出正数x的值.练习:教科书第160页的填表.练习:教科书第160页的填表.这个问题抽象成数学问题就是正方形的面积求正方形的边长,这与学生以前学过的正方形的边长求它的面积的过程互逆,教学时可以让学生初步体会这种互逆的过程,为后面的学习做准备。

算术平方根—教学设计及点评

算术平方根—教学设计及点评

§6.1《平方根》第1课时《算术平方根》教案一、教学内容分析:教材分析:《算术平方根》是人教版七年级下册第六章第一节《平方根》的第1课时的学习内容,它为后续学习无理数,数集的扩充以及二次根式的学习奠定基础,在教材中起到承上启下的作用。

学生分析:学生在小学阶段、七年级上册《有理数》的学习,对平方运算有一定的认识,这为过渡到本节内容的学习起到了铺垫的作用。

二、教学目标分析:知识目标:体会“已知正方形面积求边长和已知边长求面积”的互逆过程,理解算术平方根的概念。

技能目标:会用“”表示一个非负数的算术平方根;会用平方运算求某些非负数的算术平方根。

能力目标:体会引入“”的必要性,建立数感和符号意识,会用“”表示非负数的算术平方根。

三、教学重点难点分析:教学重点:算术平方根的概念和求法。

教学难点:“根号”产生的必要性,算术平方根的存在性,理解“”的意义。

四、教学准备:预备知识:有理数运算法则、几何图形初步。

教学方法:启发式。

教学道具:剪刀、两块1dm²的正方形纸片、透明胶纸。

五、教学过程:预计时间教学内容教师活动学生活动教学评价5分钟一、引入问题:1.学校要举行美术作品比赛,小鸥想裁出一块面积为25dm²的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?2.填表:1.正方形画布的边长应取多少?你是怎么算出来的?2.请你填写下列表格,体会正方形面积和边长的关系。

通过填表,你1.因为5²=25,所以这个正方形画布的边长取5dm.2.面积为1,边长为1;面积为4,边长为2……通过情景引入,让学生体会“已知正方形面积求边长和已知边长求面积”的互逆过程,为算术平方根的概念的引出四、探究:2的算术平方根是,的大小;在数轴上的什么位置呢(借助数轴估计)?六、小结解决一类新问题,已知一个正数的平方,求这个正数的问题(即已知任意一个正方形的面积求它的边长的问题).定义:如果一个正数x 的平方等于a,即x²=a,那么这个正数x 叫做a 的算术平方根.同学们,这节课我们由平方运算开始,学习了一种新的数,算术平方根,认识了一种新的运算,开方运算,由旧到新,数形结合,你有什么收获和疑问呢?答:1.解决新问题:已知一个正数的平方,求这个正数;2.理解新概念:算术平方根的概念;3.注意:0的算术平方根是0,负数没有算术平方根 观察学生能否用自己的方式将本节课的知识、技能、能力等进行归纳.理解算术平方根的定义及其表示方法.七、作业: 课本习题6.1P47 第1、2、6题6.1.1 算术平方根新授课 例题讲解 学生活动一、为什么引入根号? 例1. 求下列各数的算术平方根 二、定义:如果一个正数x (1)100;(2)4964;(3)0.0001的平方等于a,即x²=a,那么 这个正数x 叫做a 的算术平 方根.对林惠同志算术平方根的点评陈远刚广东省惠州市教育科学研究院林惠老师尊重教材、根据教材来设计教学环节,是一节师生互动有效,值得回味的优秀课。

算术平方根—教学设计及点评(获奖版)

算术平方根—教学设计及点评(获奖版)

§6.1《平方根》第1课时《算术平方根》教案广东省惠州市惠阳区崇雅实验学校初中部林惠一、教学内容分析:教材分析:《算术平方根》是人教版七年级下册第六章第一节《平方根》的第1课时的学习内容,它为后续学习无理数,数集的扩充以及二次根式的学习奠定基础,在教材中起到承上启下的作用。

学生分析:学生在小学阶段、七年级上册《有理数》的学习,对平方运算有一定的认识,这为过渡到本节内容的学习起到了铺垫的作用。

二、教学目标分析:知识目标:体会“已知正方形面积求边长和已知边长求面积”的互逆过程,理解算术平方根的概念。

技能目标:会用“”表示一个非负数的算术平方根;会用平方运算求某些非负数的算术平方根。

能力目标:体会引入“”的必要性,建立数感和符号意识,会用“”表示非负数的算术平方根。

三、教学重点难点分析:教学重点:算术平方根的概念和求法。

教学难点:“根号”产生的必要性,算术平方根的存在性,理解“”的意义。

四、教学准备:预备知识:有理数运算法则、几何图形初步。

教学方法:启发式。

教学道具:剪刀、两块1dm²的正方形纸片、透明胶纸。

五、教学过程:预计时间教学内容教师活动学生活动教学评价5分钟一、引入问题:1.学校要举行美术作品比赛,小鸥想裁出一块面积为25dm²的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?2.填表:1.正方形画布的边长应取多少?你是怎么算出来的?2.请你填写下列表格,体会正方形面积和边长的关系。

通过填表,你1.因为5²=25,所以这个正方形画布的边长取5dm.2.面积为1,边长为1;面积为4,边长为2……通过情景引入,让学生体会“已知正方形面积求边长和已知边长求面积”的互逆过程,为算术平方根的概念的引出四、探究:2的算术平方根是,的大小;在数轴上的什么位置呢(借助数轴估计)?六、小结解决一类新问题,已知一个正数的平方,求这个正数的问题(即已知任意一个正方形的面积求它的边长的问题).定义:如果一个正数x 的平方等于a,即x²=a,那么这个正数x 叫做a 的算术平方根.同学们,这节课我们由平方运算开始,学习了一种新的数,算术平方根,认识了一种新的运算,开方运算,由旧到新,数形结合,你有什么收获和疑问呢?答:1.解决新问题:已知一个正数的平方,求这个正数;2.理解新概念:算术平方根的概念;3.注意:0的算术平方根是0,负数没有算术平方根 观察学生能否用自己的方式将本节课的知识、技能、能力等进行归纳.理解算术平方根的定义及其表示方法.七、作业: 课本习题6.1P47 第1、2、6题6.1.1 算术平方根新授课 例题讲解 学生活动一、为什么引入根号? 例1. 求下列各数的算术平方根 二、定义:如果一个正数x (1)100;(2)4964;(3)0.0001的平方等于a,即x²=a,那么 这个正数x 叫做a 的算术平 方根.对林惠同志算术平方根的点评陈远刚广东省惠州市教育科学研究院林惠老师尊重教材、根据教材来设计教学环节,是一节师生互动有效,值得回味的优秀课。

平方根教学设计

平方根教学设计

平方根教学设计平方根教学设计篇一教材分析:《算术平方根》是人教版七年级下第六章第一节,本节通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的。

通过对这一节课的学习,既可以让学生了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性,将为学生学习算术平方根奠定基础。

引入算术平方根的知识,要借助具体的生活情境,这样才能加深对引入平方根知识必要性的认识。

注意引导学生发现被开方数与对应的算术平方根之间的关系。

本节课的开始就设置了一个问题情境,把这个问题情境抽象成数学问题就是已知正方形的面积求正方形的边长,这是典型的求算术平方根的问题。

由于所选数字简单,可见其设计目的,并不着眼于计算,而在于巩固概念。

因此本节课的关键是抓住算术平方根概念的本质特征,逐层深入,多个角度展示。

课标要求:在实际情境中理解算术平方根的概念及求法,并能解决简单的问题,体验数学与日常生活密切相关,认识到许多实际问题可以借助数学方法来解决,并可以借助数学语言来表述和交流。

本节突出概念形成过程的教学,首先列举学生熟悉的例子,从生活问题中抽象出数学本质,引导学生观察、分析后归纳,然后提出注意问题,帮助学生把握概念的本质特征,再引导学生运用概念并及时反馈。

同时在概念的形成过程中,着意培养学生观察、分析、抽象、概括的能力。

在本节课中,我利用学生的已有经验,通过思考、讨论、探究等活动,使学生感受到做数学、用数学的价值。

策略分析:根据教材内容和编排特点,为了更有效地突出重点、突破难点、抓住关键,本节课按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的原则,采用“自主探究法”和“引导发现法”为主,并根据学法指导自主性和差异性要求,让学生在探究过程中理解理解算术平方根的概念。

教学目标:1、经历算术平方根概念的形成过程,会用根号表示算术平方根,并了解算术平方根的非负性。

2、会用平方运算求非负数的算术平方根,包括完全平方数的算术平方根和部分非完全平方数的算术平方根。

人教版七年级下册6.1.1 算术平方根 说课稿

人教版七年级下册6.1.1 算术平方根 说课稿

新课标人教版数学七年级下册第六章平方根(一)6.1《算术平方根》说课稿尊敬的各位评委、各位老师:你们好!我今天说课的内容是:义务教育教科书人教版数学教材七年级下册第六章第一节《算术平方根》。

我准备从教材分析、学情分析、教法学法、教学过程、课后反思等五个方面来谈谈我对本节课的教学构想.一、教材分析算术平方根是人教版七年级下册第六章第一节的第一课时的教学内容。

本章内容主要包括算术平方根、平方根、立方根以及实数的概念和运算。

学习算数平方根是为以后学习平方根做铺垫,通过学习,学生对数的认识就由有理数范围扩大到实数范围,完成了初中阶段对所有数的扩展。

,因此本节课是今后学习实数、根式、分式、函数等知识的重要基础。

二、学情分析学生通过上个学期的数学学习,能基本从具体事例中通过观察、类比等活动抽象出问题的规律,并且学生在上学期的数学已经学习了乘方这个运算,具备了用所学知识来算术平方根的基础。

三、教学目标:新课标明确提出,义务教育阶段的教学课程,要从数学本身的特点出发,从学生学习数学的心理规律和学生已有的知识经验出发,让学生经历一个实践、思考、探索、交流、解释、应用的学习过程,在获得对教学理解的同时,在思维能力、情感态度和价值观等多方面都得到进步和发展。

所以我设计的教学目标是:知识与技能:了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性。

过程与方法:通过学习算术平方根,建立初步的数感和符号感,发展抽象思维。

情感态度与价值观:通过解决实际生活中的问题,让学生体验数学与现实生活是紧密联系的,提高学习兴趣。

四、教学重难点:重点:了解算术平方根的概念难点:根据算术平方根的概念正确求出或用根号表示一个正数的算术平方根。

五、教学方法结合本课特点,我主要采用了以下教学方法:1讲练结合法——理论加练习,由难化简;2提问法——逐步引导,逐渐深入;3点拨法——展开联想,拓展思路;4经验交流法——与人交流,与人合作六、说教学流程:为了达成教学目标,在设计思路上,我设计了这么几个活动:1、创设情境,导入新课;2、自主探究,合作交流;3、师生互动,归纳新知;4、巩固练习,加深理解;5、课堂小结,整体感悟。

人教版七年级数学下册 教学设计6.1 第2课时《平方根》

人教版七年级数学下册 教学设计6.1 第2课时《平方根》

人教版七年级数学下册教学设计6.1 第2课时《平方根》一. 教材分析本节课的教学内容是《平方根》,这是人教版七年级数学下册第六章第一节的一部分。

在此之前,学生已经学习了有理数、实数等基础知识,对数的运算也有一定的了解。

本节课主要让学生掌握平方根的定义、性质和求法,以及了解平方根在实际问题中的应用。

二. 学情分析七年级的学生已经具备了一定的数学基础,但部分学生在实数方面的理解还不够深入。

在导入新课环节,教师需要通过生活中的实例激发学生的学习兴趣,让学生感受到平方根在实际生活中的重要性。

在教学过程中,要注意引导学生主动探索、发现和总结平方根的性质,提高学生的数学思维能力。

三. 教学目标1.知识与技能:让学生掌握平方根的定义、性质和求法,能够运用平方根解决实际问题。

2.过程与方法:通过自主学习、合作交流,培养学生探究数学问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心和自主学习能力。

四. 教学重难点1.重点:平方根的定义、性质和求法。

2.难点:平方根在实际问题中的应用。

五. 教学方法1.启发式教学:教师通过提问、引导,激发学生的思考,让学生主动探索平方根的性质。

2.情境教学:结合生活实例,让学生感受平方根在实际问题中的应用。

3.小组合作:引导学生进行合作交流,共同探讨平方根的问题。

六. 教学准备1.教学课件:制作课件,展示平方根的相关知识点。

2.实例材料:准备一些实际问题,用于引导学生运用平方根解决。

3.练习题:准备一些练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)教师通过展示一些生活中的实例,如测量土地面积、计算物体高度等,引导学生思考这些实际问题与平方根的关系,激发学生的学习兴趣。

2.呈现(10分钟)教师引导学生回顾实数的相关知识,然后给出平方根的定义,并通过PPT展示平方根的性质。

同时,教师可以通过讲解、举例等方式,让学生了解平方根的求法。

3.操练(10分钟)教师提出一些有关平方根的问题,让学生独立解答。

(人教版)七年级数学下册第六章第1节《平方根》教案(两份)

(人教版)七年级数学下册第六章第1节《平方根》教案(两份)

13.1 平方根(一)一、教学目标1.经历平方根概念的形成过程,了解平方根的概念,会求某些正数(完全平方数)的平方根 .2.经历有关平方根结论的归纳过程,知道正数有两个平方根,它们互为相反数,0 的平方根是 0,负数没有平方根 .二、教学重点和难点1.重点:平方根的概念 .2.难点:归纳有关平方根的结论 .三、教学过程(一)基本训练,巩固旧知1. 填空:如果一个的平方等于a,那么这个叫做a的算术平方根,a的算术平方根记作.2.填空:(1)面积为 16的正方形,边长==;(2)面积为 15的正方形,边长=≈(利用计算器求值,精确到 0.01 ).3.填空:(1)因为 1.7 2= 2.89 ,所以 2.89的算术平方根等于,即 2.89 =;(2)因为 1.73 2=2.9929 ,所以 3的算术平方根约等于,即3≈ .(二)前面两节课我们学习了算术平方根的概念,本节课我们将学习平方根的概念(板书课题: 13.1 平方根). 什么是平方根呢?大家先来思考这么一个问题 .(三)如果一个正数的平方等于9,这个正数是多少?如果一个数的平方等于9,这个数是多少?和算术平方根的概念类似,(指准 32= 9)我们把 3 叫做 9 的平方根,(指准 (-3) 2= 9)把- 3 也叫做 9 的平方根,也就是 3 和- 3 是 9 的平方根(板书: 3 和-3 是 9 的平方根).我们再来看几个例子 . (师出示下表)x21636491425x同学们大概已经明白了平方根的意思. 平方根的概念与算术平方根的概念是类似的,谁会用一句话概括什么是平方根?平方根:如果一个数的平方等于a,那么这个数叫做 a 的平方根 .大家把平方根概念默读两遍. (生默读)平方根概念与算术平方根概念只有一点点区别,哪一点点区别?(出示例题)例求下面各数的平方根:(1)100;(2)0.25;(3)0;(4)-4;(1)因为(± 10)2=100),所以 100 的平方根是+ 10 和- 100 的平方是 0,正数的平方是正数,负数的平方还是正数,所以任何数的平方都不会等于- 4. 这说明什么?(例题)从这个例题你能得出什么结论?(稍停片刻)正数有几个平方根?0 有几个平方根?负数有几个平方根?请学生小组讨论正数有平方根(板书:正数有两个平方根) .__________ _______平方根有什么关系?0 的平方根个,平方根是.__________________________________负数平方根_________________大家把平方根的这三条结论读两遍.(四)自我检测1.填空:(1)因为()2=49,所以 49 的平方根是;(2)因为()2=0,所以 0 的平方根是;(3)因为()2=1.96 ,所以 1.96 的平方根是;2.填表后填空:33x8-855x21210.36(1)121的平方根是, 121 的算术平方根是;(2)0.36的平方根是,0.36 的算术平方根是;(3)的平方根是 8 和- 8,的算术平方根是8;(4)的平方根是3和33.5 5,的算术平方根是56.判断题:对的画“√” ,错的画“×” .(1)0 的平方根是 0;()(2)- 25 的平方根是- 5;()(3)- 5 的平方是 25;()(4)5 是 25 的一个平方根;()(5)25 的平方根是 5;()(6)25 的算术平方根是 5;()(7)52的平方根是± 5;()(8)(-5) 2的算术平方根是- 5.()教学反思:6.1 平方根(二)学习目标:1、掌握平方根的概念,明确平方根和算术平方根之间的联系和区别.2、能用符号正确地表示一个数的平方根,理解开平方运算和乘方运算之间的互逆关系.学习重点:平方根的概念和求数的平方根。

人教版七年级数学下册第六章6.1平方根(教案)

人教版七年级数学下册第六章6.1平方根(教案)
3.求平方根的方法:掌握求解平方根的两种方法——直接开平方和迭代法。
4.应用平方根解决实际问题:运用所学的平方根知识解决一些简单的实际问题。
二、核心素养目标
1.培养学生的逻辑推理能力:通过平方根的定义和性质的探究,让学生理解数学知识之间的内在联系,提高逻辑推理能力。
2.提升解决问题的能力:通过求平方根的方法学习和实际问题的应用,培养学生运用数学知识解决实际问题的能力。
举例:在解释负数没有平方根时,可以借助数轴,说明实数范围内无法找到一个数的平方等于负数;在讲解迭代法时,以√2为例,展示迭代法的步骤,让学生通过实际操作感受方法的可行性;在解决实际问题中,如计算正方形的对角线长度,指导学生先将问题转化为求边长的平方根,进而求解。
四、教学流程
(一)导入新课(用时5分钟)
1.理论介绍:首先,我们要了解平方根的基本概念。平方根是指一个数乘以自身等于另一个数的运算。它是解决许多实际问题的关键,如在几何中求解边长、面积等。
2.案例分析:接下来,我们来看一个具体的案例。通过求解一个正方形的边长,展示平方根在实际中过程中,我会特别强调平方根的定义和求法这两个重点。对于难点部分,如负数没有平方根、迭代法的应用,我会通过举例和比较来帮助大家理解。
课堂上,我尝试通过实际案例引入平方根的应用,让学生们感受到数学知识在生活中的重要性。这种做法激发了学生的兴趣,他们积极参与讨论和实验操作,这让我感到很欣慰。但同时我也注意到,在小组讨论中,个别学生参与度不高,可能是因为他们对问题不够了解或者缺乏自信。我需要在以后的课堂中更加关注这些学生,鼓励他们大胆表达自己的想法。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与平方根相关的实际问题,如求解不同形状的面积。

人教版数学七年级下册6.1.3《平方根》教学设计2

人教版数学七年级下册6.1.3《平方根》教学设计2

人教版数学七年级下册6.1.3《平方根》教学设计2一. 教材分析平方根是初中数学中的重要概念,对于学生来说,掌握平方根的概念和求法是十分必要的。

本节课的内容包括平方根的定义、求法以及平方根的性质。

通过学习,学生能够理解平方根的概念,掌握求一个数的平方根的方法,以及了解平方根的性质。

二. 学情分析学生在之前的学习中已经掌握了有理数的概念,也了解了乘方的概念,这为本节课的学习提供了基础。

但是,对于平方根的概念和求法,学生可能还比较陌生,需要通过实例和练习来逐渐理解和掌握。

三. 教学目标1.知识与技能目标:理解平方根的概念,掌握求一个数的平方根的方法,了解平方根的性质。

2.过程与方法目标:通过观察、实验、探究等活动,培养学生的动手操作能力和抽象思维能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自主学习能力和团队合作精神。

四. 教学重难点1.重点:平方根的概念和求法,平方根的性质。

2.难点:平方根的性质的理解和应用。

五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生主动探究,培养学生的动手操作能力和抽象思维能力。

六. 教学准备1.准备平方根的实例和练习题。

2.准备教学课件和板书设计。

七. 教学过程1.导入(5分钟)通过一个实例,如“一个正方形的边长是a,求这个正方形的面积”,引出平方根的概念。

让学生思考,如何求一个数的平方根。

2.呈现(15分钟)介绍平方根的定义,通过PPT展示平方根的图像,让学生直观地理解平方根的概念。

然后,讲解如何求一个数的平方根,以及平方根的性质。

3.操练(10分钟)让学生分组进行练习,每组选择一个数,求出它的平方根,并观察平方根的性质。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)出示一些练习题,让学生独立完成,检验学生对平方根的概念和求法的掌握程度。

5.拓展(10分钟)引导学生思考,如何求一个数的算术平方根,以及算术平方根的性质。

让学生通过小组合作,共同探究这个问题。

人教版教材七年级数学第6章第一节《算术平方根》教学设计

人教版教材七年级数学第6章第一节《算术平方根》教学设计

重点:算术平方根概念的理解。

难点:根据算术平方根的概念正确求出非负数的算术平方根。

七、教具安排PPT、视频八、课件使用说明本课件采用微软件幻灯片制作软件Microsoft Office PowerPoint 2007制作,安装Microsoft Office PowerPoint 2007或该软件更高版本可以正常运行。

双击PPT文件即可进入本课件进行授课。

九、教学过程1.明确目标课前导学出示学习目标(课标要求);围绕学习目标,课前学生自主阅读教材P40-41。

设计意图:明确本节所学的内容,让学生对本节课知识有个大体认识,产生疑惑课堂答疑。

2.提出问题引入新课提出问题:能否用两个面积为1dm2的正方形拼成一个面积为2dm2的大正方形?边长为多少?(设边长为xdm,可列方程x2=2,引出概念)设计意图:从现实生活中提出数学几何问题,能够使学生积极主动地投入到数学活动中去,动手操作,师生共探,培养学生动手能力和学习兴趣,发散学生思维,同时为学习算术平方根提供实际背景和生活素材。

3.解决问题学会算法解决问题:实际问题(正方形画布已知面积求边长)填入表格PPT展示对比;提问:加法、减法、乘法、除法、乘方这五种运算中那些是互逆运算呢?得出平方与开平方互为逆运算,配套练习教师点拨思考方法及书写。

设计意图:通过填表活动,从数学几何问题抽象为代数问题,总结归纳规律,解决生活实际问题,并在归纳中加深学生对平方与开平方互逆运算的认识,理解算术平方根的算法。

4.生成问题提炼性质符号表示:强调a的算术平方根符号表示,配套三个练习巩固。

生成新问题:负数有算术平方根吗?中的a可以取任何数吗?总结性质(双非负性-PPT展示)。

初步了解无理数:√a是什么数?(视频播放有多大)得出结论,两种情况考虑。

2配套习题,归纳性质。

设计意图:巩固练习,强化符号和文字的转换,加强符号意识。

通过三个新问题的提出和解决,总结性质;通过数学故事的视频播放,初步了解无理数,感受无理数的发展史;最后通过配套的习题,师生凝练性质,记忆符号表达。

人教版数学七年级下册6.1《平方根》教案4

人教版数学七年级下册6.1《平方根》教案4

人教版数学七年级下册6.1《平方根》教案4一. 教材分析《平方根》是人教版数学七年级下册第六章的第一节内容,主要介绍了平方根的概念、求平方根的方法以及平方根的性质。

本节内容是学生学习实数系统的关键,也是进一步学习立方根、算术平方根等概念的基础。

二. 学情分析七年级的学生已经掌握了实数的基本概念,具备了一定的逻辑思维能力和抽象思维能力。

但是,对于平方根的概念和性质,学生可能初次接触,需要通过具体例题和实际操作来理解和掌握。

三. 教学目标1.了解平方根的概念,掌握求一个数的平方根的方法。

2.理解平方根的性质,能够运用平方根的概念解决实际问题。

3.培养学生的逻辑思维能力和抽象思维能力。

四. 教学重难点1.平方根的概念和性质。

2.求一个数的平方根的方法。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法,引导学生通过观察、思考、讨论、操作等活动,自主探索和理解平方根的概念和性质。

六. 教学准备1.课件和教学素材。

2.练习题和答案。

七. 教学过程1.导入(5分钟)通过一个实际问题引入平方根的概念,如“一个正方形的边长是6厘米,求这个正方形的面积。

”让学生思考如何求解这个问题,从而引出平方根的概念。

2.呈现(15分钟)利用课件呈现平方根的定义和性质,通过具体例题和实际操作,让学生理解和掌握平方根的概念和性质。

3.操练(10分钟)让学生分组进行练习,运用平方根的概念和性质解决实际问题,如求一个数的平方根,判断一个数是否为完全平方数等。

4.巩固(10分钟)让学生独立完成练习题,教师进行个别辅导,巩固学生对平方根的概念和性质的理解。

5.拓展(10分钟)引导学生思考平方根的应用,如在几何、物理、化学等领域的应用,让学生感受数学与实际生活的紧密联系。

6.小结(5分钟)教师引导学生总结本节课所学内容,巩固平方根的概念和性质。

7.家庭作业(5分钟)布置一些有关平方根的练习题,让学生课后巩固所学知识。

8.板书(5分钟)教师根据教学内容进行板书设计,突出平方根的概念和性质。

数学人教版七年级下册第六章 第一节 平方根

数学人教版七年级下册第六章 第一节 平方根

第六章《平方根》复习课授课人:黄淑琼一、教材分析:本节《平方根》,选自人教版2012,七年级下册第六章的第一节,它对后面学习立方根和实数有着重要的基础性,同时也是以后学习和计算中的重点,是中考的热点,它多以选择题,填空题或者计算题的形式出现。

二、教学目标:1.理解平方根、算术平方根的概念及性质。

2.能用平方根的运算求某些数的算术平方根和平方根。

三、教学重点:平方根和算术平方根的概念、性质,无理数与实数的意义。

四、教学难点:能灵活运用概念和性质解决问题。

五、教学过程(师生互动)(一)知识回顾,形成体系。

师:有没有人能回想起开平方又包括哪些内容,他们的定义是什么?他们的性质又是什么呢?生:包括求数的算术平方根和算术平方根的相反数。

算术平方根的定义:一般地,如果一个正数 x 的平方等于 a (x2 = a),那么这个正数 x 就叫做 a 的算术平方根。

(记作:a)。

平方根----如果一个数的平方等于a,那么这个数叫做a的平方根。

即:若x2=a,那么x叫做a平方根。

师:是不是所有数都有算术平方根呢?生:只有正数和零才有算术平方根。

师:算术平方根有没有什么性质呢?生:它有以下几方面的性质:(1)它具有双重非负性。

(即:)0a)(0≥≥a(2)()a20≥(a0≥)(3)见ppt3 师:很好,下面我们一起来看一下例题1(1)=9(2)16=(3)81的算术平方根是多少-的算术平方根是多少?(4)()92(5)已知y=3-x+x,求x+y的值77+-师:下面我们来看一下:什么是平方根,它有什么性质呢?生:如果一个数X的平方等于a,即x2=a,那么这个数X叫做a的平方根(二次方根),即:a=x±师:谁又能说说:平方根的性质呢?生:平方根的性质:(1)正数有2个平方根,它们互为相反数;(2)0的平方根是0;(3)负数没有平方根。

师:我们一起来看一个例题:(ppt8至12)师:今天我们在前面学习的基础上又一次的加深了平方根的学习,希望同学们下来认真复习。

人教版七年级数学下册 教案6.1 第3课时《算术平方根和平方根》

人教版七年级数学下册 教案6.1 第3课时《算术平方根和平方根》

人教版七年级数学下册教案6.1 第3课时《算术平方根和平方根》一. 教材分析《算术平方根和平方根》是人教版七年级数学下册第六章第一节的内容。

本节课主要介绍了平方根和算术平方根的概念,以及它们的性质和运算。

通过学习本节课,学生能够理解平方根和算术平方根的概念,掌握它们的性质和运算,并为后续学习二次根式打下基础。

二. 学情分析学生在之前的学习中已经掌握了有理数的乘方,对数的认识,以及一些基本的代数运算。

但是,对于平方根和算术平方根的概念和性质可能还比较陌生。

因此,在教学过程中,需要通过具体例子和实际操作,帮助学生理解和掌握这些概念和性质。

三. 教学目标1.理解平方根和算术平方根的概念。

2.掌握平方根和算术平方根的性质和运算。

3.能够运用平方根和算术平方根解决实际问题。

四. 教学重难点1.平方根和算术平方根的概念。

2.平方根和算术平方根的性质和运算。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过具体例子和实际操作,引导学生主动探索、积极思考,培养学生的动手操作能力和团队协作能力。

六. 教学准备1.教学PPT。

2.练习题。

3.教学道具(如平方根和算术平方根的模型)。

七. 教学过程1.导入(5分钟)利用生活实例或数学故事,引出平方根和算术平方根的概念。

例如,讲解勾股定理时,提到直角三角形的两条直角边的平方和等于斜边的平方,从而引出平方根和算术平方根的概念。

2.呈现(10分钟)通过PPT展示平方根和算术平方根的定义,以及它们的性质和运算。

让学生观察和思考,引导他们发现其中的规律。

3.操练(10分钟)让学生分组进行讨论,运用平方根和算术平方根的性质和运算,解决实际问题。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)出示一些练习题,让学生独立完成。

题目难度可以适当调整,以保证大部分学生能够成功。

教师选取部分学生的作业进行点评,指出其中的错误和不足。

5.拓展(10分钟)引导学生运用平方根和算术平方根解决更复杂的问题,如二次方程的求解、实际生活中的测量等。

2024年人教版七年数学下册教案(全册)第6章 实数平方根

2024年人教版七年数学下册教案(全册)第6章 实数平方根

第1课时算术平方根课时目标1.了解算术平方根的意义和求法以及实际应用.2.会求某些正数(完全平方数)的算术平方根,并会用符号表示,提高抽象能力.3.通过独立思考、合作交流,经历从平方运算到求算术平方根的演变过程,感悟二者的互逆关系,并会用算术平方根解决实际问题,发展应用意识.学习重点算术平方根的概念及求法.学习难点求出某些正数(完全平方数)的算术平方根.课时活动设计情境引入请同学们欣赏本章导图,并回答问题.你们知道宇宙飞船离开地球进入地面附近轨道的速度在什么范围内吗?这时它的速度要大于第一宇宙速度v1(单位:m/s)而小于第二宇宙速度v2(单位:m/s).v1,v2的大小满足12=gR,22=2gR,其中g是物理中的一个常数(重力加速度),g≈9.8m/s2,R是地球半径,R≈6.4×106m.怎样求v1,v2呢?设计意图:由“神州十六号”飞船载人出舱的现实图片引出,给学生产生视觉上的强烈冲击,产生强烈的求知欲,为下面探究新知识打下基础.让学生感悟数学来源于生活并服务于生活,初步感受实数的引入是人类对数的认识的又一次飞跃.用多媒体演示问题情境,自主学习学校要举行美术作品大赛,小欧很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?学生思考后回答,然后完成下表:正方形的面积191636/dm2正方形的边长/dm思考:你能指出每组正方形的边长和面积之间有什么特点吗?设计意图:由于学生熟悉平方运算,再结合正方形的面积与边长的关系,学生很容易解决这个问题,这样既复习了关于平方的知识,又为所要学习的知识做了铺垫,而且通过实例让学生从生活引入课题,从而认识算术平方根.使学生感受到已知一个正数的平方,求这个正数的算术平方根是平方运算的逆运算.合作探究:算术平方根的概念一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.a的算术平方根记为,读作“根号a”,a叫做被开方数.强调:书写时根号一定要把被开方数盖住.问题1:表示什么意思?它的值是怎样的数?这里的被开方数a应该是怎样的数?解:表示a的算术平方根.算术平方根为非负数,即≥0,被开方数为非负数,即a≥0,负数没有算术平方根,即当a<0时,无意义.问题2:0的算术平方根是多少?怎么表示?解:0的算术平方根是0.表示为0=0.设计意图:通过以上问题的设置加深对算术平方根的非负性的理解,进一步提高语言表达的准确性和书写的规范性.让学生熟悉算术平方根的概念,体会算术平方根的意义.典例精讲例求下列各数的算术平方根:(1)100;(2)4964;(3)0.0001.解:(1)因为102=100,所以100的算术平方根是10,即100=10;(2)=4964,所以4964的算术平方根是78,=78;(3)因为0.012=0.0001,所以0.0001的算术平方根是0.01,即0.0001=0.01.设计意图:在学生掌握了算术平方根的概念和意义之后,教师展示求数的算术平方根的思考过程.在开始阶段,宜让学生适当模仿,熟练后可以直接写出结果.在学生经历求算术平方根的过程中,使学生感受到被开方数越大,对应的算术平方根也就越大.再次体会算术平方根的意义.巩固训练1.求下列各数的算术平方根:(1)0.0016;(2)121;(3)42;解:(1)0.04;(2)11;(3)4;(4)23.2.下列各式分别表示什么意思?你能求出它们的值吗?25;0.81;解:它们分别表示25的算术平方根,0.81的算术平方根,11125的算术平方根,它们的值分别是5,0.9,65.设计意图:这个环节是巩固本课知识点,通过设置两组练习,来检测学生的掌握情况,在这部分的设计中,主要发挥学生作为教学主体的主动性,让学生感受学习的乐趣和成功的喜悦.课堂8分钟.1.教材第41页练习第1,2题,第47页习题6.1第1题.2.七彩作业.第1课时算术平方根算术平方根的概念.规定:0的算术平方根是0.教学反思第2课时用计算器求一个正数的算术平方根课时目标1.掌握比较两个数的算术平方根的大小的方法,提高推理能力.2.会估算一个数的算术平方根的大致范围,掌握估算的方法,形成估算的意识.3.会借助计算器求一个正数的算术平方根,发展应用意识.学习重点用有理数估计无理数的大致范围.学习难点能用有理数估计一个带算术平方根符号的无理数的大致范围.课时活动设计知识回顾求下列各式的值:(1)81=9;(2)2564=58;(3)0.04=0.2;(4)0=0;(5)102=10;(6)(-2)2=2.设计意图:回顾求一个正数的算术平方根,让学生体会有些数开方时可以开得尽,为下面体会有些正数开方开不尽创设一种认知冲突的环境.通过试验引入怎样用两个面积为1dm2的小正方形拼成一个面积为2dm2的大正方形?如图,把两个小正方形沿对角线剪开,将所得的4个直角三角形拼在一起,就得到一个面积为2的大正方形.你知道这个大正方形的边长是多少吗?解:设大正方形的边长为x dm,则x2=2,由算术平方根的意义可知x=2,所以大正方形的边长是2dm.设计意图:在前面学生已经感受有些数能开尽方的基础上,导入新课并感受有些数是开不尽方的.讨论的大小由上面的试验我们认识了2,它的大小是多少呢?它所表示的数有什么特征呢?下面我们讨论2的大小.因为12=1,22=4,12<2<22,所以1<2<2;因为1.42=1.96,1.52=2.25,所以1.4<2<1.5;因为1.412=1.9881,1.422=2.0164,所以1.41<2<1.42;因为1.4142=1.999396,1.4152=2.002225,所以1.414<2<1.415;……如此进行下去,我们发现它的小数位数无限,且小数部分不循环,像这样的数我们称为无限不循环小数.注:这种估算体现了两个方向向中间无限逼近的数学思想,学生第一次接触,不好理解,教师在讲解时速度要放慢,可能需要讲两遍.2=1.41421356…,是一个无限不循环小数,但是很抽象,没有办法全部表示出来它的大小,类似这样的数还有很多,比如3,5,7等,圆周率π也是一个无限不循环小数.设计意图:通过这个环节让学生感受2的大小,利用夹逼法求2的大小,感受2是一个无限不循环小数.用计算器求算术平方根大多数计算器都有键,用它可以求出一个正有理数的算术平方根(或其近似值).例用计算器求下列各式的值:(1)3136;(2)2(精确到0.001).解:(1)依次按键3136=,显示:56.所以3136=56.(2)依次按键2=,显示:1.414213562,这是一个近似值.所以2≈1.414.注:不同品牌的计算器,按键的顺序可能有所不同.练习用计算器求下列各式的值:(1)1369;(2)101.2036;(3)5(精确到0.01).解:(1)依次按键1369=,显示:37.所以1369=37;(2)依次按键101.显示:10.06.所以101.2036=10.06;(3)依次按键5=,显示:2.236067977.所以5≈2.24.设计意图:让学生学会利用计算器求一个正数的算术平方根,进一步感受2,3,5等数是无限不循环小数,我们可以利用计算器求出它们的近似值.另外对于2,3,5这三个常见的无理数的近似值要求学生在了解的基础上能记下来,为今后的学习做一些准备.探索规律(1)利用计算器计算下表中的算术平方根,并将计算结果填在表中,你发现了什么规律?…0.06250.6256.2562.5625625062500………(2)用计算器计算3(结果精确到0.001),并利用你发现的规律写出0.03,300,30000的近似值.你能根据3的值说出30是多少吗?解:(1)表中从左至右依次是0.25,0.791,2.5,7.91,25,79.1,250.从运算结果可以发现,被开方数扩大到原来的100倍或缩小到原来的1100时,它的算术平方根就扩大到原来的10110.(2)3≈1.732,0.03≈0.1732,300=17.32,30000≈173.2,由3的值不能求出30的值,因为规律是被开方数扩大到原来的100倍或缩小到原来的1100时,它的算术平方根才扩大到原来的10倍或缩小到原来的110,而3到30是扩大为原来的是10倍,所以不能由此规律求出.学生独立完成.设计意图:让学生了解被开方数小数点与算术平方根的小数点的移动规律,并能运用规律求算术平方根.课堂8分钟.1.教材第44页练习第2题,第47,48页习题6.1第5,6,7题.2.七彩作业.第2课时用计算器求一个正数的算术平方根1.1.414<2<1.415.2.用计算器求算术平方根.3.探究被开方数小数点与算术平方根小数点的移动规律.教学反思第3课时平方根课时目标1.了解平方根的概念,能用符号正确地表示一个数的平方根,建立符号意识.2.理解开平方运算和平方运算之间的互逆关系,明确平方根和算术平方根之间的联系和区别,提升推理能力.3.经历从具体到抽象、从特殊到一般的过程,提高抽象能力.学习重点平方根的概念和求一个数的平方根.学习难点平方根和算术平方根的联系与区别.课时活动设计问题引入,导入概念如果一个数的平方等于9,这个数是多少?学生思考并讨论,使学生明白这样的数有两个,它们分别是3和-3.受前面知识的影响学生可能不易想到-3这个数,这时可提醒学生,这里的这个数可以是负数.注意(-3)2=9中括号的作用.又如:若x2=425,则x等于多少呢?解:若x2=425,则x=25或-25.给出平方根的概念:一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根.这就是说,如果x2=a,那么x叫做a的平方根.求一个数a的平方根的运算,叫做开平方.例如:±3的平方等于9,9的平方根是±3,所以平方与开平方互为逆运算.设计意图:这个思考题是引入平方根概念的切入点,要让学生有充分的时间进行思考和体验在等式中求出x的值,为填表(见教材P45)做准备.观察与思考观察教材第45页中描述平方与开平方运算过程的两个图,如下图,思考这两种运算之间存在什么关系?设计意图:让学生体验平方和开平方的互逆关系,并根据这个关系说出1,4,9的平方根.注意:这阶段主要是让学生建立平方根的概念,先不引入平方根的符号,给出的数是完全平方数.典例精讲例1求下列各数的平方根:(1)100;(2)916;(3)0.25.教师规范书写格式.解:(1)因为(±10)2=100,所以100的平方根是±10;(2)因为±34=916,所以916的平方根是±34;(3)因为(±0.5)2=0.25,所以0.25的平方根是±0.5.设计意图:给学生充足的时间和空间,理解和感知平方根的概念.通过小组讨论、交流,释疑解难,经历从具体到抽象、从特殊到一般、再从一般到特殊的过程,完整解读平方根的概念.探究平方根的性质1.平方根的性质按照平方根的概念,请同学们思考并讨论下列问题:正数的平方根有什么特点?0的平方根是多少?负数有平方根吗?建议:可引导学生通过观察x2=a中的a和x的取值范围和取值个数得出.注:学生刚开始接触平方根时,有两点可能不太习惯,一个是正数有两个平方根,即正数进行开平方运算有两个结果,这与学生过去遇到的运算结果唯一的情况有所不同,另一个是负数没有平方根,即负数不能进行开平方运算,这种某数不能进行某种运算的情况在有理数的加、减、乘、除、乘方五种运算中一般不会遇到(0作除数的情况除外).教学时,可以通过较多实例说明这两点,并在本节课以后的教学中继续强化这两点.设计意图:在教学中,平方根性质由学生交流、讨论、比较、归纳得出,经历从具体到抽象、从特殊到一般的过程.由于分正数、0、负数三种情况总结,也潜移默化地渗透了分类讨论的数学思想,培养了思维的严谨性.2.平方根的表示方法在学生了解平方根的性质的基础上,引导学生把正数a的算术平方根的表示方法,迁移到平方根的表示方法上.学生已经知道,正数a的平方根有两个,它们互为相反数,其中正的平方根就是正数a的算术平方根,于是就有正数a的平方根可以用符号±来表示,并且懂得a 的非负性的理由.设计意图:在学生了解正数a的算术平方根的表示基础上,借助平方根的性质,用数学符号表示正数a的平方根,并理解中a的非负性,讨论,±的区别与联系,体会数学符号在数学解决问题方面的优越性,进一步发展学生数学符号感.典例精讲例2求下列各式的值:(1)36;(2)-0.81;解:(1)因为62=36,所以36=6;(2)因为0.92=0.81,所以-0.81=-0.9;(3)=499,所以=±73.学生解答,教师巡视,关注学生语言规范的表述,同时让学生知道一个数的算术平方根就是这个数的正的平方根.设计意图:要让学生明白各式所表示的意义;根据平方关系和平方根概念的格式书写解题格式.平方根和算术平方根的概念是本章重点内容,两者既有区别又有联系.同时,进一步理解平方根的表示,加深对平方根概念的理解,培养学生用规范语言和数学符号解决问题的能力.巩固训练1.精心选一选.(1)以下叙述中正确的是(B)A.-16的算术平方根是4B.56是2536的一个平方根C.-1.2是(-1.2)2的算术平方根D.0.9的平方根是0.316(C)A.±94B.94C.±32D.322.认真填一填.(1)121的平方根是±11,5是25的一个平方根.(2)若一个正数的平方根是2a-2和-a+2,则a=0,这个正数为4.3.仔细想一想.已知2a-1的平方根是±1,3a+b-1的平方根是±4,求2a+b的平方根.解:∵2a-1的平方根是±1,3a+b-1的平方根是±4,∴2a-1=1,3a+b-1=16,解得a=1,b=14.∴2a+b=16.∴2a+b的平方根为±4.设计意图:这个环节是巩固本课知识点,通过设置一组由浅入深的练习,来检测学生的掌握情况,在这部分的设计中,主要是发挥学生作为教学主体的主动性,让学生感受学习的乐趣和成功的喜悦.课堂8分钟.1.教材第47,48页习题6.1第3,4,8,10题.2.七彩作业.第3课时平方根1.平方根的概念.2.平方根的性质.教学反思。

人教版七年级数学下册6.1.平方根教案

人教版七年级数学下册6.1.平方根教案

《平方根》教学设计一、教材分析:1 教材的地位和作用“平方根”是人教版初中数学七年级下册“实数”的第一节内容。

由于实际计算中需要引入无理数,使数的范围从有理数扩充到了实数,完成了初中阶段数的扩展。

运算方面,在乘方的基础上以引入了开方运算,使代数运算得以完善。

因此,本节课是今后学习根式运算、方程、函数等知识的重要基础。

2 教学目标:(依据教材和课程标准确定)(1)知识与技能目标:使学生理解算术平方根、平方根的概念,会用根号表示一个数的算术平方根和平方根。

了解乘方与开方是互逆的运算。

会利用这个互逆运算关系求某些非负数的算术平方根和平方根。

培养学生的类比能力,提高学生的解题能力和归纳总结能力。

(2)方法与过程目标:让学生在乘方运算及其逆运算及平方根性质法则的比较中,主动发现问题,应用数学思想方法分析讨论,解决问题。

在练习训练中学会解题方法。

(3)情感态度与价值观目标:使学生体验数学来源于实践,又服务于实践的思想。

对学生进行爱国主义的思想教育。

3 教学重点、难点与关键:(1)重点:平方根的概念。

(2)难点:平方根的概念和表示。

(3)关键:求平方根(即开平方)运算要靠它的逆运算――平方来进行。

二、教学方法和手段:采用启发式教学法及讲练结合的教学方式,创设问题情景,层层设疑,引导学生主动思考,用实例和生活语言激发学生学习兴趣,调节学习情绪。

同时,利用媒体形象直观地展示引例、例题及练习。

帮助学生理解概念,活跃课堂气氛,增大教学密度,更好地揭示问题的本质,突破教学难点。

三、学法指导:学生通过动手、动口、动脑等活动,主动探索,发现问题;互动合作、解决问题;归纳概括、形成能力。

增强数学应用意识、协作学习意识,养成及时归纳总结的良好学习习惯,使学生的主体地位得以体现。

四、教学程序:(一) 课前热身:1.判断下列各数有没有算术平方根,如果有,请说出它的算术平方根。

(1)16; (2) 0 ; (3) -3 ; (4)(-10)2;(5) 0.25;2.求下列各式的值: (1) 25 (2)1214 (3) 1691 (4)26)( (二)勇于挑战:如果一个数的平方等于9,那么这个数是( ).32 = 9 ,且 (-3)2 = 9,例:3和- 3是9的平方根,简记为:±3是9的平方根。

人教版七下第六章6.1.2平方根优秀教学案例

人教版七下第六章6.1.2平方根优秀教学案例
1.总结平方根的概念和性质:对本节课的内容进行总结,强调平方根的概念和性质的重要性。
2.总结平方根的计算方法:讲解如何判断一个数的平方根,并熟练运用平方根的性质进行计算。
3.总结平方根与乘方的关系:讲解平方根与乘方的关系,让学生理解平方根的概念与乘方的运算规律。
(五)作业小结
1.布置作业:布置相关的练习题,让学生巩固所学知识,能够熟练运用平方根解决实际问题。
2.学生在小组讨论中的表现,能否积极参与,提出自己的想法和观点。
3.学生对数学学科的兴趣和好奇心,能否主动学习平方根知识。
三、教学策略
(一)情景创设
1.生活情境导入:以实际生活中的问题为导入,激发学生的学习兴趣,引导学生主动探究平方根的概念和性质。例如,可以通过讲解一个长方形的面积不变,求长和宽的问题,引导学生思考并探讨平方根的概念。
(二)讲授新知
1.平方根的概念:讲解平方根的定义,让学生理解平方根的概念和性质。
2.平方根的性质:讲解平方根的性质,例如:一个正数的平方根有两个,一个正数和一个负数;0的平方根只有一个;负数没有平方根等。
3.平方根的计算:讲解如何判断一个数的平方根,并熟练运用平方根的性质进行计算。
4.平方根与乘方的关系:讲解平方根与乘方的关系,让学生理解平方根的概念与乘方的运算规律。
3.教育学生要有耐心和毅力,培养学生在面对困难时坚持不懈的精神。
三、教学重点与难点
1.教学重点:平方根的概念,平方根的性质,平方根在实际问题中的应用。
2.教学难点:平方根的概念的理解,平方根的性质的运用。
四、教学过程
1.导入:通过生活情境的导入,激发学生的学习兴趣,引导学生主动探究平方根的概念和性质。
2.问题解答:引导学生通过小组讨论、思考和回答问题,培养学生的合作意识和团队精神。在解答问题的过程中,教师要给予学生充分的指导和支持,鼓励学生提出不同的观点和思路,培养学生的创新思维能力。

《平方根》说课稿(精选6篇)

《平方根》说课稿(精选6篇)

《平方根》说课稿(精选6篇)《平方根》篇1一、教材分析(一)教材的地位与作用本节内容是人教版七年级下册第六章第一节的第二课时,在此之前,刚学过平方根,而平方根这一节内容不仅是为今后学习二次根式、一元二次方程准备知识,而且它完成了数的范围的扩大,从有理数扩充到了实数,同时让代数运算得以了完善,在乘方的基础上引入了开平方运算,因此学好本节知识是学好后续知识的主要纽带,起着承前启后的作用。

(二)目标(1)知识技能使学生理解平方根的概念,了解平方与开平方的关系。

学会平方根的表示法和求非负数的平方根掌握平方根性质。

(2)数学思考通过用类比的方法探寻出平方根的运算及表示方法,并能自我总结出平方根与平方根的异同。

(3)解决问题通过学平方根,培养学生理解概念并用定义解题的能力。

(4)情感态度①发展学生的求同存异思维,使他们能在复杂的环境中明辨是非,并做出正确的处理。

②通过探究活动,增强学生的合作意识,提高学习热情。

(三)教材的重点与难点本节课的重点:平方根的概念及性质。

本节课的教学难点:求一个数的平方根及平方根和平方根的联系与区别。

二、教法学法教法设想采用引导探索法。

采用递进练习法。

用类比及引导探索法由浅入深,由特殊到一般地提出问题,引导学生自主探索,合作交流得出平方根的定义,将定义的应用融入到探究活动中。

学习方法观察猜测交流讨论分析推理归纳总结三、教学过程(一)创设情境导入新知(1)为了趣味接力比赛,要在运动场上圈出一个面积为100平方米的.正方形场地,这个正方形场地的边长为多少?(2)学校要举行美术作品比赛,小明很高兴,他想裁出一块面积为50平方厘米的正方形画布,画上自己的得意之作参比赛,这块正方形画布的边长应取多少厘米?采用多媒体播放问题情境,前一个问题很好直接回答,而第二个问题就会使学生产生思维上的困惑,从而引发学生的思考,导入平方根。

(二)启发诱导探索新知概念:(类比平方根的定义)一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根从学生熟知的乘方运算入手,让其积极参与数学创造活动,初步形成概念。

人教版七年级数学下册《6.1算术平方根》一等奖优秀教学设计

人教版七年级数学下册《6.1算术平方根》一等奖优秀教学设计

人教版义务教育课程标准实验教科书七年级下册《6.1平方根----算术平方根》教学设计一、教材分析1、地位作用:《平方根》是人教版七年级下册第六章第一节内容,隶属于“数与代数”领域,重点结合实际问题情景认识算术平方根、平方根的意义,能够对算术平方根进行符号表示,能够利用概念的本质探获求算术平方根、平方根的方法,理解算术平方根、平方根的性质。

本节共三课时,本课为第一课时,从学生熟悉的正方形面积与边长之间的关系入手提出已知面积探求边长的问题,通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的。

通过对这一节课的学习,既可以让学生了解算术平方根的概念,会用符号表示正数的算术平方根,并了解算术平方根的非负性,又可以渗透化归思想(将求算术平方根的运算转化为求幂底数的运算)将为学生以后学习平方根奠定基础;同时这一节也是联系数学与生活的桥梁。

2、教学目标:(1)了解算术平方根的概念。

(2)会求一些数的算术平方根,并用算术平方根符号表示。

3、教学重难点:教学重点:算术平方根的概念和求法教学难点:算术平方根的意义突破难点的方法:力求从学生实际出发,以他们熟悉的问题情境引入学习主题,在关注现实生活的同时,更加关注数学知识内部的挑战性。

二、教学准备:多媒体课件、导学案2、若=-2)3(( )A-3 B 3 C3 D 3- 三、解答下列各题1、 求下列各数的算术平方根: (1)100 (2)6449(3)0.0001 (4)10000(5)2)94((6)1.44 2、求下列各式的算术平方根254,412,)25(,812-3、下列式子表示什么意义?你能求出它们的值更上一层楼!【课外探究】怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?(2)独立完成问题三,关注并评价同伴表现。

两人板演,集体评价,关注注意事项。

四、 反思小结,布置作业本节课你学习了哪些知识?在探索知识的过程中,你用了哪些方法?对你今后的学习有什么帮助?布置作业,课后延伸 1、必做题:(1)阅读教材相关内容 (2)习题13.12、选做题:《一尤佳学案》第35页按要求,进行自主小结,注意倾听同伴意见,反思梳整存在问题。

七年级下册数学教案《平方根》

七年级下册数学教案《平方根》

教学计划:《平方根》一、教学目标1.知识与技能:学生能够理解平方根的概念,掌握平方根的性质,学会求一个非负实数的平方根,并能区分算术平方根与平方根的区别。

2.过程与方法:通过观察、分析、归纳等数学活动,培养学生的逻辑思维能力和数学运算能力,掌握求解平方根的方法。

3.情感态度与价值观:激发学生对数学的兴趣,培养严谨的数学态度和探索数学奥秘的精神,同时增强学生的自信心和成就感。

二、教学重点和难点●教学重点:平方根的概念、性质及求法。

●教学难点:理解平方根与算术平方根的区别,掌握求解非完全平方数的平方根的估算方法。

三、教学过程1. 导入新课(约5分钟)●生活实例引入:通过提问“如何测量一个正方形花坛的边长,如果已知其面积?”引出平方根的概念。

●旧知回顾:复习平方运算,引导学生思考平方的逆运算,即平方根。

●明确目标:介绍本节课的学习内容,即平方根的概念、性质及求法。

2. 讲授新知(约15分钟)●定义讲解:明确平方根的定义,即若一个数的平方等于a(a为非负实数),则这个数叫做a的平方根。

●性质介绍:讲解平方根的性质,包括正数的平方根有两个(互为相反数),零的平方根是零,负数没有实数平方根等。

●算术平方根:特别指出算术平方根是非负数的平方根中正的那个,并强调在实际应用中常指算术平方根。

3. 求解方法(约10分钟)●完全平方数:直接开方法求解完全平方数的平方根,如√16=4。

●非完全平方数:介绍估算方法,如利用夹逼法、二分法或计算器求解,强调估算的近似性和精度控制。

●例题示范:通过例题展示求解平方根的过程,包括完全平方数和非完全平方数的情况,引导学生理解并掌握求解方法。

4. 巩固练习(约15分钟)●基础练习:设计一系列基础练习题,让学生独立求解平方根,包括完全平方数和非完全平方数的情况。

●小组讨论:分组讨论求解平方根时遇到的问题和解决方法,分享解题经验和技巧。

●教师总结:对学生的练习情况进行总结,强调解题思路和注意事项,特别是非完全平方数平方根的估算方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.1平方根(第1课时)
教学目标:
1.知识与技能:会求某些正数(完全平方数)的算术平方根并会用符号表示.
2.过程与方法:经历算术平方根概念的形成过程,了解算术平方根的概念.
3.情感、价值观:通过师生活动、学生自我探究, 培养学生观察,比较,归纳及运算能力
教学重点:会求某些正数(完全平方数)的算术平方根并会用符号表示。

教学难点:对算术平方根概念的理解。

教学准备:写有数字的卡片和PPT课件
教学过程:
一、创设情境、引入新课
请看下面的例子.
学校要举行美术作品比赛,小东想裁出一块面积为252
dm的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少分米?
(师演示一张面积为252
dm的纸)
【从学生实际生活出发,引导学生发现生活中的数学问题,激发学生探究的欲望,培养数学研究的兴趣】
二、自主学习、合作探究
(一)谁来说这块正方形画布的边长应取多少分米?你是怎么算出来的?
答:因为52=25(板书:因为52=25),所以这个正方形画布的边长应取5dm(板书:所以边长=5dm).
(二)(完成下表)
这个实例中的问题、填表中的问题实际上是一个问题,什么问题?它们都是已知正方形面积求边长的问题.通过解决这个问题,我们就有了算术平方根的概念. 正数3的平方等于9,我们把正数3叫做9的算术平方根.
正数4的平方等于16,我们把正数4叫做16的算术平方根.
说说6和36这两个数?
……(多让几位同学说,学生说得不正确的地方教师随即纠正)
说说1和1这两个数?
同桌之间互相说一说5和25这两个数.(小组合作,互相提问)
说了这么多,同学们大概已经知道了算术平方根的意思.那么什么是算术平方根呢?.就是我们今天所要学习的主要概念:
(三)算数平方根的定义:
如果一个正数的平方等于a ,那么这个正数叫做a 的算术平方根
【师让学生拿出提前准备好这样的10张卡片,一面写1-10,另一面写1-10的平方.生任意抽一张卡片,让其他学生回答平方或算术平方根。


如果一个正数的平方等于a ,那么这个正数叫做a 的算术平方根.为了书写方便,我们把a
a
.
(四)概念练习:
1. 我会填:
(1) a 的算术平方根(a ≥0)表示为_______.
(2) 因为32 = 9, 则9的____________是3,
表示为 ______. (3)0的算术平方根是_____,表示为________.
2.判断题:
(1)5是25的算术平方根; ( )
(2)36的算术平方根是 -6 ; ( )
(3)0的算术平方根是0; ( )
(4)0.01是0.1的算术平方根 ( ) 三、例题学习:
例1 求下列各数的算术平方根:
(1)100 (2) 64
49 (3)0.0001 解:(1)因为 102 =100,所以100的算术平方根为10,即 100 =10。

根号被开方数
a
9
(2)因为( 87 )2 = 6449 ,所以6449 的算术平方根是87 ,即 4964=8
7 (3)因为 0.012 =0.0001,所以0.0001的算术平方根为0.01,
即 0001.0 ==0.01。

在本例题的学习中注意规范学生的解题格式
思考:从例1可以看出:被开方数的大小与对应的算术平方根的大小之间有什么关系呢?
四、课堂练习:
1.求下列各数的算数平方根:(课本41页第1题)
(1)81 ; (2)0.0025; (3)3²
2.完成课本第41页 练习 第2题
五、巩固与提高:
1.填空:
(1)因为_____2=64,所以64的算术平方根是______=______;
(2)因为_____2=0.25,所以0.25的算术平方根是____________;
(3)因为_____2=1649,所以1649的算术平方根是____________. 2.求下列各式的值:
=______;______;______;
______;=______;=______. 3.根据112=121,122=144,132=169,142=196,152=225,162=256,172=289,182=324,192=361,填空并记住下列各式:
_______,_______,_______,
_______,_______,_______,
_______,_______,_______
4.辨析题:小欧认为,因为(-4)2=16,所以16的算术平方根是-4.你认为小欧的看法对吗?为什么?
六、探究:
1、被开方数a 可以取任何数吗?(被开方数a 是非负数,即a ≥0)
2
练习:
1.完成课本47页 习题6.1 第2题
2.下列各式中x 取什么数有意义?
(1)x -
七.谈谈本节课的收获:
(1)知道什么叫算术平方根及表示方法
(2)求一个正数的算术平方根的方法
(3)算术平方根成立的条件
(4)体会了合作、互帮、互助
板书设计:
13.1平方根
算术平方根的概念
例题讲解
课外作业:
一、填空:
(1)3的算术平方根是 ; 2)3
2(-的算术平方根是 ; (2= , 9= ; 971= ; 2)2.0(-= 。

二、求下列各数的算数平方根:
(1)121 (2)0.0049 (3)
8164 (4)4101 根号被开方数
a (2。

相关文档
最新文档