22整式的加减(第1课时)课件
合集下载
整式的加减(第一课时)课件
基础练习题
总结词:巩固基础
详细描述:基础练习题主要针对整式加减法的基本规则和概念,包括同类项的合并、系数和字母的加 减等。这些题目难度较低,适合初学者熟悉基本操作。
进阶练习题
总结词:提升技能
详细描述:进阶练习题在基础练习题的基础上增加难度,涉 及更复杂的整式加减运算,如多项式的加减、去括号等。这 些题目旨在提高学生的运算能力和对整式加减法的理解。
05
06
解:$3a^2 - 2a + a^2 = (3 + 1)a^2 2a = 4a^2 - 2a$
整式的加减运算技巧
技巧一
合并同类项时,系数直接相加减 ,字母和字母的指数不变
例如
$2x + 3x = 5x$,$3a^2 2a^2 = a^2$。
技巧二
去括号时,注意符号的变化
例如
$3(x + y) = 3x + 3y$,$- (x y) = -x + y$。
整式的加减(第一课时 )ppt课件
• 整式的概念 • 整式的加减运算 • 整式的混合运算 • 整式的加减运算练习
目录
01
整式的概念
什么是整式
整式是由常数、变数、常数乘变数、常数除变数以及括号等符号组成的数学表达式 。
整式中,变数的次数可以是零次、一次或多次。
整式中,变数的指数可以是正整数、负整数或零。
步骤三:合并同类项
整式的加减运算步骤
将带有相同字母的项的系数相加或相减。 步骤四:化简
将整式化简到最简形式。
整式的加减运算实例
例1:
01
02
计算:$2x - 3x + 4x$
解:$2x - 3x + 4x = (2 - 3 + 4)x = 3x$
整式的加减(第1课时 合并同类项) 课件 2024-2025学年北师大版初中数学七年级上册
) = 7;
+
− 1 = 32 − 2 − 1.
学以致用
下列合并同类项对吗?不对的,说明理由.
√
(4)4x2y-5xy2=-x2y
×
(2)3a+2b=5ab ×
(5)3x2+2x3=5x5
×
(3)5y2-3y2=2
(6)a+a-5a= -3a
√
(1)a+a=2a
×
试一试
例 合并下式中的同类项.
100t+120×2.1t
100t+252t
如何化简100t+252t?
探 究 新 知
根据分配律可得
1.100 × 2
+ 252 ×
2 =
(100 + 252)×2 = 352 ×2
2.100 ×( -2 )+ 252 ×( -2 )= (100 + 252)×( -2 )= 352 × ( -2 )
(3) 32-42=( -1 )2.
这些运算有什么共同特点,
你能从中得出什么规律?
都含有相同的字母 ,并且相同字母的指数也相同
像3ab2与-4ab2 这样,所含字母相同,并且相同字母的
指数也相同的项叫做同类项.几个常数项也是同类项.
探 究 新 知
2
2
4
x
2
x
7
3
x
8
x
2
填空:
(一加两不变)
步骤
(2)字母连同它的指数不变.
ห้องสมุดไป่ตู้
一找、二移、三并、四计算
并
找
移
加法交换律
人教版七年级数学上册教学课件-2.2整式的加减 第1课时 - 合并同类项 品质课件PPT
人教版七(上)
整 式的 加减ຫໍສະໝຸດ 人教版七(上)单 整式 项 式
多 项 式
整式的加减
第1课时 : 合并同类项
1、填空
①3kg
+2kg
= 5kg
;
②3m ③3kg
+2m +2m
= 5m
;
= 不能计算 .
为什么③不能运算? 因为它们不是同一类事物,不能进行加减 那么怎样的式子是同一类呢?
一、学习目标
1、判断同类项 2、合并同类项
①3kg +2kg = 5kg ; ②3m +2m = 5m ; ③3kg +2m =
填一填:
因为同类项 可以合并
(1). 100t-252t=( 100-252 )t =( -152 )t (2). 3 x2 + 2x2 =( 3 + 2 ) x2 =( 5 ) x2
(3). 3ab2 - 4 ab2 =( 3 - 4 ) ab2 =(-1) ab2
一找
二移
三合并
方法与技巧
1找
x3 x2 y xy2 3x2 y 4xy2 3y2
2 移( x2 y 3x2 y) +(xy2 4xy2 ) + x3 + 3y2
3 合并 -4x2 y 5xy2 x3 3y2
x3 x2 y xy2 3x2 y 4xy2 3y2
1
解:原式=(-x2 y 3x2 y) (xy2 4xy2 ) x3 3y2
8x 2 y和-x 2 y
mn2和7mn2和0.4mn2
5a和9a
3 和0和- 5
8
9
xy2 和2 y2 x 3
概念学习:
整 式的 加减ຫໍສະໝຸດ 人教版七(上)单 整式 项 式
多 项 式
整式的加减
第1课时 : 合并同类项
1、填空
①3kg
+2kg
= 5kg
;
②3m ③3kg
+2m +2m
= 5m
;
= 不能计算 .
为什么③不能运算? 因为它们不是同一类事物,不能进行加减 那么怎样的式子是同一类呢?
一、学习目标
1、判断同类项 2、合并同类项
①3kg +2kg = 5kg ; ②3m +2m = 5m ; ③3kg +2m =
填一填:
因为同类项 可以合并
(1). 100t-252t=( 100-252 )t =( -152 )t (2). 3 x2 + 2x2 =( 3 + 2 ) x2 =( 5 ) x2
(3). 3ab2 - 4 ab2 =( 3 - 4 ) ab2 =(-1) ab2
一找
二移
三合并
方法与技巧
1找
x3 x2 y xy2 3x2 y 4xy2 3y2
2 移( x2 y 3x2 y) +(xy2 4xy2 ) + x3 + 3y2
3 合并 -4x2 y 5xy2 x3 3y2
x3 x2 y xy2 3x2 y 4xy2 3y2
1
解:原式=(-x2 y 3x2 y) (xy2 4xy2 ) x3 3y2
8x 2 y和-x 2 y
mn2和7mn2和0.4mn2
5a和9a
3 和0和- 5
8
9
xy2 和2 y2 x 3
概念学习:
人教版数学七年级上册整式的加减(第1课时)课件
14.三峡水库的水位第一天连续降落a小时,每小时平均降落3 cm, 第二天连续上升2小时,每小时平均上升a cm,第三天水位又降落a cm,则这三天三峡水库的水位总的变化情况是_降__落__2_a_c_m__.
15.下列化简:①5xy-x=5y;②5ab-5ba=0;③2a2+3a2=5a4; ④-5m2n+8nm2=3m2n.其中正确的有( B )
-2
的值,其中x=
1;
2
解:(1) 2x2-5x+x2+4x-3x2 -2 = (2+1-3) x2 + (-5+4) x-2 = -x-2.
当
x
=
12时,原式=
−
1 2
-
2=
-
ห้องสมุดไป่ตู้
52.
例2 (2)求多项式 3a+abc - 13c2 - 3a + 13c2 的值,其中
a=- 16,b=2,c= -3. 解: 3a+abc - 13c2 - 3a + 13c2
解:原式=(3-1)a2+(-2+3)a+(-1-5)=2a2+a-6. (3)-5m2n+4mn2-2mn+6m2n+3mn.
解:原式=(-5+6)m2n+4mn2+(-2+3)mn=m2n+4mn2+mn.
11.已知下列式子:6ab,3xy2,12 ab,2a,-5ab,5x2y. (1)写出这些式子中的同类项; (2)求(1)中同类项的和.
A.0
B.-1 010m
C.m D.1 010m
19.若xy<0,y>0,则化简5|x|+3x= __-__2_x___.
20 .1 已 知 多 项 式 4x2 - 3mx + 2 + m的 值 与 m 的 大 小 无 关 , 则 x 的 值 为3 .
初中数学《整式的加减》课件PPT
3 化简5(2x-3)+4(3-2x)的结果为( A ) A.2x-3 B.2x+9 C.8x-3 D.18x-3
知1-练
4 若一个多项式减去-4a等于3a2-2a-1,则这个多 项式是( A ) A.3a2-6a-1 B.5a2-1 C.3a2+2a-1 D.3a2+6a-1
5 一个单项式减去x2-y2等于x2+y2,则这个单项式 是( C ) A.2y2 B.-2y2 C.2x2 D.-2x2
知1-讲
解法1: 小红买笔记本和圆珠笔共花费(3x+2y)元,小明买 笔记本和圆珠笔共花费(4x+3y)元. 小红和小明一共花费(单位:元) (3x+2y) + (4x+3y) = 3x+2y+4x+3y = 7x+5y.
知1-讲
解法2: 小红和小明买笔记本共花费(3x+4x)元,买圆珠笔 共花费(2y+3y)元. 小红和小明一共花费(单位:元) (3x+4x) + (2y+3y) = 7x+5y.
知1-讲
解:小纸盒的表面积是(2ab+2bc+2ca)cm2, 大纸盒的表面积是(6ab+8bc+6ca) cm2.
(1)做这两个纸盒共用料(单位:cm2)
(2ab+2bc+2ca)+ (6ab+8bc+6ca)
=2ab+2bc+2ca+ 6ab+8bc+6ca
=8ab +10bc+8ca. (2)做大纸盒比做小纸盒多用料(单位: cm2)
(来自教材)
总结
知1-讲
审清题意,在具体情境中用代数式表示数量关 系,根据整式的加减的运算法则进行化简.
人教版七年级数学上册《整式的加减》课件(共12张PPT)
2、计算:(1)x-(-y -z+1)=X+y +z -(12 ) m+(-n+qm)=-n+q ; ( 3 ) a - ( b+c-3)= a-b-c;+3( 4 ) x+(5-3y)= x+5-3y 。
3、多项式 x-5xy2 与-3x+xy2 的和是 -2x-4xy2 ,它们的差 是 4x-6xy2 ,多项式 -5a+4ab3 减去一个多项 后是 2a ,则 这个多项式是 -7a+4ab3 。
整式的加减
知识回顾
用字母表示数
整
整 单项式: 系数、次数 、常数项
的
同类项: 定义、“两相同、两无关”
练习(二)
加
合并同类项: 定义、法则、步骤
去括号: 法 则 减
整式的加减: 步 骤
练习(三)
知识回顾
用字母表示数
整
整 单项式: 系数、次数 练习(一)
式
式 多项式: 项、次数、常数项
1 1
n n1
。
.....
2006 (2)计算:1 122 133 1420 12 00 6 02007 7 .
2、小丽做一道数学题:“已知两个多项式A,B,B 为4x2-5x-6,求A+B.”,小丽把A+B看成A-B计 算结果是-7x2+10x+12.根据以上信息,你能求 出A+B的结果吗?
不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话,另 一眼睛看到纸的背面。2022年4月11日星期一2022/4/112022/4/112022/4/11 书籍是屹立在时间的汪洋大海中的灯塔。2022年4月2022/4/112022/4/112022/4/114/11/2022 正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/4/112022/4/11April 11, 2022 书籍是屹立在时间的汪洋大海中的灯塔。
3、多项式 x-5xy2 与-3x+xy2 的和是 -2x-4xy2 ,它们的差 是 4x-6xy2 ,多项式 -5a+4ab3 减去一个多项 后是 2a ,则 这个多项式是 -7a+4ab3 。
整式的加减
知识回顾
用字母表示数
整
整 单项式: 系数、次数 、常数项
的
同类项: 定义、“两相同、两无关”
练习(二)
加
合并同类项: 定义、法则、步骤
去括号: 法 则 减
整式的加减: 步 骤
练习(三)
知识回顾
用字母表示数
整
整 单项式: 系数、次数 练习(一)
式
式 多项式: 项、次数、常数项
1 1
n n1
。
.....
2006 (2)计算:1 122 133 1420 12 00 6 02007 7 .
2、小丽做一道数学题:“已知两个多项式A,B,B 为4x2-5x-6,求A+B.”,小丽把A+B看成A-B计 算结果是-7x2+10x+12.根据以上信息,你能求 出A+B的结果吗?
不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话,另 一眼睛看到纸的背面。2022年4月11日星期一2022/4/112022/4/112022/4/11 书籍是屹立在时间的汪洋大海中的灯塔。2022年4月2022/4/112022/4/112022/4/114/11/2022 正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/4/112022/4/11April 11, 2022 书籍是屹立在时间的汪洋大海中的灯塔。
2.2整式的加减(第1课时)课件(人教)
②交换律 =4x2 - 8x2 + 2x + 3x + 7 - 2 ④分配律 =(4- 8)x2 + (2 + 3)x
2 + 5 x +5 ⑤合并: = -4 x = 5 5 x -4 A.系数相加减; B.字母和字母的指数不变。
③结合律 =( 4x2 - 8x2)+ (2x + 3x)+ (7 – 2) + (7 – 2)
1 5
随堂练习
(二)合并同类项:
。
1.定义: 把 多项式中的同类项 合并成一项
(1)
(2)
(3)
100t -252t 3x2 +2x2 3ab2 -4ab2
= = =
-152t; 5x2; -ab2.
2.法则要点:
含有多个不同的同 类项的多项式如何 合并呢?
注意符号
①找
例:4x2 + 2x + 7 + 3x - 8x2 - 2
上述运算有什么共同特点,你能从中得出什么规律? 2 2
(一) 同类项 1. 所含字母相同; 2. 相同字母的指数也分别相同; (满足这样条件)的项,叫同类项。 注意:几个常数项也是同类项。
1、下列各组是同类项的是( D ) A 2x3与3x2 B 12ax与8bx C x4与a4 D π与-3 常数项也是同类项 2、5x2y 和42ymxn是同类项,则 1 2 。 m=______, n=______
瞧一瞧:
×
×
√ √
1.合并下列各式的同类项 : 1 2 (1) xy xy 5 (2) 3x 2 y 2 x 2 y 3xy 2 2 xy 2
2
(3)4a 2 3b 2 2ab 4a 2 4b 2
《整式的加减法》课件
除法运算的技巧
在整式除法中,需要注意符号和 系数的处理,以及利用公因式进 行化简。
整式的加减乘除混合运算
混合运算法则
整式的加减乘除混合运算遵循先 乘除后加减的顺序,即先进行乘 法和除法运算,再进行加法和减
法运算。
混合运算的顺序
在整式的加减乘除混合运算中,需 要注意运算的顺序,按照先乘除后 加减的顺序进行计算。
《整式的加减法》 ppt课件
REPORTING
• 整式的基本概念 • 整式的加减运算 • 整式的混合运算 • 整式加减法的应用 • 练习与巩固
目录
PART 01
整式的基本概念
REPORTING
什么是整式
整式是由常数、变数 、常数乘积组成的代 数式。
整式不包含分式和根 式。
整式中,变数的次数 都是非负整数。
证明代数恒等式
整式加减法可以用于证明一些代数恒等式,例如平方差公式、完全 平方公式等。
在日常生活中的应用
购物计算
01
在购物时,整式加减法可以用于计算找零、打折、优惠等活动
中的金额计算。
日常预算
02
整式加减法可以用于日常生活中的预算计算,例如计算每月的
水电煤气费、电话费、交通费等。
数据分析
03
整式加减法可以用于数据分析中的数据处理和整理,例如统计
数据、计算平均数、中位数、众数等。
PART 05
练习与巩固
REPORTING
基础练习题
总结词
帮助学生掌握整式加减法的基本概念 和运算规则。
详细描述
设计一系列简单的整式加减法题目, 包括单项式与单项式相加减、多项式 与多项式相加减等基础题型,供学生 练习。
提高练习题
在整式除法中,需要注意符号和 系数的处理,以及利用公因式进 行化简。
整式的加减乘除混合运算
混合运算法则
整式的加减乘除混合运算遵循先 乘除后加减的顺序,即先进行乘 法和除法运算,再进行加法和减
法运算。
混合运算的顺序
在整式的加减乘除混合运算中,需 要注意运算的顺序,按照先乘除后 加减的顺序进行计算。
《整式的加减法》 ppt课件
REPORTING
• 整式的基本概念 • 整式的加减运算 • 整式的混合运算 • 整式加减法的应用 • 练习与巩固
目录
PART 01
整式的基本概念
REPORTING
什么是整式
整式是由常数、变数 、常数乘积组成的代 数式。
整式不包含分式和根 式。
整式中,变数的次数 都是非负整数。
证明代数恒等式
整式加减法可以用于证明一些代数恒等式,例如平方差公式、完全 平方公式等。
在日常生活中的应用
购物计算
01
在购物时,整式加减法可以用于计算找零、打折、优惠等活动
中的金额计算。
日常预算
02
整式加减法可以用于日常生活中的预算计算,例如计算每月的
水电煤气费、电话费、交通费等。
数据分析
03
整式加减法可以用于数据分析中的数据处理和整理,例如统计
数据、计算平均数、中位数、众数等。
PART 05
练习与巩固
REPORTING
基础练习题
总结词
帮助学生掌握整式加减法的基本概念 和运算规则。
详细描述
设计一系列简单的整式加减法题目, 包括单项式与单项式相加减、多项式 与多项式相加减等基础题型,供学生 练习。
提高练习题
整式的加减(公开课)课件
完善完整知识网络, 我将会成为最棒的!
ppt课件
36
补充例题:
3.求当x= 时,多项式
解:原式=
= = 把x= 带入
∴原式=5
中,得
ppt课件
的值。
37
4.已知数a,b在数轴上的位置如图所示
a
0b
化简下列式子:
解:由题意知:a<0,b>0且|a|>|b|
∴原式=-a-2[-(a+b)]-3(b-a) =-a+2[a+b]-3b+3a =-a+2a+2b-3b+3a = (-a+2a+3a) + (2b-3b) =4a-b
点拨:对于(1)、 (3),考察的是同类项的定义,所含字母相同, 相同字母的指数也相同的称为同类项;所以(1)、 (3)不是同类项;
对于(2),虽然好像它们的次数不一样,但其实它们 都是常数项,所以,它们都是同类项;
对于(4),虽然它们的系数不同,字母的顺序也不同, 但它依然满足同类项的定义,是同类项;
ppt课件
12
•-
7 括号前面出现系数怎么办?
( a + b )
•原 式
=
-
(
ppt课件
13
• -3(xy+yz+7) 试试
• = -3xy-3yz-21
-3(xy-yz-7) =-3xy+3yz+21
3 (2x2 -3x + 1)
=6x2 -9x+3 -3 (2x2 -3x + 1) =6x2 + 9x-3
答:(2) 、(4)是同类项 ppt课(件1)(3)不是同类项; ,
ppt课件
36
补充例题:
3.求当x= 时,多项式
解:原式=
= = 把x= 带入
∴原式=5
中,得
ppt课件
的值。
37
4.已知数a,b在数轴上的位置如图所示
a
0b
化简下列式子:
解:由题意知:a<0,b>0且|a|>|b|
∴原式=-a-2[-(a+b)]-3(b-a) =-a+2[a+b]-3b+3a =-a+2a+2b-3b+3a = (-a+2a+3a) + (2b-3b) =4a-b
点拨:对于(1)、 (3),考察的是同类项的定义,所含字母相同, 相同字母的指数也相同的称为同类项;所以(1)、 (3)不是同类项;
对于(2),虽然好像它们的次数不一样,但其实它们 都是常数项,所以,它们都是同类项;
对于(4),虽然它们的系数不同,字母的顺序也不同, 但它依然满足同类项的定义,是同类项;
ppt课件
12
•-
7 括号前面出现系数怎么办?
( a + b )
•原 式
=
-
(
ppt课件
13
• -3(xy+yz+7) 试试
• = -3xy-3yz-21
-3(xy-yz-7) =-3xy+3yz+21
3 (2x2 -3x + 1)
=6x2 -9x+3 -3 (2x2 -3x + 1) =6x2 + 9x-3
答:(2) 、(4)是同类项 ppt课(件1)(3)不是同类项; ,
整式的加减(第一课时)课件-课件
学习整式的乘法运算规则。 掌握整式的乘法与加减法混合运算的步骤和技巧。
通过练习题巩固所学知识,提高解题能力。
THANKS
感谢观看
(4a^2b - 3ab + b) - (b - a + 3ab)
进阶练习题
01
02
03
04
(5m^2n - 4mn + n) + (3n m^2n)
进阶练习题3:根据整式的加 减法则,合并下列整式的同类
项
5x^3y + 8x^3y - x^3y
6mn + m^2n + 7mn m^2n
综合练习题
基础练习题
8x^2y + 5x^2y
3ab + 4ab - 7ab
进阶练习题
01
进阶练习题1:计算下列整式的结 果
02
(a^3 - a^2b + ab^2) + (a^2b - ab^2) - a^3
进阶练习题
(2xy^2 - xy) - (xy - y^2) 进阶练习题2:化简下列整式,并指出其中的同类项
综合练习题1:计算下列整式的结果
01
[(a + b)^3 - (a - b)^3] + [2ab(a + b) 2ab(a - b)]
03
02
[(x + y)^2 - (x - y)^2] + [2xy - (x^2 y^2)]
04
综合练习题2:化简下列整式,并指出其 中的同类项
[(5m^2n + n) + (3n - m^2n)] + [(4mn^2 + n) - m^2n]
02
整式的加减运算
通过练习题巩固所学知识,提高解题能力。
THANKS
感谢观看
(4a^2b - 3ab + b) - (b - a + 3ab)
进阶练习题
01
02
03
04
(5m^2n - 4mn + n) + (3n m^2n)
进阶练习题3:根据整式的加 减法则,合并下列整式的同类
项
5x^3y + 8x^3y - x^3y
6mn + m^2n + 7mn m^2n
综合练习题
基础练习题
8x^2y + 5x^2y
3ab + 4ab - 7ab
进阶练习题
01
进阶练习题1:计算下列整式的结 果
02
(a^3 - a^2b + ab^2) + (a^2b - ab^2) - a^3
进阶练习题
(2xy^2 - xy) - (xy - y^2) 进阶练习题2:化简下列整式,并指出其中的同类项
综合练习题1:计算下列整式的结果
01
[(a + b)^3 - (a - b)^3] + [2ab(a + b) 2ab(a - b)]
03
02
[(x + y)^2 - (x - y)^2] + [2xy - (x^2 y^2)]
04
综合练习题2:化简下列整式,并指出其 中的同类项
[(5m^2n + n) + (3n - m^2n)] + [(4mn^2 + n) - m^2n]
02
整式的加减运算
七年级数学上册教学课件《整式的加减(第1课时)》
当x
=12时,原式=−
5 2
.
探究新知
2.2 整式的加减
(2)求多项式
3a
abc
1 3
c
2
3a
1 3
c
2
的值,其中a=−
16,
b=2,c=-3.
解:3a abc 1 c2 3a 1 c2 =abc,
3
3
当a=−
1 6
,b=2,c=-3时,原式=1.
巩固练习
2.2 整式的加减
当x=2019时,求多项式x4-5x2+2x3-x4+5x2-2x3+2x-1的值.
探究新知
2.2 整式的加减
素养考点 2 合并同类项并且求值
例2 (1)求多项式 2x2 5x x2 4x 3x2 2的值,其中x =12 . 分析:在多项式求值时,可以先将多项式中的同类项合并, 然后再代入求值,这样可以简化计算.
解:(1) 2x2 5x x2 4x 3x2 2 x 2.
A.3
B.6
C.8
D. 10
2. 下列运算中正确的是( A )
A.3a2-2a2=a2
B.3a2-2a2=1
C.3x2-x2=3
D.3x2-x=2x
课堂检测
2.2 整式的加减
3.如果5x2y与xmyn是同类项,那么m =__2__,n =__1__. 4.合并同类项:
(1)-a-a-2a=___-_4_a___; (2)-xy-5xy+6yx=___0___; (3)0.8ab2-a2b+0.2ab2=_a_b_2_-_a_2b_; (4)3a2b-4ab2-4+5a2b+2ab2+7=_8_a_2_b_-_2_a_b_2+_3_.
2.2整式的加减(第1课时)课件ppt
第13页,共28页。
2.类比探究,学习新知
定义和法则:
(1)所含字母相同,并且相同字母的指数也 相同的项叫做同类项.几个常数项也是同类项. (2)把多项式中的同类项合并成一项,叫做 合并同类项. (3)合并同类项后,所得项的系数是合并前 各同类项的系数的和,且字母部分不变.
第14页,共28页。
2.类比探究,学习新知
4x2 5x 5 (按字母的指数从大到小顺序排列)
第22页,共28页。
2.类比探究,学习新知
归纳步骤: (1)找出同类项并做标记; (2)运用交换律、结合律将多项式的同类项结合; (3)合并同类项; (4)按同一个字母的降幂(或升幂排列).
第23页,共28页。
3.学以致用,应用新知
例1 合并下列各式的同类项:
义务教育教科书 数学 七年级 上册
2.2 整式的加减
(第1课时)
第1页,共28页。
课件说明
本节课学习的主要内容是:同类项的概念、合并 同类项的法则.整式的加减运算是“数与代数”领域 中最基本的运算,它是今后学习整式的乘除、因式分 解、分式、根式运算、方程及函数等知识的重要基
础.同类项及合并同类合并后结果是
.
第26页,共28页。
5.小结归纳,自我完善
(1)本节课学了哪些主要内容? (2)你能举例说明同类项的概念吗? (3)举例说明合并同类项的方法. (4)本节课主要运用了什么思想方法研究问题?
第27页,共28页。
第28页,共28页。
算和一元一次方程的直接基础.
第2页,共28页。
课件说明
学习目标: (1)理解同类项的概念; (2)掌握合并同类项的方法; (3)通过类比数的运算探究合并同类项的法则,从
2.类比探究,学习新知
定义和法则:
(1)所含字母相同,并且相同字母的指数也 相同的项叫做同类项.几个常数项也是同类项. (2)把多项式中的同类项合并成一项,叫做 合并同类项. (3)合并同类项后,所得项的系数是合并前 各同类项的系数的和,且字母部分不变.
第14页,共28页。
2.类比探究,学习新知
4x2 5x 5 (按字母的指数从大到小顺序排列)
第22页,共28页。
2.类比探究,学习新知
归纳步骤: (1)找出同类项并做标记; (2)运用交换律、结合律将多项式的同类项结合; (3)合并同类项; (4)按同一个字母的降幂(或升幂排列).
第23页,共28页。
3.学以致用,应用新知
例1 合并下列各式的同类项:
义务教育教科书 数学 七年级 上册
2.2 整式的加减
(第1课时)
第1页,共28页。
课件说明
本节课学习的主要内容是:同类项的概念、合并 同类项的法则.整式的加减运算是“数与代数”领域 中最基本的运算,它是今后学习整式的乘除、因式分 解、分式、根式运算、方程及函数等知识的重要基
础.同类项及合并同类合并后结果是
.
第26页,共28页。
5.小结归纳,自我完善
(1)本节课学了哪些主要内容? (2)你能举例说明同类项的概念吗? (3)举例说明合并同类项的方法. (4)本节课主要运用了什么思想方法研究问题?
第27页,共28页。
第28页,共28页。
算和一元一次方程的直接基础.
第2页,共28页。
课件说明
学习目标: (1)理解同类项的概念; (2)掌握合并同类项的方法; (3)通过类比数的运算探究合并同类项的法则,从
北师大版(2024)数学七年级上册3.2 整式的加减 第1课时 合并同类项 课件(共19张PPT)
,
-7a2b+2a2b= (-7+2)a
。 2b=-5a2b。
合作探究
观察8n和5n、-7a2b和2a2b有什么相同点?
①所含字母相同;
同类项与
系数无关。
②相同字母的指数也相同.
所含字母相同,并且相同字母的指数也相同的项叫做同类项。
注意:所有的常数项都是同类项。
思考
x与y、a2b与ab2、-3qp与3qp、abc与ac、a2与a3是不是同类项?
把同类项合并成一项叫做合并同类项。
例如:8n+5n=13n,2xy+3xy=5xy,-7a2b+2a2b=-5a2b。
思考
观察上述式子,你能从中得出什么规律?
合并同类项法则:
合并同类项时,把同类项的系数相加,字母和字母的指数不变.
典例精析
根据乘法对加法的分配律合并同类项:
(1)-xy2+3xy2;
3.2 整式的加减
第1课时 合并同类项
学习目标
1.在具体情境中感受合并同类项的必要性,理解合并同类项法则
所依据的运算律.(重点)
2.了解合并同类项的法则,能进行同类项的合并.(难点)
知识回顾
1.表示数与字母 乘积 的代数式叫做单项式.单独一个数或一个
字母也是单项式.单项式中的 数字因数 叫做这个单项式的系数。
3
4
= − 22
3
9
当= ,=-1时
4
4
9
原式= × ×(-1)-2×
3
4
=-3-2
=-5
4
+ (−42+22),
−1
2
课堂总结
整式的加减
(合并同类项)
同类项
两相同两无关
-7a2b+2a2b= (-7+2)a
。 2b=-5a2b。
合作探究
观察8n和5n、-7a2b和2a2b有什么相同点?
①所含字母相同;
同类项与
系数无关。
②相同字母的指数也相同.
所含字母相同,并且相同字母的指数也相同的项叫做同类项。
注意:所有的常数项都是同类项。
思考
x与y、a2b与ab2、-3qp与3qp、abc与ac、a2与a3是不是同类项?
把同类项合并成一项叫做合并同类项。
例如:8n+5n=13n,2xy+3xy=5xy,-7a2b+2a2b=-5a2b。
思考
观察上述式子,你能从中得出什么规律?
合并同类项法则:
合并同类项时,把同类项的系数相加,字母和字母的指数不变.
典例精析
根据乘法对加法的分配律合并同类项:
(1)-xy2+3xy2;
3.2 整式的加减
第1课时 合并同类项
学习目标
1.在具体情境中感受合并同类项的必要性,理解合并同类项法则
所依据的运算律.(重点)
2.了解合并同类项的法则,能进行同类项的合并.(难点)
知识回顾
1.表示数与字母 乘积 的代数式叫做单项式.单独一个数或一个
字母也是单项式.单项式中的 数字因数 叫做这个单项式的系数。
3
4
= − 22
3
9
当= ,=-1时
4
4
9
原式= × ×(-1)-2×
3
4
=-3-2
=-5
4
+ (−42+22),
−1
2
课堂总结
整式的加减
(合并同类项)
同类项
两相同两无关
整式的加减第1课时同类项、合并同类项PPT课件(北师大版)
二、填空题(每小题 3 分,共 9 分)
14.若-3x2y+ax2y=-6x2y,则 a=__-__3____. 15.若(c-3a)2+|b-2c|=0,那么 a+2b+c 等于_1_6_a___.(用含“a”
的代数式表示) 16.(2016·曲靖)单项式 xm-1y3 与 4xyn 的和是单项式,则 nm 的值
D.单项式
11.下列计算正确的是( C ) A.3a+2b=5ab B.5y2-2y2=3 C.-p2-p2=-2p2 D.7mn-7=mn 12.若 3x+ax+y-6y 合并同类项后,不含有 x 项,则 a 的值为 ( B) A.2 B.-3 C.0 D.-1
13.若 P 是三次多项式,Q 也是三次多项式,P+Q 一定是( C ) A.三次多项式 B.六次多项式 C.不高于三次的多项式或单项式 D.单项式
11x+2y
18.(8 分)若(x+1)2+|y+2|=0,求下列代数式的值. 5xy-32x3y2-4yx+21y2x3-12xy-3x3y2-y2x3 解:原式=12xy-5x3y2,由题意得:x=-1,y=-2,原式=21
19.(10 分)小王购买了一套经济适用房,他准备将地面铺上地砖, 房屋结构如图所示,根据图中数据(单位: m),解答下列问题:
A.4a2 B.3a2 C.2a2 D.3
6.(3 分)下列运算中结果正确的是( D )
A.3a+2b=5ab B.5y-3y=2 C.-3y+5x=-8x D.3x2y-2x2y=x2y 7.(3 分)把 x+y 看作一个整体,合并同类项:9(x+y)-2(x+y)
-6(x+y)=__x_+__y___.
3.(3 分)(2016·常德)若-x3ya 与 xby 是同类项,则 a+b 的值为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)类比数的运算,化简100t+252t.
100t+252t =(100+252)t =352t
乘法的分配律
练一练:
类比式子的运算,化简下列式子:
① 100t 252t (100-252)t = 748t;
② 3 x2 2 x2 (2+3)x2 = 5x2;
③ 3ab2 4ab2 (3-4)ab2 = -ab2;
②字母部分保持不变.
定义和法则:
1.同类项:所含字母相同,并且相 同字母的指数也相同的项叫做同 类项.几个常数项也是同类项.
2.合并同类项:把多项式中的同类 项合并成一项,叫做合并同类项.
3.合并同类项的法则:字母、字母 次数不变,系数相加.
想一想:
化简多项式的一般步骤 是什么?
例题:化简单项式 结合律
100t+120×2.1t=100t+252t
这个式子的结果是多少?你是怎样得到的?
2.类比探究,学习新知
问题2 整式的运算是建立在数的运算基
础之上的,对于有理数的运算是怎 样做的呢?整式的运算与有理数的 运算有什么联系?
探究:
乘法的分配律
(1)运用有理数的运算律计算. 100×2+252×2=_(_1_0_0_+_2_5_2_)×__2__
)
2
× 与 2a2bc 是同类项( )
与 32 是同类项( √ )
练习2 填空 (1)若单项式2 xm y3 与单项式3 x2 yn 是同
类项,则 m= 2 ,n=3 .
(2)单项式 6ab2c3 的同类项可以是
(写出一个即可). 3ab2c3
(3)下列运算,正确的是 ① (填序号).
① 3x2 2x2 x2 ; ②2a 3a 5a2 ;
问题3 观察多项式 100t 252t ,
100t 252t, 3x2 2x2, 3ab2 4ab2
(1)上述各多项式的项有什么共同特点?
①每个式子的项含有相同的字母;
②并且相同字母的指数也相同.
(2)上述多项式的运算有什么共同特点? 你能从中得出什么规律?
①根据分配律把多项式各项的系数相加;
页
(3)4a2 3b2 2ab 4a2 4b2
例 一
4.基础训练,巩固新知
练习1 判断下列说法是否正确,正确的
在括号内打“√”,错误的打“×”
× (1) 3x 与 3mx 是同类项( )
(2) 2ab (3) 3xy2 (4) 5a2b (5) 23
与 5ab 是同类项( )
√ √ 与 1 y2 x 是同类项(
③ 5a2b 3ab2 2ab ④ 6m2 5m2 1 .
(4)多项式
3ab 6a2b2 8ab2 4a2b2 9ab 2ab2 5, 其中与 ab2 是同类项的是 -8ab2,2ab2.;
与 a2b2 是同类项的是 -6a2b2,4a2b2;
将多项式中的同类项合并后结果
是-2a2b2-6ab2-6ab-5
归纳:化简多项式的一般步骤
(1)找出同类项并做标记; (2)运用交换律、结合律将多项
式的同类项结合; (3)合并同类项; (4)按同一个字母的降幂(或升
幂排列).
3.学以致用,应用新知
阅
例1 合并下列各式的同类项:
(1)
பைடு நூலகம்
xy 2
1 5
xy 2
读 课 本
64
(2) 3x2 y 2x2 y 3xy2 2xy2
.
5.小结归纳,自我完 善
(1)本节课学了哪些主要内容? (2)你能举例说明同类项的概念吗? (3)举例说明合并同类项的方法. (4)本节课主要运用了什么思想方法
研究问题?
课本第69页第1题
自学课本 第62页--第63页内容, 并完成《全品学练考》
听课手册第26页
时间:10分钟
2.2 整式的加减
(第1课时)
1.创设情境,引入课题
问题1:在西宁到拉萨路段,列车在冻土 地段的行驶速度是100 km/h,在非冻土地 段的行驶速度是120 km/h,列车通过非冻 土地段所需时间是通过冻土地段所需时间 的2.1倍 ,如果通过冻土地段需要t h,你 能用含t的式子表示这段铁路的全长吗?
4x2 2x 7 3x 8x2 2
交
解: 4x2 2x 7 3x 8x2 2
换 律
分 配
4x2 8x2 2x 3x 7 2
律 (4x2 8x2) (2x 3x) (7 2)
(4 8)x2 (2 3)x (7 2)
4x2 5x 5
注意:按字母的指数从大到小顺序排列
=___3_5_2_×__2___; 100×(-2)+252×(-2)(=10_0_+_2_5_2_)_×_(_-_2_)
=__3_5_2_×_(_-__2_) _.
乘法的分配律
100×2+252×2 =(100+252)×2=352×2=704;
100×(-2)+252×(-2) =(100+252)×(-2)=352×(-2)=-704.