SX-7-021第六章6.3实数第一课时导学案附教学反思

合集下载

数学人教版七年级下册6.3实数第一课时教学反思

数学人教版七年级下册6.3实数第一课时教学反思

《实数》第一课时教学反思
擂鼓中学袁瑞
概念是由具体到抽象、由特殊到一般,经过分析、综合去掉非本质特征,保持本质属性而形成的。

概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很必要的。

例如:无理数的引入,先让学生亲身经历活动,感受引入的必要性,初步认识无理数是无限不循环小数这一意义。

在教学时,鼓励了学生动手、动脑、动口,与同伴进行合作,并充分地开展交流。

类比法是应该是本节的重要方法之一。

最主要的就是类比于有理数建立起实数与数轴上的点是一一对应的。

在教学时应注意前后内容的联系,知识是一体的,在回顾时注重知识点本身,更要关注学习方法、思维方法,因为它们是相通的。

每讲一节课,总会有不同的收获与感受,总能在不足中寻找经验,总结经验。

通过这次的授课,使我明白,一节课的内容既不能贪求太多,以防止重难点不突出,学生对知识点都一知半解;也不能过于面面俱到,包揽过多,过于低估学生的学习能力,应该给学生留有一些学习的空间。

总之,自己在教学中需要学习和改正的地方还很多很多,我将继续不断探索,不断研究,虚心求教,尽快提高自己的教育教学能力。

初中数学_人教版七年级下册第六章第三节实数教学设计学情分析教材分析课后反思

初中数学_人教版七年级下册第六章第三节实数教学设计学情分析教材分析课后反思

6.3实数(1)课堂教学设计二、 自主探究 请同学们自学课本第53-54页,并解决下列问题。

1.任何一个有理数都可以写成__或__形式。

2.______________叫做无理数。

3._______和______统称为实数, 实数按大小分为_____、____和_____。

4.实数与数轴上的点的关系是_________。

三、再探新知、成果展示知识点一:无理数1. π是______,2π是_______,2π+是______。

2. 2是_________,16是_________,327是_________,311是_________。

3. 13是_________,0.6是__________,0.1010010001…是____________。

4. 下列数中无理数的个数是( )A. 1B. 2C. 3D.4知识点二:实数的分类初中阶段数的范围扩大有理数 实数无理数 的欲望。

同学们带着任务目标自学课本,尝试解决。

(约5分钟)5分钟后,各小组交流讨论,组内解决疑问,培养他们的团结合作的能力。

教师检查自学讨论的效果。

通过完成题目,总结无理数的特征: 1. π以及含有π的式子; 2.开方不尽的数; (注意:带根号的数不一定是无理数) 3.有一定的规律,但是2.121,10.6,-知识点三:实数与数轴上的点一一一对应 1. 将一个直径为1个单位的圆在数轴上滚动一周,圆上的点由原点到达O',点O'的对应点是 2. 2.以一个单位长度为边画一个正方形,以原点为圆心,正方形的对角线为半径画弧,弧与数轴的交点表示: 、 。

2- 2以上两个问题说明:__________________.巩固练习:(1)请将数轴上各点与下列实数对应起来:2,-1.5,5,π,3.(2)比较它们的大小(用<号连接)四、当堂达标1.下列各数中无理数的个数有( )个3264.315π, , +5, 2.313313331, A.1 B.2 C.3 D.42. 下列结论不正确的是( )A.有理数和无理数统称为实数类比有理数可以在数轴上表示学生通过观察猜想验证,发现无理数也可以从数轴上表示出来,也就是说数轴上的点既能表示有理数,又能表示无理数,从而得到实数与数轴上的点一一对应。

(人教版)七年级下册数学配套教案:6.3 第1课时 《实数》

(人教版)七年级下册数学配套教案:6.3 第1课时 《实数》

(人教版)七年级下册数学配套教案:6.3 第1课时《实数》一. 教材分析人教版七年级下册数学第6.3节《实数》是学生在掌握了有理数的相关知识后,进一步扩大知识面,认识实数的概念。

本节内容主要包括实数的定义、实数的分类和实数的性质。

通过本节课的学习,学生能够理解实数的概念,掌握实数的分类和性质,为后续的函数、方程等知识的学习打下基础。

二. 学情分析学生在学习本节课之前,已经掌握了有理数的相关知识,具备了一定的数学基础。

但是,对于实数的定义和性质,可能还比较陌生。

因此,在教学过程中,需要引导学生从已有的知识出发,逐步理解和掌握实数的概念和性质。

三. 教学目标1.理解实数的概念,掌握实数的分类和性质。

2.能够运用实数的概念和性质解决一些简单的实际问题。

3.培养学生的逻辑思维能力和数学表达能力。

四. 教学重难点1.实数的定义和性质。

2.实数的分类。

五. 教学方法采用讲授法、引导法、讨论法等教学方法。

通过教师的讲解和引导,学生的思考和讨论,使学生理解和掌握实数的概念和性质。

六. 教学准备1.教师准备教案、PPT等教学资料。

2.学生准备笔记本、文具等学习用品。

七. 教学过程1.导入(5分钟)教师通过复习有理数的相关知识,引导学生思考有理数的局限性,引出实数的概念。

2.呈现(15分钟)教师通过PPT或者黑板,呈现实数的定义、性质和分类。

引导学生理解和记忆实数的概念和性质,掌握实数的分类。

3.操练(15分钟)教师布置一些有关实数的练习题,让学生独立完成。

通过练习,巩固学生对实数的理解和掌握。

4.巩固(10分钟)教师选取一些典型的练习题,进行讲解和分析,帮助学生巩固对实数的理解和掌握。

5.拓展(10分钟)教师引导学生思考实数在实际生活中的应用,让学生举例说明实数在生活中的作用。

6.小结(5分钟)教师对本节课的内容进行小结,强调实数的概念、性质和分类,提醒学生注意实数的应用。

7.家庭作业(5分钟)教师布置一些有关实数的家庭作业,让学生进一步巩固和理解实数的概念和性质。

《实数》第一课时的教学反思范文(通用5篇)

《实数》第一课时的教学反思范文(通用5篇)

《实数》第一课时的教学反思范文(通用5篇)《实数》第一课时的教学反思范文(通用5篇)在现在的社会生活中,课堂教学是我们的工作之一,反思是思考过去的事情,从中总结经验教训。

如何把反思做到重点突出呢?以下是小编为大家整理的《实数》第一课时的教学反思范文(通用5篇),仅供参考,希望能够帮助到大家。

《实数》第一课时的教学反思1本课例通过问题1学生会发现:有些数不属于有理数,从而比较自然地给出无理数和实数的概念,使学生感受到把有理数扩展到实数的必要性。

由于在前面已经见过无限不循环小数,很自然引出“无理数”的概念。

无理数和实数是本课的重点之一。

通过问题2让学生类比有理数的分类方法,讨论如何对实数进行分类对实数进行分类,让学生进一步领会分类的思想,培养学生的思维的灵活性和严谨性,同时也能使学生加深对无理数和实数的理解,通过学生互相的讨论和交流,可以深刻体验知识之间的内在联系,初步形成对实数系整体性的认识。

问题3通过对实数分类的练习与巩固,加深学生对各种数的认识,加深对实数概念的理解。

问题4是从学生已有的知识出发,克服困难,创造性地找到数轴上π、的具体位置,体会无理数的存在性。

借助数轴对无理数进行研究,从形的角度,再一次体会无理数。

本节课的教学设计中注重从学生已有的知识经验出发,如学生在有理数章节中已经学习了有理数可以用数轴上的点表示,所以在教学中充分发挥学生的主体意识,让学生主动参与学习活动,除了让学生看课件演示外,更通过让学生动手实验操作,感悟知识的生成、发展和变化,自己探索得到结论:实数与数轴上的点的一一对应关系,从而培养学生自主探索的学习方法,同时也感受实数与数轴上点的一一对应关系,进一步体会数形结合思想。

在处理这段教材时,没有刻意地增加难度,而是立足教材,紧紧围绕课本,尊重教材,挖掘教材,从“情境设计——例题选择——课堂引申”都是以教材内容为载体,充分开发教材的功能。

循序渐进地引导学生去学习新知,使学生能准确地把握学习重点,突破学习难点。

人教版七年级数学下册导学案 第六章 实数 6.3 实数(第一课时)

人教版七年级数学下册导学案 第六章 实数 6.3 实数(第一课时)

人教版七年级数学下册导学案 第六章 实数 6.3 实数(第一课时)【学习目标】1、了解实数的意义,能对实数按要求进行分类。

2、了解实数范围内,相反数、倒数、绝对值的意义。

3、了解数轴上的点与实数一一对应,能用数轴上的点来表示无理数。

【课前预习】12的整数部分是a ,小数部分是b b -的值是( ) A .5 B .5- C .3 D .3-2.在实数 1.414-,π,3.14,2+ 3.212212221…中,无理数的个数是( )个.A .1B .2C .3D .43.在数227,02112π-,3.2020020002…(相邻的两个2之间依次多一个0)中,无理数有( )A .3个B .4个C .5个D .6个4.估算6 )A .2B .3C .4D .55.如图,A 、B 、C 、D 的点是( )A .点AB .点BC .点CD .点D6.下列说法中:①立方根等于本身的是1-,0,1;②平方根等于本身的数是0,1;③两个无理数的和一定是无理数;④实数与数轴上的点是一一对应的;⑤23π-是负分数;⑥两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数.其中正确的个数是( )A .3B .4C .5D .673+的值应在( )A .5和6之间B .6和7之间C .7和8之间D .8和9之间8.各个数位上数字的立方和等于其本身的三位数叫做“水仙花数”.例如153是“水仙花数”,因为333153153++=.以下四个数中是“水仙花数”的是( )A .135B .220C .345D .4079.如图,在数轴上表示A B 、,点B 关于点A 的对称点为C ,则点C 表示的数为( )A1 B.1-C.2 D210.下列说法中,正确的是( )A .正数的算术平方根一定是正数B .如果a 表示一个实数,那么-a 一定是负数C .和数轴上的点一一对应的数是有理数D .1的平方根是1 【学习探究】自主学习阅读课本,完成下列问题1.填空:(有理数的两种分类):2.使用计算器计算,把下列有理数写成小数的形式,你有什么发现? 25 , 35- ,427 ,911 ,119 , 互学探究一、实数的概念1.请把下列有理数写成小数的形式,你有什么发现? 3=_____ 35-=_____ ,478=_____ ,911=_____ ,119 =_____ ,59=_____ 小结:任何一个有理数都可以写成_______小数或________小数的形式。

人教版数学七年级下册6.3《实数》教学设计1

人教版数学七年级下册6.3《实数》教学设计1

人教版数学七年级下册6.3《实数》教学设计1一. 教材分析人教版数学七年级下册6.3《实数》是学生在掌握了有理数和无理数的概念之后,进一步对实数进行系统学习的开始。

本节内容主要包括实数的定义、实数与数轴的关系、实数的运算等。

通过本节课的学习,使学生对实数有一个清晰的认识,为后续的代数学习和解决实际问题打下基础。

二. 学情分析学生在之前的学习中已经掌握了有理数和无理数的概念,对数轴也有了一定的了解。

但实数作为介于有理数和无理数之间的一个整体,其定义和性质还需要进一步引导和探究。

此外,实数与数轴的关系以及实数的运算对学生来说也是一个新的挑战。

三. 教学目标1.理解实数的定义,掌握实数与数轴的关系。

2.掌握实数的运算规则,能进行实数的基本运算。

3.培养学生的逻辑思维能力,提高学生解决实际问题的能力。

四. 教学重难点1.实数的定义和性质。

2.实数与数轴的关系。

3.实数的运算规则。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过设置问题引导学生思考,通过案例让学生理解实数的定义和性质,通过小组合作学习法让学生在讨论中掌握实数与数轴的关系和实数的运算规则。

六. 教学准备1.PPT课件。

2.数轴教具。

3.练习题。

七. 教学过程1.导入(5分钟)通过复习有理数和无理数的概念,引导学生思考实数的定义。

同时,提出问题:“实数与数轴有什么关系?”激发学生的学习兴趣。

2.呈现(10分钟)通过PPT课件呈现实数的定义和性质,实数与数轴的关系,实数的运算规则。

结合案例,让学生直观地理解实数的内涵。

3.操练(10分钟)让学生在小组内进行实数的运算练习,如加、减、乘、除等。

教师巡回指导,解答学生疑问。

4.巩固(5分钟)选取一些典型练习题,让学生独立完成,检验对实数知识的掌握程度。

教师及时点评,指出错误并讲解。

5.拓展(5分钟)引导学生思考实数在实际生活中的应用,如面积、体积计算等。

让学生举例说明,培养解决实际问题的能力。

七年级数学下册第六章实数6.3实数教案(新版)新人教版

七年级数学下册第六章实数6.3实数教案(新版)新人教版

6.3 实数(第1课时)教学目标1.了解无理数和实数的概念.2.知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应.3.了解数的范围由有理数扩大到实数后,一些概念、运算等的一致性及其发展变化. 教学重点实数的运算.教学难点实数的运算教学内容一、导入新课使用计算器计算,把下列有理数写成小数的形式,你有什么发现?3,-53,847,119,911,95. 二、新课教学我们发现,上面的有理数都可以写成有限小数或者无限循环小数的形式,即3=3.0;-53=-0.6;847=5.875;119=0.81;911=1.2;95=0.5. 归纳:任何一个有理数都可以写成有限小数或无限循环小数的形式.反过来,任何有限小数或无限循环小数也都是有理数.无限不循环小数又叫无理数,π=3.1415926…也是无理数;有理数和无理数统称为实数.由于非0有理数和无理数都有正负之分,实数也有正负之分,所以实数还可以按大小分类如下:探究:如下图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O′,点O′对应的数是多少?从图中可以看出,OO′的长是这个圆的周长π,所以点O′的对应数是π.这样,无理数π可以用数轴上的点表示出来.事实上,每一个无理数都可以用数轴上的一个点表示出来,这就是说,数轴上的点有些表示有理数,有些表示无理数,当从有理数扩充到实数以后,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大.数a的相反数是-a,这里a表示任意一个实数.一个正实数的绝对值是本身;一个负实数的绝对值是它的相反数;0的绝对值是0.三、课堂练习四、课堂小结1.什么叫做无理数?2.什么叫做有理数?3.有理数和数轴上的点一一对应吗?4.无理数和数轴上的点一一对应吗?5.实数和数轴上的点一一对应吗?五、布置作业教学反思:6.3 实数(第2课时)教学内容实数的运算.一、导入新课1. 用字母来表示有理数的乘法交换律、乘法结合律、乘法分配律.2. 用字母表示有理数的加法交换律和结合律.3. 平方差公式、完全平方公式.4. 有理数的混合运算顺序.复习以前知识,导入新课的教学.二、实例探究1. 思考:(1)2的相反数是,-π的相反数是,0的相反数是 .(2)2=,-π=,0= .数A的相反数是-a,这里A表示任意一个实数.一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.即设A表示一个实数,则2. 例题例1 (1)分别写出-6,π-3.14的相反数;(2)指出-5,1-33各是什么数的相反数;-的绝对值;(3)求364(4)已知一个数的绝对值是3,求这个数.当数从有理数扩充到实数以后,实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且正数及0可以进行开方运算,任意一个实数可以进行开立方运算. 在进行实数的运算时,有理数的运算法则及运算性质等同样适用.例2 计算下列各式的值:(1);3+(2)33+23.(-2)2在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似的有限小数去代替无理数,再进行计算.三、课堂小结1. 实数的运算法则及运算律;2. 实数的相反数和绝对值的意义.四、布置作业教学反思:。

新人教版七年级下册第六章6.3《实数》教案

新人教版七年级下册第六章6.3《实数》教案

《实数》教学设计一、学习目标1、了解无理数、实数的概念和分类,知道实数和数轴上的点一一对应,能估算无理数的大小。

2、了解实数的运算法则及运算律,准确地进行实数范围内的运算。

二、新课导入1的平方根是 __,算术平方根是 .2、一个数的立方根等于它本身,这个数是 .3、 2.078=0.2708=,则y =( )A.0.8966 B.0.008966C.89.66 D.0.00008966三、自主学习认真阅读课本第53页至第54页的内容。

Ⅰ、完成下面练习,并体验知识点的形成过程。

1、使用计算器计算,把下列有理数写成小数的形式,你有什么发现?3=______,25=______,35-=______, 427=______,119 =______,911=______。

我们发现,上面的有理数都可以写成________ 或者 的形式。

归纳 事实上,任何一个 都可以写成有限小数或无限循环小数的形式。

反过来, 任何__________________________也都是有理数。

观察 我们知道,很多数的平方根和立方根都是无限不循环小数,无限不循环小数又叫做 _ __。

例如 , , , 等都是 ____ 。

3.14159265π=也是 。

结论 有理数和无理数统称为 。

试一试 我们学过的数可以这样分类:{实数像有理数一样,无理数也有正负之分。

,π是,,π-是。

由于非0有理数和无理数都有正负之分,所以实数也可以这样分类:{四、合作探究从课本图6.3-1中可以看出OO'的长是,所以O'对应的数是.总结(1)每个有理数都可以用数轴上的点来表示。

事实上,每一个也都可以用数轴上的表示出来。

这就是说,数轴上的点有些表示数,有些表示数。

(2)当从有理数扩充到实数以后,实数与数轴上的点就是___ 的,即每一个实数都可以用数轴上的_来表示;反过来,数轴上的每一个点都是表示一个。

(3)与有理数一样,对于数轴上的任意两个点,边的点所表示的实数总比_ 边的点表示的实数。

【核心素养目标】数学人教版七年级下册6.3 第1课时 实数 教案含反思(表格式)

【核心素养目标】数学人教版七年级下册6.3 第1课时 实数 教案含反思(表格式)

6.3实数第1课时实数教学内容第1课时实数课时1核心素养目标1.会用数学的眼光观察现实世界:经历无理数的探究过程,理解无理数的概念,会判断一个数是否为无理数,培养自主学习的习惯,发展理论与实践相结合的.2.会用数学的思维思考现实世界:进一步理解有理数和无理数的概念,会把实数进行分类,培养归纳、分类的实践能力,发展数据意识.3.会用数学的语言表示现实世界:理解实数与数轴的关系,并进行相关运用,初步培养数学结合思想,形成数学的表达能力.知识目标1.经历无理数的探究过程,理解无理数的概念,会判断一个数是否为无理数;2.进一步理解有理数和无理数的概念,会把实数进行分类;3.理解实数与数轴的关系,并进行相关运用.教学重点1.经历无理数的探究过程,理解无理数的概念,会判断一个数是否为无理数;2.进一步理解有理数和无理数的概念,会把实数进行分类.教学难点理解实数与数轴的关系,并进行相关运用.教学准备课件教学过程主要师生活动设计意图一、新课导入一、创设情境导入新知数学危机师生活动:教师播放课件准备的视频,并跟随视频介绍著名数学家毕达哥拉斯及他的伟大发现.填一填师生活动:学生独立思考共同完成填空.提问1:上表中所填的这些数都是有理数吗?预设:±1,±2,-1,1 都是有理数提问2:,也是有理数吗?设计意图:运用数学家的伟大发现吸引学生的注意力,感受本节课在数学研究历史中的重要地位,激发学习兴趣.设计意图:回顾平方和立方根的计算方法,引出无理数及实数的概念.33224 ,,二、探究新知二、探究新知知识点一:实数的概念和分类问题 1 我们知道有理数包括整数和分数,利用计算器把下列分数写成小数的形式,它们有什么特征?-师生活动:学生独立完成操作后,小组讨论,并派代表回答发现,教师总结——它们都可以化成有限小数或无限循环小数的形式.追问:把导入中的 , 以及我们学习过的π化成小数,你能发现什么?预设: , 和π都能化成无限不循环小数.总结:1.有理数(整数、分数)可以写成有限小数或无限循环小数;2.反过来,任何有限小数或无限循环小数也都是有理数;3.很多数的平方根和立方根都是无限不循环小数.无理数的概念 无限不循环小数叫做无理数. 例如导入中的 ,以及我们学习过的π. 思考1: 是无理数吗?2.020 020 002 000 02…是无理数吗?师生活动:学生独立思考并作答,教师完成总结.常见的一些无理数:(1) 化简后含有 π 的数;(2) 开不尽方的数开方所得结果;(3) 有规律但不循环的小数,如1.01001000…思考2:我们将有理数和无理数统称为实数.你能设计意图:层层深入,加强新旧知识之间的练习,让学生自主探究,感悟无理数的概念.设计意图:锻炼学生归纳总结的能力吗,培养迁移思想.254911-,,,,532711933224±,,33224±,33224±,,π2仿照有理数的分类给实数分类吗?师生活动:学生独立思考,在教师的引导下共同完成实数思维导图.合作交流因为非零有理数和无理数都有正负之分,那么你能类比有理数的分类方法,按大小对实数分类吗?师生活动:学生独立思考,在教师的引导下共同完成实数思维导图.练习1.下列说法中,正确的是().A.实数分为正实数和负实数B.无限小数都是无理数C. 无理数都是无限小数D. 带根号的数都是无理数2.有一个数值转换器,原理如图所示,当输入的x 为81 时,输出的y是().A. 9B.C.3D.9393知识点二:实数与数轴上的点思考1:每个有理数都可以用数轴上的点来表示,无理数是否也能用数轴上的点表示出来呢?探究:能不能在数轴上找的表示π 的点呢?师生活动:学生独立思考,教师提示学生思考π在几何图形上的作用——π可以用于计算圆的周长和面积.教师播放课件,展示半径为 1 的圆上的点A滚动一周的运动路径,顺势指出——因为半径为 1 的圆的周长为π,所以数轴上点A表示的数是无理数π.思考2:你能在数轴上表示出和-吗?师生活动:学生独立思考,因为之前学习是利用正方形边长进行探究,学生容易联想到边长为1 的正方形的对角线长就是.教师引导学生利用尺规作图,自己在数轴上尝试画出和- 的点.追问:通过思考1、思考2你能发现什么呢?设计意图:从学生熟悉的无理数着手,让学生自主探究无理数在数轴上的表示方法;进一步发展数形结合思想,培养自主学习能力.设计意图:进一步发展数形结合思想,培养自主学习能力,发展学生的作图能力.2222222222师生活动:学生独立思考后小组讨论,选代表回答.预设1:每一个实数都可以用数轴上的一个点来表示;预设2:数轴上的每一点都表示一个实数.总结:实数和数轴上的点是一一对应的.例2如图所示,数轴上A,B两点表示的数分别为-1 和,点B关于点A的对称点为C,求点C所表示的实数.师生活动:学生独立思考解答问题,教师提示可以利用作图帮助计算,选一名学生板书,教师规范解题思路.例3如图所示,数轴上A,B两点表示的数分别为和5.1,则A,B两点之间表示整数的点共有()A.6 个B.5 个C.4 个D.3 个师生活动:数轴上的点与实数一一对应,结合数轴分析,可轻松得出结论.学生独立完成操作.比较大小教师叙述:与有理数一样,实数也可以比较大小:数轴上右边的点表示的实数比左边的点表示的实数大.与有理数一样,在实数范围内:正实数大于零,负实数小于零,正实数大于负实数.设计意图:掌握实数和数轴上的点是一一对应的的性质,培养总结归纳和交流合作能力.设计意图:提高学生的运用能力和解题能力,渗透数形结合思想.设计意图:进一步掌握实数和数轴上的点是一一对应的的性质,锻炼学生的运用能力和解题能力.设计意图:学习并掌握实数范围内比较大小的方法.三、当堂练习例4 在数轴上表示下列各点,比较它们的大小,并用“ < ”连接它们.师生活动:学生独立完成习题,选学生回答,其他同学判断正误,教师总结解题技巧:熟记常见数的算术平方根的约数值有助于解题. 三、当堂练习 1. 下列说法正确的是( )A. a 一定是正实数B. 是有理数C. 是有理数D. 数轴上任一点都对应一个有理数2.把下列各数填入相应的括号内: (1)有理数: (2)无理数: (3)整数: (4)负数: (5)分数: (6)实数:3. 比较下列各组数的大小. -3;设计意图:锻炼并掌握实数范围内比较大小的方法,提高解题能力.设计意图:考查学生对实数的概念及性质的掌握.设计意图:帮助学生巩固梳理有理数、无理数、正数、负数、分数、实数的概念.设计意图:考查学生运用立方根几何意义的进行计算的能力.板书设计第1课时 实数无限不循环小数叫做无理数.★实数和数轴上的点是一一对应的.正实数大于零,负实数小于零,正实数大于负实数.课后小结教师与学生一起回顾本节课所学的主要内容,梳理并完善知识思维导图.221722(1)π 3.146(2)31.731,;,;52(3)53223(4)23--,;,;(1)π 3.146(2)31.731,;,;52(3)53223(4)23--,;,;本节课学习了实数的有关概念和实数的分类,把我们所学过的数在有理。

6.3实数(教案)

6.3实数(教案)
5.实数与数轴:理解实数与数轴的关系,能够将实数在数轴上准确表示。
本节课将结合具体实例,让学生掌握实数的概念和性质,并熟练运用实数进行运算。
二、核心素养目标
1.理解并掌握实数的定义、分类及性质,培养学生的数学抽象和逻辑推理能力。
2.通过实数的运算和数轴表示,提高学生的数学运算和直观想象能力。
3.培养学生运用实数知识解决实际问题的能力,提升数学建模和数据分析素养。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解实数的基本概念。实数是包括有理数和无理数的数集,它是数学中最重要的数系之一,因为它们能够表示数轴上的所有点。
2.案例分析:接下来,我们来看一个具体的案例。通过分析圆的周长与直径的比例,即π,来理解无理数的概念和性质。
3.重点难点解析:在讲授过程中,我会特别强调实数的分类和实数的运算这两个重点。对于难点部分,如无理数的运算,我会通过具体的例子和步骤来帮助大家理解。
2.教学难点
-无理数的理解:无理数的概念对学生来说是抽象的,难以直观理解。
-无理数的运算:无理数的运算规则和有理数不同,学生容易混淆。
-实数与数轴的结合:将实数与数轴对应起来,学生需要建立起抽象与直观的联系。
-解决实际问题时实数的应用:将实数应用于解决具体问题,学生可能难以找到与实数知识的联系。
举例解释:
-实数的运算:熟练进行实数的四则运算,特别是无理数的运算规则。
-实数与数轴的关系:理解实数在数轴上的表示,能够通过数轴直观地分析实数的大小关系。
举例解释:
-通过π和√2等无理数的引入,强调实数的广泛性,不仅仅局限于分数和整数。
-通过具体的运算例子,如(√3+√2)×(√3-√2),强调实数运算的规则和性质。

(人教版)七年级下册数学配套说课稿:6.3第1课时《实数》

(人教版)七年级下册数学配套说课稿:6.3第1课时《实数》

(人教版)七年级下册数学配套说课稿:6.3 第1课时《实数》一. 教材分析人教版七年级下册数学第6.3节《实数》是学生在学习了有理数和无理数的基础上,进一步对实数进行系统的认识和理解。

本节课的主要内容是实数的定义、性质以及实数与数轴的关系。

教材通过丰富的例题和习题,使学生能够熟练掌握实数的概念,并能够运用实数解决一些实际问题。

二. 学情分析七年级的学生已经学习了有理数和无理数,对数的运算和性质有一定的了解。

但是,学生对实数的认识还比较模糊,对实数与数轴的关系还没有直观的感受。

因此,在教学过程中,需要引导学生通过观察、思考、探究,从而深入理解实数的内涵,建立实数与数轴的联系。

三. 说教学目标1.知识与技能目标:理解实数的定义,掌握实数的性质,能够运用实数解决一些实际问题。

2.过程与方法目标:通过观察、思考、探究,培养学生抽象思考和解决问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识和创新精神。

四. 说教学重难点1.教学重点:实数的定义和性质。

2.教学难点:实数与数轴的关系。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等。

2.教学手段:利用多媒体课件、数轴模型等辅助教学。

六. 说教学过程1.导入新课:通过复习有理数和无理数的概念,引出实数的定义。

2.探究实数的性质:学生分组讨论,每组探究实数的一个性质,如:实数的加减乘除运算规律、实数的平方根等。

3.实数与数轴的关系:引导学生观察数轴,发现实数与数轴的对应关系,如:正实数对应数轴上的右半部分,负实数对应数轴上的左半部分等。

4.巩固练习:布置一些有关实数的练习题,让学生巩固所学知识。

5.课堂小结:教师引导学生总结本节课的主要内容和实数的应用。

七. 说板书设计板书设计如下:实数的定义和性质1.实数的定义:有理数 + 无理数2.实数的性质:a.加减乘除运算规律b.实数的平方根c.实数与数轴的对应关系八. 说教学评价教学评价主要包括以下几个方面:1.学生对实数的定义和性质的掌握程度。

6.3《实数》第一课时教学设计

6.3《实数》第一课时教学设计

6.3 实数(第1课时)教学设计一主要内容及分析本节先将有理数与有限小数和无限循环小数统一起来,再采用与有理数对照的方法引入无理数,接着类比用数轴上的点表示有理数,指出实数与数轴上的点的一一对应关系.本节篇幅不长,内容不多,但是知识比较抽象,与以前的数学知识差异较大,学生学起来不会很顺手,但它是以后学习二次根式,一元二次方程的基础,需要老师在教学中精心构思,认真落实。

二教材解析教材采用与有理数对照的方法引入无理数,并给出实数的概念及分类,这个扩充过程体现了概念,运算等的一致性,又体现了它们的发展变化。

教材通过数轴探究了无理数也可以用数轴上的点来表示,并指出实数和数轴上的点一一对应。

三目标以及目标解析教学目标:(1)了解无理数和实数的概念.(2)知道实数与数轴上的点具有一一对应关系,初步体会“数形结合”的数学思想.教学重点:了解无理数和实数的概念,知道实数与数轴上的点的一一对应关系. 教学难点:用数轴上的点表示无理数目标解析1.给出一些实数,能判断哪些是有理数,哪些是无理数,并且自己能举例说明。

2.在数轴上画出表示 π 和 2 的点,指出实数与数轴上的点一一对应。

四 教学过程(一)探究新知1.有理数包括整数和分数,如果将下列分数写成小数的形式,你有什么发现? 2327119554911 , ,,,.2.你认为小数除了上述类型外,还会有什么类型的小数?3.无理数的概念:无限不循环小数叫无理数⎪⎪⎪⎩⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负有理数正有理数有理数实数0因为非零有理数和无理数都有正负之分,那么你能类比有理数的分类方法,按大小关系对实数分类吗?⎪⎩⎪⎨⎧负实数正实数实数0例 下列实数中,哪些是有理数?哪些是无理数?5,3.14,0,3 ,43- ,,0.57∙∙ ,- π,0.1010010001……(相邻两个1之间0的个数逐次加1).我们知道,每个有理数都可以用数轴上的点来表示,那么无理数是否也可以用数轴上的点表示出来呢?你能在数轴上找到表示无理数的点吗?前面我们学过:用两个面积为1的小正方形,拼成一个面积为2的大正方形直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O,点O' 对应的数是多少?为什么?事实上:任何一个无理数都可以用数轴上的点来表示当数的范围从有理数扩充到实数以后,实数与数轴上的点是一一对应的。

人教版数学七年级下册6.3实数(第1课时)说课稿

人教版数学七年级下册6.3实数(第1课时)说课稿
四、教学过程设计
(一)导入新课
为了快速吸引学生的注意力和兴趣,我计划采用以下导入方式:首先,我会提出一个与学生生活相关的问题,例如:“你在生活中有没有遇到过需要计算长度、面积或体积的情况?这些计算背后涉及到的是数学中的实数概念。”通过这个问题,激发学生对实数的思考和兴趣。接下来,我会利用多媒体课件展示一些实际生活中的图片,如房屋面积、物体体积等,让学生观察和思考这些图片背后所涉及到的实数概念。通过这种方式,引导学生主动参与课堂,激发他们对实数的学习兴趣。
(四)总结反馈
在总结反馈阶段,我会引导学生进行自我评价,并提供有效的反馈和建议。首先,我会让学生回顾和总结本节课所学的实数概念和性质,引导他们明确自己的学习成果和不足之处。接着,我会根据学生的表现和作业情况,及时给予反馈和建议,帮助他们巩固知识、提高能力。此外,我还会鼓励学生相互交流和分享,互相学习和进步。
(二)媒体资源
为了辅助教学,我将使用多媒体课件、实物模型和数学软件。多媒体课件可以通过图文并茂的方式呈现实数的概念和性质,吸引学生的注意力,帮助学生更好地理解和记忆。实物模型如数轴和几何模型,可以直观地展示实数与有理数、无理数的关系,让学生更直观地感受和理解。数学软件可以用于实数的运算和实际问题的解决,提高学生的操作能力和解决问题的能力。这些媒体资源在教学中的作用是提供丰富的学习资源和工具,激发学生的学习兴趣,帮助学生更好地理解和掌握知识。
(五)作业布置
课后作业的目的是帮助学生巩固所学知识,提升应用能力。我计划布置以下作业:首先,我会让学生完成一些实数的概念和性质的练习题,帮助他们巩固对实数的理解和掌握。其次,我会设计一些实际问题的练习题,让学生运用所学的实数知识解决实际问题,提升他们的应用能力。此外,我还会安排一些拓展性的作业,鼓励学生进行自主探索和发现,激发他们的学习兴趣和动力。

《6.3实数》第一课时教学反思

《6.3实数》第一课时教学反思

《6.3实数》教学反思本节课是在数的开方的基础上引进无理数的概念,并将数从有理数的范围扩充到实数范围.从有理数到实数,在本节课中为了突出重点,突破难点,我将教学分层次进行,先从一个探究活动开始,并引导学生探究其特点,发现它们不同于有限小数和无限循环小数,也就是一类不同于有理数的数,由此给出无理数的概念。

无限不循环小数的概念在前面两节已经出现,通过强调无限不循环小数与有限小数和无限循环小数的区别,以使学生更好理解有理数和无理数是两类不同的数.授完课后,我颇有几分感慨,认为有以下几方面是值得反思的。

一、备好一课,功夫不少。

按照上一课的学生学习情况,我从上一课学生最为热心的逼近法估值入手,让学生进一步认识2的算术平方根是实实在在的数、是无限不循环小数,还展示了学生用逼近法探究的简单过程,体会了也是无限不循环小数,回忆了我们前面学过的无限不循环小数π,渗透德育教育:我国古代数学家祖冲之比西方早1000多年研究得到圆周率π在 3.1415926和3.1415927之间,,并体会小数点后7位的感性认识:用10千米为半径画一个圆,测量这个圆的周长,测量误差在1厘米之内。

感受到祖冲之的了不起!带领学生深切地体会到新数——无理数。

让学生认识有理数是有限小数和无限不循环小数也是教学难点,通过有理数的分类,总结整数可以看成分母为1的分数,也是有限小数,分数可以化成小数,可能是有限小数,也有可能是无限循环小数。

总结出:有理数总可以写成分数的形式(其中m、n是整数,m不为0),安排学生计算,找出它们的循环节,体会分数总是有理数。

二、多媒体教学手段的恰当运用可以增加课堂的灵活性。

多媒体课件的使用,极大的调动了学生的积极性。

PPT课件多彩生动鲜艳的特点,极大的刺激了学生的感官,给学生留下来深刻的印象。

课件同时也减少了教师课堂上写、画的工夫,节约时间,可以在短时间内解决较多的问题,提高了课堂效率,同时有效地解决了内容繁多课时不足的矛盾。

《6.3实数》教学设计教学反思-2023-2024学年初中数学人教版12七年级下册

《6.3实数》教学设计教学反思-2023-2024学年初中数学人教版12七年级下册

《实数》教学设计方案(第一课时)一、教学目标本节课的教学目标是让学生掌握实数的概念及其分类,包括有理数和无理数的定义与特征。

通过教学,使学生能够理解实数在数学中的基础地位,并能够运用实数进行简单的计算和比较。

同时,培养学生的逻辑思维能力和数学应用意识。

二、教学重难点教学重点:实数的概念及其分类,包括有理数和无理数的定义和特点。

教学难点:无理数的理解及其在实数中的地位,以及实数与数轴的对应关系。

三、教学准备教师需准备实数相关的教学课件、教案及练习题。

学生需预习实数的基本概念,并准备笔记本和练习本。

同时,教室需配备多媒体设备以便展示实数相关的图形和实例。

在在开始新的学习旅程之前,我们需要确保基本概念的清晰理解。

这包括实数的基本定义、性质和运算规则等。

准备笔记本和练习本是学习过程中的重要步骤,它们能帮助我们系统地记录知识点,同时通过练习来巩固和理解所学内容。

教室里的多媒体设备则是一种强大的教学工具,可以为我们展示实数相关的图形和实例。

通过图表和动画,我们可以更直观地理解实数的概念和运算,比如数轴上的点、实数的四则运算等。

这些实例的展示将使抽象的数学概念变得生动而具体,更易于理解和记忆。

在技术日新月异的今天,我们应充分利用这些工具和资源,让学习变得更加高效和有趣。

这不仅适用于实数的学习,也适用于其他任何学科的学习。

让我们准备好笔记本、练习本和多媒体设备,开启一场充满探索和发现的学习之旅吧!四、教学过程:一、导引新知在课堂的开始,教师首先需要以一种引人入胜的方式导入新课,以激发学生的学习兴趣和好奇心。

教师可以通过生活中的实例,如温度的表示、市场上的商品标价等,引出实数的概念。

通过这些实例,让学生感受到实数与生活的紧密联系,从而为后续的学习打下基础。

二、概念阐释接着,教师需要详细解释实数的概念。

首先,明确实数包括有理数和无理数,其中有理数包括整数、正数、负数和分数。

无理数则是不能表示为两个整数的比的数,如圆周率π和自然对数的底数e等。

人教版七年级数学下册 6.3 第1课时 实数 导学案

人教版七年级数学下册 6.3 第1课时 实数 导学案

第六章实数,无理.问题1:如何在数轴上表示一个无理数?问题2:,π这样的无理数对应的点吗?怎么找?例2.如图所示,数轴上A ,B 两点表示的数分别为-1,点B 关于点A 的对称点为C ,求点C 所表示的实数.方法总结:本题主要考查了实数与数轴之间的对应关系,其中利用了:当点C 为点B 关于点A 的对称点时,点C 到点A 的距离等于点B 到点A 的距离;两点之间的距离为两数差的绝对值.例3.如图所示,数轴上A ,B 两点表示的数分别为和5.1,则A ,B 两点之间表示整数的点共有( )A .6个B .5个C .4个D .3个探究点3:实数的大小比较知识要点:实数的大小比较与有理数规定的大小一样,数轴上右边的点表示的实数比左边的点表示的实数大. 例4.在数轴上表示下列各点,比较它们的大小,并用“<”连接它们.--例5.1位于( )1.下列说法正确的是( ) A.a 一定是正实数 B.2217是有理数 C.是有理数 D.数轴上任一点都对应一个有理数2.有一个数值转换器,原理如下,当输x=81时,输出的y 是 ( ) ±33.判断快枪手——看谁最快最准!(1)实数不是有理数就是无理数. ( ) (2)无理数都是无限不循环小数. ( ) (3)带根号的数都是无理数. ( ) (4)无理数都是无限小数. ( ) (5)无理数一定都带根号. ( ) 4.把下列各数填入相应的括号内: 有理数:{ }; 无理数:{ }; 整数:{ }; 负数:{ }; 分数:{ }; 实数:{ }.5. 6的大小.9-3564π∙6.043-39-313.0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。




6.3实数第一课时
无理数
实数
实数的分类
实数的基本运算




【学以致用】
1、的相反数是,绝对值
2、绝对值等于的数是,的平方是
3、
4、求绝对值
5.已知实数 、 、 在数轴上的位置如图所示:
O
化简
6.下列说法正确的有()
⑴不存在绝对值最小的无理数⑵不存在绝对值最小的实数
⑶不存在与本身的算术平方根相等的数⑷比正实数小的数都是负实数
三、增强了提问的有效性。
问题是思维的起点,问题又是创造的前提。在这节课中,有这几个问题提的很好:、化成小数是一个什么样的数呢?你能根据有理数的分类方法对实数进行分类吗?有理数可以在数轴上表示出来,那么无理数又如何?实数呢?这些提问在教学中一方面为学生提问起了示范作用,另一方面为顺利完成教学任务奠定了基础。
(3)无理数与无理数之积是无理数⑷无理数与无理数之积是无理数
(5)所有的有理数都可以在数轴上表示,反过来,数轴上所有的点都表示有理数。()
A. 1个B. 2个C. 3个D.4个
4、若实数 满足 ,则()
A. B. C. D.





你学到了什么?
教学反思
这节课,我认为有以下几方面是值得肯定的。
一、建立融洽的师生关系是发挥学生主体作用的基础。
当然,从课堂上学生的反应情况看我知道了他们在学法中的欠缺以及我自身的欠缺。
一是没能及时下课。对学生而言,只看问题的表面,不能够举一反三,同一题目不能归类去解决,造成做练习时花费了过多的时间;对我而言,由于第一次给这些学生上课,把学生的程度估计太高,题量大、难度也有点大,致使有些学生在有限的时间内不能及时回答问题,造成时间的浪费。
学习方法
小组合作




【知识回顾】
1、什么是有理数?如何分类?
2、 是这样的数么?
【合作交流,解读探究】
【活动1】
探究:使用计算器计算,把下列有理数写成小数的形式,你有什么发现?
3, , , , ,
我们发现,上面的有理数都可以写成有限小数或者无限循环小数的形式,即
, , ,
, ,
归纳:任何一个有理数都可以写成有限小数或无限循环小数的形式。反过来,任何有限小数或无限循环小数也都是有理数.
良好的师生关系是激发学生学习兴趣提高课堂教学质量基础。我在开课前鼓励学生道:虽然这是下午第一节课,但同学们的精神状态很好,希望我们合作愉快。接着,我与两位同学握了一下手,拉近了师生之间的距离。又说;只要同学们放松心情,放活思维,我们会顺利完成本节课的学习任务的,同学们加油哦。几句鼓励赞美的话,就能使学生树立起克服困难、积极进取的信心和志气,因而在课堂上同学们认真思考,积极发言,课堂气氛活跃。
讨论: 是不是有理数呢?为什么?
归纳: 不是整数,不是有限小数,也不是无限循环小数,所以 不是有理数.
是无限不循环小数
定义:无限不循环小数又叫无理数, 也是无理数
结论:有理数和无理数统称为实数
学生举例:有理数无理数
整理:(实数分类)
试探练习,回授调节:
1.填空:在-19,3.878787…, , , ,1.414, , , 这些数中,
导学案设计
题目
6.3实数第一课时
课时
1
学校
星火
一中
教者
刘占国
年级
七年
学科
数学
设计
来源
自我设计
教学
时间
2013年4月1日
学习
目标
1.了解无理数和实数的概念
2.会对实数按照一定的标准进行分类;知道实数和数轴上的点的关系.能估算无理数的大小
3.了解实数范围内相反数和绝对值的意义
重点
正确理解实数的概念
难点
理解实数的概念;体会数轴上的点与实数是一一对应的.
⑸非负实数中最小的数是0
A. 2个B. 3个C. 4个D.5个
【能力提升】:
1、把下列各数填入相应的集合内:
有理数集合{}无理数集合{}
整数集合{}分数集合{}
实数集合{}
2、下列各数中,是无理数的是()A. B. C. D.
3、已知四个命题,正确的有()
(1)有理数与无理数之和是无理数⑵有理数与无理数之积是无理数
二是鼓励性语言使用得不够多,没有大面积调动学生回答问题的积极性。另外,有的同学回答问题后没有及时给予肯定。
探究
1.如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O′,点O′的坐标是多少?
O’
O
2.
总结:
①事实上,每一个无理数都可以用数轴上的__________表示出来,这就是说,数轴上的点有些表示__________,有些表示__________
当从有理数扩充到实数以后,实数与数轴上的点就是__________的,即每一个实数都可以用数轴上的__________来表示;反过来,数轴上的__________都是表示一个实数
有理数是;
无理数是;
2.判断对错:对的画“√”,错的画“×”.
(1)无理数都是无限小数.()
(2)无限小数都是无理数.()
(3) 是无理数.()
(4) 是无理数.()
(5)带根号的数都是无理数.()
(6)有理数都是实数.()
【活动2】
我们知道,每个有理数都可以用数轴上的点来表示。无理数是否也可以用数轴上的点来表示呢?
2与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数______
讨论:当数从有理数扩充到实数以后,有理数关于相反数和绝对值的意义同样适合于实数吗?
总结数 的相反数是______,这里 表示任意____________。一个正实数的绝对值是______;一个负实数的绝对值是它的______;0的绝对值是______
二、多媒体教学手段的恰当运用增加了课堂的灵活性。
在这节课中我恰当地采用多媒体教学手段,从设置练习、到新知的归纳,尤其是在数轴上找表示圆周率和及的点时,采用动态演示,使学生更加直观地看到了任意一个无理数都可以在数轴上找到一个点和它对应,降低问题的难度,学生很容易就接受了,从而扩展了数学空间,让学生拥有自由遨游的学习空间,徜徉在知识的海洋里。
相关文档
最新文档