高三数学11月月考试题 文 (2)
湖南省长沙市岳麓区湖南师范大学附属中学2024-2025学年高三上学期11月月考数学试题
湖南省长沙市岳麓区湖南师范大学附属中学2024-2025学年高三上学期11月月考数学试题一、单选题1.集合{}0,1,2,3A =的真子集的个数是()A .16B .15C .8D .72.“11x -<”是“240x x -<”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.已知角α的终边上有一点P 的坐标是()3,4a a ,其中0a ≠,则sin2α=()A .43B .725C .2425D .2425-4.设向量a ,b满足a b += a b -=r r a b ⋅ 等于()A .B .2C .5D .85.若无论θ为何值,直线sin cos 10y x θθ⋅+⋅+=与双曲线2215x ym -=总有公共点,则m 的取值范围是()A .1m ≥B .01m <≤C .05m <<,且1m ≠D .1m ≥,且5m ≠6.已知函数()2f x 的图象关于原点对称,且满足()()130f x f x ++-=,且当()2,4x ∈时,()()12log 2f x x m =--+,若()()2025112f f -=-,则m 等于()A .13B .23C .23-D .13-7.已知正三棱台111ABC A B C -所有顶点均在半径为5的半球球面上,且AB =11A B =)A .1B .4C .7D .1或78.北宋数学家沈括博学多才、善于观察.据说有一天,他走进一家酒馆,看见一层层垒起的酒坛,不禁想到:“怎么求这些酒坛的总数呢?”经过反复尝试,沈括提出对于上底有ab 个,下底有cd 个,共n 层的堆积物(如图所示),可以用公式()()()2266nn S b d a b d c c a =++++-⎡⎤⎣⎦求出物体的总数,这就是所谓的“隙积术”,相当于求数列ab ,()()()()()()11,22,,11a b a b a n b n cd +++⋅++-+-= 的和.若由小球堆成的上述垛积共7层,小球总个数为238,则该垛积最上层的小球个数为()A .2B .6C .12D .20二、多选题9.若2024220240122024(12)x a a x a x a x +=++++ ,则下列正确的是()A .02024a =B .20240120243a a a +++= C .012320241a a a a a -+-++= D .12320242320242024a a a a -+--=- 10.对于函数()sin cos f x x x =+和()sin cos 22g x x x ππ⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭,下列说法中正确的有()A .()f x 与()g x 有相同的零点B .()f x 与()g x 有相同的最大值点C .()f x 与()g x 有相同的最小正周期D .()f x 与()g x 的图象有相同的对称轴11.过点()0,2P 的直线与抛物线2:4C x y =交于()11,A x y ,()22,B x y 两点,抛物线C 在点A 处的切线与直线2y =-交于点N ,作NM AP ⊥交AB 于点M ,则()A .5OA OB ⋅=-B .直线MN 恒过定点C .点M 的轨迹方程是()22(1)10y x y -+=≠D .ABMN三、填空题12.已知复数1z ,2z 的模长为1,且21111z z +=,则12z z +=.13.在ABC V 中,角,,A B C 所对的边分别为a ,b ,c 已知5a =,4b =,()31cos 32A B -=,则sin B =.14.若正实数1x 是函数()2e e x f x x x =--的一个零点,2x 是函数()()()3e ln 1e g x x x =---的一个大于e 的零点,则()122e e x x -的值为.四、解答题15.现有某企业计划用10年的时间进行技术革新,有两种方案:贷款利润A 方案一次性向银行贷款10万元第1年利润1万元,以后每年比前一年增加25%的利润B 方案每年初向银行贷款1万元第1年利润1万元,以后每年比前一年增加利润3000元两方案使用期都是10年,贷款10年后一次性还本付息(年末结息),若银行贷款利息均按10%的复利计算.(1)计算10年后,A 方案到期一次性需要付银行多少本息?(2)试比较A 、B 两方案的优劣.(结果精确到万元,参考数据:101.12.594≈,101.259.313≈)16.如图,四棱锥P ABCD -中,底面ABCD 为等腰梯形,222AD AB BC ===.点P 在底面的射影点Q 在线段AC 上.(1)在图中过A 作平面PCD 的垂线段,H 为垂足,并给出严谨的作图过程;(2)若2PA PD ==.求平面PAB 与平面PCD 所成锐二面角的余弦值.17.已知函数()e sin cos x f x x x =+-,()f x '为()f x 的导数.(1)证明:当0x ≥时,()2f x '≥;(2)设()()21g x f x x =--,证明:()g x 有且仅有2个零点.18.在平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b +=>>的两个焦点为1F 、2F ,P为椭圆C 上一动点,设12F PF θ∠=,当2π3θ=时,12F PF(1)求椭圆C 的标准方程.(2)过点()0,2B 的直线l 与椭圆交于不同的两点M 、N (M 在B ,N 之间),若Q 为椭圆C 上一点,且OQ OM ON =+,①求OBMOBNS S 的取值范围;②求四边形OMQN 的面积.19.飞行棋是大家熟悉的棋类游戏,玩家通过投掷骰子来决定飞机起飞与飞行的步数.当且仅当玩家投掷出6点时,飞机才能起飞.并且掷得6点的游戏者可以连续投掷骰子,直至显示点数不是6点.飞机起飞后,飞行步数即骰子向上的点数.(1)求甲玩家第一轮投掷中,投郑次数X 的均值()()()11lim n n k k E X kP k kP k ∞∞→==⎛⎫== ⎪⎝⎭∑∑)(2)对于两个离散型随机变量ξ、η,我们将其可能出现的结果作为一个有序数对,类似于离散型随机变量的分布列,我们可以用如下表格来表示这个有序数对的概率分布:(记()()()11,mi i ijj p x p x p x y ξ====∑,()()()21,njiij i p y p y p xy η====∑)ξη1x 2x ⋯n x 1y ()11,p x y ()21,p x y ⋯()1,n p x y ()21p y 2y ()12,p x y ()22,p x y L()2,n p x y ()22p y ⋯⋯⋯⋯⋯⋯my ()1,m p x y ()2,m p x y ⋯(),n m p x y ()2m p y ()11p x ()12p x L()1n p x 1若已知i x ξ=,则事件{}j y η=的条件概率为{}{}{}()()1,,j i i j j i i i P y x p x y P y x P x p x ηξηξξ=======.可以发现i x ηξ=依然是一个随机变量,可以对其求期望{}{}()()1111,mmi j j i j i jj i iE x y P y x y p x y p x ηξηξ====⋅===⋅∑∑.(ⅰ)上述期望依旧是一个随机变量(ξ取值不同时,期望也不同),不妨记为{}E ηξ,求{}E E ηξ⎡⎤⎣⎦;(ⅱ)若修改游戏规则,需连续掷出两次6点飞机才能起飞,记0ξ=表示“甲第一次未能掷出6点”,1ξ=表示“甲第一次掷出6点且第二次未能掷出6点”,2ξ=表示“甲第一次第二次均掷出6点”,η为甲首次使得飞机起飞时抛掷骰子的次数,求E η.。
安徽省合肥市第一中学2025届高三上学期教学质量检测(11月月考)数学试题(含答案)
安徽省合肥市第一中学2025届高三上学期教学质量检测(11月月考)数学试题一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合A={x|y=log3(x2−1)},集合B={y|y=3−x},则A∩B=( )A. (0,1)B. (1,2)C. (1,+∞)D. (2,+∞)2.若sinθ(sinθ+cosθ)=25,则tanθ=( )A. 2或−13B. −2或13C. 2D. −23.已知函数f(x)=a−e x1+ae x⋅cos x,则“a=1”是“函数f(x)的是奇函数”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4.函数f(x)={ax2+e x,x≥0x3−ax2+a,x<0在R上单调,则a的取值范围是( )A. (0,1)B. (0,1]C. [0,1)D. [0,1]5.在▵ABC中,内角A,B,C的对边分别为a,b,c,已知▵ABC的外接圆半径为1,且a2+c2−b2=2ac,1+2sin A 1−2cos A =sin2C1+cos2C,则▵ABC的面积是( )A. 22B. 32C. 1D. 26.已知一个正整数N=a×1010(1≤a<10),且N的15次方根仍是一个整数,则这个数15次方根为().(参考数据:lg2≈0.3,lg3≈0.48,lg5≈0.7)A. 3B. 4C. 5D. 67.已知函数f(x)=x ln x,g(x)=e x−x2+a,若∃x1,x2∈[1,2],使得f(x1)=g(x2),则实数a的取值范围是( )A. (4−e2,ln4+1−e)B. [4−e2,ln4+1−e]C. (ln4+4−e2,1−e)D. [ln4+4−e2,1−e]8.已知正数x,y满足9x2−1+9y2−1=9xy,则4x2+y2的最小值为( )A. 1B. 2C. 3D. 4二、多选题:本题共3小题,共18分。
湖南省三湘名校教育联盟2024-2025学年高三上学期11月月考(第二次大联考)数学试题含答案
湖南省三湘名校教育联盟2024-2025学年高三上学期第二次大联考(11月)数学试题(答案在最后)本试卷共4页.全卷满分150分,考试时间120分钟.注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在本式卷和答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应的答案标号涂黑,如有改动,用橡皮擦干净后,再选涂其他答案;回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本式卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{40},{31}A xx B x x =-=-∣∣ ,则集合A B 中所含整数的个数为A.2 B.3C.4D.52.已知3i12iz -=+,则z 的虚部为A.75B.75-C.15-D.153.“202520251ab>”是“33a b >”的A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.已知()1sin 104θ︒+=-,则()sin 2110θ︒+=A.78B.18C.18-D.78-5.经研究表明:光源发射出来的粒子在没有被捕获之前属于光子,光子在离开光源后会与各种粒子撞击,其动量可能会改变,导致其速度降低,最终可能改变身份成为其他范围的粒子(如红外线粒子),不再能被人类的感光设备捕获.已知在某次光学实验中,实验组相关人员用人类感光设备捕获了从同一光源发射出来的两个光子A ,B ,通过数学建模与数据分析得知,此时刻在平面直角坐标系中它们的位移所对应的向量分别为(4,3),(2,10)A B s s == ,设光子B 相对光子A 的位移为s ,则s 在A s上的投影向量的坐标为A.43,55⎛⎫⎪⎝⎭B.(2,7)- C.5239,2525⎛⎫⎪⎝⎭ D.43,2525⎛⎫⎪⎝⎭6.已知等差数列{}n a 的前n 项和为n S ,公差为1,2d a =也为等差数列,则d 的值为A.2B.3C.4D.87.已知函数1()ln 2(1)x f x x m x m+=+≠+关于点(,4)n 中心对称,则曲线()y f x =在点(n m -,())f n m -处的切线斜率为A.14 B.74C.38D.1388.ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且πcos cos 2,3b Cc B A +==,则ABC 的内切圆半径的最大值为A.2B.3C.2D.1二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知正数x ,y 满足21x y +=,则A.81xy B.1412x y+ C.22142x y +D.1(1)4x y +10.三棱台111ABC A B C -中,112AB A B =,设AB 的中点为1,E AA 的中点为1,F A E 与BF 交于点1,G A C 与1C F 交于点H ,则A.直线GH 与直线1BB 异面B.1//GH BC C.线段AE 上存在点P ,使得1//BC 平面1A PCD.线段BE 上存在点P ,使得1//BC 平面1A PC11.设函数2()e ,x f x nx n n +=-+∈N ,记()f x 的最小值为n a ,则A.122a a >- B.1n a n +C.()()n f a f n > D.n m n ma a a +>+三.填空题:本题共3小题,每小题5分,共15分.12.已知命题:“2,20x ax ax ∀∈--<R ”为真命题,则a 的取值范围是______.13.已知P 为边长为4的正六边形ABCDEF 内部及其边界上的一点,则AP AB ⋅的取值范围是______.14.三棱锥P ABC -中,AB AC AB AC ==⊥,平面PBC ⊥平面ABC ,且PB PC =.记P ABC -的体积为V ,内切球半径为r ,则21r V-的最小值为______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)已知函数()2cos 2,(0,π)f x x x x =+∈.(1)求()f x 的单调递减区间;(2)若()f x 在π,12m ⎡⎤⎢⎥⎣⎦上的最小值为-2,求m 的取值范围.16.(本小题满分15分)记首项为1的数列{}n a 的前n 项和为n S ,且2(1)n n S n a =+.(1)探究数列n a n ⎧⎫⎨⎬⎩⎭是否为单调数列;(2)求数列{}2na n a ⋅的前n 项和nT .17.(本小题满分15分)如图,四棱柱1111ABCD A B C D -中,四边形ABCD 是菱形,四面体11A BC D 的体积与四面体111A B BC 的体积之差为12,A BD 的面积为(1)求点A 到平面1A BD 的距离;(2)若11111,,2A B A D A B A C BD =⊥=,求锐二面角11A BD C --的余弦值.18.(本小题满分17分)已知函数2()ln 2x f x ax ax x =+-在(0,)+∞上有两个极值点12,x x ,且21x x <.(1)求a 的取值范围;(2)当21(1,e)x x ∈时,证明:122eln ln e 1x x <+<+.19.(本小题满分17分)对于(2,3,)m m = 项数列{}n a ,若满足111m miii i a am ==-=-∑∑,则称它为一个满足“绝对值关联”的m 阶数列.(1)对于一个满足“绝对值关联”的m 阶数列{}n a .证明:存在,{1,2,,}i j m ∈ ,满足0i j a a <;(2)若“绝对值关联”的m 阶数列{}n a 还满足(1,2,,)i a i m λ=,则称{}n a 为“绝对值λ关联”的m 阶数列.①请分别写出一个满足“绝对值34关联”的4阶数列和满足“绝对值1关联”的5阶数列(不必论证,符合要求即可);②若存在“绝对值λ关联”的n 阶数列(2)n ,求λ的最小值(最终结果用常数或含n 的式子表示).三湘名校教育联盟•2025届高三第二次大联考•数学参考答案、提示及评分细则1.【答案】C 【解析】由题意可得{40},{31}A xx B x x =-=-∣∣ ,可得{30}A B x x =- ∣ ,故集合A B 中所含整数有3,2,1,0---,共4个,故选C.2.【答案】A 【解析】由题意可得3i (3i)(12i)32i 6i 17i 12i (12i)(12i)555z ------====++-,故17i 55z =+,其虚部为75,故选A.3.【答案】A 【解析】由202520251ab> 及指数函数的单调性可得0a b > ,令函数3()f x x =,易得()f x 单调递增,故当0a b > 时,一定有33a b >,故充分性成立,但由33a b >只能推出a b >,即必要性不成立,故“20252025a b >1 ”是“33a b >”的充分不必要条件,故选A.4.【答案】A 【解析】由题意可得()1sin 104θ︒+=-,故()()()()2sin 2110sin 90220cos 22012sin 10θθθθ︒︒︒︒︒+=++=+=-+2171248⎛⎫=--= ⎪⎝⎭,故选A.5.【答案】C 【解析】由向量(4,3),(2,10)A B s s == ,可得(2,10)(4,3)(2,7)B A s AB s s ==-=-=-,所以s 在A s 上的投影向量为218135239(4,3),55252525A A A A As s s s s s ⋅-⎛⎫⋅=⨯=⋅= ⎪⎝⎭ ,故选C.6.【答案】C 【解析】易知232222n n d S a n d n d ⎛⎫-=+-+- ⎪⎝⎭也为等差数列,则232222d n d n d ⎛⎫+-+- ⎪⎝⎭为完全平方,则2322(2)02d d d ⎛⎫---= ⎪⎝⎭,解得4d =,故选C.7.【答案】D 【解析】因为()f x 关于点(,4)n 中心对称,所以函数1()()4ln224x n g x f x n x n x m n ++=+-=++-++为奇函数,则240n -=,即2n =,且3ln 2x y x m +=++为奇函数,所以23m +=-,解得5m =-,故1()ln 5x f x x +=+-2,7x n m -=,且6()2(1)(5)f x x x '=-+-,故切线斜率为13(7)8f '=,故选D.8.【答案】B 【解析】设ABC 的内切圆半径为r ,由题意可得cos cos 2b C c B +=,由余弦定理可得2222a b c b ab +-⋅+2222222222222a c b a b c a c b c a ac a a +-+-+-⋅=+==,而11sin ()22ABC S bc A a b c r ==++ ,故2r =⋅2bcb c ++,由余弦定理可得2222cos a b c bc A =+-,则224b c bc bc =+- ,当且仅当b c =时等号成立,而4=2()3b c bc +-,则b c +=,其中4bc ,故33222bc r b c =⋅=++=(24)t t < ,故24(2)6263t r t t -=⋅=-+ .故选B.9.【答案】AC 【解析】对于A :因为21x y +=18xy ,当且仅当2x y =,即11,42x y ==时取等号,故A 正确;对于B :1424(2)8666x y x y x y x y x y y x +++=+=+++=+,当且仅当8x yy x =,即x =1,22y =时取等号,故B 错误;对于C :因为22x y +,则22142x y + ,当且仅当2x y =,即11,42x y ==时取等号,故C 正确;对于D :因为2112(1)1(1)2(1)2222x y x y x y ++⎡⎤+=⨯+⨯=⎢⎥⎣⎦,当且仅当21x y =+,即1,02x y ==时取等号,这与x ,y 均为正数矛盾,故1(1)2x y +<,故D 错误,故选AC.10.【答案】AD 【解析】如图所示,对于A ,因为1BB ⊂/平面11,BC F BB 平面1BC F B =,故1BB 与平面1BC F 的交点为B ,且是唯一的.又因为B ,G ,H 三点不共线,所以GH 不经过点B ,又GH ⊂平面1BC F ,所以直线GH 与直线1BB 没有交点,即直线GH 与直线1BB 异面,故A 正确;对于B ,因为AB 的中点为1,E AA 的中点为F ,所以点G 是1A AB 的重心,:1:2FG GB =,若1//GH BC ,则1:1:2FH HC =,事实上:()()1111111222A H A C A A AC A F A C A F λλλλ==+=+=+112AC λ ,所以H 是1FC 的中点,1:1:2FH HC =不成立,故B 错误;对于CD 选项,如图,取线段BF 的中点Q ,连接1AQ 并延长,交BE于点P ,下证1//BC 平面1A PC :由H 为1C F 的中点可知1//HQ BC ,又1BC ⊂/平面1,A PC HQ ⊂平面1A PC ,所以1//BC 平面1A PC ,故D 正确,C 错误;故选AD.11.【答案】BCD 【解析】由题意可得()e xf x n '=-,当(,ln )x n ∈-∞时,()0,()f x f x '<单调递减,当(ln ,)x n ∈+∞时,()0,()f x f x '>单调递增,故2(ln )ln n a f n n n n n ==+-.对于A :12212,62ln 2,22a a a a ==---=-2ln 20>,即122a a <-,故A 错误;对于B :设函数2()1ln ,,()2ln 1F x x x x x F x x x '+=--∈=--N ,设函数1()2ln 1,()2,1g x x x g x x x '=--=- 时,则()0()g x g x '>⇒单调递增,故()(1)10g x g =>⇒ ()0()F x F x '>⇒单调递增,故22()(1)01ln 0ln 11n F x F n n n n n n n n a n =⇒--⇒+-+⇒+ ,故B 正确;对于C :易知ln n n >,又因为()f x 在(ln ,)x n ∈+∞上单调递增,故(ln )()(1)f n f n f n <<+ ()n f a ,故()()n f a f n >,故C 正确;对于D :[ln ln()][ln n m m n a a a m n m n m n m n +--=+-+++-ln()]n m +,只需证明ln ln()0n m n m +-+>即可,而ln ln e n n m m +=,由e 1(1)x x x >+易得e n m >(1)m n m mn m n +=++,故ln ln()0n m n m +-+>,同理可得ln ln()0m n n m +-+>,故n m n a a +>+m a ,故D 正确,故选BCD .12.【答案】(8,0-]【解析】因为命题“2,20x ax ax ∀∈--<R ”为真命题,当0a =时,20-<成立,当0a ≠时,则280a a a <⎧⎨∆=+<⎩,解得80a -<<,故a 的取值范围是(8,0]-,故答案为(8,0]-.13.【答案】[-8,24]【解析】由题意可得AB 的模为4,根据正六边形的特征及投影的定义可以得到AP 在AB方向上的投影长度的取值范围是[2,6]-,由数量积定义可知AP AB ⋅ 等于AB 的模与AP 在AB 方向上的投影长度的乘积,所以AP AB ⋅的取值范围是[8,24]-,故答案为[8,24]-.14.62+【解析】设三棱锥P ABC -的高为h ,依题意,可取BC 中点O ,连接OA ,OP ,则OA =1,OB OC OP h ===,则PBC 的面积为1,2h BC h ABC ⋅= 的面积112OA BC ⋅=,由21PA PB h ==+可得PBA 的面积为2212h +,于是三棱锥P ABC -2211h h +++,由等体积可知)2211133r hh h +++=⨯,所以2222222122122h h h r h h ++++==+,故21r V-=2222123221122h h h h h ++-+-=+.设函数22211()2x f x x +=+,且0x >,则()f x '=()2222222212121212x x x x x x +=++++,当3,()0,()2x f x f x '<<单调递减,3()02x f x '>>,()f x 单调递增,所以3()622f x f =+ ,所以62h =时,21r V -取得最小值62+62.15.【解析】(1)由题意可得π()32cos 22sin 2,(0,)6f x x x x x π⎛⎫=+=+∈ ⎪⎝⎭,………………2分令π2,(0,π)6z x x =+∈,则π13π,66z ⎛⎫∈ ⎪⎝⎭,因为π13πsin ,,66y z z ⎛⎫=∈ ⎪⎝⎭的单调递减区间是π3π,22⎡⎤⎢⎥⎣⎦,…………………………………………5分且由π3π22z ,得π2π63x ,所以()f x 的单调递减区间是π2π,63⎡⎤⎢⎥⎣⎦.………………………………7分(2)当π,12x m ⎡⎤∈⎢⎥⎣⎦,则πππ2,2636x m ⎡⎤+∈+⎢⎥⎣⎦,因为()f x 在区间π,12m ⎡⎤⎢⎥⎣⎦上的最小值为-2,……9分即sin y z =在ππ,236m ⎡⎤+⎢⎥⎣⎦上的最小值为-1,又因为π13π,66z ⎛⎫∈ ⎪⎝⎭,所以3ππ13π2,266m +< ……12分即2ππ3m < ,故m 的取值范围为2π,π3⎡⎫⎪⎢⎣⎭.……………………………………………………………13分16.【解析】(1)由题意得2(1)n n S n a =+,当2n 时,112n n S na --=,………………………………1分两式作差得112(1),(1)n n n n n a n a na n a na --=+--=,……………………………………………………3分所以11n n a a n n -=-,则数列n a n ⎧⎫⎨⎬⎩⎭为常数数列,………………………………………………………………5分无单调性,故数列n a n ⎧⎫⎨⎬⎩⎭不是单调数列.……………………………………………………………………6分(2)由(1)可得111n a a n ==,所以n a n =,故22an n n a n ⋅=⋅.……………………………………8分所以231222322n n T n =⋅+⋅+⋅++⋅ ,①……………………………………………………………10分23412122232(1)22n n n T n n +=⋅+⋅+⋅++-⋅+⋅ ,②………………………………………………12分①-②得()231112122222222(1)2,12n nn n n n T n n n +++--=++++-⋅=-⋅=---⋅- ……………14分所以1(1)2 2.n n T n +=-⋅+…………………………………………………………………………………15分17.【解析】(1)如图,连接AC 交BD 于点O ,设四棱柱1111ABCD A B C D -的体积为V Sh =(其中S 为菱形ABCD 的面积,h 为四棱柱ABCD -1111A B C D 的高),…………………………………………1分所以1ABDA 的体积为111236S h V ⋅=,同理四面体111A B BC 的体积为111236S h V ⋅=……………2分又因为四边形ABCD 是菱形,所以111122AO OC AC A C ===,所以点A 到平面1A BD 的距离为点1C 到平面1A BD 距离的一半,所以四面体11A BC D 的体积是四面体1ABDA 的体积的两倍,即13V .……4分设点A 到平面1A BD 的距离为d ,则1111233663V V V d =-==⋅………………………………5分解得3d =分(2)如图,连接1OA ,由111A B A C ⊥得1A B AC ⊥,又四边形ABCD 是菱形,所以AC BD ⊥,又11,,A B BD B A B BD =⊂ 平面1A BD ,所以AC ⊥平面1A BD ,又1AO ⊂平面1A BD ,所以1A O AC ⊥,………………………………………………………………………………………………8分又11,A B A D BO BD ==,所以1A O BD ⊥,…………………………………………………………9分又,,BD AC O BD AC =⊂ 平面ABCD ,所以1A O ⊥平面ABCD ,以点O 为原点,OA 为x 轴,OB 为y 轴,1OA 为z 轴,建立如图所示空间直角坐标系,由(1)知12V =,且菱形ABCD的面积为S =,所以h ==………………………………11分依题意,1(0,0,0),((0,1,0),(O C B C -,易得平面1A BD的一个法向量为(0,0)OC =,…………………………………………………12分设平面1BC D 的一个法向量为(,,)n a b c =,又1(0,1,0),(OB OC ==- ,所以100OB n OC n ⎧⋅=⎪⎨⋅=⎪⎩,即00b a c =⎧⎨-=⎩,取(1,0,1)n = ,…………………………………………………13分故111cos ,2||n OC n OC n OC ⋅<>===⋅ ,……………………………………………………14分故锐二面角11A BD C --的余弦值为2.…………………………………………………………………15分【评分细则】本题第二问若考生通过利用几何法来求解二面角11A BD C --的平面角为11π4A OC ∠=,或者利用余弦定理等来直接求解二面角的余弦值,只要过程合理,最终答案正确均给满分,若过程有误或证明过程不严谨酌情扣一定的分数.18【解析】(1)易得()f x 定义域为(0,),()ln f x x a x '+∞=-,显然0a ≠.…………………………1分①当0a <时,()f x '单调递增,不可能有两零点,不合题意.…………………………………………2分②当0a >时,令函数()()g x f x '=,易得()x a g x x'-=,故(0,)x a ∈时,()0,()g x g x '<单调递减(,)x a ∈+∞时,()0,()g x g x '>单调递增,……………………………………………………………4分当e a 时,有()()(1ln )0g x g a a a =- ,不可能有两零点;当e a >时,有()0,(1)10g a g <=>,由零点存在性定理可得()g x 在区间(1,)a 必有一个零点1x .……………………………………………6分()2(2ln )g a a a a =-,令函数()2ln a a a ϕ=-,则2()10a aϕ'=->,即()a ϕ单调递增,故()(e)a ϕϕ>=e 20->,即()20g a >,故()g x 在(,)a +∞上有零点2x ,综上(e,)a ∈+∞.…8分(2)依题意有()()120g x g x ==,即1122ln ln 0x a x x a x -=-=,故得12211221ln ln ln ln x x x x a x x x x -====-2121ln x x x x -,…………………………………………………………10分因此2121122111ln ln ln 1x x x x x x x x x x ==--,令21(1,e)x t x =∈.则1ln ln 1t x t =-,同理2ln ln 1t t x t =-,故12eln ln x x +=e ln 1t t t +-,欲证122eln ln e 1x x <+<+,即证112ln (e 1)e e t t t t t --<<+++,……12分令函数1()ln 2e t m t t t -=-+,函数1()(e 1)ln ,(1,e)e t n t t t t -=+-∈+,只需证明()0,()0m t n t >>即可,又22222(e)2(e 1)(1)e 1()0(e)(e)t t t m t t t t t '+-+-+-==>++,……………………………………………………14分故()m t 是增函数,故()(1)0m t m >=,又222222(e 1)(e)1e ()e 1(e)(e)t t n t t t t t t '⎛⎫+-+==+-- ⎪++⎝⎭,令函数22e ()e 1h t t t =+--,则22e ()10h t t '=->,故()h t 单调递增,故()(1)0h t h >=,………………16分因此21()()0(e)n t h t t '=>+,故()n t 单调递增,故()(1)0n t n >=,故122eln ln e 1x x <+<+得证.17分【评分细则】第一问若考生求完导后用参变分离的方法来求参数范围,只要最终答案正确均给分,第二问也可用其他方法来证明,逻辑正确,严谨可酌情给分.19.【解析】(1)因为{}n a 为满足“绝对值关联”的m 阶数列,假设0i a ,则11110m m m m i i i i i i i i a a a a====-=-=≠∑∑∑∑1(2)m m - ,不满足题意,同理若0i a ,则111101(2)m m m mi i i i i i i i a aa a m m ====-=-+=≠-∑∑∑∑ ,也不满足题意,………………………………4分所以12,,,m a a a 中必有一些数小于0,也必有一些数大于0,不妨设121,,,0,,,,0l k k m a a a a a a +>< (其中1l k m << ),故存在{1,2,,},{,1,,}i l j k k m ∈∈+ ,满足0i j a a <.………………6分(2)①一个满足“绝对值34关联”的4阶数列为:3333,,,4444--;(答案不唯一,符合要求即可)8分一个满足“绝对值1关联”的5阶数列为:222,,,1,1333--;(答案不唯一,符合要求即可)……10分②设(1,2,,)i a i n λ= ,且111n n i i i i a an ==-=-∑∑.不妨设1212,,,0,,,,0k k k n a a a a a a ++< ,其中1k n < ,并记11,k n i i i i k a x a y ==+==∑∑,为方便起见不妨设x y (否则用i a -代替i a 即可),于是得11,n n i i i i ax y a x y ===+=-∑∑,因为111n n i i i i a a n ==-=-∑∑,即()()1x y x y n +--=-,所以11,22n n y x --=,一方面有1()2n y n k λ-=- ,另一方面12n x k λ- .所以1()n n k k n λλλ--+= ,即1n n λ- ,当且仅当n k k -=,即2n k =时等号成立.………13分(i )当n 为偶数时,设*2,n s s =∈N ,则有前s 项为正数,后s 项为负数的数列111,,,n n n n n n --- ,111,,,n n n n n n ------ 是“绝对值1n n -关联”的n 阶数列,又1n n λ- ,所以λ的最小值为1n n -;……………………………………………………………………14分(ii )当n 为奇数时,设*21,n s s =+∈N ,则11(),22n n y n k x k λλ--=- 等价于21s s k λ+- 且s k λ ,即λ不小于21s s k +-与s k中的最大者.……………………………………………………15分当k s =或1s +时,两者中的最大者均为1,有1λ ,当k s <或1k s >+时,有1s k >或121s s k>+-,则有1λ>,所以取k s =或1s +时,λ可能取得最小值1,且有前s 项为正数,后1s +项为负数数列1111,1,,1,,,,111n n n n n n ------+++ 符合题意,所以λ可以取得最小值1.…………………………………………………………………………………………16分综上所述λ的最小值为()*1,21,21n n s s n n s -⎧=⎪∈⎨⎪=+⎩N .……………………………………………………17分。
安徽省六安第一中学2024-2025学年高三上学期第三次月考(11月)数学试题
安徽省六安第一中学2024-2025学年高三上学期第三次月考(11月)数学试题一、单选题1.已知复数()i 12i z =-+,其中i 是虚数单位,则z =()A .1B .2CD 2.已知等差数列{}n a 的前n 项和为n S ,若38304S a ==,,则9S =()A .54B .63C .72D .1353.已知平面向量,a b 满足4a = ,(1,b = ,且()()23a b a b +⊥- .则向量a 与向量b 的夹角是()A .π6B .π3C .2π3D .5π64.在等比数列{}n a 中,已知13a =,48n a =,93n S =,则n 的值为()A .4B .5C .6D .75.已知数列{}n a 满足1211n n a a n +-=-,且110a =,则n a 的最小值是()A .-15B .-14C .-11D .-66.已知ABC V 是边长为1的正三角形,1,3AN NC P = 是BN 上一点且29AP m AB AC =+,则AP AB ⋅=()A .29B .19C .23D .17.数列{}n a 的前n 项和为n S ,满足1024n n S a +=,则数列{}n a 的前n 项积的最大值为()A .552B .452C .92D .1028.已知O 是ABC V 所在平面内一点,且2AB = ,1OA AC ⋅=- ,1OC AC ⋅=,则ABC ∠的最大值为()A .π6B .π4C .π3D .π2二、多选题9.已知z 为复数,设z ,z ,i z 在复平面上对应的点分别为A ,B ,C ,其中O 为坐标原点,则()A .OA OB =B .OA OC⊥C .AC BC = D .OB AC∥10.已知等差数列{}n a 的首项为1a ,公差为d ,前n 项和为n S ,若1089S S S <<,则下列说法正确的是()A .当9n =时,n S 最大B .使得0n S <成立的最小自然数18n =C .891011a a a a +>+D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为1100S a 11.已知数列{}n a 是各项为正数的等比数列,公比为q ,在12,a a 之间插入1个数,使这3个数成等差数列,记公差为1d ,在23,a a 之间插入2个数,使这4个数成等差数列,公差为2,d ,在1,n n a a +之间插入n 个数,使这2n +个数成等差数列,公差为n d ,则下列说法错误..的是()A .当01q <<时,数列{}n d 单调递减B .当1q >时,数列{}n d 单调递增C .当12d d >时,数列{}n d 单调递减D .当12d d <时,数列{}n d 单调递增三、填空题12.设正项等比数列{}n a 的前n 项和为n S ,若4210S S =,则62S S 的值为.13.已知数列{}n a 中,11a =,12,2,n n na n a a n ++⎧=⎨-+⎩为奇数为偶数,则数列{}n a 前2024项的和为.14.在ABC V 中,内角A ,B ,C 所对的边分别为,,a b c (a b ≠).已知2cos c a A =,则sin sin B A -的最大值是.四、解答题15.设等比数列{an }满足124a a +=,318a a -=.(1)求{an }的通项公式;(2)记n S 为数列{log 3an }的前n 项和.若13m m m S S S +++=,求m .16.在ABC V 中,角,,A B C 所对的边分别为,,a b c ,且()22a cb bc -=+.(1)求角A ;(2)若3,2a BA AC BD DC ⋅==,求AD 的长.17.已知数列{}n a 的前n 项和为n S ,*12111,3,22(2,N )n n n a a S S S n n +-==+=+≥∈.(1)求证:数列{}n a 为等差数列;(2)在数列{}n b 中,1213,n n n n b a b a b ++==,若{}n b 的前n 项和为n T ,求证:92n T <.18.设各项均为正数的数列{}n a 的前n 项和为n S ,已知2132a a a =+,数列是公差为d 的等差数列.(1)求证:21a d =,并求出数列{}n a 的通项公式(用,n d 表示);(2)设c 为实数,对满足3m n k +=且m n ≠的任意正整数,,m n k ,不等式m n k S S cS +>都成立,求证:c 的最大值为92.19.已知函数()x f x e =.(1)当0x ≥时,求证:()()2f x f x x --≥;(2)若0k >,且()f x kx b ≥+在R 上恒成立,求2k b +的最大值;(3)设*2,n n ≥∈Nln n +.。
重庆市2024-2025学年高三上学期11月月考数学阶段性检测试题
重庆市2024-2025学年高三上学期11月月考数学阶段性检测试题注意事项:1.答题前、考生先将自己的姓名、班级、考场/座位号、准考证号填写在答题卡上.2、答选择题时、必须使用2B 铅笔填涂:答非选择题时,必须使用0.5毫米的黑色签字笔书写;必须在题号对应的答题区域内作答,超出答题区域书写无效;保持答卷清洁、完整.3.考试结束后,将答题卡交回(试题卷学生保存,以备评讲).一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1. 已知集合则( ){}2128,5016x A x B x x x ⎧⎫=<<=+>⎨⎬⎩⎭A B = A.B.C.D. ()4,3-()0,3()3,0-()4,0-2. 已知点,若A ,B ,C 三点共线,则x 的值是()()()()1,2,1,4,,1A B C x -A. 1B. 2C. 3D. 43. “”是“”的( )1x >11x -<A. 充分不必要条件 B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件4. 若,则a ,b ,c 的大小关系为( )0.10.13125,,log 352a b c --⎫⎫⎛⎛=== ⎪⎪⎝⎝⎭⎭A .B. C. D. a c b<<c a b<<b c a<<c b a<<5. 设m ,n 是不同的直线,为不同的平面,下列命题正确的是( ),αβA. 若,则.,,n m n αβαβ⊥⋂=⊥m α⊥B. 若,则.,//,//n m n m αβα= //m βC. 若,则.,,//,//m n m n ααββ⊂⊂//αβD. 若,则.//,,m n m n αβ⊥⊥//αβ6. 若曲线在处的切线的倾斜角为,则( )1()ln f x x x =+2x =α()sin cos cos 1sin2αααα-=-A. B. C. D. 1712-56-175-7. 已知数列的首项,前n 项和,满足,则( ){}n a 12025a =n S 2n n S n a =2024a =A. B. C. D. 120251202411012110138. 已知是函数的零点,是函数的零1x ()()2ln 1f x x x =---2x ()2266g x x ax a =+--点,且满足,则实数的取值范围是( )1234x x-<a A. B.)3,-+∞253,8⎫-⎪⎭C. D. 7125,,568⎫⎫⎛⎛-∞-+∞ ⎪ ⎪⎝⎝⎭⎭ 7125,568⎫⎛- ⎪⎝⎭二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,选对但不全的得部分分,有选错的得0分.9. 在下列函数中,最小正周期为π且在为减函数的是( )π0,2⎛⎫⎪⎝⎭A.B.()cos f x x=()1πsin 23f x x ⎛⎫=- ⎪⎝⎭C.D.()22cos sin f x x x=-()πtan 4f x x ⎫⎛=- ⎪⎝⎭10. 中,BC 边上的中线,则下列说法正确的有( )ABC V BC =2AD =A.B. 为定值4AB AC +=AB AC ⋅C. D. 的最大值为2220AC AB +=BAD ∠45︒11. 在正方体中,,分别为和的中点,M 为线段1111ABCD A B C D -6AB =,P Q 11C D 1DD 上一动点,N 为空间中任意一点,则下列结论正确的有( )1B C A .直线平面1BD ⊥11A C DB. 异面直线与所成角的取值范围是AM 1A D ππ,42⎡⎤⎢⎥⎣⎦C. 过点的截面周长为,,B PQ +D. 当时,三棱锥体积最大时其外接球的体积为AN BN ⊥A NBC-三、填空题:本题共3小题,每小题5分,共15分.12. 复数(i 是虚数单位),则复数z 的模为________.221i z =--13. 在数列中,,若对于任意的恒成立,{a n }111,34n n a a a +==+()*,235n n k a n ∈+≥-N 则实数k 的最小值为______.14. 若定义在的函数满足,且有()0,+∞()f x ()()()6f x y f x f y xy +=++对恒成立,则的最小值为________.()3f n n≥n *∈N 81()i f i =∑四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 平面四边形中,已知ABCD 4,120,AB BC ABC AC =∠=︒=(1)求的面积;ABC V (2)若的大小.150,BCD AD ∠=︒=ADC ∠16. 如图,在直三棱柱中,分别为111ABC A B C -1,3,4,,,AB AC AC AB AA M N P ⊥===的中点.11,,AB BC A B(1)求证:平面;//BP 1C MN (2)求二面角的余弦值.1P MC N --17. 已知双曲线的一条渐近线方程为,点在2222:1(0,0)x y C a b a b -=>>y x =()4,3P 双曲线C 上.(1)求双曲线C 的方程.(2)设过点的直线l 与双曲线C 交于M ,N 两点,问在x 轴上是否存在定点Q ,使()10-,得为常数?若存在,求出Q 点坐标及此常数的值;若不存在,说明理由.QM QN ⋅18. 已知函数.()2sin cos f x x x x x=--(1)求在处的切线方程;()f x πx =(2)证明:在上有且仅有一个零点;()f x ()0,2π(3)若时,的图象恒在的图象上方,求a 的取值()0,x ∞∈+()sin g x x =()2h x ax x=+范围.19. 数列满足,的前n 项和为,等差数列满足{}n b 32121222n n b b b b n -++++= {}n b n T {}n a ,等差数列前n 项和为.1143,a b a T ==n S (1)求数列的通项公式;{}{},n n a b (2)设数列中的项落在区间中的项数为,求数列的{}n a ()21,1m m T T ++()m c m N *∈{}m c 前n 和;n H (3)是否存在正整数m ,使得是或中的项.若有,请求出全部的m 并3m m mm S T S T +++{}n a {}n b 说明理由;若没有,请给出证明.。
河南省焦作市第一中学2024届高三上学期11月月考数学试题
河南省焦作市第一中学2024届高三上学期11月月考数学试题一、单选题1.已知集合{}{}223,log 1M x x N x x =-≤≤=≤,则M N =I ( )A .[2,3]-B .[2,2]-C .(0,2]D .(0,3] 2.若0,0a b >>,则“1ab <”是“1a b +<”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.若3tan 4α=,则21sin 212sin αα+=-( ) A .17- B .7- C .17 D .74.已知ABC V 是边长为1的等边三角形,点D ,E 分别是边,AB BC 的中点,连结DE 并延长到点F ,使得2DE EF =,则AF BC ⋅u u u r u u u r 的值为( )A .18-B .18C .1D .8-5.定义方程()()f x f x '=的实数根0x 叫做函数()f x 的“躺平点”.若函数()ln g x x =,3()1h x x =-的“躺平点”分别为α,β,则α,β的大小关系为( )A .αβ≥B .αβ>C .αβ≤D .αβ<6.已知x ,y 为非零实数,向量a r ,b r 为非零向量,则“a b a b +=+r r r r ”是“存在非零实数x ,y ,使得0xa yb +=r r r ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.在ABC V 中,AB AC ⊥u u u r u u u r ,且AB AC ==u u u r u u u r ,M 是BC 的中点,O 是线段AM 的中点,则()OA OB OC ⋅+u u u r u u u r u u u r 的值为( )A .0B .C .12-D .28.如图,圆M 为ABC V 的外接圆,4AB =,6AC =,N 为边BC 的中点,则AN AM ⋅=u u u r u u u u r ( )A .5B .10C .13D .26二、多选题9.已知实数a 满足,3i 2i 1i a +=+-(i 为虚数单位),复数(1)(1)i z a a =++-,则( ) A .z 为纯虚数 B .2z 为虚数 C .0z z += D .4z z ⋅= 10.已知不等式2210x ax b ++->的解集是{}x x d ≠,则b 的值可能是( )A .1-B .3C .2D .011.关于函数()sin |||cos |f x x x =+有下述四个结论,则( )A .()f x 是偶函数B .()f x 的最小值为1-C .()f x 在[2,2]ππ-上有4个零点D .()f x 在区间,2ππ⎛⎫ ⎪⎝⎭单调递增 12.如图,正方形ABCD 与正方形DEFC 边长均为1,平面ABCD 与平面DEFC 互相垂直,P 是AE 上的一个动点,则( )A .CPB .当P 在直线AE 上运动时,三棱锥D BPF-的体积不变C .PD PF +D .三棱锥A DCE -的外接球表面积为3π三、填空题13.已知曲线e ln x y m x x =+在1x =处的切线方程为3y x n =+,则n =.14.已知数列{}n a 是等差数列,1370,30a a a >+=,则使0n S >的最大整数n 的值为. 15.某区域规划建设扇形观景水池,同时紧贴水池周边建设一圈人行步道.要求总预算费用24万元,水池造价为每平方米400元,步道造价为每米1000元(不考虑宽度厚度等因素),则水池面积最大值为平方米.16.已知()f x 是定义在R 上的奇函数,且(1)()f x f x -=,则()f x 的最小正周期为;若对任意的121,0,2x x ⎡⎤∈⎢⎥⎣⎦,当时12x x ≠,都有()()1212f x f x x x π->-,则关于x 的不等式()sin f x x π≤在区间33,22⎡⎤-⎢⎥⎣⎦上的解集为.四、解答题17.已知向量2sin ,2sin 4a x x π⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭r,向量cos sin )b x x x ⎛⎫=- ⎪⎝⎭r ,记()()f x a b x =⋅∈R r r .(1)求()f x 表达式;(2)解关于x 的不等式()1f x ≥.18.记n S 为数列{}n a 的前n 项和,已知11,n n S a a ⎧⎫=⎨⎬⎩⎭是公差为13的等差数列. (1)求{}n a 的通项公式;(2)证明:121112na a a +++<L . 19.ABC V 中,sin 2A -sin 2B -sin 2C =sin B sin C .(1)求A ;(2)若BC =3,求ABC V 面积的最大值.20.已知数列{}n a 满足111,22n n na a a a +==-. (1)若11n nb a =-,证明数列{}n b 为等比数列,并求通项公式n b ; (2)数列{}nc 的前n 项和为(1)1,2(*)2n n n n S c b n N -+=+∈,求2n S . 21.有人收集了春节期间平均气温x 与某取暖商品销售额y 的有关数据,如下表所示.(1)根据以上数据,用最小二乘法求出回归方程$$y bxa =+$; (2)预测平均气温为9C ︒-时,该商品的销售额为多少万元. ()()()$1122211,n ni i i ii i n n ii i i x x y y x y nx y b a y bx x x x nx ====---===---∑∑∑∑$$ 22.设函数()()ln f x a x =-,已知0x =是函数()y xf x =的极值点. (1)求a ;(2)设函数()()()x f x g x xf x +=.证明:()1g x <.。
广西桂林中学届高三月月考试题 数学文
桂林中学11月考数学文科试题命题人:曹海平 审题人:周小英(考试时间:9:00-—--—11:00)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}{}()===B A C U,则,,2,31A ,2,3,4,51U ( )A .{3}B .{5}C .{1,2,4,5}D .{1,2,3,4}2.已知a R ∈,则“2a >"是“22a a >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既非充分也非必要条件3.已知数列{a n }满足a 1 =0,n a an n 21+=+,那么2011a 的值是()A .2009×2010B .20112C .2010×2011D .2011×20124.已知等比数列{}na 中有31174a aa =,数列{}nb 是等差数列,且77a b =,则59b b +=( )A .2B .4C.8D .165.已知集合21{|216},0,3x A x x B xx⎧+⎫=-<=≤⎨⎬-⎩⎭则=B C A R( )A .517,3,222⎛⎤⎛⎫-- ⎪⎥⎝⎦⎝⎭B .517,3,222⎛⎫⎡⎫-- ⎪⎪⎢⎝⎭⎣⎭ C .1,32⎛⎤- ⎥⎝⎦D .1,32⎛⎫- ⎪⎝⎭6.设函数()6)(-=x x x f ,若()f x 在0x =处的切线斜率为( )A .0B .1-C .3D .6-7.已知322log 2,log 3,log 5a b c ===,下面不等式成立的是( )A .a b c <<B .a c b <<C .b a c <<D .b c a <<8.函数211y x x =++的最大值是 ( )A .45B .54C .34D .439.已知命题p :关于x 的函数234y xax =-+在[1,+∞)上是增函数,命题q :关于x 的函数(21)xy a =-在R 上为减函数,若p 且q 为真命题,则a 的取值范围是 ( )A .23a ≤B .102a << C .1223a <≤ D .112a <<10.设函数()2f x x x a =++-的图象关于直线2x =对称,则a 的值为( )A .6B .4C .2D .2- 11.函数12()1log ()2xf x xg x -=+=与在同一直角坐标系下的图象大致是( ) 12.设曲线1(*)n y x n N +=∈在点(1,1)处的切线与x 轴的交点的横坐标为n x ,则201012010220102009log log ......log x x x +++的值为( ) A .2010log 2009-B .1-C .()2010log20091-( D .1第Ⅱ卷二、填空题:(本大题共4小题;每小题5分,满分20分) 13.函数3)4lg(--=x x y 的定义域是 .14.记等差数列的前n 项和为n S ,若244,20S S ==,则该数列的公差d =_____________15.设{na }为公比q 〉1的等比数列,若2008a 和2009a 是方程24830xx -+=的两根,则20102011aa +=__________。
河南省部分学校2024-2025学年高三上学期11月月考数学试题
河南省部分学校2024-2025学年高三上学期11月月考数学试题一、单选题1.函数tan y x =的值域可以表示为()A .{tan }xy x =∣B .{tan }yy x =∣C .{(,)tan }x y y x =∣D .{tan }y x =2.若“sin 2θ=”是“tan 1θ=”的充分条件,则θ是()A .第四象限角B .第三象限角C .第二象限角D .第一象限角3.下列命题正确的是()A .x ∃∈R ,20x <B .(0,4)x ∀∈,20log 2x <<C .(0,)x ∃∈+∞,132x x <D .π0,2x ⎛⎫∃∈ ⎪⎝⎭,4sin cos x x =4.函数24()f x x x =-的大致图象是()A .B .C .D .5.已知向量1e ,2e 满足121e e == ,120e e ⋅= ,则向量1e 与12e e - 的夹角为()A .45︒B .60︒C .120︒D .135︒6.已知5πtan210α+=,则4π5tan 5α-=()A .125B .125-C .43D .43-7.已知0a >,0b >,9a b +=,则36a ba+的最小值为()A .8B .9C .12D .168.若0x ∀>,()()()21ln 10x ax ax ---≥,则a =()AB C D 二、多选题9.已知函数sin()()2x f x -=,则()A .()f x 的值域为1,22⎡⎤⎢⎥⎣⎦B .()f x 为奇函数C .()f x 在ππ,22⎡⎤-⎢⎥⎣⎦上单调递增D .()f x 的最小正周期为2π10.国庆节期间,甲、乙两商场举行优惠促销活动,甲商场采用购买所有商品一律“打八四折”的促销策略,乙商场采用“购物每满200元送40元”的促销策略.某顾客计划消费(0)x x >元,并且要利用商场的优惠活动,使消费更低一些,则()A .当0200x <<时,应进甲商场购物B .当200300x ≤<时,应进乙商场购物C .当400500x ≤<时,应进乙商场购物D .当500x >时,应进甲商场购物11.已知函数()f x 满足:①x ∀,R y ∈,()[()]y f xy f x =;②(2)1f ->,则()A .(0)0f =B .()()()f x y f x f y +=⋅C .()f x 在R 上是减函数D .[1,3]x ∀∈,()2(3)1f x kx f x -⋅-≥,则3k ≥三、填空题12.已知函数()1ln(2)f x x =-+,则曲线()y f x =在点(1,(1))f --处的切线方程为.13.已知函数()cos (0)f x x ωω=>,若π2f x ⎛⎫+ ⎪⎝⎭为偶函数,且()f x 在区间(0,π)内仅有两个零点,则ω的值是.14.若ABC V 内一点P 满足PAB PBC PCA α∠=∠=∠=,则称P 为ABC V 的布洛卡点,α为布洛卡角.三角形的布洛卡点是法国数学家和数学教育家克洛尔于1816年首次发现,1875年被法国军官布洛卡重新发现,并用他的名字命名.如图,在ABC V 中,AB AC =,3cos 5BAC ∠=,若P 为ABC V 的布洛卡点,且2PA =,则BC 的长为.四、解答题15.在ABC V 中,内角,,A B C 的对边分别为,,a b c ,且π2sin 6a C b c ⎛⎫+=+ ⎪⎝⎭.(1)求A ;(2)若O 为ABC V 的外心,D 为边BC 的中点,且1OD =,求ABC V 周长的最大值.16.在ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c ,且tan tan tan tan 1B C B C ++=,1b =,c =(1)求a ;(2)如图,D 是ABC V 外一点(D 与A 在直线BC 的两侧),且AC CD ⊥,45CBD ∠= ,求四边形ABDC 的面积.17.已知平面向量(,)m a b = ,(sin ,cos )n x x ωω=,且2m n = ,其中0a >,0ω>.设点(0,1)和11π(,0)12在函数()f x m n =⋅ 的图象(()f x 的部分图象如图所示)上.(1)求a ,b ,ω的值;(2)若()G x y ,是()y f x =图象上的一点,则1(2,)2K x y 是函数()y g x =图象上的相应的点,求()g x 在[0,π]上的单调递减区间.18.已知函数()2()e xf x x mx n =++,m ,n ∈R .(1)当24m n =时,求()f x 的最小值;(2)当2m =-时,讨论()f x 的单调性;(3)当0m n ==时,证明:0x ∀>,()ln 1f x x >+.19.已知非零向量(,)a m n =,(,)b p q = ,a ,b 均用有向线段表示,现定义一个新的向量c以及向量间的一种运算“※”:(,)c a b mp nq mq np ==-+※.(1)证明:c 是这样一个向量:其模是a 的模的 b 倍,方向为将a绕起点逆时针方向旋转β角(β为x 轴正方向沿逆时针方向旋转到b所成的角,且02πβ≤<),并举一个具体的例子说明之;(2)如图1,分别以ABC V 的边AB ,AC 为一边向ABC V 外作ABD △和ACE △,使π2BAD CAE ∠=∠=,(01)AD AEAB AC λλ==<<.设线段DE 的中点为G ,证明:AG BC ⊥;(3)如图2,设(3,0)A -,圆22:4O x y +=,B 是圆O 上一动点,以AB 为边作等边ABC V (A ,B ,C 三点按逆时针排列),求||OC 的最大值.。
2025届高三上学期月考(三)(11月)数学试卷[含答案]
2025届高三上学期月考(三)(11月)数学试卷一、单选题(本大题共8小题)1.若复数满足,则( )z 1i34i z +=-z =A .B .C .D .252.已知数列的前项和,则等于( ){}n a n 22n S n n =-345a a a ++A .12B .15C .18D .213.抛物线的焦点坐标为( )24y x =A .B .(1,0)(1,0)-C .D .1(0,)16-1(0,164.如图是函数的部分图象,则函数的解析式可为( )()sin y x ωϕ=+A .B .πsin 23y x ⎛⎫=- ⎪⎝⎭πsin 3y x ⎛⎫=+ ⎪⎝⎭C .D .πsin 26y x ⎛⎫=+ ⎪⎝⎭5πcos 26y x ⎛⎫=- ⎪⎝⎭5.1903年,火箭专家、航天之父康斯坦丁・齐奥尔科夫斯基就提出单级火箭在不考虑空气阻力和地球引力的理想情况下的最大速度满足公式:,其中v 1201lnm m v v m +=分别为火箭结构质量和推进剂的质量,是发动机的喷气速度.已知某单级火12,m m 0v 箭结构质量是推进剂质量的2倍,火箭的最大速度为,则火箭发动机的喷气8km /s 速度为( )(参考数据:,)ln20.7≈ln3 1.1,ln4 1.4≈≈A .B .C .D .10km /s 20km /s80km /s 340km /s6.若,,则的值为( )83cos 5αβ=63sin 5αβ=()cos αβ+A .B .C .D .7.如图,一个质点从原点O 出发,每隔一秒随机向左或向右移动一个单位长度,向左的概率为,向右的概率为,共移动4次,则该质点共两次到达1的位置的概2313率为( )A .B .C .D .42782729498.设为数列的前n 项和,若,且存在,,n S {}n a 121++=+n n a a n *N k ∈1210k k S S +==则的取值集合为( )1a A .B .{}20,21-{}20,20-C .D .{}29,11-{}20,19-二、多选题(本大题共3小题)9.如图,在正方体中,点,分别为,的中点,则下列说1111ABCD A B C D -E F 1AD DB 法正确的是( )A .直线与为异面直线B .直线与所成的角为EF 11D B 1D E1DC 60C .D .平面1D F AD⊥//EF 11CDD C 10.已知是圆上的动点,直线与P 22:4O x y +=1:cos sin 4l x y θθ+=交于点,则( )2:sin cos 1l x y θθ-=Q A .B .直线与圆相切12l l ⊥1l OC .直线与圆截得弦长为D .的值为2l O OQ11.已知三次函数有三个不同的零点,,,()32f x ax bx cx d=+++1x 2x ()3123x x x x <<函数也有三个零点,,,则( )()()1g x f x =-1t 2t()3123t t t t <<A .23b ac>B .若,,成等差数列,则1x 2x 3x 23b x a=-C .1313x x t t +<+D .222222123123x x x t t t ++=++三、填空题(本大题共3小题)12.已知随机变量服从二项分布,若,,则 .X (),B n p ()3E X =()2D X =n =13.已知平面向量,满足,,且在上的投影向量为,则a b 2a = 1= b b a 14a - 为 .a b+ 14.如图,已知四面体的体积为32,,分别为,的中点,,ABCD E F AB BC G 分别在,上,且,是靠近点的四等分点,则多面体的体积H CD AD G H D EFGHBD 为 .四、解答题(本大题共5小题)15.设的内角,,的对边分别为,,,已知.ABC A B C a b c sin cos 0a B A =(1)求;A(2)若,且的面积为的值.sin sin 2sin B C A +=ABC a 16.设,.()()221ln 2f x x ax x x=++a ∈R (1)若,求在处的切线方程;0a =()f x 1x =(2)若,试讨论的单调性.a ∈R ()f x 17.已知四棱锥,底面为菱形,为上的点,过的P ABCD -ABCD ,PD PB H =PC AH 平面分别交于点,且∥平面.,PB PD ,M N BD AMHN(1)证明:;MN PC ⊥(2)当为的中点,与平面所成的角为,求平面H PC ,PA PC PA ==ABCD 60︒与平面所成的锐二面角的余弦值.PAM AMN18.已知双曲线的左、右焦点为,,过的直线与双曲线交于,22:13y x Γ-=1F 2F 2F l ΓA 两点.B (1)若轴,求线段的长;AB x ⊥AB (2)若直线与双曲线的左、右两支相交,且直线交轴于点,直线交轴l 1AF y M 1BF y 于点.N (i )若,求直线的方程;11F AB F MNS S = l (ii )若,恒在以为直径的圆内部,求直线的斜率的取值范围.1F 2F MN l 19.已知是各项均为正整数的无穷递增数列,对于,设集合{}n a *k ∈N ,设为集合中的元素个数,当时,规定.{}*k i B i a k=∈<N ∣kb kB k B =∅0k b =(1)若,求,,的值;2n a n =1b 2b 17b (2)若,设的前项和为,求;2n n a =n b n n S 12n S +(3)若数列是等差数列,求数列的通项公式.{}n b {}n a参考答案1.【答案】C【详解】由可得,1i 34i z +=-()()()()1i 34i 1i 17i 34i 34i 34i 25z +++-+===--+故选:C 2.【答案】B 【详解】因为数列的前项和,{}n a n 22n S n n =-所以.34552=a a a S S ++-()2252522215=-⨯--⨯=故选:B.3.【答案】D【详解】解:由,得,24y x =214x y =所以抛物线的焦点在轴的正半轴上,且,y 124p =所以,,18p =1216p =所以焦点坐标为,1(0,16故选:D 4.【答案】A【详解】观察图象可得函数的最小正周期为,()sin y x ωϕ=+2ππ2π36T ⎛⎫=-= ⎪⎝⎭所以,故或,排除B ;2ππω=2ω=2ω=-观察图象可得当时,函数取最小值,π2π5π63212x +==当时,可得,,2ω=5π3π22π+122k ϕ⨯+=Z k ∈所以,,排除C ;2π2π+3k ϕ=Z k ∈当时,可得,,2ω=-5ππ22π122k ϕ-⨯+=-Z k ∈所以,,π2π+3k ϕ=Z k ∈取可得,,0k =π3ϕ=故函数的解析式可能为,A 正确;πsin 23y x ⎛⎫=- ⎪⎝⎭,D 错误5ππππcos 2cos 2sin 26233y x x x ⎛⎫⎛⎫⎛⎫=-=+-=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故选:A.5.【答案】B 【详解】由题意,,122m m =122200122lnln 82m m m m v v v m m ++===得,故,03ln82v =0888203ln3ln 2 1.10.7ln 2v ==≈=--故选:B 6.【答案】C 【详解】因为,,83cos 5αβ=63sin 5αβ=所以,,25(3cos 4)62αβ=2(3sin)2536αβ=即所以,2259cos co 6s 1042cos ααββ++=,229sin sin +10sin2536ααββ-=两式相加得,9)104αβ+++=所以cos()αβ+=故选:C .7.【答案】A【详解】共移动4次,该质点共两次到达1的位置的方式有和0101→→→,且两种方式第次移动向左向右均可以,0121→→→4所以该质点共两次到达1的位置的概率为.211124333332713⨯⨯+⨯⨯=故选:A.8.【答案】A 【详解】因为,121++=+n n a a n 所以,()()()()()()212342123+41=++++++37+41=212n n n n n S a a a a a a n nn --⋅⋅⋅=++⋅⋅⋅-=+假设,解得或(舍去),()2=21=210n S n n +=10n 21=2n -由存在,,所以有或,*N k ∈1210kk S S +==19k =20k =由可得,,两式相减得:,121++=+n n a a n +1223n n a a n ++=+22n n a a +-=当时,有,即,20k =2021210S S ==210a =根据可知:数列奇数项是等差数列,公差为2,22n n a a +-=所以,解得,()211+11120a a =-⨯=120a =-当时,有,即,19k =1920210S S ==200a =根据可知:数列偶数项也是等差数列,公差为2,22n n a a +-=所以,解得,()202+10120a a =-⨯=218a =-由已知得,所以.123a a +=121a =故选:A.9.【答案】ABD【详解】如图所示,连接,,,AC 1CD EF 由于,分别为,的中点,即为的中点,E F 1AD DB F AC 所以,面,面,1//EF CD EF ⊄11CDD C 1CD ⊆11CDD C 所以平面,即D 正确;//EF 11CDD C 所以与共面,而,所以直线与为异面直线,即A 正确;EF 1CD 1B ∉1CD EF 11D B 连接,易得,1BC 11//D E BC 所以即为直线与所成的角或其补角,1DC B ∠1D E 1DC 由于为等边三角形,即,所以B 正确;1BDC 160DC B ∠=假设,由于,,所以面,1D F AD ⊥1AD DD ⊥1DF DD D = AD ⊥1D DF 而面显然不成立,故C 错误;AD ⊥1D DF 故选:ABD.10.【答案】ACD 【详解】选项A :因,故,A 正确;()cos sin sin cos 0θθθθ+-=12l l ⊥选项B :圆的圆心的坐标为,半径为,O O ()0,02r =圆心到的距离为,故直线与圆相离,故B 错误;O 1l 14d r==>1l O 选项C :圆心到的距离为,O 1l21d ==故弦长为,故C正确;l ==选项D :由得,cos sin 4sin cos 1x y x y θθθθ+=⎧⎨-=⎩4cos sin 4sin cos x y θθθθ=+⎧⎨=-⎩故,()4cos sin ,4sin cos Q θθθθ+-故,故D 正确OQ ==故选:ACD 11.【答案】ABD 【详解】因为,()32f x ax bx cx d=+++则,,对称中心为,()232f x ax bx c '=++0a ≠,33bb f a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭对于A ,因为有三个不同零点,所以必有两个极值点,()f x ()f x 即有两个不同的实根,()2320f x ax bx c '=++=所以,即,故A 正确;2Δ4120b ac =->23b ac >对于B ,由成等差数列,及三次函数的中心对称性,123,,x x x 可知为的对称中心,所以,故B 正确;()()22,x f x ()f x 23b x a =-对于C ,函数,当时,,()()1g x f x =-()0g x =()1f x =则与的交点的横坐标即为,,,1y =()y f x =1t 2t 3t 当时,画出与的图象,0a >()f x 1y =由图可知,,,则,11x t <33x t <1313x x t t +<+当时,则,故C 错误;0a <1313x x t t +>+对D ,由题意,得,()()()()()()32123321231a x x x x x x ax bx cx d a x t x t x t ax bx cx d ⎧---=+++⎪⎨---=+++-⎪⎩整理,得,123123122331122331b x x x t t t ac x x x x x x t t t t t t a ⎧++=++=-⎪⎪⎨⎪++=++=⎪⎩得,()()()()2212312233112312233122x x x x x x x x x t t t t t t t t t ++-++=++-++即,故D 正确.222222123123x x x t t t ++=++故选:ABD.12.【答案】9【详解】由题意知随机变量服从二项分布,,,X (),B n p ()3E X =()2D X =则,即得,()3,12np np p =-=1,93p n ==故答案为:913.【答案】【详解】因为在上的投影向量为,b a14a -所以,又,14b a a a aa ⋅⋅=-2a =所以,又,1a b ⋅=-1= b 所以a b+==== 故答案为:14.【答案】11【详解】如图,连接,则多面体被分成三棱锥和四棱锥.,EG ED EFGHBD G EDH -E BFGD -因是上靠近点的四等分点,则,H AD D 14DHE AED S S =又是的中点,故,E AB 11114428DHE AED ABD ABD S S S S ==⨯= 因是上靠近点的四等分点,则点到平面的距离是点到平面的G CD D G ABD C ABD 距离的,14故三棱锥的体积;G EDH -1113218432G EDH C ABD V V --=⨯=⨯=又因点是的中点,则,故,F BC 133248CFG BCD BCD S S S =⨯= 58BFGD BCD S S =又由是的中点知,点到平面的距离是点到平面的距离的,E AB E BCD A BCD 12故四棱锥的体积,E BFGD -51532108216E BFGD A BCD V V --=⨯=⨯=故多面体的体积为EFGHBD 11011.G EDH E BFGD V V --+=+=故答案为:11.15.【答案】(1)π3A =(2)2a =【详解】(1)因为,即,sin cos 0a B A =sin cos a B A =由正弦定理得,sin sin cos A B B A ⋅=⋅因为,所以,则,sin 0B ≠sin A A =tan A =又,所以.()0,πA ∈π3A =(2)因为,由正弦定理得,sin sin 2sin B C A +=2b c a +=因为,所以,π3A =11sin 22ABC S bc A bc === 4bc =由余弦定理,得,2222cos a b c bc A =+-⋅224b c bc +-=所以,则,解得.()234b c bc +-=()22344a -⨯=2a =16.【答案】(1)4230--=x y (2)答案见解析【详解】(1)当时,,,因0a =()221ln 2f x x x x=+()2(ln 1)f x x x =+',1(1),(1)22f f '==故在处的切线方程为,即;()f x 1x =12(1)2y x -=-4230--=x y (2)因函数的定义域为,()()221ln 2f x x ax x x=++(0,)+∞,()(2)ln 2(2)(ln 1)f x x a x x a x a x =+++=++'① 当时,若,则,故,即函数在2a e ≤-10e x <<ln 10,20x x a +<+<()0f x '>()f x 上单调递增;1(0,e 若,由可得.1e x >20x a +=2a x =-则当时,,,故,即函数在上单调1e 2a x <<-20x a +<ln 10x +>()0f x '<()f x 1(,e 2a-递减;当时,,故,即函数在上单调递增;2a x >-ln 10,20x x a +>+>()0f x '>()f x (,)2a-+∞② 当时,若,则,故,即函数在2e a >-1e x >ln 10,20x x a +>+>()0f x '>()f x 上单调递增;1(,)e +∞若,则,故,即函数在上单调递减;12e a x -<<ln 10,20x x a +<+>()0f x '<()f x 1(,)2e a -若,则,故,即函数在上单调递增,02a x <<-ln 10,20x x a +<+<()0f x '>()f x (0,2a-当时,恒成立,函数在上单调递增,2e a =-()0f x '≥()f x ()0,+∞综上,当时,函数在上单调递增,在上单调递减,在2e a <-()f x 1(0,)e 1(,)e 2a -上单调递增;(,)2a-+∞当时,函数在上单调递增;2e a =-()f x ()0,+∞当时,函数在上单调递增,在上单调递减,在上2e a >-()f x (0,2a -1(,2e a -1(,)e +∞单调递增.17.【答案】(1)证明见详解【详解】(1)设,则为的中点,连接,AC BD O = O ,AC BD PO 因为为菱形,则,ABCD AC BD ⊥又因为,且为的中点,则,PD PB =O BD PO BD ⊥,平面,所以平面,AC PO O = ,AC PO ⊂PAC BD ⊥PAC 且平面,则,PC ⊂PAC BD PC ⊥又因为∥平面,平面,平面平面,BD AMHN BD ⊂PBD AMHN PBD MN =可得∥,所以.BD MN MN PC ⊥(2)因为,且为的中点,则,PA PC =O AC PO AC ⊥且,,平面,所以平面,PO BD ⊥AC BD O = ,AC BD ⊂ABCD ⊥PO ABCD 可知与平面所成的角为,即为等边三角形,PA ABCD 60PAC ∠=︒PAC 设,则,且平面,平面,AH PO G = ,G AH G PO ∈∈AH ⊂AMHN PO ⊂PBD 可得平面,平面,∈G AMHN ∈G PBD 且平面平面,所以,即交于一点,AMHN PBD MN =G MN ∈,,AH PO MN G 因为为的中点,则为的重心,H PC G PAC 且∥,则,BD MN 23PM PN PG PB PD PO ===设,则,2AB=11,32PA PC OA OC AC OB OD OP ========如图,以分别为轴,建立空间直角坐标系,,,OA OB OP ,,x y z 则,)()22,0,0,3,0,,1,0,,133AP M N ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭可得,()24,1,0,,0,33AM NM AP ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭设平面的法向量,则,AMN ()111,,x n y z =1111203403n AM y z n NM y ⎧⋅=++=⎪⎪⎨⎪⋅==⎪⎩ 令,则,可得,11x=110,y z ==(n = 设平面的法向量,则,PAM ()222,,m x y z =2222220330m AM y z m AP z ⎧⋅=++=⎪⎨⎪⋅=+=⎩ 令,则,可得,2x =123,1y z ==)m = 可得,cos ,n m =所以平面与平面所成的锐二面角的余弦值PAMAMN18.【答案】(1)线段的长为;AB 6(2)(i)直线的方程为;l 2x y =+(ii )直线的斜率的取值范围为.l 33()(44- 【详解】(1)由双曲线的方程,可得,所以22:13y x Γ-=221,3a b ==,1,2a b c ====所以,,若轴,则直线的方程为,1(2,0)F -2(2,0)F AB x ⊥AB 2x =代入双曲线方程可得,所以线段的长为;(2,3),(2,3)A B -AB 6(2)(i)如图所示,若直线的斜率为0,此时为轴,为左右顶点,此时不构成三角形,矛l l x ,A B 1,,F A B 盾,所以直线的斜率不为0,设,,l :2l x ty =+1122()A x y B x y ,,(,)联立,消去得,应满足,22132y x x ty ⎧-=⎪⎨⎪=+⎩x 22(31)1290t y ty -++=t 222310Δ14436(31)0t t t ⎧-≠⎨=-->⎩由根与系数关系可得,121222129,3131t y y y y t t +=-=--直线的方程为,令,得,点,1AF 110(2)2y y x x -=++0x =1122y y x =+112(0,)2y M x +直线的方程为,令,得,点,1BF 220(2)2y y x x -=++0x =2222y y x =+222(0,)2y N x +,121122221111|||||2||2|F F F B A A F B F S y F S S F y y y -=⨯-==- 111212221||||||222F M N M F MN N S y y x y y y y x x =-=-=-++ ,12122112212121212222(4)2(4)8()||||||44(4)(4)4()16y y y ty y ty y y ty ty ty ty t y y t y y +-+-=-==+++++++由,可得,11F AB F MN S S = 1212212128()||2||4()16y y y y t y y t y y -=-+++所以,所以,21212|4()16|4t y y t y y +++=222912|4()16|43131tt t t t ⨯+-+=--解得,,解得,22229484816||431t t t t -+-=-22916||431t t -=-22021t =经检验,满足,所以222310Δ14436(31)0t t t ⎧-≠⎨=-->⎩t =所以直线的方程为;l 2x y =+(ii )由,恒在以为直径的圆内部,可得,1F 2F MN 2190F MF >︒∠所以,又,110F F N M < 112211,22(2,)(2,22F y y N x x M F =+=+所以,所以,1212224022y y x x +⨯<++121210(2)(2)y y x x +<++所以,所以,1221212104()16y y t y y t y y +<+++2222931109124()163131t t t t t t -+<⨯+-+--所以,解得,解得或,22970916t t -<-271699t <<43t <<43t -<<经检验,满足,222310Δ14436(31)0t t t ⎧-≠⎨=-->⎩所以直线的斜率的取值范围为.l 33()(44- 19.【答案】(1)12170,1,4b b b ===(2)1(1)22n n +-⨯+(3)n a n=【详解】(1)因为,则,2n a n =123451,4,9,16,25a a a a a =====所以,,{}*11i B i a =∈<=∅N ∣{}*22{1}i B i a =∈<=N ∣,{}*1717{1,2,3,4}i B i a =∈<=N ∣故.12170,1,4b b b ===(2)因为,所以,2nn a =123452,4,8,16,32a a a a a =====则,所以,,**12{|1},{|2}i i B i a B i a =∈<=∅=∈<=∅N N 10b =20b =当时,则满足的元素个数为,122i i k +<≤ia k <i 故,121222i i i b b b i+++==== 所以()()()1112345672122822n n n n S b b b b b b b b b b b ++++=++++++++++++ ,1212222n n =⨯+⨯++⨯ 注意到,12(1)2(2)2n n nn n n +⨯=-⨯--⨯所以121321202(1)21202(1)2(2)2n n nS n n ++=⨯--⨯+⨯-⨯++-⨯--⨯ .1(1)22n n +=-⨯+(3)由题可知,所以,所以,11a ≥1B =∅10b =若,则,,12a m =≥2B =∅1{1}m B +=所以,,与是等差数列矛盾,20b =11m b +={}n b 所以,设,11a =()*1n n n d a a n +=-∈N 因为是各项均为正整数的递增数列,所以,{}n a *n d ∈N 假设存在使得,设,由得,*k ∈N 2k d ≥k a t =12k k a a +-≥12k a t ++≥由得,,与是等差数列矛盾,112k k a t t t a +=<+<+≤t b k <21t t b b k ++=={}n b 所以对任意都有,*n ∈N 1nd =所以数列是等差数列,.{}n a 1(1)n a n n =+-=。
湖南师大附中2025届高三上学期月考(二)数学试卷(原卷版)
湖南师大附中2025届高三月考试卷(二)数学命题人、审题人:高三数学备课组时量:120分钟 满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数11i z =+的虚部是( ) A. 1 B. 12 C. 12− D. 1−2. 已知a 是单位向量,向量b 满足3a b −=,则b 的最大值为( ) A. 2 B. 4 C. 3 D. 13. 已知角θ的终边在直线2y x =上,则cos sin cos θθθ+的值为( ) A. 23− B. 13− C. 23 D. 134. 已知函数()2e 33,0,x a x f x x a x +−<= +≥ 对任意的12,x x ∈R ,且12x x ≠,总满足以下不等关系:()()12120f x f x x x −>−,则实数a 的取值范围为( ) A 34a ≤ B. 34a ≥ C. 1a ≤ D. 1a ≥ 5. 如图,圆柱的母线长为4,,AB CD 分别为该圆柱的上底面和下底面直径,且AB CD ⊥,三棱锥A BCD −的体积为83,则圆柱的表面积为().A. 10πB. 9π2C. 4πD. 8π 6. 已知抛物线()2:20C y px p =>的焦点F 到准线的距离为2,过焦点F 的直线l 与抛物线交于,A B 两点,则23AF BF +的最小值为( )A. 52+B. 5+C. 10+D. 117. 设函数()()cos f x x ϕ=+,其中π2ϕ<.若R x ∀∈,都有ππ44f x f x +=−.则()y f x =的图象与直线114y x =−的交点个数为( ) A. 1 B. 2 C. 3 D. 48. 已知定义域为R 的函数()(),f x g x 满足:()()()()()()00,g f x g y f y g x f x y ≠−⋅=−,且()()()()()g x g y f x f y g x y −=−,则下列说法正确的是( )A. ()01f =B. ()f x 是偶函数C. 若()()1112f g +=,则()()2024202420242f g −=− D. 若()()111g f −=,则()()202420242f g += 二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 下列说法中正确的是( )A. 一个样本的方差()()()22221220133320s x x x =−+−++−,则这组样本数据的总和等于60 B. 若样本数据1210,,,x x x 标准差为8,则数据1221,21,x x −− ,1021x −的标准差为16C. 数据13,27,24,12,14,30,15,17,19,23的第70百分位数是23D. 若一个样本容量为8的样本的平均数为5,方差为2,现样本中又加入一个新数据5,此时样本容量为9,平均数不变,方差变小10. 已知函数()32f x ax bx =−+,则( ) A. ()f x 的值域为RB. ()f x 图象的对称中心为()0,2的C. 当30b a −>时,()f x 在区间()1,1−内单调递减D. 当0ab >时,()f x 有两个极值点11. 我国古代太极图是一种优美的对称图.定义:能够将圆O 的周长和面积同时等分成两个部分的函数称为圆O 的一个“太极函数”,则下列命题中正确的是( )A. 函数()sin 1f x x =+是圆22:(1)1O x y +−=的一个太极函数B. 对于圆22:1O x y +=的所有非常数函数的太极函数中,都不能为偶函数C. 对于圆22:1O x y +=的所有非常数函数的太极函数中,均为中心对称图形D. 若函数()()3f x kx kx k =−∈R 是圆22:1O x y +=的太极函数,则()2,2k ∈− 三、填空题:本题共3小题,每小题5分,共15分.12. 曲线2ln y x x =−在点()1,2处的切线与抛物线22y ax ax =−+相切,则a =__________. 13. 已知椭圆CC :xx 2aa 2+yy 2bb 2=1(aa >bb >0)的左、右焦点分别为12,F F ,若P 为椭圆C 上一点,11212,PF F F PF F ⊥ 的内切圆的半径为3c ,则椭圆C 的离心率为______. 14. 设函数()()44x f x ax x x =+>−,若a 是从1,2,3,4四个数中任取一个,b 是从4,8,12,16,20,24六个数中任取一个,则()f x b >恒成立的概率为__________. 四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤. 15. 在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知()()()sin sin sin b c B C a c A +−=−. (1)求B ;(2)若ABC ,且2AD DC = ,求BD 的最小值.16. 已知双曲线E 的焦点在x (在双曲线E 上,点12,F F 分别为双曲线的左、右焦点.(1)求E 的方程;(2)过2F 作两条相互垂直直线1l 和2l ,与双曲线的右支分别交于A ,C 两点和,B D 两点,求四边形ABCD 面积的最小值.17. 如图,侧面11BCC B 水平放置的正三棱台11111,24ABC A B C AB A B −==P 为棱11A B 上的动点.(1)求证:1AA ⊥平面11BCC B ;(2)是否存在点P ,使得平面APC 与平面111A B C?若存在,求出点P ;若不存在,请说明理由.18. 若无穷正项数列{}n a 同时满足下列两个性质:①存在0M >,使得*,n a M n <∈N ;②{}n a 为单调数列,则称数列{}n a 具有性质P .(1)若121,3n n n a n b =−=, (i )判断数列{}{},n n a b 是否具有性质P ,并说明理由; (ii )记1122n n n S a b a b a b =+++ ,判断数列{}n S 是否具有性质P ,并说明理由; (2)已知离散型随机变量X 服从二项分布()1,,02B n p p <<,记X 为奇数的概率为n c .证明:数列{}n c 具有性质P .19 已知函数()24e 2x f x x x−=−,()2233g x x ax a a =−+−−(a ∈R 且2a <). (1)令()()()(),x f x g x h x ϕ=−是()x ϕ的导函数,判断()h x 的单调性;的.(2)若()()f x g x ≥对任意()1,x ∈+∞恒成立,求a 的取值范围.的。
黑龙江省龙东联盟2024-2025学年高三上学期11月月考数学试题
黑龙江省龙东联盟2024-2025学年高三上学期11月月考数学试题一、单选题1.若集合{13},{14}A xx B x x =-<<=<<∣∣,则A B = ()A .{14}x x -<<∣B .{14}x x <<∣C .{34}xx <<∣D .{13}xx <<∣2.“π6θ=”是“1sin 2θ=”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.已知函数ln 2,0()25,0x x x f x x +>⎧=⎨-≤⎩,则(1)(0)f f +=()A .3-B .−2C .2D .34.如图,圆柱的轴截面ABCD 是正方形,点E 是底面圆周上异于,A B 的一点,若4AB =,当三棱锥D ABE -体积最大时,则点C 到平面BDE 的距离()A .2B.CD5.已知平面向量a 和b 满足||2||b a = ,b 在a 上的投影向量为a -,则a 在b 上的投影向量为()A .14b-B .12b- C .14bD .12b6.已知首项为1的等比数列{}n a 的各项均为正数,且1326,,4a a a 成等差数列,若33nn a λ>恒成立,则λ的取值范围是()A .23λ>B .23λ≥C .1λ>D .89λ>7.当[0,2π]x ∈时,曲线sin y x =与π2sin 26y x ⎛⎫=+ ⎪⎝⎭的交点个数为()A .3B .4C .5D .68.半正多面体(semiregular solid )亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的.它由八个正三角形和六个正方形构成(如图所示),点K 满足,(0,1]EK EB EN μμ=+∈,则直线BK 与平面ABE 所成角的正弦值()A .为定值3B .存在最大值,且最大值为1C .为定值1D .存在最小值,且最小值为6二、多选题9.设复数12i,i,,,,R z a b z c d a b c d =+=+∈,则下列结论正确的是()A .1212z z z z ⋅=⋅B .1212z z z z +=+C .若120z z =,则10z =或20z =D .若120z z ->,则12z z >10.已知236a b ==,则a ,b 满足()A .2log 6a =B .a b <C .111a b+<D .4a b +>11.已知函数()f x 的定义域为R ,且103f ⎛⎫≠ ⎪⎝⎭,若()()()9f x f y f x y xy -+=,则()A .(0)1f =B .103f ⎛⎫-= ⎪⎝⎭C .函数()f x 为减函数D .函数()1y f x =-为奇函数三、填空题12.一个屋顶的某一斜面成等腰梯形,最上面一层铺了瓦片82块,往下每一层多铺2块,斜面上铺了瓦片19层,共铺瓦片块.13.已知函数2()()e x f x x c =-在2x =处有极大值,则c 的值为.14.如图,已知OPQ 是半径为1,圆心角为π3的扇形.C 是扇形弧上的动点,ABCD 是扇形的内接平行四边形,则四边形ABCD 的面积最大值为.四、解答题15.已知等差数列{}n a 的前n 项和为n S ,且()*329,21n n S a a n ==+∈N .(1)求数列{}n a 的通项公式(2)若3n n ab =,设数列的前n 项和为n T ,求2n T .16.已知,,a b c分别为ABC V 三个内角,,A B C 的对边,且cos sin 0a C C b +-=(1)求A ;(2)若2,cos a B A ==,求ABC V 的周长.17.已知函数2()(2)ln f x ax a x x =+--.(1)当0a =时,求函数()f x 在1x =处的切线;(2)当0a >时,若()f x 的极小值小于0,求a 的取值范围18.如图,多面体ABCDEF 中,四边形ABED 与四边形ACFD 均为直角梯形,,AD AB AD AC ⊥⊥,且点B C E F ,,,四点共面.(1)证明:(i )平面//ABC 平面DEF ;(ii )多面体ABCDEF 是三棱台;(2)若24AB AC AD DE DF AB AC =====⊥,,,动点P 在DEF 内部及边界上运动,且π4PAD ∠=,求异面直线AP 与FB 所成角的最小值.19.若12,,,n x x x 为(,)a b 上任意n 个实数,满足()()()1212n n f x f x f x x x x f n n ++++++⎛⎫≥⎪⎝⎭,当且仅当12n x x x === 时等号成立,则称函数()f x 在(,)a b 上为“凸函数”.也可设可导函数()f x 在(,)a b 上的导函数为(),()f x f x ''在(,)a b 上的导函数为()f x '',当()0f x ''<时,函数()f x 在(,)a b 上的为“凸函数”.若12,,,n x x x 为(,)a b 上任意n 个实数,满足()()()1212n n f x f x f x x x x f n n ++++++⎛⎫≤⎪⎝⎭,当且仅当12n x x x === 时等号成立,则称函数()f x 在(,)a b 上为“凹函数”.也可设可导函数()f x 在(,)a b 上的导函数为(),()f x f x ''在(,)a b 上的导函数为()f x '',当()0f x ''>时,函数()f x 在(,)a b 上的为“凹函数”.这里关于凹凸函数的不等式即为著名的琴生不等式.(1)讨论函数1π(),0,tan 2f x x x ⎛⎫=∈ ⎪⎝⎭的凹凸性;(2)在锐角ABC V 中,求111tan tan tan A B C++的最小值;(3)若n 个正数()*12,,n a a a n N ∈ 满足121n a a a +++= ,证明:12121111nn na a a n a a a n ⎛⎫⎛⎫⎛⎫⎛⎫+++≥+ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ .。
上海市建平中学2023届高三上学期11月月考数学试卷(解析版)
所以平均数
,
解得 .
故答案为: ,
4.已知 的展开式中,若第7项为常数项,则 的值为______.
【答案】9
【分析】根据二项式定理的通项展开即可.
【详解】由题知,
,
因为第7项为常数项.
所以当 时, ,
所以
故答案为:
5.已知函数 的图像与直线 的两个相邻交点的距离等于 ,则 的值为______.
【答案】(1) ;(2)2.
【详解】试题分析:(1)利用三角形的内角和定理可知 ,再利用诱导公式化简 ,利用降幂公式化简 ,结合 ,求出 ;(2)由(1)可知 ,利用三角形面积公式求出 ,再利用余弦定理即可求出 .
试题解析:(1) ,∴ ,∵ ,
∴ ,∴ ,∴ ;
(2)由(1)可知 ,
∵ ,∴ ,
∴ ,
则 的前20项和为
.
20.已知二次曲线 的方程: .
(1)分别求出方程表示椭圆和双曲线的条件:
(2)若双曲线 与直线 有公共点且实轴最长,求双曲线方程:
(3) 、 为正整数,且 ,是否存在两条曲线 ,其交点 与点 满足 ?若存在,求 、 的值;若不存在,说明理由.
【答案】(1) 时.方程表示椭圆; 时,方程表示双曲线;
故选:B.
【点睛】此题考查大小的比较,利用作差法进行求解,是一道基础题.
15.已知抛物线 的焦点为 , 、 、 为抛物线 上三点,当 时,称 为“特别三角形”,则“特别三角形”有()
A.1个B.2个C.3个D.无数个
【答案】D
【分析】根据向量表达式可以确定 是 的重心,根据重心的性质进行判断即可.
【详解】抛物线方程为 ,A、B、C为抛物线E三点,当满足 时时,F为 的重心,连接 并延长至D,使 ,当D在抛物线内部时,存在以D为中点的弦 ,则这样的三角形有无数个.故“特别三角形”有无数个,
河南省部分学校2024-2025学年高三上学期11月月考数学试题含答案
高三数学(答案在最后)考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效.............,在试题卷....、草稿纸上作答无效.........4.本卷命题范围:集合、常用逻辑用语、不等式、函数、导数,三角函数、三角恒等变换,解三角形、平面向量.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数tan y x =的值域可以表示为()A.{tan }xy x =∣ B.{tan }yy x =∣C.{(,)tan }x y y x =∣D.{tan }y x =【答案】B 【解析】【分析】根据函数的值域是指函数值组成的集合,即可判断.【详解】因函数的值域是指函数值组成的集合,故对于函数tan y x =,其值域可表示为:{tan }yy x =∣.故选:B.2.若“sin 2θ=-”是“tan 1θ=”的充分条件,则θ是()A .第四象限角B.第三象限角C.第二象限角D.第一象限角【答案】B 【解析】【分析】根据角θ的正切值与正弦值的正负判断象限即可.【详解】由题可知,sin 02θ=-<,则θ是第三象限角或第四象限角;又要得到tan 10θ=>,故θ是第三象限角.故选:B3.下列命题正确的是()A.x ∃∈R ,20x <B.(0,4)x ∀∈,20log 2x <<C.(0,)x ∃∈+∞,132x x< D.π0,2x ⎛⎫∃∈ ⎪⎝⎭,4sin cos x x =【答案】C 【解析】【分析】对于选项A:利用指数函数的值域即可判断;对于选项B:利用对数函数的单调性求出值域即可判断;对于选项C:采用特殊值法,令14x =即可判断;对于选项D:令4sin cos 2sin 2y x x x ==,结合三角函数的值域求解验证即可.【详解】对于选项A:因为指数函数2x y =的值域为0,+∞,故x ∀∈R ,20x >,故选项A 错误;对于选项B:因为对数函数2log y x =在(0,4)x ∈上单调递增,所以当(0,4)x ∈时,()2log ,2y x ∞=∈-,故选项B 错误;对于选项C:令14x =,则311464⎛⎫= ⎪⎝⎭,121142⎛⎫= ⎪⎝⎭,显然11642<,故(0,)x ∃∈+∞,使得132x x <成立,故选项C 正确;对于选项D:结合题意可得:令4sin cos 2sin 2y x x x ==,因为π0,2x ⎛⎫∈ ⎪⎝⎭,所以()20,πx ∈,所以(]2sin 20,2y x =∈,2>,故不存在π0,2x ⎛⎫∈ ⎪⎝⎭,使得4sin cos x x =,故选项D 错误.故选:C.4.函数24()f x x x =-的大致图象是()A. B.C.D.【答案】C 【解析】【分析】先确定函数的奇偶性,排除两选项,再根据特殊点的函数值的正负,选出正确答案.【详解】函数24y x x =-是偶函数,图象关于y 轴对称,排出选项A 、B ;再取特殊值12x =和2x =,可得函数的大致图象为C ,故选:C .5.已知向量1e ,2e 满足121e e == ,120e e ⋅= ,则向量1e 与12e e -的夹角为()A.45︒B.60︒C.120︒D.135︒【答案】A 【解析】【分析】利用向量夹角的计算公式计算即可.【详解】由题可知()21121121e e e e e e ⋅-=-⋅=,12e e -==,121e e == 所以()1121121122cos ,2e e e e e e e e e ⋅--===-故向量1e 与12e e -的夹角为45︒故选:A 6.已知5πtan 210α+=,则4π5tan 5α-=()A.125 B.125-C.43D.43-【答案】C 【解析】【分析】先确定两个角的关系,然后利用三角恒等变换公式求解即可.【详解】由题可知,5π4π52π105αα+-⨯+=25π2tan5π4410tan 25π101431tan 10ααα++⎛⎫⨯===- ⎪+-⎝⎭-所以有4π55π5π4tan tan π2tan 2510103ααα-++⎛⎫⎛⎫=-⨯=-⨯= ⎪ ⎪⎝⎭⎝⎭故选:C7.已知0a >,0b >,9a b +=,则36a ba+的最小值为()A.8B.9C.12D.16【答案】A 【解析】【分析】我们观察形式,显然分式的分子和分母同时有变量,所以令()364a b =+代入化简,然后利用基本不等式求解即可.【详解】43644448b a b a a a b b a a b a +=+=++≥+=+当且仅当4b aa b=,9a b +=,即26a b ==时等号成立;故选:A8.若0x ∀>,()()()21ln 10x ax ax ---≥,则a =()A.B.C.D.【答案】D 【解析】【分析】先将两个乘积看做两个函数()21,ln 1y x ax y ax =--=-,易知要使0x ∀>时,()21(ln 1)0xax ax ---≥,则需要两函数()21,ln 1y x ax y ax =--=-同号,所以我们需要去找他们零点,0x >时零点相同,然后求解参数a 即可.【详解】由题易知0a >,当ex a=时,()ln 10ax -=;由对数函数的性质可知,当e 0,x a ⎛⎫∈ ⎪⎝⎭时,()ln 10ax -<;当e ,x a ∞⎛⎫∈+ ⎪⎝⎭时,()ln 10ax ->;显然函数21y x ax =--有两个根12,x x ,不妨令12x x <,则120x x <<由二次函数的图像可知,()20,x x ∈时,210x ax --<;()2,x x ∞∈+时,210x ax -->故要使()()()21ln 10x ax ax ---≥恒成立,则2ex a=所以有2e e 10aa a ⎛⎫-⨯-= ⎪⎝⎭,解得a =故选:D【点睛】关键点点睛:当两个式子相乘大于等于零时,两个式子必定同为负或者同为正,或者有一个为零.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数sin()()2x f x -=,则()A.()f x 的值域为1,22⎡⎤⎢⎥⎣⎦B.()f x 为奇函数C.()f x 在ππ,22⎡⎤-⎢⎥⎣⎦上单调递增 D.()f x 的最小正周期为2π【答案】AD 【解析】【分析】对于选项A:利用换元()sin t x =-,再结合指数函数的单调性即可求出值域;对于选项B:利用奇偶性的定义说明即可;对于选项C :结合复合函数的单调性即可判断;对于选项D :借助三角函数的周期,以及周期函数的定义即可判断.【详解】对于选项A:由sin()()2x f x -=,令()sin t x =-,则2t y =,[]1,1t ∈-,因为2t y =在[]1,1t ∈-上单调递增,所以12,22ty ⎡⎤=∈⎢⎥⎣⎦,故选项A 正确;对于选项B:由sin()()2x f x -=可知(),x ∞∞∈-+,对任意的(),x ∞∞-∈-+,因为sin ()2x f x -=,而sin ()2x f x -=,易验证()(),f x f x -≠-故()f x 不是奇函数,故选项B 错误;对于选项C :结合选项A 可知()sin t x =-在ππ,22⎡⎤-⎢⎥⎣⎦单调递减,而2t y =在定义域上单调递增,由复合函数的单调性可得sin()()2x f x -=在ππ,22⎡⎤-⎢⎥⎣⎦单调递减,故选项C 错误;对于选项D :因为()sin t x =-的最小正周期为2πT =,所以sin(2π)sin()(2π)22()x x f f x x ---==+=,所以()f x 的最小正周期为2π,故选项D 正确.故选:AD.10.国庆节期间,甲、乙两商场举行优惠促销活动,甲商场采用购买所有商品一律“打八四折”的促销策略,乙商场采用“购物每满200元送40元”的促销策略.某顾客计划消费(0)x x >元,并且要利用商场的优惠活动,使消费更低一些,则()A.当0200x <<时,应进甲商场购物B.当200300x ≤<时,应进乙商场购物C.当400500x ≤<时,应进乙商场购物D.当500x >时,应进甲商场购物【答案】AC 【解析】【分析】分别计算不同选项两个商场的优惠判断即可.【详解】当0200x <<时,甲商场的费用为0.84x ,乙商场的费用为x ,0.84x x >,故应进甲商场,所以选项A 正确;当200300x ≤<时,甲商场的费用为0.84x ,乙商场的费用为40x -,400.840.1640x x x --=-,因为200250x ≤<,所以80.16400x -≤-<,400.84x x -<,进入乙商场,当250300x ≤<故400.84x x ->应进甲商场,所以选项B 错误;当400500x ≤<时,甲商场的费用为0.84x ,乙商场的费用为80x -800.840.1680x x x --=-,因为400500x ≤<,所以160.16800x -≤-<故800.84x x -<,所以应进乙商场,所以选项C 正确;假设消费了600,则在甲商场的费用为6000.84504⨯=,在乙商场的费用为600120480-=,所以乙商场费用低,故在乙商场购物,故选项D 错误.故选:AC11.已知函数()f x 满足:①x ∀,R y ∈,()[()]y f xy f x =;②(2)1f ->,则()A.(0)0f = B.()()()f x y f x f y +=⋅C.()f x 在R 上是减函数 D.[1,3]x ∀∈,()2(3)1f x kx f x -⋅-≥,则3k ≥【答案】BCD 【解析】【分析】取2,0x y =-=可求(0)f ,判断A ,取12,2x y =-=-证明()011f <<,取1x =可得()[(1)]y f y f =,由此可得()[(1)]x f x f =,结合指数运算性质和指数函数性质判断BC ,选项D 的条件可转化为当[1,3]x ∈,31x k x+-≤恒成立,结合函数性质求结论.【详解】因为x ∀,R y ∈,()[()]y f xy f x =,(2)1f ->取2,0x y =-=可得01(0)[(2)]f f =-=,A 错误;取12,2x y =-=-可得12(1)[(2)]f f -=-,又(2)1f ->,所以()011f <<,取1x =可得,()[(1)]y f y f =,所以()[(1)]x f x f =,其中()011f <<,所以()()()()()()111x yx yf x y f f f f x f y ++===,B 正确,由指数函数性质可得()[(1)]x f x f =,其中()011f <<在R 上单调递减,所以()f x 在R 上是减函数,C 正确;不等式()2(3)1f x kx f x -⋅-≥可化为()()()23111xkxx f f f --≥,所以230x kx x -+-≤,由已知对于[1,3]x ∀∈,230x kx x -+-≤恒成立,所以当[1,3]x ∈,31x k x+-≤恒成立,故max31x k x ⎛⎫+-≤ ⎪⎝⎭,其中[1,3]x ∈,因为函数1y x =+,3y x=-在[]1,3上都单调递增,所以31x x+-在[1,3]上的最大值为3,所以3k ≥,D 正确;故选:BCD.三、填空题:本题共3小题,每小题5分,共15分.12.已知函数()1ln(2)f x x =-+,则曲线()y f x =在点(1,(1))f --处的切线方程为______.【答案】0x y +=【解析】【分析】利用导数的几何意义求出切线斜率,然后代入点斜式直线方程即可求解切线.【详解】由题可知,()12f x x =-+',()11f -=,所以切线斜率()11k f =-=-',故切线方程为()110y x x y -=-+⇒+=.故答案为:0x y +=13.已知函数()cos (0)f x x ωω=>,若π2f x ⎛⎫+ ⎪⎝⎭为偶函数,且()f x 在区间(0,π)内仅有两个零点,则ω的值是__________.【答案】2【解析】【分析】根据偶函数的性质,求得2k ω=,Z k ∈,再结合余弦函数的零点,列出不等式,即可求解.【详解】πππcos cos 222f x x x ωωω⎛⎫⎛⎫⎛⎫+=+=+⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭为偶函数,所以ππ2k ω⋅=,Z k ∈,得2k ω=,Z k ∈,当∈0,π时,()0,πx ωω∈,()f x 在区间(0,π)内仅有两个零点,所以3π5ππ22ω<≤,解得:3522w <£,所以2ω=.故答案为:214.若ABC V 内一点P 满足PAB PBC PCA α∠=∠=∠=,则称P 为ABC V 的布洛卡点,α为布洛卡角.三角形的布洛卡点是法国数学家和数学教育家克洛尔于1816年首次发现,1875年被法国军官布洛卡重新发现,并用他的名字命名.如图,在ABC V 中,AB AC =,3cos 5BAC ∠=,若P 为ABC V 的布洛卡点,且2PA =,则BC 的长为______.【解析】【分析】利用三角恒等变换、正弦定理、余弦定理等知识进行分析,先求得sin α,进而求得a ,也即是BC .【详解】213cos 2cos 125BAC BAC ⎛⎫∠=∠-= ⎪⎝⎭,所以BAC ∠为锐角,12BAC ∠为锐角,所以11cos ,sin 2525BAC BAC ⎛⎫⎛⎫∠=∠== ⎪ ⎪⎝⎭⎝⎭.由于AB AC =,所以A ABC CB =∠∠,设ABC ACB θ∠=∠=,则2πBAC θ∠+=,ππ11cos cos cos sin 22225BAC BAC BAC θ-∠⎛⎫⎛⎫⎛⎫==-=∠= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,θ为锐角,则sin 5θ==.由于,BAP CBP ABP BCP θα∠=∠∠=∠=-,所以ABP BCP ,所以AB AP BPBC BP PC==①,在PBC △中,由正弦定理得()()()sin sin sin sin πBP BC BC PCθαθααθα===----,所以()sin sin BP PC θαα-=,所以()sin sin AB BP BC PC θαα-==,即()sin sin c a θαα-=,由正弦定理得sin sin cos cos sin sin cos sin sin tan ACB BAC θαθαθθαα∠-==-∠,即2525554tan 55α=-,解得4tan 7α=,则α为锐角,由22sin 4tan cos 7sin cos 1ααααα⎧==⎪⎨⎪+=⎩解得sin αα==,在三角形ABC 中,由余弦定理得222222342cos 2255a b c bc A b b b =+-=-⨯=,所以225,42b a b ==,在三角形ACP 中,由正弦定理得()()sin sin sin πAP AC ACBAC BAC ααα==∠--∠-,所以22445a=,解得a BC ==.【点睛】易错点睛:锐角与边长关系的判断:在判断三角形的角是否为锐角时,容易出现符号错误或判断失误.因此,在涉及角度大小的判断时,需特别注意各个角的定义和所使用定理的适用范围.正弦定理和余弦定理的符号处理:在使用正弦定理和余弦定理时,符号的处理必须谨慎,特别是在涉及平方根和正负符号的时候,需确保没有遗漏或误用.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.在ABC V 中,内角,,A B C 的对边分别为,,a b c ,且π2sin 6a C b c ⎛⎫+=+ ⎪⎝⎭.(1)求A ;(2)若O 为ABC V 的外心,D 为边BC 的中点,且1OD =,求ABC V 周长的最大值.【答案】(1)π3(2)【解析】【分析】(1)由正弦定理结合三角恒等变换进行化简即可求解;(2)利用向量表示出1122OD OB OC =+uuu r uu u r uuu r,由余弦定理结合基本不等式、三角形周长公式即可求解.【小问1详解】由已知π2sin 6a C b c ⎛⎫+=+ ⎪⎝⎭及正弦定理得:312sin sin cos sin sin 22A C C B C ⎛⎫+=+ ⎪ ⎪⎝⎭,由()()sin sin πsin sin cos cos sin B A C A C A C A C ⎡⎤=-+=+=+⎣⎦得:sin sin cos sin cos cos sin sin A C A C A C A C C +=++,sin cos sin sin A C A C C =+,又sin 0C ≠,cos 1A A =+,即π2sin 16A ⎛⎫-= ⎪⎝⎭,因为()0,πA ∈,所以ππ5π,666A ⎛⎫-∈- ⎪⎝⎭,所以ππ,66A -=解得π3A =.【小问2详解】因为O 为ABC V 的外心,且由上问知π3A =,所以2π23BOC A ∠=∠=,设OB OC R ==(R 为ABC V 的外接圆半径),因为D 为边BC 的中点,且1OD =,所以在OBC △中易得:1122OD OB OC =+uuu r uu u r uuu r,所以2221112πcos 4423OD OB OC OB OC =++ ,即22211121cos 4423πR R R =++,解得:2R =,在OBC △中由余弦定理可得:2222π2cos123BC OB OC OB OC =+-=,解得BC a ==在ABC V 中由余弦定理可得:()2222π2cos3123a b c bc b c bc =+-=+-=,由基本不等式22b c bc +⎛⎫≤ ⎪⎝⎭可得:()223122b c b c +⎛⎫+-≤ ⎪⎝⎭,当且仅当b c =时等号成立,所以()21124b c +≤,即b c +≤.所以ABC V 周长ABC C a b c =++≤+=V当且仅当b c ==时等号成立.故ABC V 周长的最大值为16.在ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c ,且tan tan tan tan 1B C B C ++=,1b =,c =.(1)求a ;(2)如图,D 是ABC V 外一点(D 与A 在直线BC 的两侧),且AC CD ⊥,45CBD ∠= ,求四边形ABDC 的面积.【答案】(15(2)136【解析】【分析】(1)首先根据两角和的正切公式求()tan B C +,即求角A ,再根据余弦定理求解;(2)根据诱导公式求解sin BCD ∠,以及两角和的三角函数求sin D ,再根据正弦定理求BD ,最后根据面积公式,即可求解.【小问1详解】由条件可知,tan tan 1tan tan +=-B C B C ,所以()tan tan tan 11tan tan B CB C B C++==-,所以45B C += ,即135A = ,所以2cos 2A =-,则22222cos 1221252a b c bc A ⎛=+-=+-⨯⨯-= ⎪⎝⎭,所以5a =;【小问2详解】15225cos 5215ACB ∠==⨯⨯,()25sin sin 90cos 5BCD ACB ACB ∠=-∠=∠=,5cos 5BCD ∠=,()()sin sin 45sin cos 225510D BCD BCD BCD ⎛=∠+=∠+∠=⨯+= ⎝⎭ ,BCD △中,sin sin BC BD D BCD =∠,即sin sin 3BC BCD BD D ⋅∠==,所以15sin 4523BCD S BC BD =⨯⨯= ,11sin13522ABC S AC AB =⋅⋅= ,所以四边形ABDC 的面积为5113326+=.17.已知平面向量(,)m a b = ,(sin ,cos )n x x ωω=,且2m n = ,其中0a >,0ω>.设点(0,1)和11π(,0)12在函数()f x m n =⋅ 的图象(()f x 的部分图象如图所示)上.(1)求a ,b ,ω的值;(2)若()G x y ,是()y f x =图象上的一点,则1(2,)2K x y 是函数()y g x =图象上的相应的点,求()g x 在[0,π]上的单调递减区间.【答案】(1)a =1b =,2ω=;(2)π[,π]3【解析】【分析】(1)由2m n =得2=,利用向量数量积计算公式和辅助角公式化简得()2sin()f x x ωϕ=+,根据题设条件列出三角方程组,结合图象即可求出a ,b ,ω的值;(2)由题意中点的变换求得π()sin(6g x x =+,利用正弦函数的图象特点即可求得()g x 在[0,π]上的单调递减区间.【小问1详解】因(,)m a b = ,(sin ,cos )n x x ωω=,由2m n =2=,由()(,)(sin ,cos )f x m n a b x x ωω=⋅=⋅sin cos )2sin()a x b x x x ωωωϕωϕ=+=+=+,其中tan b aϕ=,因点(0,1)和11π(,0)12在函数()f x m n =⋅ 的图象上,则有,2sin 111πsin()012ϕωϕ=⎧⎪⎨+=⎪⎩①②,结合图象,由①可得πZ π2,6k k ϕ=+∈,将其代入②式,可得11πππ,Z 126n n ω+=∈,即212,Z 1111n n ω=-+∈,(*)由图知,该函数的周期T 满足311π412T T <<,即3π11π2π212ωω<<又0ω>,则有18241111ω<<,由(*)可得2ω=,故π()2sin(2)6f x x =+.由320b a a ⎧=⎪=⎪>⎩解得,1a b ⎧=⎪⎨=⎪⎩,故a =1b =,2ω=;【小问2详解】不妨记12,2x x y y ''==,则,22x x y y ''==,因()G x y ,是()y f x =图象上的一点,即得π22sin()6y x ''=+,即πsin(6y x ''=+,又因1(2,)2K x y 是函数()y g x =图象上的相应的点,故有π()sin()6g x x =+.由ππ3π2π2π,Z 262k x k k +≤+≤+∈,可得π4π2π2π,Z 33k x k k +≤≤+∈,因[0,π]x ∈,故得ππ3x ≤≤.()g x 在[0,π]上的单调递减区间为π[,π]3.18.已知函数()2()e xf x x mx n =++,m ,n ∈R .(1)当24m n =时,求()f x 的最小值;(2)当2m =-时,讨论()f x 的单调性;(3)当0m n ==时,证明:0x ∀>,()ln 1f x x >+.【答案】(1)0(2)答案见解析(3)证明见解析【解析】【分析】(1)利用求导判断函数的单调性,即得函数的极小值即最小值;(2)利用求导,就导函数中的参数进行分类,分别讨论导函数的符号,即得函数的单调性;(3)将待证不等式2e ln 1xx x >+等价转化为3e ln 1x x x x +>,设3e ln 1(),()x x g x h x x x+==,依题意,只需证在0x >时,min max ()()g x h x >成立,分别求m m ax in (),()h x g x 即可得证.【小问1详解】当24m n =时,22()()e 4x m f x x mx =++,22()[(2)2()e ()2)e 42x x m f x x m x m m m x x '=+++=++++,由()0f x '>,可得22m x <--或2mx >-,由()0f x '<,可得222m m x --<<-,即()f x 在(,2)2m -∞--和(,)2m -+∞上单调递增;在(2,)22m m---上单调递减,x →-∞时,()0f x →,x →+∞时,()f x →+∞,故2mx =-时,()f x 取得极小值也即最小值,为()02m f -=.【小问2详解】当2m =-时,()2()2e xf x x x n =-+,函数的定义域为R ,()2(e 2)xx f x n =+-',当2n ≥时,()0f x '≥恒成立,故()f x 在R 上为增函数;当2n <时,由()0f x '=,可得x =,故当x <x >时,()0f x '>;即()f x 在(,∞-和)∞+上单调递增;当x <<()0f x '<,即()f x 在(上单调递减.综上,当2n ≥时,()f x 在R 上为增函数;当2n <时,()f x在(,∞-和)∞+上单调递增,在(上单调递减.【小问3详解】当0m n ==时,2()e x f x x =,要证0x ∀>,()ln 1f x x >+,只需证2e ln 1x x x >+,即证3e ln 1x x x x+>在(0,)+∞上恒成立.设3e ln 1(),()x x g x h x x x+==,依题意,只需证在0x >时,min max ()()g x h x >.因e ()=x g x x ,2(1)e ()xx g x x-'=,由()0g x '<,可得01x <<,由()0g x '>,可得1x >,故()g x 在(0,1)上单调递减,在(1,)+∞上单调递增,则()g x 在1x =时取得极小值也是最小值,为(1)e g =;因3ln 1()x h x x+=,423ln ()x h x x --'=,由()0h x '=,可得23x e -=,由()0h x '<,可得23x e->,由()0h x '>,可得230x e -<<,故()h x 在23(0,e)-上单调递增,在23(e ,)-+∞上单调递减,则()h x 在23x e -=时取得极大值也是最大值,为22332323ln e ()3e1e (e )h ---==+.因2e e 3>,即min max ()()g x h x >在(0,)+∞上成立,故得证.即0x ∀>,()ln 1f x x >+.【点睛】方法点睛:本题主要考查利用导数求函数的最值、证明不等式恒成立等知识点,属于较难题.证明不等式型如()()f x g x >的恒成立问题,一般方法有:(1)构造函数法:即直接构造()()()F x f x g x =-,证明min ()0F x >;(2)比较最值法:即证明min max ()()f x g x >即可;(3)等价转化法:即将待证不等式左右两边同除以一个式子,使得左右函数的最值可比较.19.已知非零向量(,)a m n =,(,)b p q = ,a ,b 均用有向线段表示,现定义一个新的向量c 以及向量间的一种运算“※”:(,)c a b mp nq mq np ==-+※.(1)证明:c 是这样一个向量:其模是a 的模的 b 倍,方向为将a绕起点逆时针方向旋转β角(β为x 轴正方向沿逆时针方向旋转到b所成的角,且02πβ≤<),并举一个具体的例子说明之;(2)如图1,分别以ABC V 的边AB ,AC 为一边向ABC V 外作ABD △和ACE △,使π2BAD CAE ∠=∠=,(01)AD AEAB ACλλ==<<.设线段DE 的中点为G ,证明:AG BC ⊥;(3)如图2,设(3,0)A -,圆22:4O x y +=,B 是圆O 上一动点,以AB 为边作等边ABC V (A ,B ,C 三点按逆时针排列),求||OC 的最大值.【答案】(1)证明见解析.(2)证明见解析.(3)5.【解析】【分析】(1)根据圆的参数方程设定,a b 的坐标,再依据题意证明即可;(2)依据新定义把,AG BC的坐标表示出来再运算证明即可;(3)掌握平面向量的模的运算和三角函数的最值求法即可解答.【小问1详解】证明:设(,)(cos ,sin ),(,)(cos ,sin )a m n r r b p q R R ααββ====(0,0,,r R αβ>>分别为x 轴正方向逆时针到,a b所成的角,且,[0,2)αβπ∈),则cos cos sin sin cos()mp nq Rr Rr Rr αβαβαβ-=-=+,cos sin sin cos sin()mq np Rr Rr Rr αβαβαβ+=+=+,于是cos()sin((,))Rr a b Rr c αβαβ=++=※,即c Rr a b ==⨯,x 轴正方向逆时针到c 所成的角为αβ+.故:c 是这样一个向量:把a的模变为原来的 b 倍,并按逆时针方向旋转β角(β为x 轴正方向逆时针到b所成的角,且02πβ≤<).例如,1(,),22a b == ,则111,1222((0,2)2c a b ⨯+=== ※,1,2a b == ,a 与x 轴正方向的夹角为π3,b 与x 轴正方向的夹角为6π,将a的模变为原来的2倍,并按逆时针旋转π6,即可得c .【小问2详解】证明:记(,),(,)AB m n AC p q ==,根据新定义,可得()3π3πcos ,sin ,22AD AB n m λλλ⎛⎫==- ⎪⎝⎭ ※,同理(cos ,sin )(,)22q p A AE C ππλλλ==- ※,所以1()()()()222n q p m AG A AD E λλ--=+= ,而(,)BC AC AB p m q n =-=--,所以1[()()()()]02AG BC p m n q q n p m λλ⋅=--+--= ,故:AG BC ⊥.【小问3详解】解:设(,)B u v ,则224,(3,)u v AB u v +==+,())3ππ13cos ,sin 3,,,33222222u u v AC AB u v λ⎛⎫⎛++⎛⎫==+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭※※,所以333(3)33333(3,0)(,)(,)222222u u v u v OC OA AC ++--++=+=-+-+=,所以OC ===.设2cos ,2sin (02)u v θθθπ==≤<,则OC == ,当πsin 16θ⎛⎫+= ⎪⎝⎭,即π3θ=时,max 5OC = .【点睛】此题考查了圆的参数方程;平面向量数量积的性质,以及三角函数最值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广西钦州市高新区2016-2017学年高三数学(文科)上学期11月份
考试试题
(时间:120分钟满分:150分)
学校:___________姓名:___________班级:___________考号:___________
注意事项:
1. 答题前填写好自己的姓名、班级、考号等信息
2. 请将答案正确填写在答题卡上
一、选择题
1. 已知为上的可导函数,且,均有,则以下判断正确的是
A. B.
C. D.大小无法确定
2. 2. dx等于( )
A. B. C.π D.2π
3. 定义在R上的函数,满足,若
且,则有( )
A.B.C.D.不能确定
4. 若曲线在点处的切线平行于x轴,则k= ( )
A.-1 B.1 C.-2 D.2
5. 函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为( )
A.(-1,1) B.(-1,+∞) C.(-∞,-1) D.(-∞,+∞)
6. 已知函数.下列命题:()
①函数的图象关于原点对称;②函数是周期函数;
③当时,函数取最大值;④函数的图象与函数的图象没有
公共点,其中正确命题的序号是
A.①③ B.②③ C.①④ D.②④
7. 设,则、、的大小关系是( )
A. B.
C. D.
8. 设函数是定义在上的可导函数,其导函数为,且有
,则不等式的解集为()A.B.C.D.
9. 已知函数与轴切于点,且极小值为,则
()
A.12 B.13 C.15 D.16
10. 已知函数在,点处取到极值,其中是坐标原
点,在曲线上,则曲线的切线的斜率的最大值是()
A. B. C. D.
11. 若点在函数的图像上,点在函数的
图像上,则的最小值为()
A. B.2 C. D.8
12. 已知函数的图象在点与点处的切线互相垂直,
并交于点,则点的坐标可能是( )
A.B. C. D.
二、填空题
13. 表示函数的导数,在区间上,随机取值,
的概率为;
14. 函数在点处的切线与直线垂直,则实数的值为
15. 已知函数的单调递减区间是,则实数.
16. 对于每一个正整数,设曲线在点处的切线与轴的交点的横坐标为,令
,则.
17. 若存在实常数和,使得函数和对其定义域上的任意实数分别满足:和,则称直线为和
的“隔离直线”.已知函数和函数,那么函数和函数的隔离直线方程为_________.
三、解答题
18. 已知函数,且.
(1)讨论函数的单调性;
(2)当时,若,证明: .
19. 已知函数,其中.
(1)当时,求函数的图象在点处的切线方程;
(2)如果对于任意,都有,求的取值范围.
20. 已知函数.(1)求函数的单调区间;
(2)设函数.若至少存在一个,使得成立,求实数的取值范围.
21. 已知函数f (x) =
(1)试判断当的大小关系;
(2)试判断曲线和是否存在公切线,若存在,求出公切线方程,若不存在,说明理由;
(3)试比较 (1 + 1×2) (1 + 2×3) ……(1 +2012×2013)与的大小,并写出判断过程.
22. 设函数.
(1)若,求函数的单调区间;
(2)若函数在区间上是减函数,求实数的取值范围;
(3)过坐标原点作曲线的切线,证明:切点的横坐标为.
a
a
参考答案 一、选择题
1、 B
2、B
3、 A
4、 A
5、 B
6、 C
7、 A
8、 C
9、 C10、A11、 D12、 D 二、填空题
13 14. – 4 15. 16.–2 17. y=2x-2
三、解答题
18.
19.3x-y-5=0
20.(1
)
(2)a>0
21.f (x )>g (x )
22.
欢迎您的下载,资料仅供参考!。