(完整版)因式分解(竞赛题)含答案(最新整理)

合集下载

因式分解专题训练含答案

因式分解专题训练含答案

初中数学因式分解50题专题训练含答案学校:___________姓名:___________班级:___________考号:___________一、解答题1.分解因式(1)()()22-1-41-m m m (2)()()23812a a b b a ---2.把下列各式分解因式:(1)22344x y xy y -+;(2)41x -.3.因式分解(1) 322m -8mn(2)a (a+4)+44.因式分解:(1)x 2﹣9(2)4y 2+16y+165.分解因式:(1)22242x xy y -+ (2)()()2m m n n m -+-6.把下列各式因式分解:(1)216y -(2)32232a b a b ab -+7.计算(1))10122-⎛⎫-- ⎪⎝⎭(2)分解因式:()222224a b a b +-8.分解因式:(1) 3x x -(2) 2363x y xy y -+9.把下列各式分解因式:(1)2221218a ab b -+; (2)222(2)(12)x y y ---.10.因式分解:(1)()()35a x y b y x --- (2)32231025ab a b a b -+11.把下列各式进行因式分解(1)22818x y - (2)322a b a b ab -+12.因式分解:(1) 33a b ab -; (2) 44-b a13.因式分解:(1)3m 2n -12mn+12n ; (2)a 2(x -y)+9(y -x)14.分解因式:(1)269y y -+(2)228x -15.因式分解(1)4a 2-25b 2(2)-3x 3y 2+6x 2y 3-3xy 416.把下面各式分解因式:(1)x 2﹣4xy +4y 2;(2)3a 3﹣27a .17.将下列各式因式分解:(1)x 3﹣x ;(2)x 4﹣8x 2y 2+16y 4.18.分解因式:(1)ax 2﹣9a ; (2)4ab 2﹣4a 2b ﹣b 3.19.因式分解:(1)ax 2-9a ;(2)(y+2)(y+4)+1.20.分解因式:(1)()()22x x y y y x -+-(2)324812x x x -++21.因式分解:(1)()()323x x x --- ;(2)3231827a a a -+-22.因式分解:(1)m 2(x +y )﹣n 2(x +y );(2)x 4﹣2x 2+1.23.因式分解(1)2(2)(2)m a m a -+- (2)()222224a b a b +-24.(1)分解因式:22344a b ab b -+(2)解方程:1224x x x x -=--25.因式分解:(1)9x 2﹣1 (2)3a 2﹣18a+27.参考答案1.(1)(m -1)(m -2)2;(2) 4(a -b )2(5a -3b )2.(1)2(2)y x y -;(2)2(1)(1)(1)x x x ++-.3.(1)2m (m+2n )(m -2n );()22a +. 4.(1)(x+3)(x ﹣3);(2)4(y+2)2. 5.(1)()22x y -;(2)()(1)(1)m n m m -+- 6.(1)()()44y y +-;(2)()2ab a b - 7.(1)-1;(2)22()()a b a b +-8.(1)(1)(1)x x x +-;(2)23(1)y x -9.(1)22(3)a b -;(2)2(41)(1)(1)x y x x -++-10.(1)(3a+5b )(x -y );(2)ab (b -5a )2 11.(1)2(2xy+3)(2xy -3);(2)ab(a -1)2.12.(1)()()ab a b a b +-,(2)22()()()a b a b a b ++-13.(1)3n(m -2)2;(2)(x -y)(a+3)(a -3)14.(1)2(3)y -;(2)2(2)(2)x x +-15.(1)(2a +5b )(2a -5b );(2)-3xy 2(x -y )2; 16.(1)()22x y -;(2)()()333a a a +- 17.(1)x (x +1)(x ﹣1);(2)(x +2y )2(x ﹣2y )2. 18.(1)a (x +3)(x ﹣3);(2)﹣b (2a ﹣b )2.19.(1)(3)(3)a x x -+;(2)2(3)y +20.(1)()()2x y x y -+;(1)()()431x x x --+. 21.(1)()()32x x -+;(2)()233a a --22.(1)(x +y )(m +n )(m ﹣n );(2)(x +1)2(x ﹣1)2. 23.(1)()()12m m a --;(2)()()22a b a b +-24.(1)()22b a b -;(2)x=4.本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

因式分解—2024全国初中数学重点高中自招竞赛试题精选精编(解析版)

因式分解—2024全国初中数学重点高中自招竞赛试题精选精编(解析版)

因式分解学校:___________姓名:___________班级:___________考号:___________一、填空题1(2024·全国·八年级竞赛)若x=1,则1+x+x(1+x)+x(1+x)2+x(1+x)3+⋅⋅⋅+x(1+x)2013+x(1+ x)2014=.【答案】22015【分析】本题考查了提取公因式法,整式化简求值,熟练掌握提取公因式法是解答本题的关键.将所求代数式反复提取公因式(x+1),得到(1+x)2015,再将x=1代入即得答案.【详解】解:当x=1时,原式=(1+x)[1+x+x(1+x)+x(1+x)2+x(1+x)3+⋅⋅⋅+x(1+x)2012+x(1+x)2013]=(1+x)2[1+x+x(1+x)+x(1+x)2+x(1+x)3+⋅⋅⋅+x(1+x)2011+x(1+x)2012]=⋯=1+x2015=22015.故答案为:22015.2(2024·全国·七年级竞赛)若a、b是正整数,且756a=b3,则a的最小值是.【答案】98【分析】本题主要考查了因式分解、有理数乘方等知识点,掌握因式分解的应用是解题的关键.先将756因式分解,然后表示出a的最小值即可解答.【详解】解:∵756=33×22×7,756a=b3,∴a=b3756=b333×22×7,∴a min=2×72=98.故答案为98.3(2024·全国·八年级竞赛)已知a、b为正整数,且满足ab+a+b=2011,则满足条件的有序实数对(a, b)的组数是.【答案】4【分析】本题主要考查因式分解的应用,将ab+a+b+1=2012变形为a+1b+1=22×503,根据a、b为正整数得a+1≥2,b+1≥2,再分类讨论即可求解【详解】解:∵ab+a+b+1=2012,∴a+1b+1=22×503,又a、b为正整数,∴a+1≥2,b+1≥2,∴a+1=2b+1=1006,a+1=4b+1=503,a+1=503b+1=4,a+1=1006b+1=2,共4组,即有序实数对(a,b)共有4组.4(2024·全国·八年级竞赛)设a2+2a-1=0,b4-2b2-1=0,且1-ab2≠0,则ab2+b2-3a+12a2015=.【答案】-1【分析】本题考查了分式的化简求值,将a 2+2a -1=0与b 4-2b 2-1=0的差进行因式分解,得到a +b 2 a -b 2+2 =0,推出a 与b 的关系,并判断其是否满足1-ab 2≠0,最后将其代入ab 2+b 2-3a +12a2015中化简求解,即可解题.【详解】解:a 2+2a -1 -b 4-2b 2-1 =0,a +b 2 a -b 2+2 =0,若a -b 2+2=0,则b 2=a +2,则1-ab 2=1-a a +2 =-a 2+2a -1 =0,矛盾.所以a +b 2=0,即b 2=-a ,所以ab 2+b 2-3a +12a 2015=-a 2-a -3a +12a 2015=-a 2+2a +2a -12a 2015=-2a 2a 2015=-1.故答案为:-1.5(2024·全国·八年级竞赛)若m 2=n +2015,n 2=m +2015m ≠n ,则m 3-2mn +n 3的值为.【答案】-2015【分析】本题考查整式的化简求值,利用m 2=n +2015与n 2=m +2015m ≠n 的差,结合平方差公式进行因式分解,得出m +n =-1,将m 3-2mn +n 3变形为含m +n 的式子,再将m +n =-1代入式子,即可解题.【详解】解:由题知,m 2-n 2=n -m ,则m +n =-1,又m 3-2mn +n 3=m m 2-n -n m -n 2 =2015m +n =-2015.故答案为:-2015.6(2024·全国·八年级竞赛)已知多项式a 2+7ab +kb 2-5a +43b -24分解因式后能够变成两个含有a 、b 的一次因式的乘积,则实数k 的值为.【答案】-18【分析】本题考查了因式分解,多项式乘以多项式,二元一次方程组的求解,根据因式分解结合多项式乘以多项式可得m +n =7①,mn =k ②,3n -8m =43③,利用加减消元法求解二元一次方程组得到m ,n 的值,即可求出最后结果.【详解】解:a 2+7ab +kb 2-5a +43b -24可分解为a +bm +3 a +nb -8 ,∴a +bm +3 a +nb -8=a 2+mab +3a +nab +mnb 2+3nb -8a -8mb -24=a 2+m +n ab +mnb 2-5a +3n -8m b -24,∵a 2+7ab +kb 2-5a +43b -24,∴m +n =7①,mn =k ②,3n -8m =43③,③-3×①得:-8m -3m =43-3×7,解得:m =-2,将m =-2代入①得:n =9,∴k =mn =-18,故答案为:-18.7(2024·全国·八年级竞赛)已知:x =2012t +801,y =2012t +803,z =2012t +805,则x 2+y 2+z 2-xy -yz -zx =.【答案】12【分析】本题主要考查了因式分解的应用,先求出x -y =-2,y -z =-2,x -z =-4,再根据完全平方公式把原式因式分别为12x -y 2+y -z 2+z -x 2,据此代值计算即可.【详解】解:∵x =2012t +801,y =2012t +803,z =2012t +805,∴x -y =-2,y -z =-2,x -z =-4x 2+y 2+z 2-xy -yz -zx=12x 2-2xy +y 2 +12y 2-2yz +z 2 +12x 2-2xz +z 2 =12x -y 2+y -z 2+z -x 2=12-2 2+-2 2+-4 2=124+4+16 =12,故答案为:12.8(2024·全国·八年级竞赛)分解因式:1-m 2-n 2+2mn =.【答案】(1+m -n )(1-m +n )【分析】本题考查了分组分解法进行因式分解,利用添括号把1-m 2-n 2+2mn 后三项放一起,得到1-m 2-2mn +n 2,利用完全平方公式进行因式分解,得到1-m -n 2,再利用平方差公式因式分解即可求解,掌握分组分解法是解题的关键.【详解】解:原式=1-m -n 2,=1+m -n 1-m +n ,故答案为:1+m -n 1-m +n .9(2024·全国·七年级竞赛)若2x -3 +y -2 2=0,则x 2-2xy +y 2=.【答案】14/0.25【分析】根据非负数的性质求出x =32,y =2.再把字母的值代入x 2-2xy +y 2=x -y 2进行求解即可,此题考查了求代数式的值、完全平方公式和非负数的性质,求出字母的值是解题的关键.【详解】解:∵2x -3 +y -2 2=0,2x -3 ≥0,y -2 2≥0,∴2x -3 =0,y -2 2=0,∴2x -3=0,y -2=0,∴x =32,y =2.∴x 2-2xy +y 2=x -y 2=32-2 2=14,故答案为:1410(2024·全国·八年级竞赛)已知△ABC 的三边为a 、b 、c ,且满足1a -1b +1c =1a -b +c,则△ABC 的形状为.【答案】等腰三角形【分析】本题考查因式分解,等腰三角形的判定,先将分式变形得出bc -ac +ab abc =1a -b +c,得出abc =a -b +c ab -c a -b ,再进行因式分解,进而得出a =b 或b =c ,即可得出答案.【详解】∵1a -1b +1c =1a -b +c,∴bc -ac +ab abc =1a -b +c,∴abc =a -b +c ab -c a -b=ab a -b -c a -b 2+abc -c 2a -b ,a -b ab -c a -b -c 2=0,a -b ab -ac +bc -c 2 =0,∴a -b b -c a +c =0,∴a =b 或b =c .故答案为:等腰三角形.11(2024·全国·八年级竞赛)已知a 2+b 2=2,x 2+y 2=1003,则多项式(ax +by )2+(bx -ay )2的值为.【答案】2006【分析】本题考查了整体代入求多项式的值,整式的混合运算,分组法因式分解等知识.先将(ax +by )2+(bx -ay )2进行计算得到a 2x 2+b 2x 2+b 2y 2+a 2y 2,再利用分组因式分解得到a 2+b 2 x 2+y 2 ,整体代入即可求解.【详解】解:(ax +by )2+(bx -ay )2=a 2x 2+b 2y 2+2abxy +b 2x 2+a 2y 2-2abxy =a 2x 2+b 2x 2+b 2y 2+a 2y 2=x 2a 2+b 2 +y 2a 2+b 2 =a 2+b 2 x 2+y 2 =2×1003=2006.12(2015·全国·八年级竞赛)若n 为整数,且n 2+9n +30是自然数,则n =.【答案】-14或-7或-2或5【分析】本题主要考查了因式分解的应用,解二元一次方程组,设n 2+9n +30=p (p 为非负整数),则可推出2n +9 2+39=4p 2,进而得到2p +2n +9 2p -2n -9 =39,再由题意可得2p +2n +9和2p -2n -9都是整数,再由39=-1×-39 =1×39,由此得到2p +2n +9=12p -2n -9=39或2p +2n +9=392p -2n -9=1 或2p +2n +9=32p -2n -9=13 或2p +2n +9=132p -2n -9=3 ,解方程组即可得到答案.【详解】解:设n 2+9n +30=p (p 为非负整数),∴n 2+9n +30=p 2,∴4n 2+36n +120=4p 2∴2n +9 2+39=4p 2,∴4p 2-2n +9 2=39,∴2p +2n +9 2p -2n -9 =39,∵n ,p 都为整数,∴2p +2n +9和2p -2n -9都是整数,∵39=1×39=3×13∴2p+2n+9=12p-2n-9=39或2p+2n+9=392p-2n-9=1或2p+2n+9=32p-2n-9=13或2p+2n+9=132p-2n-9=3,解得p=10n=-14或p=10n=5或p=4n=-7或p=4n=-2∴n=-14或-7或-2或5,故答案为:-14或-7或-2或5.13(2024·全国·九年级竞赛)分解因式:a2-b2-2a+1=.【答案】(a-1+b)(a-1-b)【分析】先分组,得到(a2-2a+1)-b2,运用完全平方公式变形得到(a-1)2-b2,再根据平方差公式分解因式.【详解】a2-b2-2a+1=(a2-2a+1)-b2=(a-1)2-b2=(a-1+b)(a-1-b),故答案为:(a-1+b)(a-1-b).【点睛】此题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解,因式分解常用的方法有:提公因式法,公式法,十字相乘法,分组分解法,因式分解必须分解到每个因式都不能分解为止.14(2024·全国·八年级竞赛)正整数a、b满足ab+a+b=90,则ab=.【答案】72【分析】本题考查因式分解的应用,根据条件可得a+1b+1=91,然后由a、b为正整数,可得a+1>1且b+1>1,进而求出a,b的值,代入求值即可.【详解】解:∵ab+a+b=90,∴ab+a+b+1=91,即a+1b+1=91,又∵a、b为正整数,∴a+1>1且b+1>1∴a+1=7b+1=13,a+1=13b+1=7,解得:a=6 b=12或a=12b=6,∴ab=6×12=72,故答案为:72.15(2024·全国·八年级竞赛)分解因式:2x3-12x2y+18xy2=.【答案】2x x-3y2【分析】本题主要考查提公因式法,公式法分解因式,先提取公因式2x,再运用完全平方公式进行分解因式即可求解,掌握分解因式的方法是解题的关键.【详解】解:2x3-12x2y+18xy2=2x(x2-6xy+9y2)=2x x-3y2,故答案为:2x x-3y2.二、单选题16(2024·全国·八年级竞赛)若a=20072+20072×20082+20082,则关于a的说法正确的是( ).A.是正整数,而且是偶数B.是正整数,而且是奇数C.不是正整数,而是无理数D.无法确定【答案】B【分析】设n=2007,将根号下的整式通过加添项凑成完全平方式,去掉根号,再根据整式的性质进行判断正负性和奇偶性,本题考查了运用完全平方公式分解因式,解题的关键是:熟练掌握完全平方公式,及加添项的分解因式技巧.【详解】设n=2007,a=n2+n2n+12+n+12=n2-2n n+1+n+12+2n n+1+n2n+12=n+1-n2+2n n+1+n n+12=1+2n n+1+n n+12=1+n n+12=1+n n+1∵n n+1是偶数,∴1+n n+1是奇数,选项B符合题意,故选:B.17(2024·全国·九年级竞赛)任意正整数n都能够分解成两个正整数的乘积,若相乘的这两个正整数之差的绝对值最小,则分别记为a、b a≤b,并规定f n=ab.例如:f6 =23,f7 =17,f12=34,现有下列说法:①f2 =12;②f24=38;③若n是一个完全平方数,则f n =1;④若n是一个完全立方数,即n=a3(a是正整数),则f n=1a.其中正确的有( ).A.1个B.2个C.3个D.4个【答案】B【分析】此题主要考查了完全平方数,分解因数,新定义的理解和应用,掌握分解因数的方法是解本题的关键.①将2分解因数,进而找出2的两个因数即可得出结论;②将24分解因数,进而找出24的两个因数即可得出结论;③根据题意找出n的符合题意的分解即可得出结论;;④利用“相乘的这两个正整数之差的绝对值最小”举出反例,进而确定此说法错误即可.【详解】解:①∵2=1×2,∴f2 =12,此说法正确;②24可以分解成1×24,2×12,3×8或4×6,因为24-1>12-2>8-3>6-4,所以4×6是24的符合题意的分解,所以f24=23,故错误;③∵n是一个完全平方数,设n=x2x>0,∴x×x是n的符合题意的分解,则f n =1,此说法正确;④若n是一个完全立方数,即n=a3(a是正整数),∵a是正整数,如64=43=8×8,f64=88≠18,则f n =1a不一定成立,此说法错误.综上所述,有两个正确,故答案为:B .18(2024·全国·八年级竞赛)三位数abc 的平方的末三位数恰好是abc ,这样的三位数abc有()A.0个B.1个C.2个D.多于2个【答案】C【分析】本题考查分解因式的应用,掌握提取公因式分解是解题的关键.【详解】由题意知abc 2-abc =abc abc-1 是1000的倍数,∵1000=8×125,abc ,abc-1=1,∴(1)8整除abc 且125整除abc -1 ;(2)125整除abc 且8整除(abc-1),由(1)得abc =376,由(2)得abc=625,∴共有两个,故选C .19(2024·全国·八年级竞赛)已知实数m 、n 、p 满足m 2-2p =7,n 2-6m =-17,p 2+2n =-1,则m +n +p 的值等于( ).A.2 B.4 C.3 D.5【答案】C【分析】本题考查了因式分解的完全平方公式,代数式求值,熟练掌握完全平方公式是解答本题的关键,先将三式相加,并移项配方成三个完全平方式,即可得到答案.【详解】将m 2-2p =7,n 2-6m =-17,p 2+2n =-1三式相加,得m 2-2p +n 2-6m +p 2+2n =7-17-1整理得m 2-6m +9+n 2+2n +1+p 2-2p +1=0即(m -3)2+(n +1)2+(p -1)2=0∴m =3,n =-1,p =1,∴m +n +p =3.20(2024·全国·八年级竞赛)已知在△ABC 中,a 、b 、c 是三边的长,且a 2-12b 2-c 2+4ab +8bc =0,那么b a +c 的值是( ).A.14 B.12 C.34 D.1【答案】B【分析】本题考查完全平方公式,平方差公式因式分解,根据完全平方公式变形得出a +2b 2-4b -c 2=0,得出a +2b +4b -c a +2b -4b +c =0,求出a -2b +c =0,再代入求值即可得出答案.【详解】解:∵a 2-12b 2-c 2+4ab +8bc =0,∴a 2+4ab +4b 2 -16b 2-8bc +c 2 =0,a +2b2-4b -c 2=0,a +2b +4b -c a +2b -4b +c =0,∵a +b -c >0,∴a +6b -c ≠0,∴a -2b +c =0,∴b a +c =12.故选:B .21(2024·全国·八年级竞赛)已知a 、b 、c 分别是△ABC 的三边,则a 2+b 2-c 2 2-4a 2b 2为()A.正数B.负数C.零D.无法确定【答案】B【分析】本题主要考查了因式分解,三角形三边的关系,先利用平方差公式和完全平方公式把原式分解因式得到a +b +c a +b -c a -b +c a -b -c ,再根据三角形中,任意两边之差小于第三边,任意两边之和大于第三边推出a 2+b 2-c 2 2-4a 2b 2<0即可得到答案.【详解】解:a 2+b 2-c 2 2-4a 2b2=a 2+b 2+2ab -c 2 a 2+b 2-2ab -c 2 =a +b 2-c 2 a -b 2-c 2=a +b +c a +b -c a -b +c a -b -c ,∵a 、b 、c 分别是△ABC 的三边,∴a +b +c >0,a +b -c >0,a +c -b >0,a -b -c <0,∴a +b +c a +b -c a -b +c a -b -c <0,∴a 2+b 2-c 2 2-4a 2b 2<0故选:B .22(2024·全国·八年级竞赛)若多项式x 2+mx +12因式分解得x +3 x +n ,则m +n =()A.8B.9C.10D.11【答案】D【分析】本题考查了因式分解的定义和多项式的乘法运算.根据因式分解的定义,列出等式,利用等式性质分别求出m 和n 的值,再求解即可.【详解】解:由已知,x +3 x +n =x 2+3+n x +3n =x 2+mx +12故可得,3+n =m ,3n =12,∴n =4,m =3+n =7,∴m +n =4+7=11,故选:D三、解答题23(2024·全国·八年级竞赛)有n (n ≥2且为整数)支乒乓球队进行单循环赛,每支参赛队同其他各队都进行一场比赛.如果用a i 和b i 分别表示第i (i =1,2,3,⋯,n )支球队在整个赛程中胜与负的局数求证:a 21+a 22+⋯+a 2n =b 21+b 22+⋯+b 2n .【答案】见解析【分析】本题考查了等式证明问题,利用平方差公式进行因式分解,作差比较是非常常用的方法.找出比赛规则下隐含的条件a i +b i =n -1,且a 1+a 2+⋯+a n =b 1+b 2+⋯+b n 是证题的关键.【详解】证明:∵比赛没有平局,且所有球队胜的总场数与负的总场数相等,∴a i +b i =n -1,且a 1+a 2+⋯+a n =b 1+b 2+⋯+b n .∴a 2i -b 2i =a i +b i a i -b i =n -1 a i -b i ,∵a 21+a 22+⋯+a 2n -b 21+b 22+⋯+b 2n =a 21-b 21 +a 22-b 22 +⋯+a 2n -b 2n=a 1+b 1 a 1-b 1 +a 2+b 2 a 2-b 2 +⋯+a n +b n a n -b n=n -1 a 1-b 1 +n -1 a 2-b 2 +⋯+n -1 a n -b n =n -1 a 1-b 1+a 2-b 2+⋯+a n -b n =n -1 a 1+a 2+⋯+a n -b 1-b 2-⋯-b n =n -1 a 1+a 2+⋯+a n -b 1+b 2+⋯+b n =0;∴a 21+a 22+⋯+a 2n =b 21+b 22+⋯+b 2n .24(2024·全国·九年级竞赛)中国古代数学家秦九韶和古希腊数学家海伦分别提出了一般三角形面积的计算方法:①S =14a 2b 2-a 2+b 2-c 222;②S =p p -a p -b p -c .(其中a 、b 、c 为三角形的三边长,p =a +b +c2,S 为面积)(1)请证明:14a 2b 2-a 2+b 2-c 222=p p -a p -b p -c ;(2)如图,线段MN =6,点B 在MN 上,且MB =4,点A 是线段MB 上一点,分别以A 、B 为圆心,AM 、BN 的长为半径画圆,⊙A 和⊙B 交于点P ,直接写出△PAB 的面积的最大值:.【答案】(1)见解析(2)3【分析】本题考查了乘法公式的应用,二次函数的图象与性质.(1)对被开方数的字母因式利用乘法公式变形即可完成;(2)设AB =a ,则PA =4-a ,利用S =p p -a p -b p -c 表示出面积,再利用二次函数知识即可求解.【详解】(1)证明:∵14a 2b 2-a 2+b 2-c 222 =14ab +a 2+b 2-c 22 ab -a 2+b 2-c 22=14×(a +b )2-c 22×c 2-(a -b )22=14×(a +b +c )(a +b -c )2×(c +a -b )(c -a +b )2=a +b +c 2⋅a +b -c 2⋅c +a -b 2⋅c +b -a 2,∵p =a +b +c 2,∴a +b -c =2p -2c ,c +a -b =2p -2b ,c +b -a =2p -2a ,∴a +b +c 2⋅a +b -c 2⋅c +a -b 2⋅c +b -a 2=p (p -c )(p -b )(p -a ),∴14a 2b 2-a 2+b 2-c 22 2=p p -a p -b p -c ;(2)解:设AB=a,则PA=MB-AB=4-a,PB=BN=MN-MB=2,∴p=12MN=3,∴S=33-a3-23-4-a=3(-a2+4a-3)=-3(a-2)2+3,而对于-3(a-2)2+3,当a=2时,它有最大值3,∴S有最大值3;故答案为:3.25(2024·全国·八年级竞赛)在实数范围内因式分解:(1)-2x3+26x2y-3xy2;(2)a4+a2-6;(3)4(b+1)4-4b2-8b-3.【答案】(1)-x2x-3y2(2)a+2a-2a2+3(3)2b2+4b+12【分析】本题考查了实数范围内的因式分解,熟练掌握因式分解的方法是解答本题的关键.(1)先提取公式因,再利用完全平方公式的方法进行因式分解即可;(2)利用完全平方公式和平方差公式的方法进行因式分解即可;(3)利用完全平方公式的方法进行因式分解即可.【详解】(1)解:-2x3+26x2y-3xy2=-x2x2-26xy+3y2=-x2x2-26xy+3y2=-x2x-3y2;(2)a4+a2-6=a2-2a2+3=a+2a-2a2+3;(3)4(b+1)4-4b2-8b-3=4b+14-4b+12+1=2b+12-12=2b2+4b+12.26(2024·全国·八年级竞赛)已知a=xm2+1+2008,b=xm2+1+2009,c=xm2+1+2010,且abc=6,求abc+bca+cab-1a-1b-1c的值.【答案】1 2【分析】本题考查了分式化简求值,根据题意得出a-b=-1,b-c=-1,c-a=2是解题关键.【详解】解:依题意得:a-b=-1,b-c=-1,c-a=2,原式=a2+b2+c2-bc-ca-ababc=2a2+2b2+2c2-2bc-2ca-2ab2abc=a-b2+b-c2+c-a22abc=-12+-12+222×6=12.27(2024·全国·八年级竞赛)设a,b,c,d都是正整数,且a5=b4,c3=d2,c-a=33,求d+b的值.【答案】5937或375【分析】本题主要考查了幂的乘方、因式分解的应用、解方程组等知识点,灵活运用相关知识成为解题的关键.设a5=b4=m20,c3=d2=n6,则a=m4,b=m5,c=n2,d=n3,进而得到c-a=n2-m4=33;再根据题意因式分解可得n+m2n-m2=33×1=11×3,再分为n+m2=33n-m2=1或n+m2=11n-m2=3两种情况求得m、n,进而求得b、d,最后求和即可.【详解】解:设a5=b4=m20,c3=d2=n6,则a=m4,b=m5,c=n2,d=n3.∵c-a=n2-m4=33,∴n+m2n-m2=33×1=11×3.∵a,b,c,d均为正整数,∴m,n也为正整数,∴n+m2=33n-m2=1或n+m2=11n-m2=3,∴n=17m=4或n=7m=2,∴b=1024d=4913或b=32d=343,∴b+d=5937或375.故答案为:5937或375.28(2024·全国·八年级竞赛)已知a+b=3,x+y=5,ax+by=7.求a2+b2xy+ab x2+y2的值.【答案】56【分析】本题主要考查了因式分解的应用,先把所求式子因式分解成ay+bxax+by,再由一直条件式得到ax+ay+bx+by=15,进而求出ay+bx=8,据此可得答案.【详解】解:a2+b2xy+ab x2+y2=a2xy+b2xy+abx2+aby2=ax ay+bx+by bx+ay=ay+bxax+by,∵a+b=3,x+y=5∴a+bx+y=15,∴ax+ay+bx+by=15,∵ax+by=7,∴ay+bx=8,∴原式=8×7=56.29(2024·全国·八年级竞赛)已知:4a-b是11的倍数,其中a,b是整数,求证:40a2+2ab-3b2能被121整除.【答案】证明见解析【分析】本题考查了因式分解,整数的整除性,熟练掌握因式分解是解答本题的关键.设4a-b=11n,则b =4a-11n,先将代数式40a2+2ab-3b2因式分解,再将b的值代入并化简得121n2a-3n,即能证明结论.【详解】设4a-b=11n,则b=4a-11n,40a2+2ab-3b2=4a-b10a+3b=11n10a+34a-11n=121n2a-3n.故40a2+2ab-3b2能被121整除.30(2021·全国·九年级竞赛)因式分解x4+x2+2ax+1-a2【答案】x2+x+1-ax2-x+a+1【分析】利用“配方法”即先配方,再利用平方差公式分解即可.【详解】解:x4+x2的特点,添上x2,-x2两项,原式=x4+2x2+1-x2+2ax-a2=x2+12-(x-a)2=x2+x+1-ax2-x+a+1【点睛】本题考查了因式分解,解题的关键是掌握完全平方公式,平方差公式.。

初中数学因式分解(含答案)竞赛题精选2

初中数学因式分解(含答案)竞赛题精选2

初中数学因式分解(二)1.双十字相乘法分解二次三项式时,咱们经常使用十字相乘法.某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),能够用十字相乘法分解因式.例如,分解因式2x2-7xy-22y2-5x+35y-3.咱们将上式按x降幂排列,并把y看成常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3),能够看做是关于x的二次三项式.关于常数项而言,它是关于y的二次三项式,也能够用十字相乘法,分解为即:-22y2+35y-3=(2y-3)(-11y+1).再利用十字相乘法对关于x的二次三项式分解因此,原式=[x+(2y-3)][2x+(-11y+1)]=(x+2y-3)(2x-11y+1).上述因式分解的进程,实施了两次十字相乘法.若是把这两个步骤中的十字相乘图归并在一路,可取得以下图:它表示的是下面三个关系式:(x+2y)(2x-11y)=2x2-7xy-22y2;(x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3.双十字相乘法因式分解的步骤是:(1)用十字相乘法分解ax2+bxy+cy2,取得一个十字相乘图(有两列);(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列组成的十字交叉之积的和等于原式中的ey,第一、第三列组成的十字交叉之积的和等于原式中的dx.例1 分解因式:(1)x2-3xy-10y2+x+9y-2; (2)x2-y2+5x+3y+4;(3)xy+y2+x-y-2;2.求根法形如a n x n+a n-1x n-1+…+a1x+a0(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,…,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)f(1)=12-3×1+2=0;f(-2)=(-2)2-3×(-2)+2=12.若f(a)=0,那么称a为多项式f(x)的一个根.定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,那么多项式f(x)有一个因式x-a.依照因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.关于任意多项式f(x),要求出它的根是没有一样方式的,但是当多项式f(x)的系数都是整数时,即整系数多项式时,常经常使用下面的定理来判定它是不是有有理根.定理2的根,那么必有p是a0的约数,q是a n的约数.专门地,当a0=1时,整系数多项式f(x)的整数根均为a n的约数.咱们依照上述定理,用求多项式的根来确信多项式的一次因式,从而对多项式进行因式分解.例2 分解因式:x3-4x2+6x-4.例3 分解因式:9x4-3x3+7x2-3x-2.3.待定系数法在因式分解时,一些多项式通过度析,能够判定它能分解成某几个因式,但这几个因式中的某些系数尚未确信,这时能够用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,依照多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方式叫作待定系数法.例4 分解因式:x2+3xy+2y2+4x+5y+3.例5 分解因式:x4-2x3-27x2-44x+7.练习二1.用双十字相乘法分解因式:(1)x2-8xy+15y2+2x-4y-3; (2)x2-xy+2x+y-3;(3)3x2-11xy+6y2-xz-4yz-2z2.2.用求根法分解因式:(1)x3+x2-10x-6; (2)x4+3x3-3x2-12x-4;(3)4x4+4x3-9x2-x+2.3.用待定系数法分解因式:(1)2x2+3xy-9y2+14x-3y+20; (2)x4+5x3+15x-9.初中数学因式分解(二)1.双十字相乘法分解二次三项式时,咱们经常使用十字相乘法.关于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),咱们也能够用十字相乘法分解因式.例如,分解因式2x2-7xy-22y2-5x+35y-3.咱们将上式按x降幂排列,并把y看成常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3),能够看做是关于x的二次三项式.关于常数项而言,它是关于y的二次三项式,也能够用十字相乘法,分解为即:-22y2+35y-3=(2y-3)(-11y+1).再利用十字相乘法对关于x的二次三项式分解因此,原式=[x+(2y-3)][2x+(-11y+1)]=(x+2y-3)(2x-11y+1).上述因式分解的进程,实施了两次十字相乘法.若是把这两个步骤中的十字相乘图归并在一路,可取得以下图:它表示的是下面三个关系式:(x+2y)(2x-11y)=2x2-7xy-22y2;(x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3.这确实是所谓的双十字相乘法.用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是:(1)用十字相乘法分解ax2+bxy+cy2,取得一个十字相乘图(有两列);(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列组成的十字交叉之积的和等于原式中的ey,第一、第三列组成的十字交叉之积的和等于原式中的dx.例1 分解因式:22(3)xy+y2+x-y-2;解 (1)原式=(x-5y+2)(x+2y-1).(2)原式=(x+y+1)(x-y+4).(3)原式中缺x2项,可把这一项的系数看成0来分解.原式=(2x-3y+z)(3x+y-2z).2.求根法咱们把形如a n x n+a n-1x n-1+…+a1x+a0(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,…,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)f(1)=12-3×1+2=0;f(-2)=(-2)2-3×(-2)+2=12.依照因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.关于任意多项式f(x),要求出它的根是没有一样方式的,但是当多项式f(x)的系数都是整数时,即整系数多项式时,常经常使用下面的定理来判定它是不是有有理根.定理2的根,那么必有p是a0的约数,q是a n的约数.专门地,当a0=1时,整系数多项式f(x)的整数根均为a n的约数.咱们依照上述定理,用求多项式的根来确信多项式的一次因式,从而对多项式进行因式分解.例2 分解因式:x3-4x2+6x-4.分析这是一个整系数一元多项式,原式假设有整数根,必是-4的约数,逐个查验-4的约数:±1,±2,±4,只有f(2)=23-4×22+6×2-4=0,即x=2是原式的一个根,因此依照定理1,原式必有因式x-2.解法1 用分组分解法,使每组都有因式(x-2).原式=(x3-2x2)-(2x2-4x)+(2x-4)=x2(x-2)-2x(x-2)+2(x-2)=(x-2)(x2-2x+2).解法2 用多项式除法,将原式除以(x-2),因此原式=(x-2)(x2-2x+2).说明在上述解法中,专门要注意的是多项式的有理根必然是-4的约数,反之不成立,即-4的约数不必然是多项式的根.因此,必需对-4的约数逐个代入多项式进行验证.例3 分解因式:9x4-3x3+7x2-3x-2.分析因为9的约数有±1,±3,±9;-2的约数有±1,±为:解 9x4-3x3+7x2-3x-2=9x4-3x3-2x2+9x2-3x-2=x2(9x3-3x-2)+9x2-3x-2=(9x2-3x-2)(x2+1)=(3x+1)(3x-2)(x2+1)说明假设整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式能够化为9x2-3x-2,如此能够简化分解进程.总之,对一元高次多项式f(x),若是能找到一个一次因式(x-a),那么f(x)就能够够分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,如此,咱们就能够够继续对g(x)进行分解了.3.待定系数法待定系数法是数学中的一种重要的解题方式,应用很普遍,那个地址介绍它在因式分解中的应用.在因式分解时,一些多项式通过度析,能够判定它能分解成某几个因式,但这几个因式中的某些系数尚未确信,这时能够用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,依照多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方式叫作待定系数法.例4 分解因式:x2+3xy+2y2+4x+5y+3.分析由于(x2+3xy+2y2)=(x+2y)(x+y),假设原式能够分解因式,那么它的两个一次项必然是x+2y+m和x+y+n的形式,应用待定系数法即可求出m 和n,使问题取得解决.解设x2+3xy+2y2+4x+5y+3=(x+2y+m)(x+y+n)=x2+3xy+2y2+(m+n)x+(m+2n)y+mn,比较两边对应项的系数,那么有解之得m=3,n=1.因此原式=(x+2y+3)(x+y+1).说明此题也可用双十字相乘法,请同窗们自己解一下.例5 分解因式:x4-2x3-27x2-44x+7.分析此题所给的是一元整系数多项式,依照前面讲过的求根法,假设原式有有理根,那么只可能是±1,±7(7的约数),经查验,它们都不是原式的根,因此,在有理数集内,原式没有一次因式.若是原式能分解,只解设原式=(x2+ax+b)(x2+cx+d)=x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd,因此有由bd=7,先考虑b=1,d=7有因此原式=(x2-7x+1)(x2+5x+7).说明由于因式分解的唯一性,因此对b=-1,d=-7等能够不加以考虑.此题若是b=1,d=7代入方程组后,无法确信a,c的值,就必需将bd=7的其他解代入方程组,直到求出待定系数为止.此题没有一次因式,因此无法运用求根法分解因式.但利用待定系数法,使咱们找到了二次因式.由此可见,待定系数法在因式分解中也有效武之地.练习二1.用双十字相乘法分解因式:(1)x2-8xy+15y2+2x-4y-3; (2)x2-xy+2x+y-3;(3)3x2-11xy+6y2-xz-4yz-2z2.2.用求根法分解因式:(1)x3+x2-10x-6; (2)x4+3x3-3x2-12x-4;(3)4x4+4x3-9x2-x+2.3.用待定系数法分解因式:(1)2x2+3xy-9y2+14x-3y+20; (2)x4+5x3+15x-9.。

因式分解习题50道及答案

因式分解习题50道及答案

因式分解习题50道及答案因式分解是数学中的一个重要概念,它在代数运算中起着关键的作用。

通过因式分解,我们可以将一个复杂的代数式简化为更简单的形式,从而更好地理解和解决问题。

下面我将给大家提供50道因式分解的习题及答案,希望对大家的学习有所帮助。

1. 将x^2 + 4x + 4因式分解。

答案:(x + 2)^22. 将2x^2 + 8x + 6因式分解。

答案:2(x + 1)(x + 3)3. 将x^2 - 9因式分解。

答案:(x - 3)(x + 3)4. 将x^2 - 4因式分解。

答案:(x - 2)(x + 2)5. 将x^2 + 5x + 6因式分解。

答案:(x + 2)(x + 3)6. 将x^2 - 7x + 12因式分解。

答案:(x - 3)(x - 4)7. 将x^2 + 3x - 4因式分解。

答案:(x + 4)(x - 1)8. 将x^2 + 2x - 3因式分解。

答案:(x + 3)(x - 1)9. 将x^2 - 5x + 6因式分解。

10. 将x^2 + 6x + 9因式分解。

答案:(x + 3)^211. 将x^2 - 8x + 16因式分解。

答案:(x - 4)^212. 将x^2 - 10x + 25因式分解。

答案:(x - 5)^213. 将x^2 + 4x - 5因式分解。

答案:(x + 5)(x - 1)14. 将x^2 - 6x - 7因式分解。

答案:(x - 7)(x + 1)15. 将x^2 + 7x - 8因式分解。

答案:(x - 1)(x + 8)16. 将x^2 - 3x - 10因式分解。

答案:(x - 5)(x + 2)17. 将x^2 - 11x + 28因式分解。

答案:(x - 4)(x - 7)18. 将x^2 + 8x + 15因式分解。

答案:(x + 3)(x + 5)19. 将x^2 - 13x + 40因式分解。

答案:(x - 5)(x - 8)20. 将x^2 + 9x + 20因式分解。

因式分解100题及答案

因式分解100题及答案

因式分解100题及答案1. $2x^2 + 5x$解:首先找到两个数的乘积等于2乘以5,并且它们的和等于5。

这两个数是2和1。

因此,我们可以将原式改写为$(2x + 1)(x + 0)$。

2. $3xy + 6y$解:首先找到两个数的乘积等于3乘以6,并且它们的和等于6。

这两个数是3和2。

因此,我们可以将原式改写为$(3x + 2)(y + 0)$。

3. $4x^2 - 9$解:这是一个差的平方形式。

我们可以将其改写为$(2x - 3)(2x + 3)$。

4. $5a^2 - 20a$解:首先进行因式分解,我们可以将原式写为$a(5a - 20)$。

然后,再将括号中的表达式进行简化,得到$a(5(a - 4))$。

最终结果为$a^2(5 -4)$,即$a^2$。

5. $6xy^2 - 3xy$解:首先进行因式分解,我们可以将原式写为$3xy(2y - 1)$。

在括号中的表达式无法再简化,因此最终结果为$3xy(2y - 1)$。

6. $7x^3 - 7x$解:首先进行因式分解,我们可以将原式写为$7x(x^2 - 1)$。

然后,再将括号中的表达式进行简化,得到$7x(x - 1)(x + 1)$。

最终结果为$7x(x - 1)(x + 1)$。

7. $8a^2b - 4ab^2$解:首先进行因式分解,我们可以将原式写为$4ab(2a - b)$。

在括号中的表达式无法再简化,因此最终结果为$4ab(2a - b)$。

8. $9x^2 + 12xy + 4y^2$解:这是一个完全平方形式。

我们可以将其改写为$(3x + 2y)^2$。

9. $10a^2 - 5ab + 15a$解:首先进行因式分解,我们可以将原式写为$5a(2a - b + 3)$。

在括号中的表达式无法再简化,因此最终结果为$5a(2a - b + 3)$。

10. $11xy^3 - 22xy^2 + 11xy$解:首先进行因式分解,我们可以将原式写为$11xy(y^2 - 2y + 1)$。

因式分解难题竞赛题

因式分解难题竞赛题

因式分解难题竞赛题一、已知多项式 x4 + ax3 + bx2 + cx + d 的因式分解中含有一个因式 (x - 2)2,且当 x = 1 时,多项式的值为 1。

则下列哪个选项可能是该多项式的因式分解形式?A. (x - 2)2(x2 + 4x + 7)B. (x - 2)2(x2 + 5x + 8)C. (x - 2)2(x2 + 3x + 5)D. (x - 2)2(x2 + 6x + 9)(答案:C)二、多项式 x3 + ax2 + bx + c 分解因式后有一个因式是 x + 1,且当 x = 2 时,多项式值为 0;当 x = -2 时,多项式值为 -27。

下列哪个选项是该多项式的因式分解?A. (x + 1)(x2 - x + 3)B. (x + 1)(x2 - 2x - 3)C. (x + 1)(x2 - 3x + 9)D. (x + 1)(x2 - x - 9)(答案:C)三、多项式 x4 - ax3 + bx2 - ax + 1 在进行因式分解时,有一个因式是 x2 + 1,且常数项为 1。

下列哪个选项可能是该多项式的另一个因式?A. x2 - ax - 1B. x2 - ax + 2C. x2 - ax - 2D. x2 - ax + 3(答案:A)四、已知多项式 2x4 - 11x3 + 19x2 - 11x + 2 可以完全分解,且含有一个二次因式。

下列哪个选项是该多项式的一个因式?A. x2 - 5x + 1B. x2 - 4x + 2C. x2 - 3x + 1D. x2 - 6x + 2(答案:B)五、多项式 x3 + ax2 + bx + c 有一个因式 x - 1,且满足 x = 0 时多项式为 -6,x = 2 时多项式为 0。

下列哪个选项是该多项式的因式分解?A. (x - 1)(x2 + x - 6)B. (x - 1)(x2 + 2x - 6)C. (x - 1)(x2 + 3x - 6)D. (x - 1)(x2 + 4x - 6)(答案:A)六、多项式 x4 + 6x3 + ax2 + bx + c 有一个因式 (x + 1)(x + 2),且常数项 c 为正数。

(完整版)因式分解(竞赛题)含答案

(完整版)因式分解(竞赛题)含答案

因式分解1、导入:有两个人相约到山上去寻找精美的石头,甲背了满满的一筐,乙的筐里只有一个他认为是最精美的石头。

甲就笑乙:“你为什么只挑一个啊?”乙说:“漂亮的石头虽然多,但我只选一个最精美的就够了。

”甲笑而不语,下山的路上,甲感到负担越来越重,最后不得已不断地从一筐的石头中挑一个最差的扔下,到下山的时候他的筐里结果只剩下一个石头!启示:人生中会有许多的东西,值得留恋,有的时候你应该学会去放弃。

二、知识点回顾:1.运用公式法 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)a2-b2=(a+b)(a-b); (2)a2±2ab+b2=(a±b)2; (3)a3+b3=(a+b)(a2-ab+b2); (4)a3-b3=(a-b)(a2+ab+b2). 下面再补充几个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca); (7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数; (8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数. 运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.三、专题讲解 例1 分解因式: (1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz; 解 (1)原式=-2x n-1y n(x4n-2x2ny2+y4) =-2x n-1y n[(x2n)2-2x2ny2+(y2)2] =-2x n-1y n(x2n-y2)2 =-2x n-1y n(x n-y)2(x n+y)2.(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z) =(x-2y-z)(x2+4y2+z2+2xy+xz-2yz). 例2 分解因式:a 3+b 3+c 3-3abc . 本题实际上就是用因式分解的方法证明前面给出的公式(6). 分析 我们已经知道公式(a+b)3=a 3+3a 2b+3ab 2+b 3 的正确性,现将此公式变形为a 3+b 3=(a+b)3-3ab(a+b). 这个式也是一个常用的公式,本题就借助于它来推导. 解 原式=(a+b)3-3ab(a+b)+c 3-3abc =[(a+b)3+c 3]-3ab(a+b+c) =(a+b+c)[(a+b)2-c(a+b)+c 2]-3ab(a+b+c) =(a+b+c)(a 2+b 2+c 2-ab -bc -ca). 说明 公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为a 3+b 3+c 3-3abc 显然,当a+b+c=0时,则a 3+b 3+c 3=3abc ;当a+b+c >0时,则a 3+b 3+c 3-3abc≥0,即a 3+b 3+c 3≥3abc,而且,当且仅当a=b=c 时,等号成立. 如果令x=a 3≥0,y=b 3≥0,z=c 3≥0,则有 等号成立的充要条件是x=y=z .这也是一个常用的结论.※※变式练习 1分解因式:x 15+x 14+x 13+…+x 2+x+1. 分析 这个多项式的特点是:有16项,从最高次项x 15开始,x 的次数顺次递减至0,由此想到应用公式a n -b n 来分解. 解 因为 x 16-1=(x -1)(x 15+x 14+x 13+…x 2+x+1), 所以 说明 在本题的分解过程中,用到先乘以(x -1),再除以(x -1)的技巧,这一技巧在等式变形中很常用. 2.拆项、添项法 因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解. 例3 分解因式:x3-9x+8. 分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧. 解法1 将常数项8拆成-1+9. 原式=x3-9x-1+9 =(x3-1)-9x+9 =(x-1)(x2+x+1)-9(x-1) =(x-1)(x2+x-8). 解法2 将一次项-9x拆成-x-8x. 原式=x3-x-8x+8 =(x3-x)+(-8x+8) =x(x+1)(x-1)-8(x-1) =(x-1)(x2+x-8). 解法3 将三次项x3拆成9x3-8x3. 原式=9x3-8x3-9x+8 =(9x3-9x)+(-8x3+8) =9x(x+1)(x-1)-8(x-1)(x2+x+1) =(x-1)(x2+x-8). 解法4 添加两项-x2+x2. 原式=x3-9x+8 =x3-x2+x2-9x+8 =x2(x-1)+(x-8)(x-1) =(x-1)(x2+x-8). 说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.※※变式练习 1分解因式: (1)x9+x6+x3-3; (2)(m2-1)(n2-1)+4mn; (3)(x+1)4+(x2-1)2+(x-1)4; (4)a3b-ab3+a2+b2+1. 解 (1)将-3拆成-1-1-1. 原式=x9+x6+x3-1-1-1 =(x9-1)+(x6-1)+(x3-1) =(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1) =(x3-1)(x6+2x3+3) =(x-1)(x2+x+1)(x6+2x3+3). (2)将4mn拆成2mn+2mn. 原式=(m2-1)(n2-1)+2mn+2mn =m2n2-m2-n2+1+2mn+2mn =(m2n2+2mn+1)-(m2-2mn+n2) =(mn+1)2-(m-n)2 =(mn+m-n+1)(mn-m+n+1). (3)将(x2-1)2拆成2(x2-1)2-(x2-1)2. 原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4 =[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2 =[(x+1)2+(x-1)2]2-(x2-1)2 =(2x2+2)2-(x2-1)2=(3x2+1)(x2+3). (4)添加两项+ab-ab. 原式=a3b-ab3+a2+b2+1+ab-ab =(a3b-ab3)+(a2-ab)+(ab+b2+1) =ab(a+b)(a-b)+a(a-b)+(ab+b2+1) =a(a-b)[b(a+b)+1]+(ab+b2+1) =[a(a-b)+1](ab+b2+1) =(a2-ab+1)(b2+ab+1). 说明(4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验. 3.换元法 换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰. 例4 分解因式:(x2+x+1)(x2+x+2)-12. 分析将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了. 解设x2+x=y,则 原式=(y+1)(y+2)-12=y2+3y-10 =(y-2)(y+5)=(x2+x-2)(x2+x+5) =(x-1)(x+2)(x2+x+5). 说明本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试. 例5 分解因式:(x2+3x+2)(4x2+8x+3)-90. 分析先将两个括号内的多项式分解因式,然后再重新组合. 解原式=(x+1)(x+2)(2x+1)(2x+3)-90 =[(x+1)(2x+3)][(x+2)(2x+1)]-90 =(2x2+5x+3)(2x2+5x+2)-90. 令y=2x2+5x+2,则 原式=y(y+1)-90=y2+y-90 =(y+10)(y-9) =(2x2+5x+12)(2x2+5x-7) =(2x2+5x+12)(2x+7)(x-1). 说明对多项式适当的恒等变形是我们找到新元(y)的基础.※※变式练习 1.分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2. 解设x2+4x+8=y,则 原式=y2+3xy+2x2=(y+2x)(y+x) =(x2+6x+8)(x2+5x+8) =(x+2)(x+4)(x2+5x+8). 说明由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式. 1.双十字相乘法 分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式. 例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3), 可以看作是关于x的二次三项式.的二次三项式,也可以用十字相乘法,分解为 对于常数项而言,它是关于y 即:-22y2+35y-3=(2y-3)(-11y+1).的二次三项式分解 再利用十字相乘法对关于x 所以,原式=[x+(2y-3)][2x+(-11y+1)] =(x+2y-3)(2x-11y+1). 上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图: 它表示的是下面三个关系式: (x+2y)(2x-11y)=2x2-7xy-22y2; (x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3. 这就是所谓的双十字相乘法. 用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是: (1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列); (2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx. 例1 分解因式: (1)x2-3xy-10y2+x+9y-2; (2)x2-y2+5x+3y+4; (3)xy+y2+x-y-2; (4)6x2-7xy-3y2-xz+7yz-2z2. 解 (1)原式=(x-5y+2)(x+2y-1).(2) 原式=(x+y+1)(x-y+4).来分解. (3)原式中缺x2项,可把这一项的系数看成0 原式=(y+1)(x+y-2). (4) 原式=(2x-3y+z)(3x+y-2z). 说明 (4)中有三个字母,解法仍与前面的类似.2.求根法 我们把形如a n x n+a n-1x n-1+…+a1x+a0(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如 f(x)=x2-3x+2,g(x)=x5+x2+6,…, 当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x) f(1)=12-3×1+2=0; f(-2)=(-2)2-3×(-2)+2=12. 若f(a)=0,则称a为多项式f(x)的一个根. 定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a. 根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x)要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根. 定理2 的根,则必有p是a0的约数,q是a n的约数.特别地,当a0=1时,整系数多项式f(x)的整数根均为a n的约数. 我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解. 例2 分解因式:x3-4x2+6x-4. 分析 这是一个整系数一元多项式,原式若有整数根,必是-4的约数,逐个检验-4的约数:±1,±2,±4,只有 f(2)=23-4×22+6×2-4=0,即x=2是原式的一个根,所以根据定理1,原式必有因式x-2. 解法1 用分组分解法,使每组都有因式(x-2). 原式=(x 3-2x 2)-(2x 2-4x)+(2x-4) =x 2(x-2)-2x(x-2)+2(x-2) =(x-2)(x 2-2x+2). 解法2 用多项式除法,将原式除以(x-2), 所以原式=(x-2)(x 2-2x+2). 说明 在上述解法中,特别要注意的是多项式的有理根一定是-4的约数,反之不成立,即-4的约数不一定是多项式的根.因此,必须对-4的约数逐个代入多项式进行验证.※※变式练习 1. 分解因式:9x 4-3x 3+7x 2-3x-2. 分析 因为9的约数有±1,±3,±9;-2的约数有±1,±为: 所以,原式有因式9x 2-3x-2. 解 9x 4-3x 3+7x 2-3x-2 =9x 4-3x 3-2x 2+9x 2-3x-2 =x 2(9x 3-3x-2)+9x 2-3x-2 =(9x 2-3x-2)(x 2+1) =(3x+1)(3x-2)(x 2+1) 说明 若整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式可以化为9x2-3x-2,这样可以简化分解过程. 总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可以分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,这样,我们就可以继续对g(x)进行分解了. 3.待定系数法 待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用. 在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法. 例3 分解因式:x2+3xy+2y2+4x+5y+3. 分析由于 (x2+3xy+2y2)=(x+2y)(x+y), 若原式可以分解因式,那么它的两个一次项一定是x+2y+m和x+y+n的形式,应用待定系数法即可求出m和n,使问题得到解决. 解设 x2+3xy+2y2+4x+5y+3 =(x+2y+m)(x+y+n) =x2+3xy+2y2+(m+n)x+(m+2n)y+mn, 比较两边对应项的系数,则有 解之得m=3,n=1.所以原式=(x+2y+3)(x+y+1). 说明本题也可用双十字相乘法,请同学们自己解一下.※※变式练习 1.分解因式:x4-2x3-27x2-44x+7.分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为(x2+ax+b)(x2+cx+d)的形式. 解设 原式=(x2+ax+b)(x2+cx+d) =x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd, 所以有有 由bd=7,先考虑b=1,d=7 所以 原式=(x2-7x+1)(x2+5x+7). 说明由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑.本题如果b=1,d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直到求出待定系数为止. 本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.四、巩固练习:1. 分解因式:(x2+xy+y2)-4xy(x2+y2). 分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式. 解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则 原式=(u2-v)2-4v(u2-2v) =u4-6u2v+9v2 =(u2-3v)2 =(x2+2xy+y2-3xy)2 =(x2-xy+y2)2.五、反思总结。

初中数学专项练习《因式分解》100道解答题包含答案(真题汇编)

初中数学专项练习《因式分解》100道解答题包含答案(真题汇编)

初中数学专项练习《因式分解》100道解答题包含答案一、解答题(共100题)1、阅读理解题:我们知道因式分解与整式乘法是互逆的关系,那么逆用乘法公式(x+a)(x+b)=x2+(a+b)x+ab,即x2+(a+b)x+ab=(x+a)(x+b)是否可以分解因式呢?当然可以,而且也很简单.如:(1)x2+4x+3=x2+(1+3)x+1×3=(x+1)(x+3);(2)x2﹣4x﹣5=x2+(1﹣5)x+1×(﹣5)=(x+1)(x﹣5).2、化简:a2(a﹣1)﹣a3.3、阅读材料:若x2-2xy+2y2-8y+16=0,求x、y的值.解:∵x2-2xy+2y2-8y+16=0,∴(x2-2xy+y2)+(y2-8y+16)=0∴(x-y)2+(y-4)2=0,∴(x-y)2=0,(y-4)2=0,∴y=4,x=4.根据你的观察,探究下面的问题:已知a、b满足a2+b2-4a-6b+13=0.求a、b的值.4、用简便方法计算(1)(﹣0.25)11×(﹣4)12(2)20152﹣2014×2016.5、分解因式(1)4x2+4x+1(2)2x2﹣18(3)y3﹣2y2+y(4)4a2﹣(b+c)2.6、用简便方法计算(1)(﹣0.25)11×(﹣4)12(2)20152﹣2014×2016.7、已知方程x2﹣2x﹣15=0的两个根分别是a和b,求代数式(a﹣b)2+4b(a ﹣b)+4b2的值.8、10x2+3x﹣4.9、已知,求的值.10、先化简,在求值:30x (y+4)-15x(y+4), 其中x=2,y=-211、(p﹣q)4÷(q﹣p)3•(p﹣q)2.12、先化简,再求值.2(x﹣3)(x+2)﹣(3+a)(﹣a+3),其中,a=﹣2,x=1.13、因式分解:(2x+y)2﹣(x+2y)2.14、(1)填空:(a﹣b)(a+b)= ;(a﹣b)(a2+ab+b2)= ;(a﹣b)(a3+a2b+ab2+b3)= .(2)猜想:(a﹣b)(a n﹣1+a n﹣2b+…+ab n﹣2+b n﹣1)= (其中n为正整数,且n≥2).(3)利用(2)猜想的结论计算:29﹣28+27﹣…+23﹣22+2.15、已知二次函数的图象与x轴交于两点,且,求a的值.16、若a m=4,a n=2,求a2m-n17、列方程解应用题:如果一个正方形的边长增加4厘米,那么它的面积就增加40平方厘米,则这个正方形的边长是多少?18、3m3n﹣6m2n2﹣72mn3.19、利用因式分解计算:3.68×15.7-31.4+15.7×0.32.20、先将代数式因式分解,再求值:2x(a﹣2)﹣y(2﹣a),其中a=0.5,x=1.5,y=﹣2.21、己知:△ABC,AD⊥BC于点D,且AB+BD=AC+CD,求证:AB=AC.22、已知:x+y=﹣3,x﹣y=7.求:①xy的值;②x2+y2的值.23、若a+b=﹣3,ab=1.求a3b+a2b2+ab3的值.24、已知多项式与的乘积中不含有一次项和二次项,求常数的值.25、已知多项式的结果中不含项和项,求和的值.26、分解因式: 4x2-427、已知甲数为a×10n,乙数是甲数的10倍,丙数是乙数的2倍,甲、乙、丙三数的积为1.6×1012,求a,n的值.(其中1≤a≤10,n为正整数)28、有一个长方体模型,它的长为2×103cm,宽为1.5×102cm,高为1.2×102cm,它的体积是多少cm3?29、分解因式:2x2﹣8.30、解不等式:(x﹣6)(x﹣9)﹣(x﹣7)(x﹣1)<7(2x﹣5)31、已知A=2x,B是多项式,在计算B+A时,某同学把B+A看成B÷A结果得x2+x,求B+A.32、解答发现:(1)当a=3,b=2时,分别求代数式(a+b)2和a2+2ab+b2的值,并观察这两个代数式的值有什么关系?(2)再多找几组你喜欢的数试一试,从中你发现了什么规律?(3)利用你所发现的规律计算a=1. 625,b=0. 375时,a2+2ab+b2的值?33、设n为正整数,且x2n=5,求(2x3n)2﹣3(x2)2n的值.34、已知x﹣1=,求代数式(x+1)2﹣4(x+1)+4的值.35、已知x+y=2,xy=﹣1,求下列代数式的值:(1)5x2+5y2;(2)(x﹣y)2.36、已知.三角形的底边长为(2x+1)cm,高是(x﹣2)cm,若把底边和高各增加5厘米,那么三角形面积增加了多少?并求出x=3时三角形增加的面积.37、已知x2+xy﹣2y2=7,且x、y都是正整数,试求x、y的值.38、已知a-b=3,求a(a-2b)+b2的值39、先化简,再求值:.40、甲、乙两人共同计算一道整式乘法:(2x+a)(3x+b),由于甲抄错了第一个多项式中a前面的符号,得到的结果为6x2+18x+12;由于乙漏抄了第二个多项中的x的系数,得到的结果为2x2+2x﹣12,请你计算出a、b的值各是多少,并写出这道整式乘法的正确结果.41、已知(x+a)(x2﹣x+c)的积中不含x2项和x项,求(x+a)(x2﹣x+c)的值是多少?42、已知a+b=﹣,求代数式(a﹣1)2+b(2a+b)+2a的值.43、因式分解:6p(p+q)﹣4q(p+q).44、(1)如果a+4=﹣3b,求3a×27b的值.(2)已知a m=2,a n=4,a k=32,求a3m+2n﹣k的值.45、先化简,再求值:{(a+b)2﹣(a﹣b)2}•a,其中a=﹣1,b=5.46、化简求值:当a=2005时,求-3a2(a2-2a-3)+3a(a3-2a2-3a)+2005的值47、“若a m=a n(a>0且a≠1,m、n是正整数),则m=n”.你能利用上面的结论解决下面的问题吗?试试看,相信你一定行!(1)如果27x=39,求x的值;(2)如果2÷8x•16x=25,求x的值;(3)如果3x+2•5x+2=153x﹣8,求x的值.48、七年级某同学做一道题:“已知两个多项式A,B,,计算”,他误将写成了,结果得到答案,请你帮助他求出正确的答案.49、已知:,,求和的值.50、已知:a m=5,a n=2,求(1)a2m+3n的值;(2)a4n﹣3m的值.51、对于任意自然数n,(n+7)2-(n-5)2能否被24整除,为什么?52、先化简,再求值:(x﹣y2)﹣(x﹣y)(x+y)+(x+y)2,其中x=3,y=﹣.53、说明代数式[(x﹣y)2﹣(x+y)(x﹣y)]÷(﹣2y)+y的值,与y的值无关.54、设x>0,试比较代数式x3和x2+x+2的值的大小.55、(1)解方程:x2﹣4x=0(2)化简:m(m+3)﹣(m+1)2,其中m=+1.56、数学课堂上,王老师给同学们出了道题:若(x2﹣px+3)(x﹣q)中不含x2项,请同学们探究一下p与q的关系.请你根据所学知识帮助同学们解决一下.57、已知:a+b=﹣1,ab=﹣6,求下列各式的值:(1)a2b+ab2(2)a2+b2.58、x4﹣13x2y2+36y4.59、分解因式:(1)6xy2﹣9x2y﹣y3;(2)(x2+4)2﹣16x2.60、设的整数部分为x,小数部分为y,求(x+y)(x﹣y)的值.61、已知a+b=3,求代数式a2﹣b2+2a+8b+5的值.62、已知:,求代数式的值.63、请利用因式分解说明能被100整除.64、已知多项式x2-4x+m分解因式的结果为(x+a)(x-6),求2a-m的值.65、若△ABC的三边长a、b、c满足6a+8b+10c﹣50=a2+b2+c2,试判断△ABC 的形状.66、已知甲数为a×10n,乙数是甲数的10倍,丙数是乙数的2倍,甲、乙、丙三数的积为1.6×1012,求a,n的值.(其中1≤a≤10,n为正整数)67、已知二次三项式x2+px+q的常数项与(x-1)(x-9)的常数项相同,而它的一次项与(x-2)(x-4)的一次项相同,试将此多项式因式分解.68、已知n是正整数,且,求的值.69、先化简,再求值:.70、当a=3,b=﹣1时(1)求代数式a2﹣b2和(a+b)(a﹣b)的值;(2)猜想这两个代数式的值有何关系?(3)根据(1)(2),你能用简便方法算出a=2008,b=2007时,a2﹣b2的值吗?71、已知三次四项式2x3﹣5x2﹣6x+k分解因式后有一个因式是x﹣3,试求k的值及另一个因式.72、阅读理解并解答:为了求1+2+22+23+24+...+22009的值,可令S=1+2+22+23+24+ (22009)则2S=2+22+23+24+…+22009+22010,因此2S﹣S=(2+22+23+…+22009+22010)﹣(1+2+22+23+…+22009)=22010﹣1.所以:S=22010﹣1.即1+2+22+23+24+…+22009=22010﹣1.请依照此法,求:1+4+42+43+44+…+42010的值.73、在日常生活中我们经常用到密码,如取款、上网购物需要密码,有一种用因式分解法产生密码,方便记忆,其原理是:将一个多项式因式分解:例如x4﹣y4=(x2+y2)(x+y)(x﹣y),当x=8,y=9时,x2+y2=145,x+y=17,x﹣y=4则可以得到密码是145174,1741454…,等等,根据上述方法当x=32,y=12时,对于多项式x2y﹣y3分解因式后可以形成哪些数字密码?74、先化简,再求值:(1)2(a2b﹣ab2)﹣3(a2b﹣1)+2ab2+1,其中a=1,b=2.(2)2a(a+b)﹣(a+b)2,其中a=3,b=5.75、已知关于x的多项式3x2+x+m因式分解以后有一个因式为(3x﹣2),试求m的值并将多项式因式分解.76、已知:a﹣b=﹣2015,ab=,求a2b﹣ab2的值.77、已知:,求78、如图,在一块边长为acm的正方形纸板四角,各剪去一个边长为bcm(b<)的正方形,利用因式分解计算当a=13.2,b=3.4时,剩余部分的面积.79、分解因式:4n2(m﹣1)+9﹣9m.80、已知3×9m×27m=321,求(﹣m2)3÷(m3•m2)的值.81、先化简,再求值:,其中a=﹣3,b= .82、已知常数a、b满足3a×32b=27,且(5a)2×(52b)2÷(53a)b=1,求a2+4b2的值.83、下面是小彬同学进行整式化简的过程,请认真阅读并完成相应任务.任务1:填空:①以上化简步骤中,第一步的依据是________;②以上化简步骤中,第________步开始出现不符合题意,这一步错误的原因是________ ;任务2:请写出该整式正确的化简过程,并计算当x=﹣1,y=﹣时该整式的值.84、因式分解:(1)x(x﹣y)﹣y(y﹣x);(2)a2x2y﹣axy2.85、(1)填空:(a﹣b)(a+b)= ;(a﹣b)(a2+ab+b2)= ;(a﹣b)(a3+a2b+ab2+b3)= .(2)猜想:(a﹣b)(a n﹣1+a n﹣2b+…+ab n﹣2+b n﹣1)= (其中n为正整数,且n≥2).(3)利用(2)猜想的结论计算:29﹣28+27﹣…+23﹣22+2.86、分解因式:(1)4x2﹣12x3(2)a2﹣ab+b2(3)x4﹣81.87、现有三个多项式:a2+a-4,a2+5a+4,a2-a,请你选择其中两个进行加法运算,并把结果因式分解。

(word完整版)因式分解过关练习题及答案

(word完整版)因式分解过关练习题及答案

因式分解专题过关1.将下列各式分解因式(1)3p2﹣6pq (2)2x2+8x+82.将下列各式分解因式(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.3.分解因式(1)a2(x﹣y)+16(y﹣x)(2)(x2+y2)2﹣4x2y24.分解因式:(1)2x2﹣x (2)16x2﹣1 (3)6xy2﹣9x2y﹣y3 (4)4+12(x﹣y)+9(x﹣y)25.因式分解:(1)2am2﹣8a (2)4x3+4x2y+xy26.将下列各式分解因式:(1)3x﹣12x3(2)(x2+y2)2﹣4x2y2 7.因式分解:(1)x2y﹣2xy2+y3 (2)(x+2y)2﹣y28.对下列代数式分解因式:(1)n2(m﹣2)﹣n(2﹣m) (2)(x﹣1)(x﹣3)+19.分解因式:a2﹣4a+4﹣b210.分解因式:a2﹣b2﹣2a+111.把下列各式分解因式:(1)x4﹣7x2+1 (2)x4+x2+2ax+1﹣a2(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+112.把下列各式分解因式:(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;(5)2a4﹣a3﹣6a2﹣a+2.因式分解专题过关1.将下列各式分解因式(1)3p2﹣6pq; (2)2x2+8x+8分析:(1)提取公因式3p整理即可;(2)先提取公因式2,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)3p2﹣6pq=3p(p﹣2q),(2)2x2+8x+8,=2(x2+4x+4),=2(x+2)2.2.将下列各式分解因式(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.分析:(1)首先提取公因式xy,再利用平方差公式进行二次分解即可;(2)首先提取公因式3a,再利用完全平方公式进行二次分解即可.解答:解:(1)原式=xy(x2﹣1)=xy(x+1)(x﹣1);(2)原式=3a(a2﹣2ab+b2)=3a(a﹣b)2.3.分解因式(1)a2(x﹣y)+16(y﹣x);(2)(x2+y2)2﹣4x2y2.分析:(1)先提取公因式(x﹣y),再利用平方差公式继续分解;(2)先利用平方差公式,再利用完全平方公式继续分解.解答:解:(1)a2(x﹣y)+16(y﹣x),=(x﹣y)(a2﹣16),=(x﹣y)(a+4)(a﹣4);(2)(x2+y2)2﹣4x2y2,=(x2+2xy+y2)(x2﹣2xy+y2),=(x+y)2(x﹣y)2.4.分解因式:(1)2x2﹣x; (2)16x2﹣1;(3)6xy2﹣9x2y﹣y3; (4)4+12(x﹣y)+9(x﹣y)2.分析:(1)直接提取公因式x即可;(2)利用平方差公式进行因式分解;(3)先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解;(4)把(x﹣y)看作整体,利用完全平方公式分解因式即可.解答:解:(1)2x2﹣x=x(2x﹣1);(2)16x2﹣1=(4x+1)(4x﹣1);(3)6xy2﹣9x2y﹣y3,=﹣y(9x2﹣6xy+y2),=﹣y(3x﹣y)2;(4)4+12(x﹣y)+9(x﹣y)2,=[2+3(x﹣y)]2,=(3x﹣3y+2)2.5.因式分解:(1)2am2﹣8a;(2)4x3+4x2y+xy2分析:(1)先提公因式2a,再对余下的多项式利用平方差公式继续分解;(2)先提公因式x,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)2am2﹣8a=2a(m2﹣4)=2a(m+2)(m﹣2);(2)4x3+4x2y+xy2,=x(4x2+4xy+y2),=x(2x+y)2.6.将下列各式分解因式:(1)3x﹣12x3(2)(x2+y2)2﹣4x2y2.分析:(1)先提公因式3x,再利用平方差公式继续分解因式;(2)先利用平方差公式分解因式,再利用完全平方公式继续分解因式.解答:解:(1)3x﹣12x3=3x(1﹣4x2)=3x(1+2x)(1﹣2x);(2)(x2+y2)2﹣4x2y2=(x2+y2+2xy)(x2+y2﹣2xy)=(x+y)2(x﹣y)2.7.因式分解:(1)x2y﹣2xy2+y3;(2)(x+2y)2﹣y2.分析:(1)先提取公因式y,再对余下的多项式利用完全平方式继续分解因式;(2)符合平方差公式的结构特点,利用平方差公式进行因式分解即可.解答:解:(1)x2y﹣2xy2+y3=y(x2﹣2xy+y2)=y(x﹣y)2;(2)(x+2y)2﹣y2=(x+2y+y)(x+2y﹣y)=(x+3y)(x+y).8.对下列代数式分解因式:(1)n2(m﹣2)﹣n(2﹣m); (2)(x﹣1)(x﹣3)+1.分析:(1)提取公因式n(m﹣2)即可;(2)根据多项式的乘法把(x﹣1)(x﹣3)展开,再利用完全平方公式进行因式分解.解答:解:(1)n2(m﹣2)﹣n(2﹣m)=n2(m﹣2)+n(m﹣2)=n(m﹣2)(n+1);(2)(x﹣1)(x﹣3)+1=x2﹣4x+4=(x﹣2)2.9.分解因式:a2﹣4a+4﹣b2.分析:本题有四项,应该考虑运用分组分解法.观察后可以发现,本题中有a的二次项a2,a的一次项﹣4a,常数项4,所以要考虑三一分组,先运用完全平方公式,再进一步运用平方差公式进行分解.解答:解:a2﹣4a+4﹣b2=(a2﹣4a+4)﹣b2=(a﹣2)2﹣b2=(a﹣2+b)(a﹣2﹣b).分析:当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中有a的二次项,a的一次项,有常数项.所以要考虑a2﹣2a+1为一组.解答:解:a2﹣b2﹣2a+1=(a2﹣2a+1)﹣b2=(a﹣1)2﹣b2=(a﹣1+b)(a﹣1﹣b).11.把下列各式分解因式:(1)x4﹣7x2+1; (2)x4+x2+2ax+1﹣a2(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+1分析:(1)首先把﹣7x2变为+2x2﹣9x2,然后多项式变为x4﹣2x2+1﹣9x2,接着利用完全平方公式和平方差公式分解因式即可求解;(2)首先把多项式变为x4+2x2+1﹣x2+2ax﹣a2,然后利用公式法分解因式即可解;(3)首先把﹣2x2(1﹣y2)变为﹣2x2(1﹣y)(1﹣y),然后利用完全平方公式分解因式即可求解;(4)首先把多项式变为x4+x3+x2++x3+x2+x+x2+x+1,然后三个一组提取公因式,接着提取公因式即可求解.解答:解:(1)x4﹣7x2+1=x4+2x2+1﹣9x2=(x2+1)2﹣(3x)2=(x2+3x+1)(x2﹣3x+1);(2)x4+x2+2ax+1﹣a=x4+2x2+1﹣x2+2ax﹣a2=(x2+1)﹣(x﹣a)2=(x2+1+x﹣a)(x2+1﹣x+a);(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+[x2(1﹣y)]2=[(1+y)﹣x2(1﹣y)]2=(1+y﹣x2+x2y)2(4)x4+2x3+3x2+2x+1=x4+x3+x2++x3+x2+x+x2+x+1=x2(x2+x+1)+x(x2+x+1)+x2+x+1=(x2+x+1)2.12.把下列各式分解因式:(3)x5+x+1;(4)x3+5x2+3x﹣9;(。

(完整版)因式分解(奥赛)

(完整版)因式分解(奥赛)

因式分解【奥赛花絮】最早的数学竞赛匈牙利是举办中学数学竞赛最早的国家,自1894年匈牙利物理数学学会通过了关于举行中学生奥林匹克数学竞赛的决议起,每年十月举行这种竞赛。

仅仅由于两次世界大战和1956年的匈牙利时件间断过7年。

2003年举行的是第103届匈牙利数学竞赛。

【奥赛赛点】将一个多项式化为几个整式的积的形式,叫做因式分解。

因式分解是一种重要的恒等变形,在数学中有广泛的应用.因式分解的方法比较多,除了课本介绍的提公因式法,公式法,十字相乘法,分组分解法外,我们还要掌握换元法,主元法,配方法,待定系数法等。

【解题思路与技巧】1.换元法。

在解题的过程中,我们常把某个比较复杂的代数式看成一个整体,将它用一个字母来代替,从而简化这个代数式的结构,这种方法就是换元法.在因式分解中用换元法,又可细分为整体代换(如例1,例2),对称代换(如例3),倒数代换(如例4),平均代换(如例5)等。

2.主元法在分解一个含有多个字母的多项式时,我们常选择一个字母作为主要元素,将其他字母看作常数,然后将多项式按选定的字母降幂排列,这种方法叫做主元法。

用主元法往往可以得到恰当的分组,从而找出公因式来,如例6。

3.配方法通过添项,拆项利用公式将一个多项式配成一个完全平方,是一种常用的恒等变形技巧,以便利用公式来分解因式,如例7,例8。

4.待定系数法在解决有关多项式时,可先假定问题的结果已经求出,其中含有未知系数,然后根据多项式恒等的定义或性质,列出含有这些未知数的方程或方程组,通过解方程或方程组,求出未知系数的值,从而解决问题的方法,如例9,例10。

【典型示例】例1 (1994年第6届“五羊杯”数学竞赛试题)在有理数范围内分解因式:(1)16(6x-1)(2x—1)(3x+1)(x-1)+25= 。

(2)(6x—1)(2x—1)(3x-1)(x-1)+x2= 。

(3)(6x—1)(4x-1)(3x-1)(x-1)+9x4= .[解] (1)原式=(6x—1)(4x—2)(6x+2)(4x+4)+25=(24x2-16x+2) (24x2-16x—8)+25设 24x2-16x+2=t,原式=t(t-10)+25=(t—5)2=(24x2—16x—3)2(2)原式=(6x-1)(x—1) (2x-1)(3x—1) +x2=(6x2-7x+1)(6x2-5x+1) +x2设6x2-7x+1=t, 原式=t(t-2x) +x2=(t—x)2=(6x2-6x+1)2(3)原式=(6x-1) (x-1) (4x-1)(3x-1) +9x4=(6x2-7x+1) (12x2-7x+1)+ 9x4设6x2-7x+1=t, 原式=t(6x2+t)+ 9x4=(t+3x2)2=(9x2-7x+1)2例2 (2000年第12届“五羊杯”数学竞赛试题)分解因式:(2x–3y)3 + (3x–2y)3 –125(x–y)3= 。

(完整版)因式分解竞赛题

(完整版)因式分解竞赛题

因式分解【例 1】 分解因式:2222(48)3(48)2x x x x x x ++++++提示:将248x x u ++=看成一个字母,可利用十字相乘【例 2】 (“希望杯”培训试题)分解因式:22(52)(53)12x x x x ++++-【解析】 方法1:将25x x +看作一个整体,设25x x t +=,则方法2:将252x x ++看作一个整体,设252x x t ++=,则方法3:将253x x ++看作一个整体,【巩固】 分解因式:(1)(3)(5)(7)15x x x x +++++ (1)(2)(3)(4)24a a a a ----- 22(1)(2)12x x x x ++++-【例 3】 证明:四个连续整数的乘积加1是整数的平方.【巩固】 若x ,y 是整数,求证:()()()()4234x y x y x y x y y +++++是一个完全平方数.【例 4】 (湖北黄冈数学竞赛题)分解因式2(25)(9)(27)91a a a +---【巩固】 分解因式22(32)(384)90x x x x ++++-【例 5】 分解因式:22224(31)(23)(44)x x x x x x --+--+-提示:可设2231,23x x A x x B --=+-=,则244x x A B +-=+.【巩固】 分解因式:2(2)(2)(1)a b ab a b ab +-+-+-【巩固】 分解因式:21(1)(3)2()(1)2xy xy xy x y x y +++-++-+-【例 6】 (重庆市竞赛题)分解因式:44(1)(3)272x x +-+-练习:1 .分解因式x x 3234+-2.求证:多项式的值一定是非负数3.分解因式:()()()a b c a b b c ++-+-+23334.在∆ABC 中,三边a,b,c 满足a b c ab bc 222166100--++=.求证:a c b +=25.已知:6.若x 为任意整数,求证:()()()7342---x x x 的值不大于100。

因式分解100题试题附答案精选全文完整版

因式分解100题试题附答案精选全文完整版

100题搞定因式分解计算因式分解100题(试题版)日期:________时间:________姓名:________成绩:________一、解答题(共100小题)1.因式分解:4a2b﹣b.2.因式分解:a2(a﹣b)+25(b﹣a).3.因式分解:x3+3x2y﹣4x﹣12y.4.因式分解:9(x+y)2﹣(x﹣y)2.5.因式分解:2a2b﹣12ab+18b.6.因式分解:﹣x3y+4x2y2﹣4xy3.7.因式分解:a2(x﹣y)+4b2(y﹣x).8.因式分解:4a3b+4a2b2+ab3.9.因式分解:(a+b)2﹣4a2.10.因式分解:3ax2﹣6axy+3ay2.11.因式分解:6x4﹣5x3﹣4x2.12.因式分解:(x﹣3y)(x﹣y)﹣(﹣x﹣y)213.因式分解:2m(a﹣b)﹣3n(b﹣a)14.因式分解:m2﹣(2m+3)2.16.因式分解:x2﹣4xy+4y2﹣117.因式分解:(9x+y)(2y﹣x)﹣(3x+2y)(x﹣2y)18.因式分解:a2﹣4﹣3(a+2)19.因式分解:(x﹣1)2+2(x﹣5).20.因式分解:4x3﹣8x2+4x.21.因式分解:x3﹣2x2﹣3x22.因式分解:2x2﹣4xy+3x﹣6y24.因式分解:9x2﹣6x+1.25.因式分解:4ma2﹣mb2.26.因式分解:x2﹣2xy﹣8y2.27.因式分解:a2+4a(b+c)+4(b+c)2.28.因式分解:x2﹣4y2+4﹣4x29.因式分解:xy2﹣4xy+4x.30.因式分解:x4﹣5x2﹣36.31.因式分解:x3﹣2x2y+xy2.32.在实数范围内因式分解:x2﹣4xy﹣3y2.33.因式分解:9a2(x﹣y)+4b2(y﹣x)34.因式分解:x4﹣10x2+9.35.因式分解:x2﹣y2﹣2x+1.36.因式分解:(2x﹣y)(x+3y)﹣(x+y)(y﹣2x).37.因式分解:6(x+y)2﹣2(x﹣y)(x+y).38.因式分解:2m4n﹣12m3n2+18m2n3.39.因式分解:a2(x﹣y)+4(y﹣x).40.在实数范围内因式分解:﹣2a2b2+ab+2.41.因式分解:x2﹣9+3x(x﹣3)42.因式分解:4xy2+4x2y+y3.43.因式分解:(x2+4x)2﹣2(x2+4x)﹣15.44.因式分解:6xy2+9x2y+y3.45.因式分解:x3﹣3x2+2x.46.因式分解:x(a﹣b)+y(b﹣a)﹣3(b﹣a).47.因式分解:3ax﹣18by+6bx﹣9ay48.因式分解:(2a﹣b)(3a﹣2)+b(2﹣3a)49.因式分解:(a﹣3)2+(3﹣a)50.因式分解:(a+b)﹣2a(a+b)+a2(a+b)51.因式分解:12x4﹣6x3﹣168x252.因式分解:(2m+3n)(2m﹣n)﹣n(2m﹣n)53.因式分解:3x2(x﹣2y)﹣18x(x﹣2y)﹣27(2y﹣x)54.因式分解:(x﹣1)(x+1)(x﹣2)﹣(x﹣2)(x2+2x+4)55.因式分解:8x2y2﹣10xy﹣1256.因式分解:6(x+y)2﹣2(x+y)(x﹣y)57.因式分解:9(a﹣b)(a+b)﹣3(a﹣b)258.因式分解:4xy(x+y)2﹣6x2y(x+y)59.因式分解:﹣24m2x﹣16n2x.60.因式分解:4a(x﹣y)﹣2b(y﹣x)61.因式分解:ax4﹣14ax2﹣32a.62.因式分解:x3+5x2y﹣24xy2.63.因式分解:(1﹣3a)2﹣3(1﹣3a)64.因式分解:x(x﹣y)3+2x2(y﹣x)2﹣2xy(x﹣y)2.65.因式分解:x5﹣2x3﹣8x.366.因式分解:x2-y2+2x+y+467.因式分解:2(x+y)2﹣20(x+y)+50.68.因式分解:1+a+a(1+a)+a(1+a)2+a(1+a)3.69.因式分解:x2y﹣x2z+xy﹣xz.70.因式分解:(x2﹣x)2﹣8x2+8x+12.71.因式分解:x4﹣(3x﹣2)2.72.因式分解:(3m﹣1)2﹣(2m﹣3)2.73.因式分解:(2x+5)2﹣(2x﹣5)2.74.因式分解:(﹣2x﹣1)2(2x﹣1)2﹣(4x2﹣2x﹣1)275.因式分解:(m+1)(m﹣9)+8m.76.因式分解:9(a﹣b)2+36(b2﹣ab)+36b277.因式分解:(a2+4)2﹣16a2.78.因式分解:9(m+n)2﹣(m﹣n)279.因式分解:x4﹣8x2y2+16y4.80.因式分解:25x2﹣9(x﹣2y)281.因式分解:4x2y2﹣(x2+y2)2.82.因式分解:x(x﹣12)+4(3x﹣1).83.因式分解:(x2﹣3)2+2(3﹣x2)+1.84.因式分解:(x+2)(x﹣6)+16.85.因式分解:2m(2m﹣3)+6m﹣1.86.因式分解:x4﹣16y4.87.因式分解:(a2+1)2﹣4a2.88.因式分解:(2x+y)2﹣(x+2y)2.89.因式分解:(x2﹣6)2﹣6(x2﹣6)+990.因式分解:(x2+x)2﹣(x+1)2.91.因式分解:8(x2﹣2y2)﹣x(7x+y)+xy.92.因式分解:x4﹣10x2y2+9y4.93.因式分解:(x2+x﹣5)(x2+x﹣3)﹣394.因式分解:(m2+2m)2﹣7(m2+2m)﹣895.因式分解:(x2+2x)2﹣2(x2+2x)﹣396.因式分解:2x2+6x﹣3.5.97.因式分解:3x2﹣12x+998.因式分解:(x﹣4)(x+7)+18.99.因式分解:5a2b2+23ab﹣10.100.因式分解:(x+y)2﹣(4x+4y)﹣32.因式分解100题参考答案部分可能有误仅供参考一、解答题(共100小题)1.【解答】解:4a2b﹣b=b(4a2﹣1)=b(2a+1)(2a﹣1).2.【解答】解:a2(a﹣b)+25(b﹣a)=a2(a﹣b)﹣25(a﹣b)=(a﹣b)(a2﹣52)=(a﹣b)(a+5)(a﹣5).3.【解答】解:x3+3x2y﹣4x﹣12y=(x3+3x2y)﹣(4x+12y)=x2(x+3y)﹣4(x+3y)=(x+3y)(x2﹣4)=(x+3y)(x+2)(x﹣2).4.【解答】解:9(x+y)2﹣(x﹣y)2=[3(x+y)﹣(x﹣y)][3(x+y)+(x﹣y)]=(2x+4y)(4x+2y)=4(x+2y)(2x+y).5.【解答】解:原式=2b(a2﹣6a+9)=2b(a﹣3)2.6.【解答】解:原式=﹣xy(x2﹣4xy+4y2)=﹣xy(x﹣2y)2.7.【解答】解:原式=(x﹣y)(a2﹣4b2)=(x﹣y)(a+2b)(a﹣2b).故答案为:(x﹣y)(a+2b)(a﹣2b).8.【解答】解:原式=ab(4a2+4ab+b2)=ab(2a+b)2.9.【解答】解:原式=(a+b+2a)(a+b﹣2a)=(3a+b)(b﹣a).10.【解答】解:原式=3a(x2﹣2xy+y2)=3a(x﹣y)2.11.【解答】解:6x4﹣5x3﹣4x2=x2(6x2﹣5x﹣4)=x2(2x+1)(3x﹣4).12.【解答】解:原式=x2﹣xy﹣3xy+y2﹣(x2+xy+y2),=x2﹣xy﹣3xy+y2﹣x2﹣xy﹣y2,=﹣xy+y2,=﹣y(x﹣y).13.【解答】解:2m(a﹣b)﹣3n(b﹣a)=(a﹣b)(2m+3n).14.【解答】解:原式=(m+2m+3)(m﹣2m﹣3)=(3m+3)(﹣m﹣3)=﹣3(m+1)(m+3).15.【解答】解:原式=[3(x﹣y)+2]2=(3x﹣3y+2)2.16.【解答】解:x2﹣4xy+4y2﹣1=(x2﹣4xy+4y2)﹣1=(x﹣2y)2﹣1=(x﹣2y+1)(x﹣2y﹣1).17.【解答】解:(9x+y)(2y﹣x)﹣(3x+2y)(x﹣2y)=(2y﹣x)(9x+y+3x+2y)=3(2y﹣x)(4x+y).18.【解答】解:原式=(a+2)(a﹣2)﹣3(a+2)=(a+2)(a﹣5).19.【解答】解:原式=x2﹣2x+1+2x﹣10=x2﹣9=(x+3)(x﹣3).20.【解答】解:原式=4x(x2﹣2x+1)=4x(x﹣1)2.21.【解答】解:x3﹣2x2﹣3x=x(x2﹣2x﹣3)=x(x﹣3)(x+1).22.【解答】解:原式=2x(x﹣2y)+3(x﹣2y)=(x﹣2y)(2x+3).23.【解答】解:(x﹣2y)(x+3y)﹣(x﹣2y)2=(x﹣2y)(x+3y﹣x+2y)=5y(x﹣2y).24.【解答】解:原式=(3x﹣1)2.25.【解答】解:4ma2﹣mb2,=m(4a2﹣b2),=m(2a+b)(2a﹣b).26.【解答】解:x2﹣2xy﹣8y2=(x﹣4y)(x+2y).27.【解答】解:原式=[a+2(b+c)]2=(a+2b+2c)2.28.【解答】解:x2﹣4y2+4﹣4x=(x2﹣4x+4)﹣4y2=(x﹣2)2﹣4y2=(x+2y﹣2)(x﹣2y﹣2).29.【解答】解:xy2﹣4xy+4x=x(y2﹣4y+4)=x(y﹣2)2.30.【解答】解:原式=(x2﹣9)(x2+4)=(x+3)(x﹣3)(x2+4).31.【解答】解:x3﹣2x2y+xy2,=x(x2﹣2xy+y2),=x(x﹣y)2.32.【解答】解:x2﹣4xy﹣3y2=x2﹣4xy+4y2﹣7y2=(x﹣2y)2﹣7y2=(x﹣2y+y)(x﹣2y﹣y).33.【解答】解:9a2(x﹣y)+4b2(y﹣x)=9a2(x﹣y)﹣4b2(x﹣y)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).34.【解答】解:原式=(x2﹣1)(x2﹣9)=(x+1)(x﹣1)(x+3)(x﹣3).35.【解答】解:原式=(x2﹣2x+1)﹣y2=(x﹣1)2﹣y236.【解答】解:原式=(2x﹣y)(x+3y)+(x+y)(2x﹣y)=(2x﹣y)(x+3y+x+y)=(2x﹣y)(2x+4y)=2(2x﹣y)(x+2y).37.【解答】解:6(x+y)2﹣2(x﹣y)(x+y)=2(x+y)[3(x+y)﹣(x﹣y)]=2(x+y)(2x+4y)=4(x+y)(x+2y)38.【解答】解:2m4n﹣12m3n2+18m2n3=2m2n(m2﹣6mn+9n2)=2m2n(m﹣3n)2.39.【解答】原式=a2(x﹣y)﹣4(x﹣y)=(x﹣y)(a2﹣4)=(x﹣y)(a+2)(a﹣2).40.【解答】解:令﹣2a2b2+ab+2=0,则ab=,所以﹣2a2b2+ab+2=﹣2(ab﹣)(ab﹣).41.【解答】解:x2﹣9+3x(x﹣3)=(x﹣3)(x+3)+3x(x﹣3)=(x﹣3)(x+3+3x)=(x﹣3)(4x+3).42.【解答】解:4xy2+4x2y+y3=y(4xy+4x2+y2)=y(y+2x)2.43.【解答】解:原式=(x2+4x﹣5)(x2+4x+3)=(x+5)(x﹣1)(x+3)(x+1).44.【解答】解:原式=y(6xy+9x2+y2)=y(3x+y)2.45.【解答】解:x3﹣3x2+2x=x(x2﹣3x+2)=x(x﹣1)(x﹣2)46.【解答】解:原式=x(a﹣b)﹣y(a﹣b)+3(a﹣b)=(a﹣b)(x﹣y+3).47.【解答】解:原式=(3ax﹣9ay)+(6bx﹣18by)=3a(x﹣y)+6b(x﹣y)=3(x﹣y)(a+2b).48.【解答】解:(2a﹣b)(3a﹣2)+b(2﹣3a)=(2a﹣b)(3a﹣2)﹣b(3a﹣2)=(3a﹣2)(2a﹣b﹣b)=2(3a﹣2)(a﹣b).49.【解答】解:原式=(3﹣a)2+(3﹣a)=(3﹣a)(3﹣a+1)=(3﹣a)(4﹣a).50.【解答】解:原式=(a+b)(1﹣2a+a2)=(a+b)(1﹣a)251.【解答】解:12x4﹣6x3﹣168x2=6x2(2x2﹣x﹣28)52.【解答】解:原式=(2m ﹣n )(2m +3n ﹣n )=(2m ﹣n )(2m +2n )=2(2m ﹣n )(m +n ).53.【解答】解:3x 2(x ﹣2y )﹣18x (x ﹣2y )﹣27(2y ﹣x )=3x 2(x ﹣2y )﹣18x (x ﹣2y )+27(x ﹣2y )=3(x ﹣2y )(x 2﹣6x +9)=3(x ﹣2y )(x ﹣3)2.54.【解答】解:原式=(x ﹣2)(x 2﹣1﹣x 2﹣2x ﹣4)=(x ﹣2)(﹣2x ﹣5)=﹣2x 2﹣x +10.55.【解答】解:原式=2(4x 2y 2﹣5xy ﹣6)=2(4xy +3)(xy ﹣2).56.【解答】解:6(x +y )2﹣2(x +y )(x ﹣y )=2(x +y )[3(x +y )﹣(x ﹣y )]=2(x +y )(2x +4y )=4(x +y )(x +2y ).57.【解答】解:原式=3(a ﹣b )[3(a +b )﹣(a ﹣b )]=6(a ﹣b )(a +2b ).58.【解答】解:原式=2xy (x +y )•2(x +y )﹣2xy (x +y )•3x =2xy (x +y )•[2(x +y )﹣3x ]=2xy (x +y )(2y ﹣x ).59.【解答】解:原式=﹣8x (3m 2+2n 2).60.【解答】解:4a (x ﹣y )﹣2b (y ﹣x )=4a (x ﹣y )+2b (x ﹣y )=2(x ﹣y )(2a +b ).61.【解答】解:ax 4﹣14ax 2﹣32a =a (x 4﹣14x 2﹣32)=a (x 2+2)(x 2﹣16)=a (x 2+2)(x +4)(x ﹣4).62.【解答】解:原式=x (x 2+5xy ﹣24y 2)=x (x +8y )(x ﹣3y ).63.【解答】解:(1﹣3a )2﹣3(1﹣3a )=(1﹣3a )(1﹣3a ﹣3)=(1﹣3a )(﹣3a ﹣2)=﹣(1﹣3a )(3a +2)=﹣3a ﹣2+9a 2+6a =9a 2+3a ﹣2.64.【解答】解:x (x ﹣y )3+2x 2(y ﹣x )2﹣2xy (x ﹣y )2=x (x ﹣y )2[(x ﹣y )+2x ﹣2y ]=3x (x ﹣y )3.65.【解答】解:原式=x (x 4﹣2x 2﹣8)=x (x 2﹣4)(x 2+2)=x (x +2)(x ﹣2)(x 2+2).66.【解答】解:原式=x 2+2x +1-y 2+y +43=(x +1)2-(y ﹣)2⎫⎛⎫⎛31y x y x ()()322122167.【解答】解:2(x+y)2﹣20(x+y)+50.=2[(x+y)2﹣10(x+y)+25].=2(x+y﹣5)2.68.【解答】解:1+a+a(1+a)+a(1+a)2+a(1+a)3=(1+a)[1+a+a(1+a)+a(1+a)2]=(1+a)2[1+a+a(1+a)]=(1+a)4.69.【解答】解:x2y﹣x2z+xy﹣xz.=(x2y﹣x2z)+(xy﹣xz).=x2(y﹣z)+x(y﹣z).=x(x+1)(y﹣z).70.【解答】解:原式=(x2﹣x)2﹣8(x2﹣x)+12=(x2﹣x﹣2)(x2﹣x﹣6)=(x+1)(x﹣2)(x+2)(x﹣3)71.【解答】解:原式=(x2)2﹣(3x﹣2)2=(x2+3x﹣2)(x2﹣3x+2)=(x2+3x﹣2)(x﹣1)(x﹣2).72.【解答】解:原式=[(3m﹣1)+(2m﹣3)][(3m﹣1)﹣(2m﹣3)]=(5m﹣4)(m+2).73.【解答】解:原式=[(2x+5)+(2x﹣5)][(2x+5)﹣(2x﹣5)]=4x•10=40x.74.【解答】解:原式=[(﹣2x﹣1)(2x﹣1)+4x2﹣2x﹣1][(﹣2x﹣1)(2x﹣1)﹣4x2+2x+1]=﹣4x(﹣4x2+x+1).75.【解答】解:原式=m2﹣8m﹣9+8m=m2﹣9=(m+3)(m﹣3).76.【解答】解:原式=9[(a﹣b)2+4b(a﹣b)+4b2]=9(a﹣b+2b)2=9(a+b)2.77.【解答】解:原式=(a2+4)2﹣(4a)2,=(a2+4+4a)(a2+4﹣4a),=(a+2)2(a﹣2)2.78.【解答】解:原式=[3(m+n)]2﹣(m﹣n)2=(3m+3n+m﹣n)(3m+3n﹣m+n)=4(2m+n)(m+2n).79.【解答】解:原式=(x2﹣4y2)2=(x+2y)2(x﹣2y)2.80.【解答】解:原式=[5x﹣3(x﹣2y)][5x+3(x﹣2y)]=(2x﹣6y)(8x﹣6y)=4(x+3y)(4x﹣3y).81.【解答】解:4x2y2﹣(x2+y2)2=﹣[(x2+y2)2﹣(2xy)2]=﹣(x2+y2+2xy)(x2+y2﹣2xy)=﹣(x+y)2(x﹣y)2.82.【解答】解:原式=x2﹣12x+12x﹣4=x2﹣4=(x+2)(x﹣2).83.【解答】解:(x2﹣3)2+2(3﹣x2)+1=(x2﹣3)2﹣2(x2﹣3)+1=(x2﹣4)2=(x+2)2(x﹣2)2.84.【解答】解:原式=x2﹣4x+4=(x﹣2)2.85.【解答】解:原式=4m2﹣6m+6m﹣1=4m2﹣1=(2m+1)(2m﹣1).86.【解答】解:x4﹣16y4=(x2+4y2)(x2﹣4y2)=(x2+4y2)(x+2y)(x﹣2y).87.【解答】解:原式=(a2+1+2a)(a2+1﹣2a)=(a+1)2(a﹣1)2.88.【解答】解:(2x+y)2﹣(x+2y)2=(2x+y+x+2y)(2x+y﹣x﹣2y)=3(x+y)(x﹣y).89.【解答】解:原式=(x2﹣6﹣3)2=(x2﹣9)2=(x+3)2(x﹣3)2.90.【解答】解:原式=(x2+x+x+1)(x2+x﹣x﹣1)=(x2+2x+1)(x2﹣1)=(x+1)2(x+1)(x﹣1)=(x+1)3(x﹣1).91.【解答】解:原式=8x2﹣16y2﹣7x2﹣xy+xy=x2﹣16y2=(x+4y)(x﹣4y).92.【解答】解:原式=(x2﹣9y2)(x2﹣y2)=(x﹣3y)(x+3y)(x﹣y)(x+y).93.【解答】解:原式=(x2+x)2﹣8(x2+x)+12=(x2+x﹣2)(x2+x﹣6)=(x﹣1)(x+2)(x﹣2)(x+3).94.【解答】解:(m2+2m)2﹣7(m2+2m)﹣8,=(m2+2m﹣8)(m2+2m+1),=(m+4)(m﹣2)(m+1)2.95.【解答】解:原式=(x2+2x﹣3)(x2+2x+1),=(x+3)(x﹣1)(x+1)2;96.【解答】解:原式=(2x﹣1)(x+).97.【解答】解:3x2﹣12x+9=3(x2﹣4x+3)=3(x﹣3)(x﹣1).98.【解答】解:(x﹣4)(x+7)+18=x2+3x﹣10=(x﹣2)(x+5).99.【解答】解:原式=(5ab﹣2)(ab+5).100.【解答】解:(x+y)2﹣(4x+4y)﹣32=(x+y)2﹣4(x+y)﹣32=(x+y+4)(x+y﹣8).。

最新因式分解(竞赛题)含答案

最新因式分解(竞赛题)含答案

1因式分解2一、导入:3有两个人相约到山上去寻找精美的石头,甲背了满满的一筐,乙的筐里只有一个他认为是4最精美的石头。

甲就笑乙:“你为什么只挑一个啊?”乙说:“漂亮的石头虽然多,但我只选5一个最精美的就够了。

”甲笑而不语,下山的路上,甲感到负担越来越重,最后不得已不断6地从一筐的石头中挑一个最差的扔下,到下山的时候他的筐里结果只剩下一个石头!7启示:人生中会有许多的东西,值得留恋,有的时候你应该学会去放弃。

8二、知识点回顾:91.运用公式法10在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:1112(1)a2-b2=(a+b)(a-b);13(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);1415(4)a3-b3=(a-b)(a2+ab+b2).16下面再补充几个常用的公式:17(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;18(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);19(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数;20(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;21(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数.22运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正23确恰当地选择公式.24三、专题讲解25例1 分解因式:26(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4; (2)x3-8y3-z3-6xyz;27解 (1)原式=-2x n-1y n(x4n-2x2ny2+y4)28=-2x n-1y n[(x2n)2-2x2ny2+(y2)2]29=-2x n-1y n(x2n-y2)2=-2x n-1y n(x n-y)2(x n+y)2.3031(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)32=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).例2 分解因式:a3+b3+c3-3abc.3334本题实际上就是用因式分解的方法证明前面给出的公式(6).35分析我们已经知道公式36(a+b)3=a3+3a2b+3ab2+b337的正确性,现将此公式变形为38a3+b3=(a+b)3-3ab(a+b).这个式也是一个常用的公式,本题就借助于它来推导.3940解原式=(a+b)3-3ab(a+b)+c3-3abc41=[(a+b)3+c3]-3ab(a+b+c)=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)4243=(a+b+c)(a2+b2+c2-ab-bc-ca).44说明公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们45将公式(6)变形为46a3+b3+c3-3abc474849显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c>0时,则a3+b3+c3-3abc≥0,即50a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立.51如果令x=a3≥0,y=b3≥0,z=c3≥0,则有5253等号成立的充要条件是x=y=z.这也是一个常用的结论.54※※变式练习551分解因式:x15+x14+x13+…+x2+x+1.56分析这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,57由此想到应用公式a n-b n来分解.58解因为59x16-1=(x-1)(x15+x14+x13+…x2+x+1),60所以6162说明在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等63式变形中很常用.642.拆项、添项法65因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类66项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,67需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多68项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使69多项式能用分组分解法进行因式分解.70例3 分解因式:x3-9x+8.71分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、72添项的目的与技巧.73解法1 将常数项8拆成-1+9.74原式=x3-9x-1+975=(x3-1)-9x+976=(x-1)(x2+x+1)-9(x-1)77=(x-1)(x2+x-8).78解法2 将一次项-9x拆成-x-8x.79原式=x3-x-8x+880=(x3-x)+(-8x+8)81=x(x+1)(x-1)-8(x-1)82=(x-1)(x2+x-8).83解法3 将三次项x3拆成9x3-8x3.84原式=9x3-8x3-9x+885=(9x3-9x)+(-8x3+8)86=9x(x+1)(x-1)-8(x-1)(x2+x+1)=(x-1)(x2+x-8).8788解法4 添加两项-x2+x2.89原式=x3-9x+8=x3-x2+x2-9x+89091=x2(x-1)+(x-8)(x-1)92=(x-1)(x2+x-8).93说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并94无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分95解诸方法中技巧性最强的一种.※※变式练习96971分解因式:98(1)x9+x6+x3-3;99(2)(m2-1)(n2-1)+4mn;100(3)(x+1)4+(x2-1)2+(x-1)4;101(4)a3b-ab3+a2+b2+1.102解 (1)将-3拆成-1-1-1.103原式=x9+x6+x3-1-1-1104=(x9-1)+(x6-1)+(x3-1)105=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1) 106=(x3-1)(x6+2x3+3)107=(x-1)(x2+x+1)(x6+2x3+3).108(2)将4mn拆成2mn+2mn.109原式=(m2-1)(n2-1)+2mn+2mn110=m2n2-m2-n2+1+2mn+2mn111=(m2n2+2mn+1)-(m2-2mn+n2)112=(mn+1)2-(m-n)2113=(mn+m-n+1)(mn-m+n+1).114(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.115原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4116=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2117=[(x+1)2+(x-1)2]2-(x2-1)2118=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).119(4)添加两项+ab-ab.120原式=a3b-ab3+a2+b2+1+ab-ab121=(a3b-ab3)+(a2-ab)+(ab+b2+1)122=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)123=a(a-b)[b(a+b)+1]+(ab+b2+1)=[a(a-b)+1](ab+b2+1)124125=(a2-ab+1)(b2+ab+1).126说明 (4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,127128找到公因式.这道题目使我们体会到129拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.1303.换元法131换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字132母替代这个整体来运算,从而使运算过程简明清晰.133例4 分解因式:(x2+x+1)(x2+x+2)-12.134分析将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看135作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了.136解设x2+x=y,则137原式=(y+1)(y+2)-12=y2+3y-10138=(y-2)(y+5)=(x2+x-2)(x2+x+5)139=(x-1)(x+2)(x2+x+5).140说明本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结141果,有兴趣的同学不妨试一试.142例5 分解因式:(x2+3x+2)(4x2+8x+3)-90.143144分析先将两个括号内的多项式分解因式,然后再重新组合.145解原式=(x+1)(x+2)(2x+1)(2x+3)-90=[(x+1)(2x+3)][(x+2)(2x+1)]-90146147=(2x2+5x+3)(2x2+5x+2)-90.148令y=2x2+5x+2,则149原式=y(y+1)-90=y2+y-90150=(y+10)(y-9)151=(2x2+5x+12)(2x2+5x-7)=(2x2+5x+12)(2x+7)(x-1).152153说明对多项式适当的恒等变形是我们找到新元(y)的基础.154※※变式练习1.分解因式:155156(x2+4x+8)2+3x(x2+4x+8)+2x2.157解设x2+4x+8=y,则158原式=y2+3xy+2x2=(y+2x)(y+x)159=(x2+6x+8)(x2+5x+8)160=(x+2)(x+4)(x2+5x+8).161说明由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题162目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多163项式.1641.双十字相乘法165分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式166(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.167例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作168常数,于是上式可变形为1692x2-(5+7y)x-(22y2-35y+3),可以看作是关于x的二次三项式.170171对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为172173即:-22y2+35y-3=(2y-3)(-11y+1).174再利用十字相乘法对关于x的二次三项式分解175所以,原式=[x+(2y-3)][2x+(-11y+1)]176177=(x+2y-3)(2x-11y+1).178上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图179合并在一起,可得到下图:180181它表示的是下面三个关系式:182(x+2y)(2x-11y)=2x2-7xy-22y2;183(x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3.184185这就是所谓的双十字相乘法.186用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是:187(1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);188(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉189之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.190例1 分解因式:(1)x2-3xy-10y2+x+9y-2;191192(2)x2-y2+5x+3y+4;193(3)xy+y2+x-y-2;194(4)6x2-7xy-3y2-xz+7yz-2z2.195解 (1)196原式=(x-5y+2)(x+2y-1).197(2)198199原式=(x+y+1)(x-y+4).(3)原式中缺x2项,可把这一项的系数看成0来分解.200201202原式=(y+1)(x+y-2).203(4)原式=(2x-3y+z)(3x+y-2z).204说明 (4)中有三个字母,解法仍与前面的类似.2052.求根法206我们把形如an x n+an-1x n-1+…+a1x+a(n为非负整数)的代数式称为关于x的一元多项207式,并用f(x),g(x),…等记号表示,如208f(x)=x2-3x+2,g(x)=x5+x2+6,…,209当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)210f(1)=12-3×1+2=0;211f(-2)=(-2)2-3×(-2)+2=12.212若f(a)=0,则称a为多项式f(x)的一个根.213定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x) 214有一个因式x-a.215根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对216于任意多项式f(x) 要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整217数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.218定理2219的根,则必有p是a0的约数,q是an的约数.特别地,当a=1时,整系数多项式220f(x)的整数根均为an 的约数.221我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行222因式分解.223例2 分解因式:x3-4x2+6x-4.224225分析这是一个整系数一元多项式,原式若有整数根,必是-4的约数,逐个检验-4 226的约数:±1,±2,±4,只有f(2)=23-4×22+6×2-4=0,227228即x=2是原式的一个根,所以根据定理1,原式必有因式x-2.229解法1 用分组分解法,使每组都有因式(x-2).230原式=(x3-2x2)-(2x2-4x)+(2x-4)231=x2(x-2)-2x(x-2)+2(x-2)232=(x-2)(x2-2x+2).解法2 用多项式除法,将原式除以(x-2),233234235所以原式=(x-2)(x2-2x+2).236237说明在上述解法中,特别要注意的是多项式的有理根一定是-4的约数,反之不成立,即-4的约数不一定是多项式的根.因此,必须对-4的约数逐个代入多项式进行验证.238239※※变式练习2401. 分解因式:9x4-3x3+7x2-3x-2.分析因为9的约数有±1,±3,±9;-2的约数有±1,±241242243为:244245所以,原式有因式9x2-3x-2.解 9x4-3x3+7x2-3x-2246247=9x4-3x3-2x2+9x2-3x-2248=x2(9x3-3x-2)+9x2-3x-2249=(9x2-3x-2)(x2+1)250=(3x+1)(3x-2)(x2+1)251说明若整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,252如上题中的因式253可以化为9x2-3x-2,这样可以简化分解过程.254总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可255以分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,这样,我们就可以继续对256g(x)进行分解了.2573.待定系数法待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解258259中的应用.260在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于261262这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原263有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这264种因式分解的方法叫作待定系数法.265例3 分解因式:x2+3xy+2y2+4x+5y+3.266分析由于267(x2+3xy+2y2)=(x+2y)(x+y),268若原式可以分解因式,那么它的两个一次项一定是x+2y+m和x+y+n的形式,应269用待定系数法即可求出m和n,使问题得到解决.270解设271x2+3xy+2y2+4x+5y+3272=(x+2y+m)(x+y+n)=x2+3xy+2y2+(m+n)x+(m+2n)y+mn,273274比较两边对应项的系数,则有275解之得m=3,n=1.所以276277原式=(x+2y+3)(x+y+1).说明本题也可用双十字相乘法,请同学们自己解一下.278279※※变式练习2801.分解因式:x4-2x3-27x2-44x+7.281分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则282只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原283式没有一次因式.如果原式能分解,只能分解为(x2+ax+b)(x2+cx+d)的形式.解设284285原式=(x2+ax+b)(x2+cx+d)=x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd,286287所以有288289由bd=7,先考虑b=1,d=7有290291292所以293原式=(x2-7x+1)(x2+5x+7).说明由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑.本题如果294295b=1,d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直296到求出待定系数为止.本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找297298到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.299四、巩固练习:3001. 分解因式:(x2+xy+y2)-4xy(x2+y2).301分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的302多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分303解因式.304解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则305原式=(u2-v)2-4v(u2-2v)306=u4-6u2v+9v2307=(u2-3v)2308=(x2+2xy+y2-3xy)2=(x2-xy+y2)2.309310311312313314315五、反思总结。

(完整word版)因式分解(竞赛题)含答案

(完整word版)因式分解(竞赛题)含答案

因式分解一、导入:有两个人相约到山上去寻找精美的石头,甲背了满满的一筐,乙的筐里只有一个他认为是最精美的石头。

甲就笑乙:“你为什么只挑一个啊?”乙说:“漂亮的石头虽然多,但我只选一个最精美的就够了。

”甲笑而不语,下山的路上,甲感到负担越来越重,最后不得已不断地从一筐的石头中挑一个最差的扔下,到下山的时候他的筐里结果只剩下一个石头!启示:人生中会有许多的东西,值得留恋,有的时候你应该学会去放弃。

二、知识点回顾:1.运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数;(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.三、专题讲解例1 分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz;解 (1)原式=-2x n-1y n(x4n-2x2ny2+y4)=-2x n-1y n[(x2n)2-2x2ny2+(y2)2]=-2x n-1y n(x2n-y2)2=-2x n-1y n(x n-y)2(x n+y)2.(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).例2 分解因式:a3+b3+c3-3abc.本题实际上就是用因式分解的方法证明前面给出的公式(6).分析我们已经知道公式(a+b)3=a3+3a2b+3ab2+b3的正确性,现将此公式变形为a3+b3=(a+b)3-3ab(a+b).这个式也是一个常用的公式,本题就借助于它来推导.解原式=(a+b)3-3ab(a+b)+c3-3abc=[(a+b)3+c3]-3ab(a+b+c)=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ca).说明公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为a3+b3+c3-3abc显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c>0时,则a3+b3+c3-3abc≥0,即a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立.如果令x=a3≥0,y=b3≥0,z=c3≥0,则有等号成立的充要条件是x=y=z.这也是一个常用的结论.※※变式练习1分解因式:x15+x14+x13+…+x2+x+1.分析这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式a n-b n来分解.解因为x16-1=(x-1)(x15+x14+x13+…x2+x+1),所以说明在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用.2.拆项、添项法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.例3 分解因式:x3-9x+8.分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.解法1 将常数项8拆成-1+9.原式=x3-9x-1+9=(x3-1)-9x+9=(x-1)(x2+x+1)-9(x-1)=(x-1)(x2+x-8).解法2 将一次项-9x拆成-x-8x.原式=x3-x-8x+8=(x3-x)+(-8x+8)=x(x+1)(x-1)-8(x-1)=(x-1)(x2+x-8).解法3 将三次项x3拆成9x3-8x3.原式=9x3-8x3-9x+8=(9x3-9x)+(-8x3+8)=9x(x+1)(x-1)-8(x-1)(x2+x+1)=(x-1)(x2+x-8).解法4 添加两项-x2+x2.原式=x3-9x+8=x3-x2+x2-9x+8=x2(x-1)+(x-8)(x-1)=(x-1)(x2+x-8).说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.※※变式练习1分解因式:(1)x9+x6+x3-3;(2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4;(4)a3b-ab3+a2+b2+1.解 (1)将-3拆成-1-1-1.原式=x9+x6+x3-1-1-1=(x9-1)+(x6-1)+(x3-1)=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)=(x3-1)(x6+2x3+3)=(x-1)(x2+x+1)(x6+2x3+3).(2)将4mn拆成2mn+2mn.原式=(m2-1)(n2-1)+2mn+2mn=m2n2-m2-n2+1+2mn+2mn=(m2n2+2mn+1)-(m2-2mn+n2)=(mn+1)2-(m-n)2=(mn+m-n+1)(mn-m+n+1).(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2=[(x+1)2+(x-1)2]2-(x2-1)2=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).(4)添加两项+ab-ab.原式=a3b-ab3+a2+b2+1+ab-ab=(a3b-ab3)+(a2-ab)+(ab+b2+1)=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)=a(a-b)[b(a+b)+1]+(ab+b2+1)=[a(a-b)+1](ab+b2+1)=(a2-ab+1)(b2+ab+1).说明(4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.3.换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例4 分解因式:(x2+x+1)(x2+x+2)-12.分析将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了.解设x2+x=y,则原式=(y+1)(y+2)-12=y2+3y-10=(y-2)(y+5)=(x2+x-2)(x2+x+5)=(x-1)(x+2)(x2+x+5).说明本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.例5 分解因式:(x2+3x+2)(4x2+8x+3)-90.分析先将两个括号内的多项式分解因式,然后再重新组合.解原式=(x+1)(x+2)(2x+1)(2x+3)-90=[(x+1)(2x+3)][(x+2)(2x+1)]-90=(2x2+5x+3)(2x2+5x+2)-90.令y=2x2+5x+2,则原式=y(y+1)-90=y2+y-90=(y+10)(y-9)=(2x2+5x+12)(2x2+5x-7)=(2x2+5x+12)(2x+7)(x-1).说明对多项式适当的恒等变形是我们找到新元(y)的基础.※※变式练习1.分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.解设x2+4x+8=y,则原式=y2+3xy+2x2=(y+2x)(y+x)=(x2+6x+8)(x2+5x+8)=(x+2)(x+4)(x2+5x+8).说明由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式.1.双十字相乘法分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3),可以看作是关于x的二次三项式.对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为即:-22y2+35y-3=(2y-3)(-11y+1).再利用十字相乘法对关于x的二次三项式分解所以,原式=[x+(2y-3)][2x+(-11y+1)]=(x+2y-3)(2x-11y+1).上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图:它表示的是下面三个关系式:(x+2y)(2x-11y)=2x2-7xy-22y2;(x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3.这就是所谓的双十字相乘法.用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是:(1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.例1 分解因式:(1)x2-3xy-10y2+x+9y-2;(2)x2-y2+5x+3y+4;(3)xy+y2+x-y-2;(4)6x2-7xy-3y2-xz+7yz-2z2.解 (1)原式=(x-5y+2)(x+2y-1).(2)原式=(x+y+1)(x-y+4).(3)原式中缺x2项,可把这一项的系数看成0来分解.原式=(y+1)(x+y-2).(4)原式=(2x-3y+z)(3x+y-2z).说明 (4)中有三个字母,解法仍与前面的类似.2.求根法我们把形如a n x n+a n-1x n-1+…+a1x+a0(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,…,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)f(1)=12-3×1+2=0;f(-2)=(-2)2-3×(-2)+2=12.若f(a)=0,则称a为多项式f(x)的一个根.定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x)要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.定理2的根,则必有p是a0的约数,q是a n的约数.特别地,当a0=1时,整系数多项式f(x)的整数根均为a n的约数.我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解.例2 分解因式:x3-4x2+6x-4.分析这是一个整系数一元多项式,原式若有整数根,必是-4的约数,逐个检验-4的约数:±1,±2,±4,只有f(2)=23-4×22+6×2-4=0,即x=2是原式的一个根,所以根据定理1,原式必有因式x-2.解法1 用分组分解法,使每组都有因式(x-2).原式=(x3-2x2)-(2x2-4x)+(2x-4)=x2(x-2)-2x(x-2)+2(x-2)=(x-2)(x2-2x+2).解法2 用多项式除法,将原式除以(x-2),所以原式=(x-2)(x2-2x+2).说明在上述解法中,特别要注意的是多项式的有理根一定是-4的约数,反之不成立,即-4的约数不一定是多项式的根.因此,必须对-4的约数逐个代入多项式进行验证.※※变式练习1. 分解因式:9x4-3x3+7x2-3x-2.分析因为9的约数有±1,±3,±9;-2的约数有±1,±为:所以,原式有因式9x2-3x-2.解 9x4-3x3+7x2-3x-2=9x4-3x3-2x2+9x2-3x-2=x2(9x3-3x-2)+9x2-3x-2=(9x2-3x-2)(x2+1)=(3x+1)(3x-2)(x2+1)说明若整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式可以化为9x2-3x-2,这样可以简化分解过程.总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可以分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,这样,我们就可以继续对g(x)进行分解了.3.待定系数法待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用.在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.例3 分解因式:x2+3xy+2y2+4x+5y+3.分析由于(x2+3xy+2y2)=(x+2y)(x+y),若原式可以分解因式,那么它的两个一次项一定是x+2y+m和x+y+n的形式,应用待定系数法即可求出m和n,使问题得到解决.解设x2+3xy+2y2+4x+5y+3=(x+2y+m)(x+y+n)=x2+3xy+2y2+(m+n)x+(m+2n)y+mn,比较两边对应项的系数,则有解之得m=3,n=1.所以原式=(x+2y+3)(x+y+1).说明本题也可用双十字相乘法,请同学们自己解一下.※※变式练习1.分解因式:x4-2x3-27x2-44x+7.分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为(x2+ax+b)(x2+cx+d)的形式.解设原式=(x2+ax+b)(x2+cx+d)=x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd,所以有由bd=7,先考虑b=1,d=7有所以原式=(x2-7x+1)(x2+5x+7).说明由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑.本题如果b=1,d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直到求出待定系数为止.本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.四、巩固练习:1. 分解因式:(x2+xy+y2)-4xy(x2+y2).分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则原式=(u2-v)2-4v(u2-2v)=u4-6u2v+9v2=(u2-3v)2=(x2+2xy+y2-3xy)2=(x2-xy+y2)2.五、反思总结。

因式分解专项练习100题及答案

因式分解专项练习100题及答案

因式分解专项练习100题及答案一、提取公因式(1)(61)(53)(61)(23)(61)(62)-++---+---m n m n m n(2)4242-66x yz x y(3)(72)(81)(72)(74)(72)(41)--++--++--x x x x x x(4)4442a a x y-45(5)2333323++61515x y z x z x z(6)(53)(34)(53)(33)-----+a b a b(7)323a c bc+515(8)43-1216xyz xyz(9)431025c b c +(10)3333189ax y a x y +(11)324226a bc a b c-(12)23341435a x y x -(13)(61)(25)(91)(61)x x x x -+-+-(14)33434332816x y z y z y z++(15)(32)(41)(32)(75)(32)(21)x x x x x x -++-++-+(16)(52)(2)(25)(52)m n n m +-++-+(17)(65)(43)(65)(64)x x x x +--+-(18)(85)(91)(85)(94)(85)(42)+--+++++-+a b a b a b(19)(23)(35)(23)(71)(23)(93)--+--++---m n m n m n (20)(35)(32)(35)(4)(35)(1)x x x x x x---+-++-+二、公式法(21)22-+x xy y12122(22)22-a b481(23)22-x y784529(24)2-+x x12396324(25)22-x y289121(26)2290064a b -(27)2281450625m mn n -+(28)2249238289m mn n ++(29)225628881x x ++(30)257664x -三、分组分解法(31)281040xy x y --+(32)8122842ab a b --+(33)221635262124x y xy yz zx-++-(34)21187060ax ay bx by+--(35)2294221469a c ab bc ca++--(36)45352721mx my nx ny-+-(37)2212621728a b ab bc ca--++(38)863224xy x y -+-+(39)4102870ab a b +++(40)142070100ax ay bx by+--(41)222720452057x z xy yz zx++--(42)2273554426a b ab bc ca++++(43)302064xy x y ----(44)4101640ax ay bx by--+(45)2212354928x y xy yz zx-+--(46)363060mx my nx ny--+(47)424954xy x y -++-(48)18168172ab a b --+(49)2438010ab a b +++(50)819182ax ay bx by-+-四、拆添项(51)2281491268413a b a b -+++(52)229143024m n m n -+++(53)4224-+x x y y363316(54)4224m m n n++364716 (55)22m n m n---+8191621277 (56)22----449249813x y x y (57)4224-+m m n n93364(58)22-+--m n m n64251289017 (59)22----x y x y9643611213 (60)22-+--x y x y81610827五、十字相乘法(61)223579424942x xy y x y++--(62)2228114254545x y z xy yz---+(63)22458835434510x xy y x y -++-+(64)22145521455025x xy y x y -++-+(65)2221261539236x xy y x y -----(66)2216232876a ab b a b --+++(67)22225424450x y z yz xz-++-(68)2243014192912m mn n m n +++++(69)221526713152m mn n m n ++--+(70)222523x xy y x y +-+++(71)22228630463111x y z xy yz xz+-+-+(72)2222415821432x y z xy yz xz-+--+(73)2285921556742m mn n m n -+-++(74)22915412133x xy y x y ++--+(75)22232237a b c ab bc ac-+---(76)2159341515x xy x y ++++(77)226271510174x xy y x y +---+(78)22241128602624x xy y x y --+++(79)22812839228x xy y x y +--++(80)23036553025p pq p q --++六、双十字相乘法(81)2223520245342x y z xy yz xz+--+-(82)22273422113x y z xy yz xz+-+-+(83)22256356212910x y z xy yz xz-----(84)22228282065198a b c ab bc ac+-+-+(85)22264212946x y z xy yz xz-----(86)2214133592635x xy y x y -+-++(87)22227493042769x y z xy yz xz-+-++(88)2226184242711x y z xy yz xz+++--(89)22243110472921x xy y x y ++---(90)22228101827354a b c ab bc ac-++++七、因式定理(91)3222x x x +--(92)321845192a a a -+-(93)323744x x x +++(94)3228115x x x +++(95)32--+671510y y y (96)3212351710++-x x x (97)32x x x+++526356 (98)32+++x x x157911745 (99)32-+-522236x x x (100)32--+35159x x x因式分解专项练习100题答案一、提取公因式(1)(61)(32)m n---(2)426()x y z y-(3)(72)(114)x x--+ (4)442(45)a x y-(5)2333(255)x z y x++(6)(53)(67)a b--+ (7)235(3)c a bc+(8)34(34)xyz z-(9)425(25)c b c+(10)3229(2)ax y a y+(11)32(3)a bc c ab-(12)3237(25)x a y x-(13)(61)(74)x x---(14)33338(42)y z x z z++ (15)(32)(137)x x-+ (16)(52)(3)m n+-(17)(65)(21)x x-+-(18)(85)(45)a b+-+ (19)(23)(137)m n---(20)(35)(3)x x--+二、公式法(21)2(11)x y-(22)(29)(29)a b a b+-(23)(2823)(2823)x y x y+-(24)2(1118)x-(25)(17)(17)x y x y+-(26)(308)(308)a b a b+-(27)2(925)m n-(28)2(717)m n+(29)2(169)x+(30)(248)(248)x x+-三、分组分解法(31)2(5)(4)x y--(32)2(27)(23)a b--(33)(87)(253)x y x y z-+-(34)(310)(76)a b x y-+(35)(7)(926)a c ab c-+-(36)(53)(97)m n x y+-(37)(4)(367)a b a b c+-+ (38)2(4)(43)x y-+-(39)2(7)(25)a b++(40)2(5)(710)a b x y-+(41)(94)(355)x z x y z-+-(42)(7)(756)a b a b c+++(43)2(51)(32)x y-++(44)2(4)(25)a b x y--(45)(357)(47)x y z x y--+(46)3(10)(2)m n x y--(47)(49)(6)x y---(48)(29)(98)a b--(49)(310)(81)a b++(50)(92)(9)a b x y+-四、拆添项(51)(971)(9713)a b a b++-+(52)(32)(312)m n m n++-+(53)2222(694)(694)x xy y x xy y++-+ (54)2222(64)(64)m mn n m mn n++-+ (55)(937)(9311)m n m n+---(56)(271)(2713)x y x y++--(57)2222(398)(398)m mn n m mn n++-+ (58)(8517)(851)m n m n++--(59)(381)(3813)x y x y++--(60)(99)(93)x y x y++--五、十字相乘法(61)(577)(76)x y x y+-+ (62)(925)(975)x y z x y z+--+ (63)(955)(572)x y x y-+-+ (64)(275)(735)x y x y-+-+ (65)(731)(356)x y x y++--(66)(832)(23)a b a b++-+ (67)(524)(526)x y z x y z--+-(68)(423)(74)m n m n++++ (69)(32)(571)m n m n+-+-(70)(23)(1)x y x y-+++ (71)(465)(76)x y z x y z+++-(72)(434)(652)x y z x y z++-+ (73)(76)(837)m n m n----(74)(33)(341)x y x y+-+-(75)(2)(32)a b c a b c--+-(76)(533)(35)x y x+++ (77)(634)(51)x y x y--+-(78)(346)(874)x y x y-+++(79)(847)(24)x y x y--+-(80)(65)(565)p p q---六、双十字相乘法(81)(544)(756)x y z x y z-+--(82)(3)(74)x y z x y z+++-(83)(852)(773)x y z x y z++--(84)(745)(474)a b c a b c+-++ (85)(273)(364)x y z x y z--++ (86)(27)(735)x y x y----(87)(975)(376)x y z x y z++-+ (88)(334)(26)x y z x y z+-+-(89)(853)(327)x y x y+++-(90)(456)(723)a b c a b c++-+七、因式定理(91)(1)(1)(2)x x x+-+(92)(2)(61)(31)a a a---(93)2(2)(32)x x x+++ (94)2(1)(265)x x x+++ (95)2(2)(655)y y y-+-(96)(2)(31)(45)x x x+-+ (97)(3)(51)(2)x x x+++ (98)(3)(35)(53)x x x+++ (99)(1)(52)(3)x x x---(100)2(3)(343)x x x-+-。

初中数学因式分解有答案竞赛题

初中数学因式分解有答案竞赛题

初中数学因式分解(二)1.双十字相乘法分解二次三项式时,我们常用十字相乘法.某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),可以用十字相乘法分解因式.例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3),可以看作是关于x的二次三项式.对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为即:-22y2+35y-3=(2y-3)(-11y+1).再利用十字相乘法对关于x的二次三项式分解所以,原式=[x+(2y-3)][2x+(-11y+1)]=(x+2y-3)(2x-11y+1).上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图:它表示的是下面三个关系式:(x+2y)(2x-11y)=2x2-7xy-22y2;(x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3.双十字相乘法因式分解的步骤是:(1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.例1 分解因式:(1)x2-3xy-10y2+x+9y-2; (2)x2-y2+5x+3y+4;(3)xy+y2+x-y-2;2.求根法形如an x n+an-1x n-1+…+a1x+a(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,…,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x) f(1)=12-3×1+2=0;f(-2)=(-2)2-3×(-2)+2=12.若f(a)=0,则称a为多项式f(x)的一个根.定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x),要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.定理2的根,则必有p是a0的约数,q是an的约数.特别地,当a=1时,整系数多项式f(x)的整数根均为an的约数.我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解.例2 分解因式:x3-4x2+6x-4.例3 分解因式:9x4-3x3+7x2-3x-2.3.待定系数法在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.例4 分解因式:x2+3xy+2y2+4x+5y+3.例5 分解因式:x4-2x3-27x2-44x+7.练习二1.用双十字相乘法分解因式:(1)x2-8xy+15y2+2x-4y-3; (2)x2-xy+2x+y-3;(3)3x2-11xy+6y2-xz-4yz-2z2.2.用求根法分解因式:(1)x3+x2-10x-6; (2)x4+3x3-3x2-12x-4;(3)4x4+4x3-9x2-x+2.3.用待定系数法分解因式:(1)2x2+3xy-9y2+14x-3y+20; (2)x4+5x3+15x-9.初中数学因式分解(二)1.双十字相乘法分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3),可以看作是关于x的二次三项式.对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为即:-22y2+35y-3=(2y-3)(-11y+1).再利用十字相乘法对关于x的二次三项式分解所以,原式=[x+(2y-3)][2x+(-11y+1)]=(x+2y-3)(2x-11y+1).上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图:它表示的是下面三个关系式:(x+2y)(2x-11y)=2x2-7xy-22y2;(x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3.这就是所谓的双十字相乘法.用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是:(1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.例1 分解因式:(1)x2-3xy-10y2+x+9y-2;(2)x2-y2+5x+3y+4;(3)xy+y2+x-y-2;解 (1)原式=(x-5y+2)(x+2y-1).(2)原式=(x+y+1)(x-y+4).(3)原式中缺x2项,可把这一项的系数看成0来分解.原式=(2x-3y+z)(3x+y-2z).2.求根法我们把形如an x n+an-1x n-1+…+a1x+a(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,…,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x) f(1)=12-3×1+2=0;f(-2)=(-2)2-3×(-2)+2=12.若f(a)=0,则称a为多项式f(x)的一个根.定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x),要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.定理2的根,则必有p是a0的约数,q是an的约数.特别地,当a=1时,整系数多项式f(x)的整数根均为an的约数.我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解.例2 分解因式:x3-4x2+6x-4.分析这是一个整系数一元多项式,原式若有整数根,必是-4的约数,逐个检验-4的约数:±1,±2,±4,只有f(2)=23-4×22+6×2-4=0,即x=2是原式的一个根,所以根据定理1,原式必有因式x-2.解法1 用分组分解法,使每组都有因式(x-2).原式=(x3-2x2)-(2x2-4x)+(2x-4)=x2(x-2)-2x(x-2)+2(x-2)=(x-2)(x2-2x+2).解法2 用多项式除法,将原式除以(x-2),所以原式=(x-2)(x2-2x+2).说明在上述解法中,特别要注意的是多项式的有理根一定是-4的约数,反之不成立,即-4的约数不一定是多项式的根.因此,必须对-4的约数逐个代入多项式进行验证.例3 分解因式:9x4-3x3+7x2-3x-2.分析因为9的约数有±1,±3,±9;-2的约数有±1,±为:所以,原式有因式9x2-3x-2.解 9x4-3x3+7x2-3x-2=9x4-3x3-2x2+9x2-3x-2=x2(9x3-3x-2)+9x2-3x-2=(9x2-3x-2)(x2+1)=(3x+1)(3x-2)(x2+1)说明若整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式可以化为9x2-3x-2,这样可以简化分解过程.总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可以分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,这样,我们就可以继续对g(x)进行分解了.3.待定系数法待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用.在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.例4 分解因式:x2+3xy+2y2+4x+5y+3.分析由于(x2+3xy+2y2)=(x+2y)(x+y),若原式可以分解因式,那么它的两个一次项一定是x+2y+m和x+y+n的形式,应用待定系数法即可求出m和n,使问题得到解决.解设x2+3xy+2y2+4x+5y+3=(x+2y+m)(x+y+n)=x2+3xy+2y2+(m+n)x+(m+2n)y+mn,比较两边对应项的系数,则有解之得m=3,n=1.所以原式=(x+2y+3)(x+y+1).说明本题也可用双十字相乘法,请同学们自己解一下.例5 分解因式:x4-2x3-27x2-44x+7.分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为(x2+ax+b)(x2+cx+d)的形式.解设原式=(x2+ax+b)(x2+cx+d)=x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd,所以有由bd=7,先考虑b=1,d=7有所以原式=(x2-7x+1)(x2+5x+7).说明由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑.本题如果b=1,d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直到求出待定系数为止.本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.练习二1.用双十字相乘法分解因式:(1)x2-8xy+15y2+2x-4y-3; (2)x2-xy+2x+y-3;(3)3x2-11xy+6y2-xz-4yz-2z2.2.用求根法分解因式:(1)x3+x2-10x-6; (2)x4+3x3-3x2-12x-4;(3)4x4+4x3-9x2-x+2.3.用待定系数法分解因式:(1)2x2+3xy-9y2+14x-3y+20; (2)x4+5x3+15x-9.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因式分解一、导入:有两个人相约到山上去寻找精美的石头,甲背了满满的一筐,乙的筐里只有一个他认为是最精美的石头。

甲就笑乙:“你为什么只挑一个啊?”乙说:“漂亮的石头虽然多,但我只选一个最精美的就够了。

”甲笑而不语,下山的路上,甲感到负担越来越重,最后不得已不断地从一筐的石头中挑一个最差的扔下,到下山的时候他的筐里结果只剩下一个石头!启示:人生中会有许多的东西,值得留恋,有的时候你应该学会去放弃。

二、知识点回顾:1.运用公式法 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)a2-b2=(a+b)(a-b); (2)a2±2ab+b2=(a±b)2; (3)a3+b3=(a+b)(a2-ab+b2); (4)a3-b3=(a-b)(a2+ab+b2). 下面再补充几个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca); (7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数; (8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数. 运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.三、专题讲解 例1 分解因式: (1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz; 解 (1)原式=-2x n-1y n(x4n-2x2ny2+y4) =-2x n-1y n[(x2n)2-2x2ny2+(y2)2] =-2x n-1y n(x2n-y2)2 =-2x n-1y n(x n-y)2(x n+y)2.(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z) =(x-2y-z)(x2+4y2+z2+2xy+xz-2yz). 例2 分解因式:a3+b3+c3-3abc. 本题实际上就是用因式分解的方法证明前面给出的公式(6). 分析我们已经知道公式(a+b)3=a3+3a2b+3ab2+b3 的正确性,现将此公式变形为a3+b3=(a+b)3-3ab(a+b). 这个式也是一个常用的公式,本题就借助于它来推导. 解原式=(a+b)3-3ab(a+b)+c3-3abc =[(a+b)3+c3]-3ab(a+b+c) =(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c) =(a+b+c)(a2+b2+c2-ab-bc-ca). 说明公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为 a3+b3+c3-3abc 显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c>0时,则a3+b3+c3-3abc≥0,即a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立. 如果令x=a3≥0,y=b3≥0,z=c3≥0,则有 等号成立的充要条件是x=y=z.这也是一个常用的结论.※※变式练习 1分解因式:x15+x14+x13+…+x2+x+1. 分析这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式a n-b n来分解. 解因为 x16-1=(x-1)(x15+x14+x13+…x2+x+1), 所以 说明在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用. 2.拆项、添项法 因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解. 例3 分解因式:x3-9x+8. 分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧. 解法1 将常数项8拆成-1+9. 原式=x3-9x-1+9 =(x3-1)-9x+9 =(x-1)(x2+x+1)-9(x-1) =(x-1)(x2+x-8). 解法2 将一次项-9x拆成-x-8x. 原式=x3-x-8x+8 =(x3-x)+(-8x+8) =x(x+1)(x-1)-8(x-1) =(x-1)(x2+x-8). 解法3 将三次项x3拆成9x3-8x3. 原式=9x3-8x3-9x+8 =(9x3-9x)+(-8x3+8) =9x(x+1)(x-1)-8(x-1)(x2+x+1) =(x-1)(x2+x-8). 解法4 添加两项-x2+x2. 原式=x3-9x+8 =x3-x2+x2-9x+8 =x2(x-1)+(x-8)(x-1) =(x-1)(x2+x-8). 说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.※※变式练习 1分解因式: (1)x9+x6+x3-3; (2)(m2-1)(n2-1)+4mn; (3)(x+1)4+(x2-1)2+(x-1)4; (4)a3b-ab3+a2+b2+1. 解 (1)将-3拆成-1-1-1. 原式=x9+x6+x3-1-1-1 =(x9-1)+(x6-1)+(x3-1) =(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1) =(x3-1)(x6+2x3+3) =(x-1)(x2+x+1)(x6+2x3+3). (2)将4mn拆成2mn+2mn. 原式=(m2-1)(n2-1)+2mn+2mn =m2n2-m2-n2+1+2mn+2mn =(m2n2+2mn+1)-(m2-2mn+n2) =(mn+1)2-(m-n)2 =(mn+m-n+1)(mn-m+n+1). (3)将(x2-1)2拆成2(x2-1)2-(x2-1)2. 原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4 =[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2 =[(x+1)2+(x-1)2]2-(x2-1)2 =(2x2+2)2-(x2-1)2=(3x2+1)(x2+3). (4)添加两项+ab-ab. 原式=a3b-ab3+a2+b2+1+ab-ab =(a3b-ab3)+(a2-ab)+(ab+b2+1) =ab(a+b)(a-b)+a(a-b)+(ab+b2+1) =a(a-b)[b(a+b)+1]+(ab+b2+1) =[a(a-b)+1](ab+b2+1) =(a2-ab+1)(b2+ab+1). 说明(4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验. 3.换元法 换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰. 例4 分解因式:(x2+x+1)(x2+x+2)-12. 分析将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了. 解设x2+x=y,则 原式=(y+1)(y+2)-12=y2+3y-10 =(y-2)(y+5)=(x2+x-2)(x2+x+5) =(x-1)(x+2)(x2+x+5). 说明本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试. 例5 分解因式:(x2+3x+2)(4x2+8x+3)-90. 分析先将两个括号内的多项式分解因式,然后再重新组合. 解原式=(x+1)(x+2)(2x+1)(2x+3)-90 =[(x+1)(2x+3)][(x+2)(2x+1)]-90 =(2x2+5x+3)(2x2+5x+2)-90. 令y=2x2+5x+2,则 原式=y(y+1)-90=y2+y-90 =(y+10)(y-9) =(2x2+5x+12)(2x2+5x-7) =(2x2+5x+12)(2x+7)(x-1). 说明对多项式适当的恒等变形是我们找到新元(y)的基础.※※变式练习 1.分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2. 解设x2+4x+8=y,则 原式=y2+3xy+2x2=(y+2x)(y+x) =(x2+6x+8)(x2+5x+8) =(x+2)(x+4)(x2+5x+8). 说明由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式. 1.双十字相乘法 分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式. 例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3), 可以看作是关于x的二次三项式. 对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为 即:-22y2+35y-3=(2y-3)(-11y+1). 再利用十字相乘法对关于x的二次三项式分解 所以,原式=[x+(2y-3)][2x+(-11y+1)] =(x+2y-3)(2x-11y+1). 上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图: 它表示的是下面三个关系式: (x+2y)(2x-11y)=2x2-7xy-22y2; (x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3. 这就是所谓的双十字相乘法. 用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是: (1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列); (2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx. 例1 分解因式: (1)x2-3xy-10y2+x+9y-2; (2)x2-y2+5x+3y+4; (3)xy+y2+x-y-2; (4)6x2-7xy-3y2-xz+7yz-2z2. 解 (1)原式=(x-5y+2)(x+2y-1). (2) 原式=(x+y+1)(x-y+4). (3)原式中缺x2项,可把这一项的系数看成0来分解. 原式=(y+1)(x+y-2). (4) 原式=(2x-3y+z)(3x+y-2z). 说明 (4)中有三个字母,解法仍与前面的类似.2.求根法 我们把形如a n x n+a n-1x n-1+…+a1x+a0(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如 f(x)=x2-3x+2,g(x)=x5+x2+6,…, 当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x) f(1)=12-3×1+2=0; f(-2)=(-2)2-3×(-2)+2=12. 若f(a)=0,则称a为多项式f(x)的一个根. 定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a. 根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x)要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根. 定理2 的根,则必有p是a0的约数,q是a n的约数.特别地,当a0=1时,整系数多项式f(x)的整数根均为a n 的约数. 我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解. 例2 分解因式:x3-4x2+6x-4. 分析这是一个整系数一元多项式,原式若有整数根,必是-4的约数,逐个检验-4的约数:±1,±2,±4,只有 f(2)=23-4×22+6×2-4=0,即x=2是原式的一个根,所以根据定理1,原式必有因式x-2. 解法1 用分组分解法,使每组都有因式(x-2). 原式=(x3-2x2)-(2x2-4x)+(2x-4) =x2(x-2)-2x(x-2)+2(x-2) =(x-2)(x2-2x+2). 解法2 用多项式除法,将原式除以(x-2), 所以原式=(x-2)(x2-2x+2). 说明在上述解法中,特别要注意的是多项式的有理根一定是-4的约数,反之不成立,即-4的约数不一定是多项式的根.因此,必须对-4的约数逐个代入多项式进行验证.※※变式练习 1. 分解因式:9x4-3x3+7x2-3x-2. 分析因为9的约数有±1,±3,±9;-2的约数有±1,±为: 所以,原式有因式9x2-3x-2. 解 9x4-3x3+7x2-3x-2 =9x4-3x3-2x2+9x2-3x-2 =x2(9x3-3x-2)+9x2-3x-2 =(9x2-3x-2)(x2+1) =(3x+1)(3x-2)(x2+1) 说明若整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式可以化为9x2-3x-2,这样可以简化分解过程. 总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可以分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,这样,我们就可以继续对g(x)进行分解了. 3.待定系数法 待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用. 在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法. 例3 分解因式:x2+3xy+2y2+4x+5y+3. 分析由于 (x2+3xy+2y2)=(x+2y)(x+y), 若原式可以分解因式,那么它的两个一次项一定是x+2y+m和x+y+n的形式,应用待定系数法即可求出m和n,使问题得到解决. 解设 x2+3xy+2y2+4x+5y+3 =(x+2y+m)(x+y+n) =x2+3xy+2y2+(m+n)x+(m+2n)y+mn, 比较两边对应项的系数,则有 解之得m=3,n=1.所以原式=(x+2y+3)(x+y+1). 说明本题也可用双十字相乘法,请同学们自己解一下.※※变式练习 1.分解因式:x4-2x3-27x2-44x+7.分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为(x2+ax+b)(x2+cx+d)的形式. 解设 原式=(x2+ax+b)(x2+cx+d) =x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd, 所以有 由bd=7,先考虑b=1,d=7有 所以 原式=(x2-7x+1)(x2+5x+7). 说明由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑.本题如果b=1,d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直到求出待定系数为止. 本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.四、巩固练习:1. 分解因式:(x2+xy+y2)-4xy(x2+y2). 分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式. 解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则 原式=(u2-v)2-4v(u2-2v) =u4-6u2v+9v2 =(u2-3v)2 =(x2+2xy+y2-3xy)2 =(x2-xy+y2)2.五、反思总结。

相关文档
最新文档