李雅普诺夫稳定性(2).
第六章李亚普诺夫稳定性分析
如图5-3李雅普诺夫意义下的稳定性示意图
2.古典理论稳定性定义(渐近稳定性)
设 xe 是系统 的一个孤立平衡状态,如果
(1) xe 是李雅普诺夫意义下稳定的;
(2)
则称此平衡状态是渐近稳定的。
2009-08
CAUC--空中交通管理学院
§6-1 李雅普诺夫稳定性定义
- 初始状态 - 平衡状态
图6-2 二维空间渐近稳定性的几何解释示意图
3.内部稳定性与外部稳定性的关系
1)若系统是内部稳定(渐近稳定)的,则一定是外部稳定( BIBO稳定)的。
2)若系统是外部稳定(BIBO稳定)的,且又是可控可观测的, 则系统是内部稳定(渐近稳定)的。此时内部稳定和外部稳定 是等价的。
2009-08
CAUC--空中交通管理学院
§6-1 李雅普诺夫稳定性定义
(外部稳定性也称为BIBO(Bounded Input Bounded Output )稳定性)
说明:
(1) 所谓有界是指如果一个函数 ,在时间区间[0,∞] 中,它的幅值不
会增至无穷,即存在一个实常数k ,使得对于所有的t∈ [0 ∞] ,恒有
|h(t)| ≤ k ≤ ∞成立。 (2) 所谓零状态响应,是指零初始状态时非零输入引起的响应。
若对所有t,状态x满足
,故有下式成立:
,则称该状态x为平衡状态,记为
(5-2)
由平衡状态在状态空间中所确定的点 ,称为平衡点。
2.平衡状态的求法
(1)线性定常系统
其平衡状态xe满足Ax=0
A非奇异,则存在唯一的一个平衡状态xe =0 。 (2)非线性系统
方程
的解可能有多个。
2009-08
CAUC--空中交通管理学院
现代控制理论习题之李雅普诺夫稳定判据
⎧ 1 = − x1 + x 2 + x1 ( x1 2 + x 2 2 ) ⎪x (2) ⎨ 2 = − x1 − x 2 + x 2 ( x1 2 + x 2 2 ) ⎪ ⎩x
【解】 : (1)采用非线性系统线性化的方法,在平衡点原点处线性化得:
A= ∂f ∂x T ⎡ ∂f 1 ⎢ ∂x =⎢ 1 ⎢ ∂f 2 ⎢ ∂x ⎣ 1 ∂f 1 ⎤ ⎡1 − 3 x1 2 ⎡1 − 1⎤ −1 ⎤ ∂x 2 ⎥ ⎥ =⎢ =⎢ ⎥ 2⎥ ∂f 2 ⎥ 1 − 3x 2 ⎦ ⎢ 1 ⎥ x = 0 ⎣1 1 ⎦ ⎣ ∂x 2 ⎥ ⎦ x =0
t − t0 = − 1 1 0.05 v ( x, t ) =− ln = 10.955 v( x0 , t0 ) λ2 100
ηmin
ln
4-7
试确定下列非线性系统在原点处的稳定性。
6
第四章
Lyapunov 稳定性理论
⎧ 1 = x1 − x 2 − x1 3 ⎪x (1) ⎨ 2 = x1 + x 2 − x 2 3 ⎪ ⎩x
0.5 1
= 0.75 > 0 , 0.5 0.5
v( x) = x T Px 正定。 ∆v (k ) = x T (k )(G T PG − P ) x (k )
3 0⎤ ⎡1 3 0⎤ ⎡1 − 3 1⎤ ⎡ 1 0.5 0.5⎤ ⎡ 1 ⎥ ⎢− 3 − 2 − 3⎥ − ⎢− 3 − 2 − 3⎥ ⎥ ⎢0.5 1 G T PG − P = ⎢ 3 − 2 0 0 ⎥ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎢ ⎢ 1⎥ 0 0⎥ 0 0⎥ ⎦ ⎣1 ⎦ ⎢ ⎣1 ⎦⎢ ⎣0.5 0 ⎦⎢ ⎣0 − 3 0 ⎥ ⎡ 8 4.5 7 ⎤ ⎥ =⎢ ⎢4.5 6 1.5⎥ ⎢ 7 1.5 8 ⎥ ⎦ ⎣ 8 4.5 7
李雅普诺夫第二法
12/23/2012
2 V ( x) ( x1 x2 )( x1 x2 ) 2x1x1 x2 x2 ( x12 x2 )
当 x 时, ( x) ,所以系统在其原点处大范围 V 渐近稳定。
12/23/2012
4.3 李雅普诺夫第二法
x1 x1 x2 例4-8 系统的状态方程为 x2 x1 x2
,
,
可见此二次型函数是正定的,即
12/23/2012
4.3 李雅普诺夫第二法
4.3.2 几个稳定性判据 定理 设系统的状态方程为
x f ( x),
如果平衡状态 xe 0, 即, f ( xe ) 0 如果存在标量函数V(x) 满足:
1) V ( x) 对所有x具有一阶连续偏导数。 2) V ( x) 是正定的;
12/23/2012
4.3 李雅普诺夫第二法
例 设 x x1
x2
x3
T
2 1) V ( x) ( x1 x2 )2 x3
因为V(0) 0,而且对非零向量 ,有x a,a, T 0, x ( - 0) 也使V(x) 0,所以V(x)是半正定的。
2 2) V ( x) x12 x2因为V(0) 0,而且对非零向量 ,有x 0, a) 0, x ( 0, T 也使V(x) 0,所以V(x)是半正定的。
12/23/2012
4.3 李雅普诺夫第二法
2. 二次型标量函数
设 x1,x2 ,xn为n个变量, 二次型标量函数可写为
p11 p V ( x) xT Px x1 x2 xn 21 pn1 其中,P为实对称矩阵。 p12 p22 p1n x1 x2 pnn xn
李雅普诺夫稳定性方法
李雅普诺夫稳定性方法李雅普诺夫第一方法又称间接法,它是通过系统状态方程的解来判断系统的稳定性。
如果其解随时间而收敛,则系统稳定;如果其解随时间而发散,则系统不稳定。
李雅普诺夫第二方法又称直接法,它不通过系统状态方程的解来判断系统的稳定性,而是借助李雅普诺夫函数对稳定性作出判断,是从广义能量的观点进行稳定性分析的。
例如有阻尼的振动系统能量连续减小(总能量对时间的导数是负定的),系统会逐渐停止在平衡状态,系统是稳定的。
由于李雅普诺夫第一方法求解通常很烦琐,因此李雅普诺夫第二方法获得更广泛的应用。
李雅普诺夫第二方法的难点在于寻找李雅普诺夫函数。
迄今为止,尚没有通用于一切系统的构造李雅普诺夫函数的方法。
对于系统[]t ,f x x= ,平衡状态为,0e =x 满足()0f e =x 。
如果存在一个标量函数()x V ,它满足()x V 对所有x 都具有连续的一阶偏导数;同时满足()x V 是正定的;则 (1)若()x V 沿状态轨迹方向计算的时间导数()dt /)(dV Vx x = 为半负定,则平衡状态稳定;(2) 若()x V 为负定,或虽然()x V 为半负定,但对任意初始状态不恒为零,则平衡状态渐近稳定。
进而当∞→∞→)(V x x 时,,则系统大范围渐近稳定;(3) 若()x V为正定,则平衡状态不稳定。
判断二次型x x x P )(V τ=的正定性可由赛尔维斯特(Sylvester )准则来确定,即正定(记作V(x)>0)的充要条件为P 的所有主子行列式为正。
如果P 的所有主子行列式为非负,为正半定(记作V(x)≥0);如果-V(x)为正定,则V(x)为负定(记作V(x)<0);如果-V(x)为正半定,则V(x)为负半定(记作V(x)≤0)。
例:[]正定。
则)(V 01121412110,041110,010x x x 1121412110x x x )(V 321321x x >---->>----=⎥⎥⎦⎤⎢⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡ 例:)x x (x x x )x x (x x x 22212122221121+--=+-=(0,0)是唯一的平衡状态。
第四章稳定性与李雅普诺夫方法
第四章稳定性与李雅普诺夫方法稳定性与李雅普诺夫方法是控制理论中的两个重要概念。
稳定性是控制系统分析中的基本问题之一,它描述了系统在受到干扰后能否回到平衡状态的能力。
李雅普诺夫方法是一种常用的稳定性分析方法,通过构造李雅普诺夫函数来判断系统的稳定性。
稳定性是控制系统设计中最基本的要求之一、一个稳定的系统能够在受到干扰后迅速恢复到平衡状态,而不会发生不可控制的震荡或不稳定的行为。
稳定性可以分为两种类型:渐近稳定性和有界稳定性。
渐近稳定性要求系统的状态能够收敛到一个稳定的平衡点,而有界稳定性要求系统的状态能够保持在一个有限范围内。
李雅普诺夫方法是一种通过构造李雅普诺夫函数来判断系统稳定性的方法。
李雅普诺夫函数是一个标量函数,它满足以下条件:1)对于任意非零的向量,李雅普诺夫函数的导数都是负的或零;2)当且仅当系统达到稳定时,李雅普诺夫函数的导数为零。
通过构造李雅普诺夫函数并分析其导数的符号,可以判断系统的稳定性。
在实际应用中,人们通常使用李雅普诺夫直接法、李雅普诺夫间接法和李雅普诺夫-克拉洛夫稳定性定理等方法来进行稳定性分析。
其中,李雅普诺夫直接法是最常用的方法之一,它通过选择一个合适的李雅普诺夫函数来判断系统的稳定性。
如果可以找到一个李雅普诺夫函数,使得该函数的导数对于所有非零的初始条件都是负的,则系统是渐近稳定的。
李雅普诺夫间接法是通过构造一个李雅普诺夫方程来判断系统的稳定性。
李雅普诺夫方程是一个微分方程,其中包含系统的状态向量和一个非负标量函数,满足一定的条件。
如果可以找到一个满足李雅普诺夫方程的解,并且该解是有界的,则系统是有界稳定的。
李雅普诺夫-克拉洛夫稳定性定理是李雅普诺夫方法的重要理论基础。
该定理表明,如果系统的李雅普诺夫函数存在并且连续可导,并且李雅普诺夫函数的导数满足一定的条件,则系统是渐近稳定的。
这个定理为李雅普诺夫方法的应用提供了重要的理论依据。
总之,稳定性与李雅普诺夫方法是控制理论中基础且重要的概念。
李雅普诺夫第二法
李雅普诺夫第二法李雅普诺夫第二法又称直接法,它是从能量观点进行稳定性分析的,它的基本思想是建立在这样一个物理事实基础之上,即:由经典力学理论可知,对于一个振动系统,如果系统的总能量随时间增长而连续减少,直到平衡状态为止,那么振动系统是稳定的。
1)渐进稳定的判据定理1设系统的状态方程为(,)x f x t =其中平衡状态为0e x =,满足(0,)0f t =,如果存在一个具有连续一阶偏导数的标量函数(,)v x t ,且满足以下条件:(1)(,)v x t 是正定的;(2)(,)vx t 是负定的。
则系统在原点处的平衡状态是一致渐进稳定的。
此外,如果当||||x →∞,有(,)v x t →∞,则在原点处的平衡状态是大范围一致渐进稳定的。
2)渐进稳定的判据定理1设系统的状态方程为(,)x f x t =其中平衡状态为(0,)0f t =,如果存在一个具有连续一阶偏导数的标量函数(,)v x t ,且满足以下条件:(1)(,)v x t 是正定的;(2)(,)vx t 是负定的。
(3)(,)v x t 在0x ≠时不恒等于零,则系统在原点处的平衡状态是大范围渐进稳定的。
3)李雅普诺夫意义下稳定的判别定理设系统的状态方程为=x f x t(,)其中平衡状态为(0,)0f t=,如果存在一个具有连续一阶偏导数的标量函数v x t,且满足以下条件:(,)(1)(,)v x t是正定的;(2)(,)是负定的。
v x t(3)则系统在原点处的平衡状态在李雅普诺夫意义下是一致稳定的。
4)不稳定的判别定理设系统的状态方程为=x f x t(,)其中平衡状态为(0,)0f t=,如果存在一个具有连续一阶偏导数的标量函数v x t,且满足以下条件:(,)(1)(,)v x t是正定的;(2)(,)是正定的。
v x t则系统在原点处的平衡状态是不稳定。
李雅普诺夫关于稳定性的定义
✓
线性定常系统的有界输入有
界输出(BIBO)稳定性
未研究系统的内部状态变化的稳定性,也不能推广 到时变
系统和非线性系统等复杂系统。
➢ 再则,对于非线性系统或时变系统,虽然通过一些 系统转化方法,上述稳定判据尚能在某些特定系统和范 围内应用,但是难以适用于一般系统。
现代控制系统的结构比较复杂,大都存在非线性或时变因 素,即使是系统结构本身,往往也需要根据性能指标的要 求而加以改变,才能适应新的情况,保证系统的正常或最 佳运行状态。
Lyapunov的博士论文被译成法文并于1907年发表,1949年 普林斯顿大学出版社重印了法文版。1992年在Lyapunov的 博士论文发表100周年之际,International Journal of Control (国际控制杂志)以专辑形式发表了Lyapunov论文的英译 版,以纪念他在控制理论领域所作的卓越贡献。
➢ 该方法不仅可用于线性系 统而且可用于非线性时变 系统的分析与设计,已成 为当今控制理论课程的主 要内容之一。
➢ 百余年来Lyapunov理论 得到极大发展, 在数学、 力学、自动控制、机械工 程等领域得到广泛应用。
A.M. Lyapunov是一位天才的数学家。曾从师于大数学家 P.L. Chebyshev(切比雪夫),和A.A. Markov(马尔可夫 )是同校同学(李比马低两级),并同他们始终保持着良好 的关系。他们共同在概率论方面做出了杰出的贡献。在概率 论中可以看到关于矩的马尔可夫不等式、切比雪夫不等式和 李亚普诺夫不等式等。Lyapunov还在相当一般的条件下证 明了中心极限定理。
✓
经典控制理论讨论的有界输入
有界输出(BIBO)稳定即为外部稳定性 。
Outer stability
李亚普诺夫稳定性分析和二次型最佳控制
5.6.3 二次型最优控制问题现在我们来研究最优控制问题。
已知系统方程为Bu Ax x+= (5.20) 确定最优控制向量)()(t Kx t u -=(5.21) 的矩阵K ,使得性能指标(5.22)达到极小。
式中Q 是正定(或正半定)Hermite 或实对称矩阵,R 是正定Hermite 或实或实对称矩阵。
注意,式(5.22)右边的第二项是考虑到控制信号的能量损耗而引进的。
矩阵Q 和R 确定了误差和能量损耗的相对重要性。
在此,假设控制向量)(t u 是不受约束的。
正如下面讲到的,由式(5.21)给出的线性控制律是最优控制律。
所以,若能确定矩阵K 中的未知元素,使得性能指标达极小,则)()(t Kx t u -=对任意初始状态x (0)而言均是最优的。
图5.6所示为该最优控制系统的结构方块图。
图5.6 最优控制系统现求解最优控制问题。
将式(5.21)代入式(5.20),可得()xAx BKx A BK x =-=- 在以下推导过程中,假设BK A -是稳定矩阵,BK A -的所有特征值均具有负实部。
将式(5.21)代入(5.22),可得⎰⎰∞∞+=+=0)()(xdtRK K Q x dtRKx K x Qx x J H H H H H依照解参数最优化问题时的讨论,取⎰∞+=0)(dtRu u Qx x J HH)()(Px x dtd x RK K Q x HH H -=+ 式中的P 是正定的Hermite 或实对称矩阵。
于是])()[()(x BK A P P BK A x x P x Px xx RK K Q x H H H H H H -+--=--=+ 比较上式两端,并注意到方程对任意x 均应成立,这就要求)()()(RK K Q BK A P P BK A H H +-=-+-(5.23)根据Lyapunov 第二法可知,如果BK A -是稳定矩阵,则必存在一个满足式(5.23)的正定矩阵P 。
李亚普诺夫判稳第二法 现代控制理论 教学PPT课件
假设 V ( x) 0
V ( x) 2(1 x2 )2 x22
a.x2 (t) 0, x1任意
x2
(t )
0
x2
x2
(t ) (t )
0 0
x1 (t )
x1
(t
)
0 0
意味只有零平衡状态才满足。
b.x2 (t) 1, x1任意
x2
(t
)
1
x2 x2
(t (t
) )
1 0
由判据3,系统在零平衡状态是不稳定的。
2021年4月30日
第5章第19页
例5.18 分析此系统的稳定性。
解1)求平衡状态
xe1 xe2
0 0
2)选择能量函数
0 x 1
1 1 x
a.V ( x) 2x12 x22 0 V ( x) 4x1x1 2x2x2 4x1(x2 ) 2x2 (x1 x2 ) 2x1x2 2x22,不定
2021年4月30日
第5章第18页
例5.16分析系统的稳定性。
x
Ax,
A
1 1
1 1
解1)求平衡状态
2)选择能量函数
xe1
xe
2
0 0
V ( x) x12 x22 0 V ( x) 2x1x1 2x2 x2 2x1(x1 x2 ) 2x2 (x1 x2 ) 2(x12 x22 ) 0
x1 (t )
R L
x1 (t )
1 L
x2 (t)
iR L
x2 (t)
1 C
x1 (t )
u
Cy
y(t) x2 (t)
电容能量 电感能量
T
Q2 2C
1 2
李雅普诺夫关于稳定性的定义
Lyapunov稳定性理论不仅可用来分析线性定常系统, 而且也能用来研究 时变系统 非线性系统 离散时间系统 离散事件动态系统 逻辑动力学系统 等复杂系统的稳定性,这正是其优势所在。
11.1.1 平衡态 equilibrium state
设我们所研究的系统的状态方程为 x’=f(x,t)
其中x为n维状态变量; f(x, t)为n维的关于状态变量向量x和时间t的非线性向量函数。
lim x(t)
t
式中,x(t) 为系统被调量偏离其平衡位置的变化量;
为任意小的给定量。
如果系统在受到外扰后偏差量越来越大,显然它 不可能是一个稳定系统。
对系统进行各类性能指标的分析必须在系统稳定的前提下 进行。稳定是控制系统能够正常运行的首要条件,只有稳定 的系统才有用。
但这些经典控制理论中的稳定性判别方法仅限于讨论 SISO线性定常系统输入输出间动态关系,即 线性定常系统的有界输入有界输出(BIBO)稳定性
未研究系统的内部状态变化的稳定性,也不能推广到时变 系统和非线性系统等复杂系统。 再则,对于非线性系统或时变系统,虽然通过一些系统
转化方法,上述稳定判据尚能在某些特定系统和范围内 应用,但是难以适用于一般系统。
在牛顿建立引力理论后,天文学家试图证明太阳系的稳定性。 特别地,拉格朗日和拉普拉斯在这一问题上做了突出的贡献。 1773年,24岁的拉普拉斯“证明了行星到太阳的距离在一些 微小的周期变化之内是不变的”,并因此成为法国科学院副 院士。虽然他们的论证今天看来并不严格,但这些工作对于 后来Lyapunov的稳定性理论有很大的影响。
自动控制理论 第10章 李雅普诺夫稳定性分析
2)如果xe=0为系统的平衡状态,则李氏函数应满足V(xe)= V(0)=0。但当x(t)≠ 0
时, 不管其分量大于零或小于零,均能使V(x)>0。
基于上述的性质,人们常以状态矢量x的二次型函数V(x)作为李氏函数
的候选函数,即
式中,x为实变数矢量。只要矩阵P是正定的,则上式所示的V(x)就符 合对李氏函数性质的要求。
对于连续定常系统,李雅普诺夫第二方法是根据V(x)和
的性
质去判别它的稳定性。因此需要研究以下两个问题:
1)具备什么条件的函数才是李雅普诺夫函数,简称李氏函数。
2)怎样利用李氏函数去判别系统平衡状态的稳定性?
由对图10-2所示系统的讨论,可知李氏函数必须要同时具有如下两个性质:
1)李氏函数是自变量为系统的状态矢量x(t)的标量函数。
态是不稳定的。
2021/6/18
第十章 李雅普诺夫稳定性分析
6
为了能更直观地理解上述平衡状态稳定性的概念,
下图在二维状态平面上分别画出了系统平衡状态的稳 定、渐近稳定和不稳定3种情况。
2021/6/18
第十章 李雅普诺夫稳定性分析
7
自动控制理论
第二节 李雅普诺夫第二方法
正定函数
2021/6/18
11
自动控制理论
由上式可见,除了xe=0外,系统的能量V(x)在运动过程中由于 受到了阻尼器的阻尼作用而不断地减小,最后使V(x)=0。这个例子很 容易把能量函数V(x)与实际系统联系起来。然而,对一般的系统而言, 至今还没有一个普遍适用“能量函数” 的表达式。对此,李雅普诺夫提出了 一个虚拟的能量函数,人们称它为李雅普诺夫函数,用V(x)表示。
则称系统的平衡状态xe是渐近稳定的。
《现代控制理论》李雅普诺夫稳定性分析
1、向量空间上的欧几里德范数(即向量长度)
其欧几里德范数定义为:
一般
一、向量和矩阵的范数
预备知识
矩阵范数
矩阵 的范数定义为:
【例】
Hale Waihona Puke , 则即:矩阵每个元素平方和开根号
预备知识
2、矩阵范数
1.二次型函数:由n个变量
组成的二次齐次多项式,称(n元)二次型函数
2.二次型函数的矩阵表示
则系统在原点处的平衡状态是不稳定的。
为唯一的平衡状态。
定理4:设系统状态方程为
李雅普诺夫主要的稳定性定理
例题
[例] 设系统状态方程为
试确定系统的稳定性。
解 xe=0
,
是该系统惟一的平衡状态。
由于当
时
,所以系统在原点处的平衡状态是
大范围渐近稳定的。
选取
李雅普诺夫主要的稳定性定理
例题
[例] 已知定常系统状态方程为
定义:若所有有界输入引起的零状态响应输出有界,则称系统为有界输入输出稳定。
李雅普诺夫第一方法—间接法
定理3:连续定常系统 传递函数为: 系统 BIBO 稳定的充要条件为:传递函数的所有极点均位于S左半平面。
【例】试分析系统渐近稳定和BIBO稳定。
李雅普诺夫主要的稳定性定理
讨论续
这是一个矛盾的结果,表明
也不是系统的
受扰运动解。综合以上分析可知,
当
时,显然有
根据定理9-12可判定系统的原点平衡状态是大范围渐近稳定的。
李雅普诺夫主要的稳定性定理
线性系统稳定性分析
一.线性定常系统李雅普诺夫稳定性分析
线性定常连续系统
系统状态方程为
李雅普诺夫第二定理英文表示
李雅普诺夫第二定理英文表示
摘要:
1.李雅普诺夫第二定理的英文表示
2.李雅普诺夫第二定理的定义和含义
3.李雅普诺夫第二定理的应用领域
4.李雅普诺夫第二定理的重要性
正文:
李雅普诺夫第二定理是稳定性理论中的一个重要定理,它主要用于判断一个系统是否稳定。
这个定理的英文表示为"Lyapunov"s Second Theorem"。
李雅普诺夫第二定理的定义和含义是:如果一个系统的状态方程是线性的,并且存在一个正半定矩阵P,使得系统的状态方程可以写成x" = Ax + Bu 的形式,其中A、B、U 都是已知矩阵,x 是状态向量,那么这个系统就是稳定的。
这里的稳定性指的是,系统在经过任意的初始状态后,都会趋于一个稳定的状态,也就是说,系统的状态不会无限制地偏离稳定状态。
李雅普诺夫第二定理的应用领域非常广泛,它不仅可以用于线性系统的稳定性分析,还可以用于非线性系统的稳定性分析。
在工程领域,李雅普诺夫第二定理被广泛应用于控制系统的设计和分析,例如,飞机的自动驾驶系统、汽车的巡航控制系统等都离不开李雅普诺夫第二定理的应用。
李雅普诺夫第二定理的重要性在于,它为我们提供了一个判断系统稳定性的工具,可以帮助我们在设计系统时避免系统的不稳定,从而保证系统的正常运行。
李雅普诺夫稳定性基本定理
Lyapunov第二法又称为直接法(direct method) 。 ➢ 它是在用能量观点分析稳定性的基础上建立起来的。 ✓ 若系统平衡态渐近稳定,则系统经激励后,其储存 的能量将随着时间推移而衰减。当趋于平衡态时, 其能量达到最小值。
中的坐标平移,将平衡态xe移到原点。 ➢ 因此, 上式又可转换成如下原点平衡态的线性状态方程:
x’=Ax
判别非线性系统平衡态xe稳定性的Lyapunov第一法的思想为: ➢ 通过线性化,将讨论非线性系统平衡态稳定性问题转换 到讨论线性系统 x’=Ax 的稳定性问题。
Lyapunov第一法的基本结论是:
由上述Lyapunov第一法的结论可知, 该方法与经典控制理论 中稳定性判据的思路一致, 需求解线性化状态方程或线性状 态方程的特征值, 根据特征值在复平面的分布来分析稳定性。
➢ 值得指出的区别是:
✓ 经典控制理论讨论在有界输入下的输出稳定性问题, 而Lyapunov方法讨论状态稳定性问题。
➢ 由于Lyapunov第一法需要求解线性化后系统的特征值, 因此该方法也仅能适用于非线性定常系统或线性定常系 统,但是不能推广用于时变系统。
➢ 则称函数V(x)为区域上的正定函数。Positive definite function
从定义可知,所谓正定函数,即指除零点外恒为正值的标量 函数。由正定函数的定义,相应地可定义 ➢ 负定函数 negative definite function ➢ 非负定(又称半正定或正半定)函数 non-negative definite function; positive semi-definite function ➢ 非正定函数(又称半负定或负半定) non-positive definite function; negative semi-definite function ➢ 不定函数。 indefinite function
ch4李亚普诺夫稳定性分析
稳定性判据:(定理2)
1 线性定常连续系统的传递函数是 G ,当且仅 ( s ) C ( sI A ) B 当其极点都在s的左半平面时,系统才是输入输出稳定的。否 则系统是不稳定的(在此,虚轴上的临界稳定,对应等幅周 期振荡,控制工程上认为是不稳定的)。
Im
图解表示:
征值全为负实数或具有负实部的共轭复根。等同于特征方程的
根全部位于s平面的左半部。
[例1] 设系统方程为:x 06 2 x u , 1 1 1
y 01 x
试确定其内部稳定性。 [解 ] 6 det( I A ) ( 2 )( 3 ) 0 求系统的特征方程: 1 1
2019/2/14
6
1)二次型 V(x) xTPx为正定,或实对称矩阵P为正定的充要 条件是P的所有主子行列式均为正,即:
p11 p P 21 pn1 p12 p22 pn 2 p1n p2 n pnn
p 11 p 12 p 0 , 0 , , P 0 如果 1 11 2 n p 21 p 22
围,其稳定范围不可能是整个状态空间。)
结论:如果线性定常系统是渐近稳定的,则它一定是大范
围渐近稳定的。
2019/2/14 14
4、不稳定:(系统的自由响应是无界的) 如果对于某一实数 0 ,不论 取得多么小,由 S( ) 内
出发的轨迹,只要有一个轨迹超出 S ( ) ,则称平衡状态xe是
lim x (t)
t
x(t )为系统被调量偏离其平衡位置的大小,
为 任意小的规定量。
李雅普诺夫稳定性(2)
x f (x)
的任何轨迹线的时间导数是半负定的,即
V dV (x) V x V f (x) 0 dt x x
那么称V (x) 为系统的李雅普诺夫函数。
x2
x2
V V3
V V2
V
V V1
0
V1 V2 V3 x1
x1
x(t)
x(t)
李雅普诺夫理论基础
几何解释:表示 V(x) 值的点总是指向杯底,或指向越来 越小的V (x)值等高线。
R a 1
李雅普诺夫理论基础
x1
极限环
从任何一个非零初始状态开始的系统轨线都渐近地趋近 一个极限环。这意味着如果选择稳定性定义中的 R 为足够小,使得半径为 R 的圆完全落入极限环的封 闭曲线内,那么在靠近原点处开始的系统轨线最终将 越出这个圆,因此原点是不稳定的。
李雅普诺夫理论基础
2、渐近稳定性与指数稳定性
李雅普诺夫理论基础
例:对于一阶系统 x ax bx5
原点是这个系统的两平衡点之一。这个系统在原点附近的
线性化是:
x ax
应用李雅普诺夫线性化方法,得出该非线性系统的下述稳
定性性质:
(1)a 0 渐近稳定; (2)a 0 不稳定;
(3)a 0 不能从线性化说明系统稳定性性源自。在第三种情况下,非线性系统为
征值都严格在左半复平面内),那么平衡点是渐近稳定的 (对实际的非线性系统);
2、如果线性化后的系统是不稳定的(即如果 A的所有特征
值至少有一个严格在右半复平面内),那么平衡点是不稳 定的(对实际的非线性系统);
3、如果线性化后的系统是临界稳定的(即如果 A 的所有特
征值都在左半复平面内,但至少有一个在 j 轴上),那 么不能从线性近似中得出任何结论(其平衡点对于非线性 系统可能是稳定的,渐近稳定的,或者是不稳定的)。
第11讲 李雅普诺夫第二方法
➢ 在图中所示状态,v=-x’,由牛顿第二定律可知,其运动满足 如下方程:
m(-x’’)=mgcos-fmgsin 其中f为摩擦阻尼系数。
李雅普诺夫稳定性定理的直观意义(3/7)
➢ 因此,有 mx’’=-mg(cos-fsin)
➢ 因此,能量的变化趋势(导数)为 V’=mx’x’’+mgx’cos
定义 设xRn,是Rn中包含原点的一个封闭有限区域,实函数 V(x,t)是定义在[t0,)上的一个标量函数且V(0,t)=0,标量连 续函数(||x||)和(||x||)为非减(函数值单调增加)的且满足 (0)=(0)=0,
1) 如果对任意tt0和x0, V(x,t)为有界正定的,即
0<(||x||)V(x,t)(||x||), 称函数V(x,t)为[t0,)上的(时变)正定函数。
的几个定理。
李雅普诺夫第二法的几个定理(1/1)
3. 李雅普诺夫第二法的几个定理
从平衡态的定义可知,平衡态是使得系统静止不动(导数为零, 即运动变化的趋势为零)的状态。 ➢ 从能量的观点来说,静止不动即不存在运动变化所需要 的能量,即变化所需的能量为零。 ➢ 通过分析状态变化所反映的能量变化关系可以分析出 状态的变迁或演变,可以分析出平衡态是否稳定或不稳 定。 ➢ 下面通过一刚体运动的能量变化来简介李雅普诺夫稳 定性定理的直观意义。
0
2
1
-1 2 5
-1 1 5
1 0 0
行:(3)(1)(3)
0 列:(3)(1)(3)
2
1
0 1 4
1 0 0
行:(3)(2) / 2(3)
0 列:(3)(2) / 2(3)
2
0
0 0 7/2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定义:如果某个平衡点0是稳定的,而且存在某一 r 0 , 使得 x(0) r ,当 t 时,x(t ) 0 ,那么称平衡点是 渐近稳定的。 平衡点的吸引范围是指:凡是起始于某些点的轨线最终都收 敛于原点,这些点组成的最大集合所对应的区域。 注意:收敛并不意味着稳定。 (见图)
x(t ) x(0) e t
以速度 1 指数收敛于 x 0 。 例2:系统 x x 2 , x(0) 1它的解为 x 1 /(1 t ),是个慢于任 何指数函数 e t ( 0) 的函数。 3、局部与全部稳定性 定义:如果渐近(或指数)稳定对于任何初始状态都能 保持,那么就说平衡点是大范围渐近(或指数)稳定的, 也称为全局渐近(或指数)稳定的。李雅普Leabharlann 夫理论基础§2.1 稳定性概念
几个简化记法:令 B R 表示状态空间中由 x R 定义的球形 区域, S R 表示由 x R 定义的球面本身。 1、稳定性和不稳定性 定义:如果对于任何 R 0 ,存在 r 0 ,使得对于所有的 t 0 ,如果 x(0) r ,就有 x(t ) R ,则称平衡点 x 0 是 稳定的,否则,就称平衡点是不稳定的。
R a 1
x1
极限环
从任何一个非零初始状态开始的系统轨线都渐近地趋近 一个极限环。这意味着如果选择稳定性定义中的 R 为足够小,使得半径为 R 的圆完全落入极限环的封 闭曲线内,那么在靠近原点处开始的系统轨线最终将 越出这个圆,因此原点是不稳定的。
李雅普诺夫理论基础
2、渐近稳定性与指数稳定性
征值都在左半复平面内,但至少有一个在 j 轴上),那
么不能从线性近似中得出任何结论(其平衡点对于非线性 系统可能是稳定的,渐近稳定的,或者是不稳定的)。
李雅普诺夫理论基础
例:对于一阶系统
ax bx5 x
原点是这个系统的两平衡点之一。这个系统在原点附近的 线性化是: ax x 应用李雅普诺夫线性化方法,得出该非线性系统的下述稳 定性性质: (1)a 0 渐近稳定; (2)a 0 不稳定; (3)a 0 不能从线性化说明系统稳定性性质。 在第三种情况下,非线性系统为
3 1 2
( x 2 1) x x0 x
转换成状态方程描述
0
x ( 0) S ( r )
S ( R)
1 x2 x 2 x1 (1 x12 ) x2 x
图2-1 稳定性概念
很容易证明该系统在原点处有一个平衡点。 并且是不稳 定的。
李雅普诺夫理论基础
x2
轨迹
R 1
C
x2
x1
李雅普诺夫理论基础
定义:如果存在两个严格正数 和 ,使得围绕原点的某
个球内 B r,
t, x(t ) x(0) e t
那么称平衡点0是指数稳定的。 也就是说,一个指数稳定的系统的状态向量以快于指数函 数的速度收敛于原点,通常称正数 为指数收敛速度。 指数收敛性的定义在任何时候都为状态提供明显的边界。
f (x, u) x
f f x x u f h.o.t . (x, u) x ( x0,u0) u ( x0,u0)
有: 例2.2 考虑系统
Ax Bu x
对于闭环系统,同样可以得出上述结论。
2 1 x2 x x1 cos x2 2 x2 ( x1 1) x1 x1 sin x2 x
R 0, r 0, x(0) r t 0, x(t ) R
或者:R 0, r 0, x(0) Br t 0, x(t ) BR 对于线性系统,不稳定等于发散;对于非线性系统,不稳定 不等于发散。
李雅普诺夫理论基础
例2.1 范德堡振荡器的不稳定性 对于范德堡方程
李雅普诺夫理论基础
第二章 Lyapunov理论基础
稳定性是控制系统关心的首要问题。
稳定性的定性描述:如果一个系统在靠近其期望工作点的某 处开始运动,且该系统以后将永远保持在此点附近运动, 那么就把该系统描述为稳定的。 例如:单摆,飞行器 李雅普诺夫的著作《动态稳定性的一般问题》,并于1892 年首次发表。 1. 线性化方法:从非线性系统的线性逼近的稳定性质得出非 线性系统在一个平衡点附近的局部稳定性的结论。 2.直接法:不限于局部运动,它通过为系统构造一个“类能 量”标量函数并检查该标量函数的时变性来确定非线性系 统的稳定性质。
李雅普诺夫理论基础
§2.2 线性化和局部稳定性
李雅普诺夫线性化方法与非线性系统的局部稳定性有关。 Lyapunou线性化方法说明:在实际中使用线性控制方法基 本上是合理的。 f (x) ,如果 f (x) 是连续可微的,那 对于自治非线性系统 x 么系统的动态特性可以写成( f (0) 0 ):
在 x 0 处线性化。 线性化结果:
1 0 x x 1 1
李雅普诺夫理论基础
定理:(李雅普诺夫线性化方法)
1、如果线性化后的系统是严格稳定的(即如果 A 的所有特 征值都严格在左半复平面内),那么平衡点是渐近稳定的 (对实际的非线性系统); 2、如果线性化后的系统是不稳定的(即如果 A的所有特征 值至少有一个严格在右半复平面内),那么平衡点是不稳 定的(对实际的非线性系统); 3、如果线性化后的系统是临界稳定的(即如果 A 的所有特
把正常数 写成后 e ,不难看到,经过时间 0 (1 / )
0
后,状态向量的幅值减小到原值的 35%( e1 ) ,与线性 系统中的时间常数相似。
李雅普诺夫理论基础
例1:系统
(1 sin 2 x) x x
它的解是:x(t ) x(0) exp{ t [1 sin 2 ( x( ))]d } 0
f x f h.o.t . (x) x x x0
用 A 表示在 x 0 处 f 关于 x 的雅可比矩阵:
f A x x 0
原非线性系统在平衡点0处的线性化结果为:
Ax x
李雅普诺夫理论基础
对于一个具有控制输入 u 的自治非线性系统: