洛必达法则巧解高考压轴题(好东西)
(完整word版)导数结合洛必达法则巧解高考压轴题
6 0001lim()limlim11xxxxxeegxx, 即当0x时,()1gx 所以()1gx,即有1a. 综上所述,当1a,0x时,()0fx成立. (全国大纲理)设函数()1xfxe. (Ⅰ)证明:当1x时,()1xfxx; (Ⅱ)设当0x时,()1xfxax,求a的取值范围. 解:(Ⅰ)略 (Ⅱ)应用洛必达法则和导数 由题设0x,此时()0fx. ①当0a时,若1xa,则01xax,()1xfxax不成立; ②当0a时,当0x时,()1xfxax,即11xxeax; 若0x,则aR; 若0x,则11xxeax等价于111xexax,即1xxxxeeaxex. 记1()xxxxeegxxex,则2222221'()=(2)()()xxxxxxxxexeeegxexexexxex. 记2()2xxhxexe,则'()2xxhxexe,''()+20xxhxee. 因此,'()2xxhxexe在(0),上单调递增,且'(0)0h,所以'()0hx, 即()hx在(0),上单调递增,且(0)0h,所以()0hx. 因此2'()=()0()xxegxhxxex,所以()gx在(0),上单调递增. 由洛必达法则有 000011lim()limlimlim122xxxxxxxxxxxxxxxeexeexegxxexexeexe,即当0x时, 1()2gx,即有1()2gx,所以12a.综上所述,a的取值范围是1(,]2. (全国2理)设函数sin()2cosxfxx. (Ⅰ)求()fx的单调区间; (Ⅱ)如果对任何0x≥,都有()fxax≤,求a的取值范围. 解:(Ⅰ)22(2cos)cossin(sin)2cos1()(2cos)(2cos)xxxxxfxxx. 当2π2π2π2π33kxk(kZ)时,1cos2x,即()0fx;
导数结合洛必达法则巧解高考压轴题精选推荐PPT
x1
x1 1 x2
x1 1 x2
x1 2x
即当 x 1 时, g(x) 0 ,即当 x 0 ,且 x 1 时, g(x) 0 .
因为 k g(x) 恒成立,所以 k 0 .综上所述,当 x 0 ,且 x 1 时, f (x) ln x k 成立, k 的取值范围为 (,0] .
x 1 x
4.运用洛必达和导数解 新课标理
设函数 f (x) ex 1 x ax2 . (Ⅰ)若 a 0 ,求 f (x) 的单调区间;
(Ⅱ)当 x 0 时, f (x) 0 ,求 a 的取值范围.
4.运用洛必达和导数解 新课标理
应用洛必达法则和导数
(Ⅱ)当 x 0 时, f (x) 0 ,即 ex 1 x ax2.
求 a 的取值范围.
全国1理
设函数 f (x) ex ex . (Ⅰ)证明: f (x) 的导数 f (x) ≥ 2 ; (Ⅱ)若对所有 x ≥ 0 都有 f (x) ≥ ax ,
求 a 的取值范围.
全国2理
设函数 f (x) sin x . 2 cos x
(Ⅰ)求 f (x) 的单调区间;
1 1 x2
h(x )
0,与题设矛盾.综上可得, k
的取值范围为 (,0] .
新课标理的常规解法
注:分三种情况讨论:① k 0 ;② 0 k 1;③ k 1 不易想到. 尤其是② 0 k 1时,许多考生都停留在此层面,举反例 x (1, 1 )
1 k
更难想到.而这方面根据不同题型涉及的解法也不相同,这是高中阶段 公认的难点,即便通过训练也很难提升.
明理由.
新课标理
设函数 f ( x) 运用洛必达和导数解 年新课标理 = ex 1 x ax2 .
导数结合洛必达法则巧解高考压轴题
导数结合洛必达法则巧解高考压轴题第一部分:历届导数高考压轴题(全国2理)设函数f (x )=(x +1)ln(x +1),若对所有的x ≥0,都有f (x )≥ax 成立,求实数a 的取值范围.(全国1理)已知函数()11axx f x e x -+=-.(Ⅰ)设0a >,讨论()y f x =的单调性; (Ⅱ)若对任意()0,1x ∈恒有()1f x >,求a 的取值范围.(全国1理)设函数()e e xxf x -=-. (Ⅰ)证明:()f x 的导数()2f x '≥; (Ⅱ)若对所有0x ≥都有()f x ax ≥,求a 的取值范围.(全国2理)设函数sin ()2cos xf x x=+.(Ⅰ)求()f x 的单调区间;(Ⅱ)如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围.(辽宁理)设函数ln ()ln ln(1)1x f x x x x =-+++.⑴求()f x 的单调区间和极值;⑵是否存在实数a ,使得关于x 的不等式()f x a …的解集为(0,)+∞?若存在,求a 的取值范围;若不存在,试说明理由.(新课标理)设函数)(x f =21x e x ax ---.(Ⅰ)若0=a ,求)(x f 的单调区间; (Ⅱ)若当x ≥0时)(x f ≥0,求a 的取值范围.(新课标文)已知函数2()(1)xf x x ea x=--. (Ⅰ)若()f x 在1x =-时有极值,求函数()f x 的解析式;(Ⅱ)当0x ≥时,()0f x ≥,求a 的取值范围.(全国大纲理)设函数()1x f x e -=-. (Ⅰ)证明:当1x >-时,()1xf x x ≥+; (Ⅱ)设当0x ≥时,()1xf x ax ≤+,求a 的取值范围.(新课标理)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围. 例题:若不等式3s i nx x a x >-对于(0,)2x π∈恒成立,求a 的取值范围 第二部分:泰勒展开式1.2311,1!2!3!!(1)!n n x x x x x x x e e n n θ+=+++++++其中(01)θ<<; 2.231ln(1)(1),2!3!!nn n x x xx x R n -+=-+-+-+其中111(1)()(1)!1n nn n x R n xθ++=-++; 3.35211sin (1)3!5!(21)!k k nx x x x x R k --=-+-+-+-,其中21(1)cos (21)!k kn xR x k θ+=-+; 4.24221cos 1(1)2!4!(22)!k k nx x x x R k --=-+-+-+-,其中2(1)cos (2)!kkn x R x k θ=-; 第三部分:洛必达法则及其解法洛必达法则:设函数()f x 、()g x 满足: (1)lim ()lim ()0x ax af xg x →→==;(2)在()U a 内,()f x '和()g x '都存在,且()0g x '≠; (3)()lim()x af x Ag x →'=' (A 可为实数,也可以是±∞).则()()limlim ()()x ax a f x f x A g x g x →→'=='. 1.(新课标理)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=.(Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围. 常规解法(Ⅰ)略解得1a =,1b =.(Ⅱ)方法一:分类讨论、假设反证法由(Ⅰ)知l n 1()1x f x x x=++,所以22l n 1(1)(1()()(2l n11x k k x f x x x x x x---+=+--.考虑函数()h x x =+2(1)(k x x--(x >,则22(1)(1)2'()k x x h x x -++=.(i)当0k ≤时,由222(1)(1)'()k x x h x x +--=知,当1x ≠时,'()0h x <.因为(1)0h =,所以当(0,1)x ∈时,()0h x >,可得21()01h x x ⋅>-;当(1,x ∈+∞时,()0h x <,可得 21()01h x x⋅>-,从而当0x >且1x ≠时,ln ()()01x k f x x x -+>-,即ln ()1x kf x x x>+-;(ii )当01k <<时,由于当1(1,)1x k∈-时,2(1)(1)20k x x -++>,故'()0h x >,而(1)0h =,故当1(1,)1x k∈-时,()0h x >,可得21()01h x x⋅<-,与题设矛盾. (iii )当1k ≥时, '()0h x >,而(1)0h =,故当(1,)x ∈+∞时,()0h x >,可得21()01h x x⋅<-,与题设矛盾.综上可得,k 的取值范围为(0]-∞,.注:分三种情况讨论:①0k ≤;②01k <<;③1k ≥不易想到.尤其是②01k <<时,许多考生都停留在此层面,举反例1(1,)1x k∈-更难想到.而这方面根据不同题型涉及的解法也不相同,这是高中阶段公认的难点,即便通过训练也很难提升.洛必达法则解法当0x >,且1x ≠时,ln ()1x kf x x x>+-,即l n 1l n 11x x kx x x x+>++-, 也即2ln 1ln 2ln 1111x x x x x xk x x x x <+-=++--,记22ln ()11x x g x x =+-,0x >,且1x ≠则2222222222(1)ln 2(1)2(1)1'()=(ln )(1)(1)1x x x x x g x x x x x ++-+-=+--+,记221()ln 1x h x x x -=++,则22222214(1)'()+=0(1+)(1+)x x h x x x x x --=>,从而()h x 在(0,)+∞上单调递增,且(1)0h =,因此当(0,1)x ∈时,()0h x <,当(1,)x ∈+∞时,()0h x >;当(0,1)x ∈时,'()0g x <,当(1,)x ∈+∞时,'()0g x >,所以()g x 在(0,1)上单调递减,在(1,)+∞上单调递增. 由洛必达法则有2211112ln 2ln 2ln 2lim ()lim(1)1lim 1lim112x x x x x x x x x g x x x x→→→→+=+=+=+---,即当1x →时,()0g x →,即当0x >,且1x ≠时,()0g x >.因为()k g x <恒成立,所以0k ≤.综上所述,当0x >,且1x ≠时,ln ()1x kf x x x>+-成立,k 的取值范围为(0]-∞,.注:本题由已知很容易想到用分离变量的方法把参数k 分离出来.然后对分离出来的函数22ln ()11x xg x x=+-求导,研究其单调性、极值.此时遇到了“当=1x 时,函数()g x 值没有意义”这一问题,很多考生会陷入困境.如果考前对优秀的学生讲洛必达法则的应用,再通过强化训练就能掌握解决此类难题的这一有效方法.2.(新课标理)设函数2()1xf x e x a x =---.(Ⅰ)若0a =,求()f x 的单调区间; (Ⅱ)当0x ≥时,()0f x ≥,求a 的取值范围.应用洛必达法则和导数(Ⅱ)当0x ≥时,()0f x ≥,即21x e x a x--≥. ①当0x =时,a R ∈;②当0x >时,21xe x a x --≥等价于21x e xa x --≤.记21()x e xg x x --= (0+)x ∈∞,,则3(2)2'()x x e x g x x -++=.记()(2)2x h x x e x =-++ (0+)x ∈∞,,则'()(1)1xh x x e =-+,当(0+)x ∈∞,时,''()0x h x x e =>,所以'()(1)1x h x x e =-+在(0+)∞,上单调递增,且'()'(0)0h x h >=,所以()(2)2x h x x e x =-++在(0+)∞,上单调递增,且()(0)0h x h >=,因此当(0+)x ∈∞,时,3()'()0h x g x x=>,从而21()x e x g x x--=在(0+)∞,上单调递增. 由洛必达法则有,即当0x →时,1()2g x →,所以当(0+)x ∈∞,时,所以1()2g x >,因此12a ≤. 综上所述,当12a ≤且0x ≥时,()0f x ≥成立.例题:若不等式3sin x x ax >-对于(0,)2x π∈恒成立,求a 的取值范围. 应用洛必达法则和导数当(0,)2x π∈时,原不等式等价于3sin x xa x->. 记3sin ()x x f x x -=,则43sin c o'()x x x x f x x --=.记()3sin cos 2g x x x x x =--,则'()2co g xx x x=+-.因为''g x =-, '''()sin 0g x x x =-<,所以''()g x 在(0,)2π上单调递减,且''()0g x <,所以'()g x 在(0,)2π上单调递减,且'()0g x <.因此()g x 在(0,)2π上单调递减,且()0g x <,故4()'()0g x f x x=<,因此3s i n ()x x f x x -=在(0,)2π上单调递减. 由洛必达法则有3200000sin 1cos sin cos 1lim ()lim lim lim lim 3666x x x x x x x x x x f x x x x →→→→→--=====,即当0x →时,1()6g x →,即有1()6f x <.故16a ≥时,不等式3s i n x x a x >-对于(0,)2x π∈恒成立.通过以上例题的分析,我们不难发现应用洛必达法则解决的试题应满足:① 可以分离变量;②用导数可以确定分离变量后一端新函数的单调性;③出现“0”型式子.(海南宁夏文)已知函数2()(1)x f x x e ax =--.(Ⅰ)若()f x 在1x =-时有极值,求函数()f x 的解析式;(Ⅱ)当0x ≥时,()0f x ≥,求a 的取值范围.解:(Ⅰ)略(Ⅱ)应用洛必达法则和导数当0x ≥时,()0f x ≥,即2(1)x x e ax -≥. ①当0x =时,a R ∈;②当0x >时,2(1)xx ea x -≥等价于1xe a x -≥,也即1x e a x-≤.记1()x e g x x -=,(0,)x ∈+∞,则(1)1'()x x e g x x-+=.记()(1)1x h x x e =-+,(0,)x ∈+∞,则'()0xh x x e =>,因此()(1)1x h x x e =-+在(0,)+∞上单调递增,且()(0)0h x h >=,所以()'()0h x g x x=>,从而1()x e g x x -=在(0,)+∞上单调递增.由洛必达法则有0001lim ()lim lim 11x xx x x e e g x x→→→-===, 即当0x →时,()1g x → 所以()1g x >,即有1a ≤.综上所述,当1a ≤,0x ≥时,()0f x ≥成立.(全国大纲理)设函数()1x f x e -=-.(Ⅰ)证明:当1x >-时,()1xf x x ≥+; (Ⅱ)设当0x ≥时,()1xf x ax ≤+,求a 的取值范围.解:(Ⅰ)略(Ⅱ)应用洛必达法则和导数 由题设0x ≥,此时()0f x ≥.①当0a <时,若1x a >-,则01xax <+,()1xf x ax ≤+不成立;②当0a ≥时,当0x ≥时,()1xf x ax ≤+,即11x xe ax --≤+;若0x =,则a R ∈;若0x >,则11x xe ax --≤+等价于111x e x ax --≤+,即1x x x xe e a xe x-+≤-. 记1()x x x xe e g x xe x-+=-,则2222221'()=(2)()()x x x x x xx x e x e e e g x e x e xe x xe x ---+=--+--.记2()2x x h x e x e -=--+,则'()x x h x e x e -=--,''()+20x x h x e e -=->.因此,'()2x x h x e x e -=--在(0)+∞,上单调递增,且'(0)0h =,所以'()0h x >, 即()h x 在(0)+∞,上单调递增,且(0)0h =,所以()0h x >.因此2'()=()0()xxe g x h x xe x >-,所以()g x 在(0)+∞,上单调递增. 由洛必达法则有000011lim ()lim lim lim 122x x x x x x x x x x x x x x xe e xe e xe g x xe x e xe e xe →→→→-++====-+-+,即当0x →时,1()2g x →,即有1()2g x >,所以12a ≤.综上所述,a 的取值范围是1(,]2-∞.(全国2理)设函数sin ()2cos xf x x =+.(Ⅰ)求()f x 的单调区间;(Ⅱ)如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围.解:(Ⅰ)22(2cos )cos sin (sin )2cos 1()(2cos )(2cos )x x x x x f x x x +--+'==++.当2π2π2π2π33k x k -<<+(k ∈Z )时,1cos 2x >-,即()0f x '>; 当2π4π2π2π33k x k +<<+(k ∈Z )时,1cos 2x <-,即()0f x '<.因此()f x 在每一个区间2π2π2π2π33k k ⎛⎫-+ ⎪⎝⎭,(k ∈Z )是增函数, ()f x 在每一个区间2π4π2π2π33k k ⎛⎫++ ⎪⎝⎭,(k ∈Z )是减函数.解:(Ⅰ)略(Ⅱ)应用洛必达法则和导数 若0x =,则a R ∈;若0x >,则sin 2cos xax x≤+等价于sin (2cos )x a x x ≥+,即sin ()(2cos )xg x x x =+则222cos 2sin sin cos '()(2cos )x x x x x x g x x x --+=+. 记()2cos 2sin sin cos h x x x x x x x =--+, 因此,当(0,)x π∈时,'()0h x <,()h x 在(0,)π上单调递减,且(0)0h =,故'()0g x <,所以()g x 在(0,)π上单调递减,而0sin cos 1lim ()limlim (2cos )2+cos sin 3x x x x x g x x x x x x →→→===+-.另一方面,当[,)x π∈+∞时,sin 111()(2cos )3x g x x x x π=≤≤<+,因此13a ≥.。
导数结合洛必达法则巧解高考压轴题
导数结合洛必达法则巧解高考压轴题第一部分:历届导数高考压轴题(全国2理)设函数f (x )=(x +1)ln(x +1),若对所有的x ≥0,都有f (x )≥ax 成立,求实数a 的取值范围.(全国1理)已知函数()11axx f x e x -+=-.(Ⅰ)设0a >,讨论()y f x =的单调性;(Ⅱ)若对任意()0,1x ∈恒有()1f x >,求a 的取值范围.(全国1理)设函数()e e x x f x -=-. (Ⅰ)证明:()f x 的导数()2f x '≥;(Ⅱ)若对所有0x ≥都有()f x ax ≥,求a 的取值范围. (全国2理)设函数sin ()2cos xf x x=+.(Ⅰ)求()f x 的单调区间;(Ⅱ)如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围. (辽宁理)设函数ln ()ln ln(1)1xf x x x x=-+++. ⑴求()f x 的单调区间和极值;⑵是否存在实数a ,使得关于x 的不等式()f x a 的解集为(0,)+∞?若存在,求a 的取值范围;若不存在,试说明理由.(新课标理)设函数)(x f =21x e x ax ---. (Ⅰ)若0=a ,求)(x f 的单调区间;(Ⅱ)若当x ≥0时)(x f ≥0,求a 的取值范围. (新课标文)已知函数2()(1)x f x x e ax =--.(Ⅰ)若()f x 在1x =-时有极值,求函数()f x 的解析式; (Ⅱ)当0x ≥时,()0f x ≥,求a 的取值范围. (全国大纲理)设函数()1x f x e -=-.(Ⅰ)证明:当1x >-时,()1xf x x ≥+; (Ⅱ)设当0x ≥时,()1xf x ax ≤+,求a 的取值范围. (新课标理)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围. 例题:若不等式3sin x x ax >-对于(0,)2x π∈恒成立,求a 的取值范围第二部分:泰勒展开式1.2311,1!2!3!!(1)!n n xx x x x x x e e n n θ+=+++++++其中(01)θ<<;2. 231ln(1)(1),2!3!!n n n x x x x x R n -+=-+-+-+其中111(1)()(1)!1n nn n x R n x θ++=-++; 3.35211sin (1)3!5!(21)!k k n x x x x x R k --=-+-+-+-,其中21(1)cos (21)!k kn x R x k θ+=-+;4. 24221cos 1(1)2!4!(22)!k k n x x x x R k --=-+-+-+-,其中2(1)cos (2)!kk n x R x k θ=-; 第三部分:洛必达法则及其解法洛必达法则:设函数()f x 、()g x 满足: (1)lim ()lim ()0x ax af xg x →→==;(2)在()U a 内,()f x '和()g x '都存在,且()0g x '≠; (3)()lim()x a f x A g x →'=' (A 可为实数,也可以是±∞).则()()lim lim ()()x a x a f x f x A g x g x →→'=='. 1.(新课标理)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围. 常规解法(Ⅰ)略解得1a =,1b =.(Ⅱ)方法一:分类讨论、假设反证法由(Ⅰ)知ln 1()1x f x x x =++,所以22ln 1(1)(1)()()(2ln )11x k k x f x x x x x x---+=+--. 考虑函数()2ln h x x =+2(1)(1)k x x --(0)x >,则22(1)(1)2'()k x x h x x -++=. (i)当0k ≤时,由222(1)(1)'()k x x h x x +--=知,当1x ≠时,'()0h x <.因为(1)0h =,所以当(0,1)x ∈时,()0h x >,可得21()01h x x⋅>-;当(1,)x ∈+∞时,()0h x <,可得21()01h x x ⋅>-,从而当0x >且1x ≠时,ln ()()01x k f x x x -+>-,即ln ()1x kf x x x>+-; (ii )当01k <<时,由于当1(1,)1x k∈-时,2(1)(1)20k x x -++>,故'()0h x >,而(1)0h =,故当1(1,)1x k∈-时,()0h x >,可得21()01h x x ⋅<-,与题设矛盾. (iii )当1k ≥时, '()0h x >,而(1)0h =,故当(1,)x ∈+∞时,()0h x >,可得21()01h x x⋅<-,与题设矛盾.综上可得,k 的取值范围为(0]-∞,. 注:分三种情况讨论:①0k ≤;②01k <<;③1k ≥不易想到.尤其是②01k <<时,许多考生都停留在此层面,举反例1(1,)1x k∈-更难想到.而这方面根据不同题型涉及的解法也不相同,这是高中阶段公认的难点,即便通过训练也很难提升. 洛必达法则解法当0x >,且1x ≠时,ln ()1x k f x x x >+-,即ln 1ln 11x x kx x x x+>++-,也即2ln 1ln 2ln 1111x x x x x x k x x x x <+-=++--,记22ln ()11x xg x x=+-,0x >,且1x ≠ 则2222222222(1)ln 2(1)2(1)1'()=(ln )(1)(1)1x x x x x g x x x x x ++-+-=+--+, 记221()ln 1x h x x x -=++,则22222214(1)'()+=0(1+)(1+)x x h x x x x x --=>, 从而()h x 在(0,)+∞上单调递增,且(1)0h =,因此当(0,1)x ∈时,()0h x <,当(1,)x ∈+∞时,()0h x >;当(0,1)x ∈时,'()0g x <,当(1,)x ∈+∞时,'()0g x >,所以()g x 在(0,1)上单调递减,在(1,)+∞上单调递增. 由洛必达法则有2211112ln 2ln 2ln 2lim ()lim(1)1lim 1lim 0112x x x x x x x x x g x x x x→→→→+=+=+=+=---, 即当1x →时,()0g x →,即当0x >,且1x ≠时,()0g x >.因为()k g x <恒成立,所以0k ≤.综上所述,当0x >,且1x ≠时,ln ()1x kf x x x>+-成立,k 的取值范围为(0]-∞,.注:本题由已知很容易想到用分离变量的方法把参数k 分离出来.然后对分离出来的函数22ln ()11x xg x x =+-求导,研究其单调性、极值.此时遇到了“当=1x 时,函数()g x 值没有意义”这一问题,很多考生会陷入困境.如果考前对优秀的学生讲洛必达法则的应用,再通过强化训练就能掌握解决此类难题的这一有效方法. 2.(新课标理)设函数2()1x f x e x ax =---.(Ⅰ)若0a =,求()f x 的单调区间; (Ⅱ)当0x ≥时,()0f x ≥,求a 的取值范围. 应用洛必达法则和导数(Ⅱ)当0x ≥时,()0f x ≥,即21x e x ax --≥.①当0x =时,a R ∈;②当0x >时,21xe x ax --≥等价于21x e xa x--≤. 记21()x e x g x x --= (0+)x ∈∞,,则3(2)2'()x x e x g x x -++=. 记()(2)2x h x x e x =-++ (0+)x ∈∞,,则'()(1)1x h x x e =-+,当(0+)x ∈∞,时,''()0x h x xe =>,所以'()(1)1x h x x e =-+在(0+)∞,上单调递增,且'()'(0)0h x h >=,所以()(2)2x h x x e x =-++在(0+)∞,上单调递增,且()(0)0h x h >=,因此当(0+)x ∈∞,时,3()'()0h x g x x=>,从而21()x e x g x x --=在(0+)∞,上单调递增. 由洛必达法则有,即当0x →时,1()2g x →,所以当(0+)x ∈∞,时,所以1()2g x >,因此12a ≤. 综上所述,当12a ≤且0x ≥时,()0f x ≥成立. 例题:若不等式3sin x x ax >-对于(0,)2x π∈恒成立,求a 的取值范围.应用洛必达法则和导数当(0,)2x π∈时,原不等式等价于3sin x xa x ->. 记3sin ()x x f x x -=,则43sin cos 2'()x x x xf x x --=.记()3sin cos 2g x x x x x =--,则'()2cos sin 2g x x x x =+-.因为''()cos sin cos (tan )g x x x x x x x =-=-,'''()sin 0g x x x =-<,所以''()g x 在(0,)2π上单调递减,且''()0g x <,所以'()g x 在(0,)2π上单调递减,且'()0g x <.因此()g x 在(0,)2π上单调递减,且()0g x <,故4()'()0g x f x x =<,因此3sin ()x x f x x -=在(0,)2π上单调递减. 由洛必达法则有3200000sin 1cos sin cos 1lim ()lim lim lim lim 3666x x x x x x x x x x f x x x x →→→→→--=====, 即当0x →时,1()6g x →,即有1()6f x <.故16a ≥时,不等式3sin x x ax >-对于(0,)2x π∈恒成立. 通过以上例题的分析,我们不难发现应用洛必达法则解决的试题应满足:① 可以分离变量;②用导数可以确定分离变量后一端新函数的单调性;③出现“0”型式子.(海南宁夏文)已知函数2()(1)x f x x e ax =--.(Ⅰ)若()f x 在1x =-时有极值,求函数()f x 的解析式; (Ⅱ)当0x ≥时,()0f x ≥,求a 的取值范围.解:(Ⅰ)略(Ⅱ)应用洛必达法则和导数当0x ≥时,()0f x ≥,即2(1)x x e ax -≥. ①当0x =时,a R ∈;②当0x >时,2(1)xx e ax -≥等价于1xe ax -≥,也即1x e a x-≤.记1()x e g x x-=,(0,)x ∈+∞,则(1)1'()x x e g x x -+=.记()(1)1x h x x e =-+,(0,)x ∈+∞,则'()0x h x xe =>,因此()(1)1x h x x e =-+在(0,)+∞上单调递增,且()(0)0h x h >=,所以()'()0h x g x x=>,从而1()x e g x x -=在(0,)+∞上单调递增.由洛必达法则有0001lim ()lim lim 11x xx x x e e g x x→→→-===, 即当0x →时,()1g x →所以()1g x >,即有1a ≤.综上所述,当1a ≤,0x ≥时,()0f x ≥成立. (全国大纲理)设函数()1x f x e -=-. (Ⅰ)证明:当1x >-时,()1xf x x ≥+; (Ⅱ)设当0x ≥时,()1xf x ax ≤+,求a 的取值范围. 解:(Ⅰ)略(Ⅱ)应用洛必达法则和导数 由题设0x ≥,此时()0f x ≥.①当0a <时,若1x a >-,则01x ax <+,()1xf x ax ≤+不成立; ②当0a ≥时,当0x ≥时,()1x f x ax ≤+,即11x xe ax --≤+;若0x =,则a R ∈;若0x >,则11xxe ax --≤+等价于111x e x ax --≤+,即1x x x xe e a xe x -+≤-. 记1()x x xxe e g x xe x-+=-,则2222221'()=(2)()()x x x x x x x x e x e e e g x e x e xe x xe x ---+=--+--. 记2()2x x h x e x e -=--+,则'()2x x h x e x e -=--,''()+20x x h x e e -=->. 因此,'()2x x h x e x e -=--在(0)+∞,上单调递增,且'(0)0h =,所以'()0h x >,即()h x 在(0)+∞,上单调递增,且(0)0h =,所以()0h x >. 因此2'()=()0()xx e g x h x xe x >-,所以()g x 在(0)+∞,上单调递增.由洛必达法则有000011lim ()lim lim lim 122x x x x x x x x x x x x x x xe e xe e xe g x xe x e xe e xe →→→→-++====-+-+,即当0x →时, 1()2g x →,即有1()2g x >,所以12a ≤.综上所述,a 的取值范围是1(,]2-∞.(全国2理)设函数sin ()2cos xf x x =+.(Ⅰ)求()f x 的单调区间;(Ⅱ)如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围. 解:(Ⅰ)22(2cos )cos sin (sin )2cos 1()(2cos )(2cos )x x x x x f x x x +--+'==++. 当2π2π2π2π33k x k -<<+(k ∈Z )时,1cos 2x >-,即()0f x '>; 当2π4π2π2π33k x k +<<+(k ∈Z )时,1cos 2x <-,即()0f x '<. 因此()f x 在每一个区间2π2π2π2π33k k ⎛⎫-+ ⎪⎝⎭,(k ∈Z )是增函数, ()f x 在每一个区间2π4π2π2π33k k ⎛⎫++ ⎪⎝⎭,(k ∈Z )是减函数. 解:(Ⅰ)略(Ⅱ)应用洛必达法则和导数 若0x =,则a R ∈; 若0x >,则sin 2cos xax x≤+等价于sin (2cos )x a x x ≥+,即sin ()(2cos )x g x x x =+则222cos 2sin sin cos '()(2cos )x x x x x x g x x x --+=+.记()2cos 2sin sin cos h x x x x x x x =--+,因此,当(0,)x π∈时,'()0h x <,()h x 在(0,)π上单调递减,且(0)0h =,故'()0g x <,所以()g x 在(0,)π上单调递减, 而00sin cos 1lim ()limlim (2cos )2+cos sin 3x x x x x g x x x x x x →→→===+-.另一方面,当[,)x π∈+∞时,sin 111()(2cos )3x g x x x x π=≤≤<+,因此13a ≥.。
用洛必达定理来解决高考压轴题
用洛必达定理来解决高考压轴题一.洛必达法则法则1 若函数f(x) 和g(x)满足下列条件:(1) ()lim 0x af x →= 及()lim 0x ag x →=;(2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0;(3)()()lim x a f x l g x →'=',那么 ()()lim x a f x g x →=()()lim x a f x l g x →'='。
法则2 若函数f(x) 和g(x)满足下列条件:(1)()lim 0x f x →∞= 及()lim 0x g x →∞=;(2)0A∃,f(x) 和g(x)在(),A -∞与(),A +∞上可导,且g'(x )≠0;(3)()()lim x f x l g x →∞'=',那么 ()()lim x f x g x →∞=()()lim x f x l g x →∞'='。
法则3 若函数f(x) 和g(x)满足下列条件:(1) ()lim x af x →=∞及()lim x ag x →=∞;(2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0;(3)()()limx a f x l g x →'=', 那么 ()()limx af xg x →=()()limx af x lg x →'='。
利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ○1将上面公式中的x→a,x→∞换成x→+∞,x→-∞,x a+→,x a-→洛必达法则也成立。
○2洛必达法则可处理00,∞∞,0⋅∞,1∞,0∞,00,∞-∞型。
○3在着手求极限以前,首先要检查是否满足00,∞∞,0⋅∞,1∞,0∞,00,∞-∞型定式,否则滥用洛必达法则会出错。
当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。
【优质文档】用洛必达定理来解决高考压轴题
e
2x
lim
x0
e
2
1
,
2
故a 1 2
综上,知 a 的取值范围为
1 ,
。
2
2 .( 20XX 年全国新课标理)已知函数,曲线
y f ( x) 在点 (1, f (1))处的切线方程为
x 2y 3 0。 (Ⅰ)求 a 、 b 的值; (Ⅱ)如果当 x 0 ,且 x 1 时, f ( x) ln x k ,求 k 的取值范围。 x1 x
原解:(Ⅰ) f '( x)
( x 1 ln x) x
b
( x 1)2
x2
由于直线 x 2 y 3 0 的斜率为
1
,且过点
(1,1),故
2
f (1) 1,
f '(1)
1即 ,
2
b 1,
a
1
b
,
2
2
解得 a 1, b 1。
ln x 1
(Ⅱ)由(Ⅰ)知 f ( x)
,所以
x1 x
ln x k 1
(k 1)(x2 1)
,1
2
原解在处理第( II )时较难想到,现利用洛必达法则处理如下:
另解 :( II )当 x 0 时, f (x) 0,对任意实数 a,均在 f (x) 0 ;
x
e 当 x 0时, f (x) 0等价于 a
x1
2
x
x
令
gx
e x1 2
(x>0),
则
x
g ( x)
x
x
xe 2e x 2
3
x
,令
x
x
h x xe 2e x
(word完整版)导数结合洛必达法则巧解高考压轴题.doc
导数结合洛必达法则巧解高考压轴题○2 洛必达法则可处理0 0, ,0 ,1 ,,0 , 型。
2010 年和 2011 年高考中的全国新课标卷中的第 21 题中的第 ○2 步,由不等式恒成立来求参数的0 0取值范围问题,分析难度大,但用洛必达法则来处理却可达到事半功倍的效果。
则不适用,应从另外途径求极限。
洛必达法则简介: ○4 若条件符合,洛必达法则可连续多次使用,直到求出极限为止。
法则 1 若函数 f(x) 和 g(x) 满足下列条件: (1) lim f x 0 及 lim g x 0;x a x a(2) a f(x) g(x) g'(x) 0 在点 的去心邻域内, 与 可导且 ≠ ;二.高考题处理1.(2010 年全国新课标理 )设函数x 2f (x) e 1 x ax 。
(3) limx af xg xl ,(1) 若a 0,求 f (x) 的单调区间; (2) 若当 x 0时 f (x) 0,求 a 的取值范围那么 limx af xg x= limx af xg xl 。
x x原解:(1) a 0时, ( ) 1f x e x , f '( x) e 1.法则 2 若函数 f(x) 和 g(x) 满足下列条件: (1) lim f x 0 及lim g x 0;x x当 x ( ,0) 时, f '( x) 0;当 x (0, ) 时, f '( x) 0 .故 f (x) 在( ,0) 单调减少,在(2) A f 0,f(x) 和 g(x) 在 ,A 与 A, 上可导,且 g'(x) ≠0;(0, ) 单调增加(3) limxf xg x l ,x(II ) '( ) 1 2f x e ax那么 limxf xg x=limxf xg xl。
x 由(I )知 1e x ,当且仅当 x 0时等号成立 .故f '( x) x 2ax (1 2a)x ,法则 3 若函数 f(x) 和 g(x) 满足下列条件: (1) limx af x 及 lim x ag x ;从而当 1 2a 0,即 1 a 时, f '( x) 0 ( x 0) ,而 f (0) 0 ,2(2) 在点 a 的去心邻域内, f(x) 与 g(x) 可导且 g'(x) ≠0;于是当 x 0时, f (x) 0 .(3) limx af xg xl ,x x由 e 1 x(x 0) 可得 e 1 x(x 0) .从而当1 a 时, 2那么 limf x= limx af xl 。
导数结合洛必达法则巧解高考压轴题
导数结合洛必达法则巧解高考压轴题第一部分:历届导数高考压轴题(全国2理)设函数f (x )=(x +1)ln(x +1),若对所有的x ≥0,都有f (x )≥ax 成立,求实数a 的取值范围.(全国1理)已知函数()11axx f x e x -+=-.(Ⅰ)设0a >,讨论()y f x =的单调性;(Ⅱ)若对任意()0,1x ∈恒有()1f x >,求a 的取值范围.(全国1理)设函数()e e x x f x -=-. (Ⅰ)证明:()f x 的导数()2f x '≥;(Ⅱ)若对所有0x ≥都有()f x ax ≥,求a 的取值范围.(全国2理)设函数sin ()2cos xf x x=+.(Ⅰ)求()f x 的单调区间;(Ⅱ)如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围.(辽宁理)设函数ln ()ln ln(1)1xf x x x x=-+++. ⑴求()f x 的单调区间和极值;⑵是否存在实数a ,使得关于x 的不等式()f x a …的解集为(0,)+∞?若存在,求a 的取值范围;若不存在,试说明理由.(新课标理)设函数)(x f =21x e x ax ---. (Ⅰ)若0=a ,求)(x f 的单调区间;(Ⅱ)若当x ≥0时)(x f ≥0,求a 的取值范围.(新课标文)已知函数2()(1)x f x x e ax =--.(Ⅰ)若()f x 在1x =-时有极值,求函数()f x 的解析式; (Ⅱ)当0x ≥时,()0f x ≥,求a 的取值范围.(全国大纲理)设函数()1x f x e -=-. (Ⅰ)证明:当1x >-时,()1xf x x ≥+; (Ⅱ)设当0x ≥时,()1xf x ax ≤+,求a 的取值范围.(新课标理)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围.例题:若不等式3sin x x ax >-对于(0,)2x π∈恒成立,求a 的取值范围第二部分:泰勒展开式1.2311,1!2!3!!(1)!n n xx x x x x x e e n n θ+=+++++++其中(01)θ<<; 2. 231ln(1)(1),2!3!!n n n x x x x x R n -+=-+-+-+其中111(1)()(1)!1n nn n x R n x θ++=-++; 3.35211sin (1)3!5!(21)!k k n x x x x x R k --=-+-+-+-,其中21(1)cos (21)!k kn x R x k θ+=-+;4. 24221cos 1(1)2!4!(22)!k k n x x x x R k --=-+-+-+-,其中2(1)cos (2)!kk n x R x k θ=-;第三部分:洛必达法则及其解法洛必达法则:设函数()f x 、()g x 满足: (1)lim ()lim ()0x ax af xg x →→==;(2)在()U a 内,()f x '和()g x '都存在,且()0g x '≠; (3)()lim()x a f x A g x →'=' (A 可为实数,也可以是±∞).则()()lim lim ()()x a x a f x f x A g x g x →→'=='.1.(新课标理)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围. 常规解法(Ⅰ)略解得1a =,1b =.(Ⅱ)方法一:分类讨论、假设反证法由(Ⅰ)知ln 1()1x f x x x =++,所以22ln 1(1)(1)()()(2ln )11x k k x f x x x x x x---+=+--. 考虑函数()2ln h x x =+2(1)(1)k x x --(0)x >,则22(1)(1)2'()k x x h x x -++=. (i)当0k ≤时,由222(1)(1)'()k x x h x x +--=知,当1x ≠时,'()0h x <.因为(1)0h =,所以当(0,1)x ∈时,()0h x >,可得21()01h x x⋅>-;当(1,)x ∈+∞时,()0h x <,可得21()01h x x ⋅>-,从而当0x >且1x ≠时,ln ()()01x k f x x x -+>-,即ln ()1x kf x x x>+-; (ii )当01k <<时,由于当1(1,)1x k∈-时,2(1)(1)20k x x -++>,故'()0h x >,而(1)0h =,故当1(1,)1x k∈-时,()0h x >,可得21()01h x x ⋅<-,与题设矛盾. (iii )当1k ≥时, '()0h x >,而(1)0h =,故当(1,)x ∈+∞时,()0h x >,可得21()01h x x⋅<-,与题设矛盾.综上可得,k 的取值范围为(0]-∞,. 注:分三种情况讨论:①0k ≤;②01k <<;③1k ≥不易想到.尤其是②01k <<时,许多考生都停留在此层面,举反例1(1,)1x k∈-更难想到.而这方面根据不同题型涉及的解法也不相同,这是高中阶段公认的难点,即便通过训练也很难提升.洛必达法则解法当0x >,且1x ≠时,ln ()1x k f x x x >+-,即ln 1ln 11x x kx x x x+>++-, 也即2ln 1ln 2ln 1111x x x x x x k x x x x <+-=++--,记22ln ()11x xg x x =+-,0x >,且1x ≠则2222222222(1)ln 2(1)2(1)1'()=(ln )(1)(1)1x x x x x g x x x x x ++-+-=+--+, 记221()ln 1x h x x x -=++,则22222214(1)'()+=0(1+)(1+)x x h x x x x x --=>, 从而()h x 在(0,)+∞上单调递增,且(1)0h =,因此当(0,1)x ∈时,()0h x <,当(1,)x ∈+∞时,()0h x >;当(0,1)x ∈时,'()0g x <,当(1,)x ∈+∞时,'()0g x >,所以()g x 在(0,1)上单调递减,在(1,)+∞上单调递增. 由洛必达法则有2211112ln 2ln 2ln 2lim ()lim(1)1lim 1lim 0112x x x x x x x x x g x x x x→→→→+=+=+=+=---,即当1x →时,()0g x →,即当0x >,且1x ≠时,()0g x >.因为()k g x <恒成立,所以0k ≤.综上所述,当0x >,且1x ≠时,ln ()1x kf x x x>+-成立,k 的取值范围为(0]-∞,.注:本题由已知很容易想到用分离变量的方法把参数k 分离出来.然后对分离出来的函数22ln ()11x xg x x=+-求导,研究其单调性、极值.此时遇到了“当=1x 时,函数()g x 值没有意义”这一问题,很多考生会陷入困境.如果考前对优秀的学生讲洛必达法则的应用,再通过强化训练就能掌握解决此类难题的这一有效方法.2.(新课标理)设函数2()1x f x e x ax =---. (Ⅰ)若0a =,求()f x 的单调区间; (Ⅱ)当0x ≥时,()0f x ≥,求a 的取值范围. 应用洛必达法则和导数(Ⅱ)当0x ≥时,()0f x ≥,即21x e x ax --≥.①当0x =时,a R ∈;②当0x >时,21xe x ax --≥等价于21x e xa x--≤. 记21()x e x g x x --= (0+)x ∈∞,,则3(2)2'()x x e x g x x -++=. 记()(2)2x h x x e x =-++ (0+)x ∈∞,,则'()(1)1xh x x e =-+,当(0+)x ∈∞,时,''()0xh x x e =>,所以'()(1)1x h x x e =-+在(0+)∞,上单调递增,且'()'(0)0h x h >=,所以()(2)2xh x x e x =-++在(0+)∞,上单调递增,且()(0)0h x h >=,因此当(0+)x ∈∞,时,3()'()0h x g x x=>,从而21()x e x g x x --=在(0+)∞,上单调递增. 由洛必达法则有,20000111lim ()lim lim lim 222x x x x x x x e x e e g x x x →→→→---==== 即当0x →时,1()2g x →,所以当(0+)x ∈∞,时,所以1()2g x >,因此12a ≤. 综上所述,当12a ≤且0x ≥时,()0f x ≥成立.例题:若不等式3sin x x ax >-对于(0,)2x π∈恒成立,求a 的取值范围.应用洛必达法则和导数当(0,)2x π∈时,原不等式等价于3sin x xa x ->. 记3sin ()x x f x x -=,则43sin cos 2'()x x x xf x x --=. 记()3sin cos 2g x x x x x =--,则'()2cos sin 2g x x x x =+-.因为''()cos sin cos (tan )g x x x x x x x =-=-,'''()sin 0g x x x =-<,所以''()g x 在(0,)2π上单调递减,且''()0g x <,所以'()g x 在(0,)2π上单调递减,且'()0g x <.因此()g x 在(0,)2π上单调递减,且()0g x <,故4()'()0g x f x x =<,因此3sin ()x x f x x -=在(0,)2π上单调递减. 由洛必达法则有3200000sin 1cos sin cos 1lim ()lim lim lim lim 3666x x x x x x x x x x f x x x x →→→→→--=====, 即当0x →时,1()6g x →,即有1()6f x <.故16a ≥时,不等式3sin x x ax >-对于(0,)2x π∈恒成立. 通过以上例题的分析,我们不难发现应用洛必达法则解决的试题应满足: ① 可以分离变量;②用导数可以确定分离变量后一端新函数的单调性;③出现“00”型式子.(海南宁夏文)已知函数2()(1)x f x x e ax =--.(Ⅰ)若()f x 在1x =-时有极值,求函数()f x 的解析式;(Ⅱ)当0x ≥时,()0f x ≥,求a 的取值范围.解:(Ⅰ)略(Ⅱ)应用洛必达法则和导数当0x ≥时,()0f x ≥,即2(1)x x e ax -≥. ①当0x =时,a R ∈;②当0x >时,2(1)xx e ax -≥等价于1xe ax -≥,也即1x e a x-≤.记1()x e g x x-=,(0,)x ∈+∞,则(1)1'()x x e g x x -+=.记()(1)1x h x x e =-+,(0,)x ∈+∞,则'()0x h x xe =>,因此()(1)1xh x x e =-+在(0,)+∞上单调递增,且()(0)0h x h >=,所以()'()0h x g x x=>,从而1()x e g x x -=在(0,)+∞上单调递增.由洛必达法则有0001lim ()lim lim 11x xx x x e e g x x→→→-===, 即当0x →时,()1g x → 所以()1g x >,即有1a ≤.综上所述,当1a ≤,0x ≥时,()0f x ≥成立.(全国大纲理)设函数()1x f x e -=-. (Ⅰ)证明:当1x >-时,()1xf x x ≥+; (Ⅱ)设当0x ≥时,()1xf x ax ≤+,求a 的取值范围. 解:(Ⅰ)略(Ⅱ)应用洛必达法则和导数 由题设0x ≥,此时()0f x ≥.①当0a <时,若1x a >-,则01x ax <+,()1xf x ax ≤+不成立; ②当0a ≥时,当0x ≥时,()1x f x ax ≤+,即11x xe ax --≤+;若0x =,则a R ∈;若0x >,则11xxe ax --≤+等价于111x e x ax --≤+,即1x x x xe e a xe x -+≤-. 记1()x x xxe e g x xe x-+=-,则2222221'()=(2)()()x x x x x x x x e x e e e g x e x e xe x xe x ---+=--+--. 记2()2x x h x e x e -=--+,则'()2x x h x e x e -=--,''()+20x x h x e e -=->. 因此,'()2x x h x e x e -=--在(0)+∞,上单调递增,且'(0)0h =,所以'()0h x >, 即()h x 在(0)+∞,上单调递增,且(0)0h =,所以()0h x >.因此2'()=()0()xx e g x h x xe x >-,所以()g x 在(0)+∞,上单调递增. 由洛必达法则有000011lim ()lim lim lim 122x x x x x x x x x x x x x x xe e xe e xe g x xe x e xe e xe →→→→-++====-+-+,即当0x →时, 1()2g x →,即有1()2g x >,所以12a ≤.综上所述,a 的取值范围是1(,]2-∞.(全国2理)设函数sin ()2cos xf x x=+.(Ⅰ)求()f x 的单调区间;(Ⅱ)如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围. 解:(Ⅰ)22(2cos )cos sin (sin )2cos 1()(2cos )(2cos )x x x x x f x x x +--+'==++.当2π2π2π2π33k x k -<<+(k ∈Z )时,1cos 2x >-,即()0f x '>;当2π4π2π2π33k x k +<<+(k ∈Z )时,1cos 2x <-,即()0f x '<. 因此()f x 在每一个区间2π2π2π2π33k k ⎛⎫-+ ⎪⎝⎭,(k ∈Z )是增函数, ()f x 在每一个区间2π4π2π2π33k k ⎛⎫++ ⎪⎝⎭,(k ∈Z )是减函数.解:(Ⅰ)略(Ⅱ)应用洛必达法则和导数sin ()2cos xf x ax x=≤+若0x =,则a R ∈; 若0x >,则sin 2cos xax x≤+等价于sin (2cos )x a x x ≥+,即sin ()(2cos )x g x x x =+ 则222cos 2sin sin cos '()(2cos )x x x x x xg x x x --+=+. 记()2cos 2sin sin cos h x x x x x x x =--+,2'()2cos 2sin 2cos cos212sin cos212sin 2sin 2sin (sin )h x x x x x x x x x x x x x x x =---+=--+=-=-因此,当(0,)x π∈时,'()0h x <,()h x 在(0,)π上单调递减,且(0)0h =,故'()0g x <,所以()g x 在(0,)π上单调递减, 而00sin cos 1lim ()limlim (2cos )2+cos sin 3x x x x x g x x x x x x →→→===+-.另一方面,当[,)x π∈+∞时,sin 111()(2cos )3x g x x x x π=≤≤<+,因此13a ≥.。
导数结合洛必达法则巧解高考压轴题
导数结合洛必达法则巧解高考压轴题第一部分:历届导数高考压轴题(全国2理)设函数f (x )=(x +1)ln(x +1),若对所有的x ≥0,都有f (x )≥ax 成立,求实数a 的取值范围.(全国1理)已知函数()11axx f x e x -+=-.(Ⅰ)设0a >,讨论()y f x =的单调性;(Ⅱ)若对任意()0,1x ∈恒有()1f x >,求a 的取值范围. (全国1理)设函数()e e x x f x -=-. (Ⅰ)证明:()f x 的导数()2f x '≥;(Ⅱ)若对所有0x ≥都有()f x ax ≥,求a 的取值范围. (全国2理)设函数sin ()2cos xf x x=+.(Ⅰ)求()f x 的单调区间;(Ⅱ)如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围.(辽宁理)设函数ln ()ln ln(1)1xf x x x x=-+++. ⑴求()f x 的单调区间和极值;⑵是否存在实数a ,使得关于x 的不等式()f x a …的解集为(0,)+∞?若存在,求a 的取值范围;若不存在,试说明理由. (新课标理)设函数)(x f =21x e x ax ---. (Ⅰ)若0=a ,求)(x f 的单调区间;(Ⅱ)若当x ≥0时)(x f ≥0,求a 的取值范围. (新课标文)已知函数2()(1)x f x x e ax =--.(Ⅰ)若()f x 在1x =-时有极值,求函数()f x 的解析式; (Ⅱ)当0x ≥时,()0f x ≥,求a 的取值范围. (全国大纲理)设函数()1x f x e -=-. (Ⅰ)证明:当1x >-时,()1xf x x ≥+; (Ⅱ)设当0x ≥时,()1xf x ax ≤+,求a 的取值范围. (新课标理)已知函数ln ()1a x bf x x x =++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围.例题:若不等式3sin x x ax >-对于(0,)2x π∈恒成立,求a 的取值范围第二部分:泰勒展开式1.2311,1!2!3!!(1)!n n xx x x x x x e e n n θ+=+++++++其中(01)θ<<; 2.231ln(1)(1),2!3!!nn n x x x x x R n -+=-+-+-+其中111(1)()(1)!1n nn n x R n xθ++=-++;3.35211sin (1)3!5!(21)!k k nx x x x x R k --=-+-+-+-,其中21(1)cos (21)!k kn xR x k θ+=-+;4. 24221cos 1(1)2!4!(22)!k k nx x xx R k --=-+-+-+-,其中2(1)co s(2)!k kn x R x k θ=-; 第三部分:洛必达法则及其解法洛必达法则:设函数()f x 、()g x 满足:(1)lim ()lim ()0x ax af xg x →→==;(2)在()U a 内,()f x '和()g x '都存在,且()0g x '≠; (3)()lim()x a f x A g x →'=' (A 可为实数,也可以是±∞).则()()lim lim ()()x a x a f x f x A g x g x →→'=='. 1.(新课标理)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围. 常规解法(Ⅰ)略解得1a =,1b =.(Ⅱ)方法一:分类讨论、假设反证法由(Ⅰ)知l n1()1x f x x x=++,所以22l n 1(1)(1()()(2ln11x kk x f x x x x x x---+=+--.考虑函数()2lh x x =+2(1)(1)k x x--(0x >,则22(1)(1)2'()k x x h x x -++=.(i)当0k ≤时,由222(1)(1)'()k x x h x x +--=知,当1x ≠时,'()0h x <.因为(1)0h =,所以当(0,1)x ∈时,()0h x >,可得21()01h x x⋅>-;当(1,)x ∈+∞时,()0h x <,可得21()01h x x ⋅>-,从而当0x >且1x ≠时,ln ()()01x kf x x x-+>-,即ln ()1x k f x x x>+-;(ii )当01k <<时,由于当1(1,)1x k∈-时,2(1)(1)20k x x -++>,故'()0h x >,而(1)0h =,故当1(1,)1x k∈-时,()0h x >,可得21()01h x x ⋅<-,与题设矛盾. (iii )当1k ≥时, '()0h x >,而(1)0h =,故当(1,)x ∈+∞时,()0h x >,可得21()01h x x⋅<-,与题设矛盾.综上可得,k 的取值范围为(0]-∞,.注:分三种情况讨论:①0k ≤;②01k <<;③1k ≥不易想到.尤其是②01k <<时,许多考生都停留在此层面,举反例1(1,)1x k∈-更难想到.而这方面根据不同题型涉及的解法也不相同,这是高中阶段公认的难点,即便通过训练也很难提升. 洛必达法则解法当0x >,且1x ≠时,ln ()1x k f x x x >+-,即ln 1ln 11x x kx x x x+>++-, 也即2ln 1ln 2ln 1111x x x x x x k x x x x <+-=++--,记22ln ()11x xg x x=+-,0x >,且1x ≠则2222222222(1)ln 2(1)2(1)1'()=(ln )(1)(1)1x x x x x g x x x x x ++-+-=+--+, 记221()ln 1x h x x x -=++,则22222214(1)'()+=0(1+)(1+)x x h x x x x x --=>, 从而()h x 在(0,)+∞上单调递增,且(1)0h =,因此当(0,1)x ∈时,()0h x <,当(1,)x ∈+∞时,()0h x >;当(0,1)x ∈时,'()0g x <,当(1,)x ∈+∞时,'()0g x >,所以()g x 在(0,1)上单调递减,在(1,)+∞上单调递增. 由洛必达法则有2211112ln 2ln 2ln 2lim ()lim(1)1lim 1lim 0112x x x x x x x x x g x x x x→→→→+=+=+=+=---, 即当1x →时,()0g x →,即当0x >,且1x ≠时,()0g x >. 因为()k g x <恒成立,所以0k ≤.综上所述,当0x >,且1x ≠时,ln ()1x kf x x x>+-成立,k 的取值范围为(0]-∞,. 注:本题由已知很容易想到用分离变量的方法把参数k 分离出来.然后对分离出来的函数22ln ()11x xg x x =+-求导,研究其单调性、极值.此时遇到了“当=1x 时,函数()g x 值没有意义”这一问题,很多考生会陷入困境.如果考前对优秀的学生讲洛必达法则的应用,再通过强化训练就能掌握解决此类难题的这一有效方法. 2.(新课标理)设函数2()1x f x e x ax =---. (Ⅰ)若0a =,求()f x 的单调区间; (Ⅱ)当0x ≥时,()0f x ≥,求a 的取值范围. 应用洛必达法则和导数(Ⅱ)当0x ≥时,()0f x ≥,即21x e x ax --≥.①当0x =时,a R ∈;②当0x >时,21x e x a x --≥等价于21x e xa x--≤. 记21()x e x g x x --= (0+)x ∈∞,,则3(2)2'()x x e x g x x -++=. 记()(2)2x h x x e x =-++ (0+)x ∈∞,,则'()(1)xh x x e =-+,当(0+)x ∈∞,时,''()0x h x xe =>,所以'()(1)1x h x x e =-+在(0+)∞,上单调递增,且'()'(0)0h x h >=,所以()(2)2x h x x e x =-++在(0+)∞,上单调递增,且()(0)0h x h >=,因此当(0+)x ∈∞,时,3()'()0h x g x x=>,从而21()x e x g x x --=在(0+)∞,上单调递增. 由洛必达法则有, 即当0x →时,1()2g x →,所以当(0+)x ∈∞,时,所以1()2g x >,因此12a ≤. 综上所述,当12a ≤且0x ≥时,()0f x ≥成立. 例题:若不等式3sin x x ax >-对于(0,)2x π∈恒成立,求a 的取值范围.应用洛必达法则和导数当(0,)2x π∈时,原不等式等价于3sin x xa x->. 记3sin ()x x f x x -=,则43sin cos 2'()x x x xf x x --=.记()3sin cos 2g x x x x x =--,则'()2cos sin 2g x x x x =+-. 因为''()cos sin cos (tan )g x x x x x x x =-=-,'''()sin 0g x x x =-<,所以''()g x 在(0,)2π上单调递减,且''()0g x <,所以'()g x 在(0,)2π上单调递减,且'()0g x <.因此()g x 在(0,)2π上单调递减,且()0g x <,故4()'()0g x f x x =<,因此3sin ()x x f x x -=在(0,)2π上单调递减.由洛必达法则有3200000sin 1cos sin cos 1lim ()lim lim lim lim 3666x x x x x x x x x x f x x x x →→→→→--=====, 即当0x →时,1()6g x →,即有1()6f x <.故16a ≥时,不等式3sin x x ax >-对于(0,)2x π∈恒成立. 通过以上例题的分析,我们不难发现应用洛必达法则解决的试题应满足:① 可以分离变量;②用导数可以确定分离变量后一端新函数的单调性;③出现“0”型式子.(海南宁夏文)已知函数2()(1)x f x x e ax =--.(Ⅰ)若()f x 在1x =-时有极值,求函数()f x 的解析式;(Ⅱ)当0x ≥时,()0f x ≥,求a 的取值范围.解:(Ⅰ)略(Ⅱ)应用洛必达法则和导数当0x ≥时,()0f x ≥,即2(1)x x e ax -≥.①当0x =时,a R ∈;②当0x >时,2(1)xx e ax -≥等价于1xe ax -≥,也即1x e a x-≤.记1()x e g x x -=,(0,)x ∈+∞,则(1)1'()x x e g x x -+=.记()(1)1x h x x e =-+,(0,)x ∈+∞,则'()0xh x x e=>,因此()(1)1x h x x e =-+在(0,)+∞上单调递增,且()(0)0h x h >=,所以()'()0h x g x x=>,从而1()x e g x x -=在(0,)+∞上单调递增. 由洛必达法则有0001lim ()lim lim 11x xx x x e e g x x→→→-===, 即当0x →时,()1g x → 所以()1g x >,即有1a ≤.综上所述,当1a ≤,0x ≥时,()0f x ≥成立.(全国大纲理)设函数()1x f x e -=-. (Ⅰ)证明:当1x >-时,()1xf x x ≥+; (Ⅱ)设当0x ≥时,()1xf x ax ≤+,求a 的取值范围.解:(Ⅰ)略(Ⅱ)应用洛必达法则和导数 由题设0x ≥,此时()0f x ≥.①当0a <时,若1x a >-,则01x ax <+,()1xf x ax ≤+不成立;②当0a ≥时,当0x ≥时,()1x f x ax ≤+,即11x xe ax --≤+;若0x =,则a R ∈;若0x >,则11xxe ax --≤+等价于111x e x ax --≤+,即1x x x xe e a xe x-+≤-.记1()x x x xe e g x xe x-+=-,则2222221'()=(2)()()x x x xx x x x e x e e e g x e x e xe x xe x ---+=--+--. 记2()2x xh x e x e -=--+,则'()x xh x e x e -=--,''()+20x x h x e e -=->.因此,'()2x x h x e x e -=--在(0)+∞,上单调递增,且'(0)0h =,所以'()0h x >,即()h x 在(0)+∞,上单调递增,且(0)0h =,所以()0h x >.因此2'()=()0()xx e g x h x xe x >-,所以()g x 在(0)+∞,上单调递增.由洛必达法则有000011lim ()lim lim lim 122x x x x x x x x x x x x x x xe e xe e xe g x xe x e xe e xe →→→→-++====-+-+,即当0x →时,1()2g x →,即有1()2g x >,所以12a ≤.综上所述,a 的取值范围是1(,]2-∞.(全国2理)设函数sin ()2cos xf x x=+.(Ⅰ)求()f x 的单调区间;(Ⅱ)如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围. 解:(Ⅰ)22(2cos )cos sin (sin )2cos 1()(2cos )(2cos )x x x x x f x x x +--+'==++. 当2π2π2π2π33k x k -<<+(k ∈Z )时,1cos 2x >-,即()0f x '>; 当2π4π2π2π33k x k +<<+(k ∈Z )时,1cos 2x <-,即()0f x '<. 因此()f x 在每一个区间2π2π2π2π33k k ⎛⎫-+ ⎪⎝⎭,(k ∈Z )是增函数, ()f x 在每一个区间2π4π2π2π33k k ⎛⎫++ ⎪⎝⎭,(k ∈Z )是减函数. 解:(Ⅰ)略(Ⅱ)应用洛必达法则和导数 若0x =,则a R ∈; 若0x >,则sin 2cos xax x≤+等价于sin (2cos )x a x x ≥+,即sin ()(2cos )xg x x x =+则222cos 2sin sin cos '()(2cos )x x x x x xg x x x --+=+. 记()2cos 2sin sin cos h x x x x x x x =--+,因此,当(0,)x π∈时,'()0h x <,()h x 在(0,)π上单调递减,且(0)0h =,故'()0g x <,所以()g x 在(0,)π上单调递减,而00sin cos 1lim ()limlim (2cos )2+cos sin 3x x x x x g x x x x x x →→→===+-.另一方面,当[,)x π∈+∞时,sin 111()(2cos )3x g x x x x π=≤≤<+,因此13a ≥.。
妙用洛必达法则-2023年新高考数学导数压轴题(解析版)
妙用洛必达法则【典型例题】例1.已知f(x)=(x+1)ln x.(1)求f(x)的单调区间;(2)若对任意x≥1,不等式xf(x)x+1-ax+a≤0恒成立,求a的取值范围.【解析】解:(1)f(x)的定义域为(0,+∞),f′(x)=ln x+1+1 x,令g(x)=ln x+1+1x(x>0),则g (x)=1x-1x2=x-1x2所以当0<x<1时,g (x)<0;当x>1时,g (x)>0,所以g(x)在(0,1)单调递减,在(1,+∞)单调递增,所以x>0时,g(x)>g(1)=2>0,即f(x)在(0,+∞)上单调递增,所以f(x)的增区间为(0,+∞),无减区间.(2)对任意x≥1,不等式xf(x)x+1-ax+a≤0恒成立等价于对任意x≥1,ln x-a x-1x≤0恒成立.当x=1,a∈R对任意x>1,不等式xf(x)x+1-ax+a≤0恒成立等价于对任意x>1,a≥x ln xx2-1恒成立.记m(x)=x ln xx2-1(x>1),则m (x)=(1+ln x)(x2-1)-2x2ln x(x2-1)2=x2-1-(1+x2)ln x(x2-1)2=1 x2+11-2x2+1-ln x (x2-1)2,记t(x)=1-21+x2-ln x(x>1),则t (x)=4x(1+x2)2-1x=4x2-(1+x2)2x(1+x2)2=-(1-x2)2x(1+x2)2<0,所以t(x)在(1,+∞)单调递减,又t(1)=0,所以,x>1时,t(x)<0,即m (x)<0,所以m(x)在(1,+∞)单调递减.所以m(x)max<m(1)=limx→1x ln xx2-1=limx→1x ln xx+1-0x-1=x ln xx+1x=1=x+1-ln x(x+1)2x=1=12,综上所述,a的取值范围是12,+∞.例2.设函数f(x)=ln(x+1)+a(x2-x),其中a∈R.(1)a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)讨论函数f(x)极值点的个数,并说明理由;(3)若∀x>0,f(x)≥0成立,求a的取值范围.【解析】解:(1)当a=1时,切点为(1,ln2),则f′(x)=1x+1+2x-1,所以f′(1)=32,切线方程为y-ln2=32(x-1),即3x-2y+2ln2-3=0,所以切线方程为:3x-2y+2ln2-3=0;(2)由题意可知,函数f(x)的定义域为(-1,+∞),则f′(x)=1x+1+a(2x-1)=2ax2+ax-a+1x+1,令g(x)=2ax2+ax-a+1,x∈(-1,+∞),①当a=0时,f′(x)>0,函数f(x)在(-1,+∞)上单调递增,无极值点,②当a>0时,△=a(9a-8),当0<a≤89时,△≤0,g(x)≥0,f′(x)≥0,所以f(x)在(-1,+∞)上单调递增,无极值点,当a>89时,△>0,设方程2ax2+ax-a+1=0的两个根,x1,x2,且x1=-a-9a2-8a4a,x2=-a+9a2-8a4a,此时x1<x2,因为x1+x2=-12,x1<-14,x2>-14,g(-1)=1>0,所以-1<x1<-14,因为x∈(-1,x1),(x2,+∞)时,g(x)>0,f′(x)>0,函数f(x)单调递增,x∈(x1,x2)时,g(x)<0,f′(x)<0,函数f(x)单调递减,所以函数有两个极值点,当a<0时,△>0,设方程2ax2+ax-a+1=0的两个根,x1,x2,且x1=-a-9a2-8a4a,x2=-a+9a2-8a4a,此时x1>x2,因为g(-1)=1>0,所以x2<-1,所以,x∈(-1,x1)时,g(x)>0,f′(x)>0,函数f(x)单调递增,当x∈(x2,+∞)时,g(x)<0,f′(x)<0,函数f(x)单调递减,所以函数有一个极值点,综上可知,当a<0时,函数f(x)有一个极值点;当0≤a≤89时,函数f(x)无极值点;当a>89时,函数f(x)有两个极值点;(3)当0≤a≤89时,函数f(x)在(0,+∞)上单调递增,因为f(0)=0,所以x∈(0,+∞)时,f(x)>0,符合题意,当89<a≤1时,g(0)>0,得x2<0,所以函数f(x)在(0,+∞)上单调递增,又因为f(0)=0,所以x∈(0,+∞)时,f(x)>0,符合题意,当a>1时,由g(0)<0,得x2>0,所以x∈(0,x2)时,函数f(x)单调递减,因为f(0)=0,所以x∈(0,x2)时,f(x)<0时,不符合题意,当a<0时,设h(x)=x-ln(x+1),因为x∈(0,+∞)时,h′(x)=1-1x+1=xx+1>0,所以h(x)在(0,+∞)上单调递增,所以当x∈(0,+∞)时,h(x)>h(0)=0,即h(x+1)<x,可得f(x)<x+a(x2-x)=ax2+(1-a)x,当x>1-1a时,ax2+(1-a)x<0,此时f(x)<0,不合题意,综上,a的取值范围为[0,1].例3.已知函数f(x)=x2-mx-e x+1.(1)若函数f(x)在点(1,f(1))处的切线l经过点(2,4),求实数m的值;(2)若关于x的方程|f(x)|=mx有唯一的实数解,求实数m的取值范围.【解析】解:(1)f (x)=2x-m-e x,∴在点(1,f(1))处的切线l的斜率k=f (1)=2-e-m,又f(1)=2-e-m,∴切线l的方程为y-(2-e-m)=(2-e-m)(x-1),即l:y=(2-e-m)x,由l经过点(2,4),可得4=2(2-e-m)⇒m=-e.(2)证明:易知|f(0)|=0=m×0⇒x=0为方程的根,由题只需说明当x>0和x<0时原方程均没有实数解即可.①当x>0时,若m<0,显然有mx<0,而|f(x)|≥0恒成立,此时方程显然无解,若m=0,f(x)=x2-e x+1⇒f (x)=2x-e x,f (x)=2-e x,令f (x)>0⇒x<ln2,故f (x)在(0,ln2)单调递增,在(ln2,+∞)单调递减,故f (x)<f (ln2)=2ln2-2<0⇒f(x)在(0,+∞)单调递减⇒f(x)<f(0)=0,从而|f(x)|>0,mx=0×x=0,此时方程|f(x)|=mx也无解.若m>0,由|f(x)|=mx⇒m=x+1x-e xx-m,记g(x)=x+1x-e xx-m,则g (x)=(x-1)(x+1-e x)x2,设h(x)=x+1-e x,则h (x)=1-e x<0有(0,+∞)恒成立,∴h(x)<h(0)=0恒成立,故令g (x )>0⇒0<x <1⇒g (x )在(0,1)上递增,在(1,+∞)上递减⇒g (x )≤g (1)=2-e -m <0⇒|g (x )|≥e -2+m >m ,可知原方程也无解,由上面的分析可知x >0时,∀m ∈R ,方程|f (x )|=mx 均无解.②当x <0时,若m >0,显然有mx <0,而|f (x )|≥0恒成立,此时方程显然无解,若m =0,和①中的分析同理可知此时方程|f (x )|=mx 也无解.若m <0,由|f (x )|=mx ⇒-m =x +1x -e x x-m,记g (x )=x +1x -e x x -m ,则g(x )=(x -1)(x +1-e x )x 2,由①中的分析知h (x )=x +1-e x <0,故g (x )>0在(-∞,0)恒成立,从而g (x )在(-∞,0)上单调递增,当x →0时,g (x )→lim x →0-g (x )=lim x →0-x 2+1-e x x -m =lim x →0-2x -e x1-m =-1-m ,如果-1-m ≤0,即m ≥-1,则|g (x )|>m +1,要使方程无解,只需-m ≤m +1⇒m ≥-12,即有-12≤m <0如果-1-m >0,即m <-1,此时|g (x )|∈[0,+∞),方程-m =|g (x )|一定有解,不满足.由上面的分析知x <0时,∀m ∈-12,+∞ ,方程|f (x )|=mx 均无解,综合①②可知,当且仅当m ∈-12,+∞ 时,方程|f (x )|=mx 有唯一解,∴m 的取值范围为-12,+∞ .【同步练习】1.设函数f (x )=e x -1-x -ax 2,(1)若a =0,求f (x )的单调区间;(2)若当x ≥0时f (x )≥0,求a 的取值范围.【解析】(1)a =0时,f (x )=e x -1-x ,f '(x )=e x -1.当x ∈(-∞,0)时,f '(x )<0;当x ∈(0,+∞)时,f '(x )>0.故f (x )在(-∞,0)单调减少,在(0,+∞)单调增加.(2)当x =0时,f (x )=0,对于任意实数a ,f (x )≥0恒成立;当x >0时,f (x )≥0等价于a ≤e x -1-x x 2,令g (x )=e x -x -1x 2(x >0),则g(x )=xe x -2e x +x +2x 3,令h (x )=xe x -2e x +x +2(x >0),则h (x )=xe x -e x +1,h (x )=xe x >0,所以h (x )在(0,+∞)上为增函数,h (x )>h (0)=0,所以h (x )在(0,+∞)上为增函数,h (x )>h (0)=0,所以g (x)>0,g(x)在(0,+∞)上为增函数.而limx→0+(e x-1-x)=0,limx→0+(x2)=0,由洛必达法则知,lim x→0+e x-1-xx2=limx→0+e x-12x=limx→0+e x2=12,故a≤12.综上得a的取值范围为-∞,1 2.2.设函数f(x)=ln(x+1)+a(x2-x),其中a∈R.(1)讨论函数f(x)极值点的个数,并说明理由;(2)若∀x>0,f(x)≥0成立,求a的取值范围.【解析】(1)f(x)=ln(x+1)+a(x2-x),定义域为(-1,+∞)f (x)=1x+1+a(2x-1)=a(2x-1)(x+1)+1x+1=2ax2+ax+1-ax+1,当a=0时,f (x)=1x+1>0,函数f(x)在(-1,+∞)为增函数,无极值点.设g(x)=2ax2+ax+1-a,g(-1)=1,Δ=a2-8a(1-a)=9a2-8a,当a≠0时,根据二次函数的图像和性质可知g(x)=0的根的个数就是函数f(x)极值点的个数.若Δ=a(9a-8)≤0,即0<a≤89时,g(x)≥0,f(x)≥0函数在(-1,+∞)为增函数,无极值点.若Δ=a(9a-8)>0,即a>89或a<0,而当a<0时g(-1)≥0此时方程g(x)=0在(-1,+∞)只有一个实数根,此时函数f(x)只有一个极值点;当a>89时方程g(x)=0在(-1,+∞)都有两个不相等的实数根,此时函数f(x)有两个极值点;综上可知当0≤a≤89时f(x)的极值点个数为0;当a<0时f(x)的极值点个数为1;当a>89时,f(x)的极值点个数为2.(2)函数f(x)=ln(x+1)+a(x2-x),∀x>0,都有f(x)≥0成立,即ln(x+1)+a(x2-x)≥0恒成立,设h(x)=-ln x+1x2-x,则h (x)=-1x+1(x2-x)+(2x-1)ln(x+1)(x2-x)2=(2x-1)-x2-x(2x-1)(x+1)+ln(x+1)(x2-x)2,设φ(x)=-x2-x(2x-1)(x+1)+ln(x+1),则φ (x)=(x2-x)(4x+1)(2x-1)2(x+1)2,所以x∈0,1 2和x∈12,1时,φ (x)<0,所以φ(x)在对应区间递减,x∈(1,+∞)时,φ (x)>0,所以φ(x)在对应区间递增,因为φ(0)=0,limx→12+-x2-x(2x-1)(x+1)>0,φ(1)=ln2>0,所以x∈(0,1)和x∈(1,+∞)时,h (x)>0,所以h(x)在(0,1)与(1,+∞)上递增.当x∈0,1时,x2-x<0,所以a≤-ln x+1x2-x,由h(x)的单调性得,a≤limx→0-ln x+1x2-x=limx→0-1x+12x-1=limx→0-12x-1x+1=1;当x=1时,f(x)=0,恒成立;当x∈1,+∞时,x2-x>0,所以a≥-ln x+1x2-x,由h(x)的单调性得,所以a≥-ln x+1x2-x=limx→+∞-ln x+1x2-x=limx→+∞-1x+12x-1=limx→+∞-12x-1x+1=0,综上,a∈0,13.已知函数f(x)=e x,g(x)=bx+1,若f(x)≥g(x)对于任意x∈R恒成立,求b的取值集合.【解析】e x≥bx+1恒成立,即e x-1≥bx.当x=0时显然成立,即b∈R.当x>0时,b<e x-1x,令F(x)=e x-1x,则F(x)=e x(x-1)+1x2,令G(x)=e x(x-1)+1,则G (x)=xe x>0,所以G(x)递增,所以G(x)>G(0)=0,所以F (x)在(0,+∞)上恒成立.所以F(x)在(0,+∞)上递增,根据洛必达法则得,limx→0+e x-1x=limx→0+e x1=1,所以b≤1.同理,当x<0时,b≥1.综上所述,b的取值集合为1 .4.设函数f(x)=ln(x+1),g(x)=xf (x),x≥0,其中f (x)是f(x)的导函数,若f(x)≥ag(x)恒成立,求实数a的取值范围.【解析】已知f(x)≥ag(x)恒成立,即ln(x+1)≥axx+1恒成立.当x=0时,a为任意实数,均有不等式恒成立.当时x>0,不等式变形为a≤(x+1)ln(x+1)x恒成立.令h(x)=(x+1)ln(x+1)x,则h(x)=x-ln(x+1)x2,再令φ(x)=x-ln(x+1),则φ (x)=xx+1.因为x>0,所以φ (x)>0,所以φ(x)在(0,+∞)上递增,从而有φ(x)>φ(0)=0.进而有h (x)>0,所以h(x)在(0,+∞)上递增.当x→0+时,有(x+1)ln(x+1)→0,x→0,由洛必达法则得limx→0+h(x)=limx→0+(x+1)ln(x+1)x=limx→0+ln(x+1)+11=1,所以当x→0+时,h(x)→1.所以a≤(x+1)ln(x+1)x恒成立,则a≤1.综上,实数的取值范围为(-∞,1].5.若不等式sin x>x-ax3对于x∈0,π2恒成立,求a的取值范围.【解析】当x∈0,π2时,原不等式等价于a>x-sin xx3.记f(x)=x-sin xx3,则f (x)=3sin x-x cos x-2xx4.记g(x)=3sin x-x cos x-2x,则g (x)=2cos x+x sin x-2.因为g (x)=x cos x-sin x=cos x(x-tan x),g (x)=-x sin x<0,所以g (x)在0,π2上单调递减,且g (x)<0,所以g (x)在0,π2上单调递减,且g (x)<0.因此g(x)在0,π2上单调递减,且g(x)<0,故f (x)=g(x)x4<0,因此f(x)=x-sin xx3在0,π2上单调递减.由洛必达法则有lim x→0f(x)=limx→0x-sin xx3=limx→01-cos x3x2=limx→0sin x6x=limx→0cos x6=16即当x→0时,g(x)→16,即有f(x)<16.故a≥16时,不等式sin x>x-ax3对于x∈0,π2恒成立.6.设函数f(x)=1-e-x.设当x≥0时,f(x)≤xax+1,求a的取值范围.【解析】应用洛必达法则和导数由题设x≥0,此时f(x)≥0.(1)当a<0时,若x>-1a,则xax+1<0,f(x)≤xax+1不成立;(2)当a≥0时,当x≥0时,f(x)≤xax+1,即1-e -x≤xax+1;若x=0,则a∈R;若x>0,则1-e-x≤xax+1等价于1-e-xx≤1ax+1,即a≤xe x-e x+1xe x-x.记g(x)=xe x-e x+1xe x-x,则g (x)=e2x-x2e x-2e x+1xe x-x2=e x xe x-x 2e x-x2-2+e-x.记h(x)=e x-x2-2+e-x,则h (x)=e x-2x-e-x,h (x)=e x+e-x-2>0.因此,h (x)=e x-2x-e-x在(0,+∞)上单调递增,且h (0)=0,所以h (x)>0,即h(x)在(0,+∞)上单调递增,且h(0)=0,所以h(x)>0.因此g (x)=e xxe x-x2h(x)>0,所以g(x)在(0,+∞)上单调递增.由洛必达法则有lim x→0g(x)=limx→0xe x-e x+1xe x-x=limx→0xe xe x+xe x-1=limx→0e x+xe x2e x+xe x=12,即当x→0时,g(x)→12,即有g(x)>12,所以a≤12.综上所述,a的取值范围是-∞,12.。
导数结合洛必达法则巧解高考压轴题
设函数f(x)=(x+1)ln(x+1),若对所有的x≥0,都有f(x)≥ax成立,求实数a的取值范围.解析:解法1:令g(x)=(x+1)ln(x+1)-ax,对函数g(x)求导数:g′(x)=ln(x+1)+1-a,令g′(x)=0,解得x=ea-1-1.(1)当a≤1时,对所有x>0,g′(x)>0,所以g(x)在[0,+∞)上是增函数.又g(0)=0,所以对x≥0,有g(x)≥g(0),即当a≤1时,对于所有x≥0,都有f(x)≥ax.(2)当a>1时,对于0<x<ea-1-1,g′(x)<0,所以g(x)在(0,ea-1-1)是减函数.又g(0)=0,所以对0<x<ea-1-1,有g(x)<g(0),即f(x)<ax.所以当a>1时,不是对所有的x≥0,都有f(x)≥ax成立.综上a的取值范围是(-∞,1].解法2:令g(x)=(x+1)ln(x+1)-ax,于是不等式f(x)≥ax成立即为g(x)≥g(0)成立.对g(x)求导数得g′(x)=ln(x+1)+1-a,令g′(x)=0,解得x=ea-1-1,当x>ea-1-1时,g′(x)>0,g(x)为增函数,当-1<x<ea-1-1时,g′(x)<0,g(x)为减函数.要对所有x≥0都有g(x)≥g(0)充要条件为ea-1-1≤0.由此得a≤1,即a的取值范围是(-∞,1].1.231 1, 1!2!3!!(1)!n nx x x x x x xe en nθ+ =+++++++其中(01)θ<<;2.231ln(1)(1),2!3!!nnnx x xx x Rn-+=-+-+-+其中111(1)()(1)!1nn nnxRn xθ++=-++;3.35211sin(1)3!5!(21)!kkn x x xx x Rk--=-+-+-+-其中21(1)cos(21)!kknxR xkθ+=-+;4.24221cos1(1)2!4!(22)!kkn x x xx Rk--=-+-+-+-其中2(1)cos(2)!kknxR xkθ=-;已知函数ln ()1a x b f x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (Ⅰ)求a 、b 的值; (Ⅱ)如果当0x >,且1x ≠时,ln ()1x k f x x x >+-,求k 的取值范围. (Ⅰ)略解得1a =,1b =.(Ⅱ)方法一:分类讨论、假设反证法由(Ⅰ)知ln 1()1x f x x x =++,所以22ln 1(1)(1)()()(2ln )11x k k x f x x x x x x---+=+--. 考虑函数()2ln h x x =+2(1)(1)k x x--(0)x >,则22(1)(1)2'()k x x h x x -++=. (i)当0k ≤时,由222(1)(1)'()k x x h x x +--=知,当1x ≠时,'()0h x <.因为(1)0h =, 所以当(0,1)x ∈时,()0h x >,可得21()01h x x ⋅>-;当(1,)x ∈+∞时,()0h x <,可得 21()01h x x ⋅>-,从而当0x >且1x ≠时,ln ()()01x k f x x x -+>-,即ln ()1x k f x x x>+-; (ii )当01k <<时,由于当1(1,)1x k∈-时,2(1)(1)20k x x -++>,故'()0h x >,而(1)0h =,故当1(1,)1x k ∈-时,()0h x >,可得21()01h x x ⋅<-,与题设矛盾. (iii )当1k ≥时, '()0h x >,而(1)0h =,故当(1,)x ∈+∞时,()0h x >,可得21()01h x x⋅<-,与题设矛盾.综上可得,k 的取值范围为(0]-∞,.当0x >,且1x ≠时,ln ()1x k f x x x >+-,即ln 1ln 11x x k x x x x+>++-, 也即2ln 1ln 2ln 1111x x x x x x k x x x x <+-=++--,记22ln ()11x x g x x =+-,0x >,且1x ≠ 则2222222222(1)ln 2(1)2(1)1'()=(ln )(1)(1)1x x x x x g x x x x x ++-+-=+--+, 记221()ln 1x h x x x -=++,则22222214(1)'()+=0(1+)(1+)x x h x x x x x --=>, 从而()h x 在(0,)+∞上单调递增,且(1)0h =,因此当(0,1)x ∈时,()0h x <,当(1,)x ∈+∞时,()0h x >;当(0,1)x ∈时,'()0g x <,当(1,)x ∈+∞时,'()0g x >,所以()g x 在(0,1)上单调递减,在(1,)+∞上单调递增.由洛必达法则有2211112ln 2ln 2ln 2lim ()lim(1)1lim 1lim 0112x x x x x x x x x g x x x x→→→→+=+=+=+=---, 即当1x →时,()0g x →,即当0x >,且1x ≠时,()0g x >.因为()k g x <恒成立,所以0k ≤.综上所述,当0x >,且1x ≠时,ln ()1x k f x x x >+-成立,k 的取值范围为(0]-∞,.设函数2()1x f x e x ax =---.(Ⅰ)若0a =,求()f x 的单调区间;(Ⅱ)当0x ≥时,()0f x ≥,求a 的取值范围.应用洛必达法则和导数(Ⅱ)当0x ≥时,()0f x ≥,即21x e x ax --≥.①当0x =时,a R ∈;②当0x >时,21x e x ax --≥等价于21x e x a x --≤. 记21()x e x g x x --= (0+)x ∈∞,,则3(2)2'()x x e x g x x-++=. 记()(2)2x h x x e x =-++ (0+)x ∈∞,,则'()(1)1xh x x e =-+,当(0+)x ∈∞,时,''()0x h x x e =>,所以'()(1)1x h x x e =-+在(0+)∞,上单调递增,且'()'(0)0h x h >=,所以()(2)2xh x x e x =-++在(0+)∞,上单调递增,且()(0)0h x h >=,因此当(0+)x ∈∞,时,3()'()0h x g x x =>,从而21()x e x g x x --=在(0+)∞,上单调递增. 由洛必达法则有,20000111lim ()lim lim lim 222x x x x x x x e x e e g x x x →→→→---==== 即当0x →时,1()2g x →,所以当(0+)x ∈∞,时,所以1()2g x >,因此12a ≤.综上所述,当12a ≤且0x ≥时,()0f x ≥成立.若不等式3sin x x ax >-对于(0,)2x π∈恒成立,求a 的取值范围. 应用洛必达法则和导数 当(0,)2x π∈时,原不等式等价于3sin x x a x->. 记3sin ()x x f x x -=,则43sin cos 2'()x x x x f x x --=. 记()3sin cos 2g x x x x x =--,则'()2cos sin 2g x x x x =+-.因为''()cos sin cos (tan )g x x x x x x x =-=-,'''()sin 0g x x x =-<,所以''()g x 在(0,)2π上单调递减,且''()0g x <, 所以'()g x 在(0,)2π上单调递减,且'()0g x <.因此()g x 在(0,)2π上单调递减, 且()0g x <,故4()'()0g x f x x =<,因此3sin ()x x f x x -=在(0,)2π上单调递减. 由洛必达法则有3200000sin 1cos sin cos 1lim ()lim lim lim lim 3666x x x x x x x x x x f x x x x →→→→→--=====, 即当0x →时,1()6g x →,即有1()6f x <. 故16a ≥时,不等式3sin x x ax >-对于(0,)2x π∈恒成立. 通过以上例题的分析,我们不难发现应用洛必达法则解决的试题应满足:① 可以分离变量;②用导数可以确定分离变量后一端新函数的单调性;② 现“00”型式子.2010海南宁夏文(21)已知函数2()(1)x f x x e ax =--.(Ⅰ)若()f x 在1x =-时有极值,求函数()f x 的解析式;(Ⅱ)当0x ≥时,()0f x ≥,求a 的取值范围.解:(Ⅰ)略(Ⅱ)应用洛必达法则和导数当0x ≥时,()0f x ≥,即2(1)x x e ax -≥.①当0x =时,a R ∈;②当0x >时,2(1)x x e ax -≥等价于1xe ax -≥,也即1x e a x -≤. 记1()x e g x x-=,(0,)x ∈+∞,则(1)1'()x x e g x x -+=. 记()(1)1x h x x e =-+,(0,)x ∈+∞,则'()0x h x x e =>,因此()(1)1x h x x e =-+在(0,)+∞上单调递增,且()(0)0h x h >=,所以()'()0h x g x x =>,从而1()x e g x x-=在(0,)+∞上单调递增.由洛必达法则有0001lim ()lim lim 11x xx x x e e g x x→→→-===, 即当0x →时,()1g x →所以()1g x >,即有1a ≤.综上所述,当1a ≤,0x ≥时,()0f x ≥成立.2010全国大纲理(22)设函数()1x f x e -=-.(Ⅰ)证明:当1x >-时,()1x f x x ≥+; (Ⅱ)设当0x ≥时,()1x f x ax ≤+,求a 的取值范围. 解:(Ⅰ)略(Ⅱ)应用洛必达法则和导数由题设0x ≥,此时()0f x ≥.①当0a <时,若1x a >-,则01x ax <+,()1x f x ax ≤+不成立; ②当0a ≥时,当0x ≥时,()1x f x ax ≤+,即11x x e ax --≤+; 若0x =,则a R ∈; 若0x >,则11x x e ax --≤+等价于111x e x ax --≤+,即1x x x xe e a xe x-+≤-. 记1()x x x xe e g x xe x -+=-,则2222221'()=(2)()()x x x x x x x x e x e e e g x e x e xe x xe x ---+=--+--. 记2()2x x h x e x e -=--+,则'()2x x h x e x e -=--,''()+20x x h x e e -=->.因此,'()2x x h x e x e -=--在(0)+∞,上单调递增,且'(0)0h =,所以'()0h x >, 即()h x 在(0)+∞,上单调递增,且(0)0h =,所以()0h x >. 因此2'()=()0()xx e g x h x xe x >-,所以()g x 在(0)+∞,上单调递增. 由洛必达法则有000011lim ()lim lim lim 122x x x x x x x x x x x x x x xe e xe e xe g x xe x e xe e xe →→→→-++====-+-+,即当0x →时, 1()2g x →,即有1()2g x >,所以12a ≤.综上所述,a 的取值范围是1(,]2-∞.设函数sin ()2cos x f x x=+. (Ⅰ)求()f x 的单调区间;(Ⅱ)如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围.解:(Ⅰ)22(2cos )cos sin (sin )2cos 1()(2cos )(2cos )x x x x x f x x x +--+'==++. 当2π2π2π2π33k x k -<<+(k ∈Z )时,1cos 2x >-,即()0f x '>; 当2π4π2π2π33k x k +<<+(k ∈Z )时,1cos 2x <-,即()0f x '<.因此()f x 在每一个区间2π2π2π2π33k k ⎛⎫-+ ⎪⎝⎭,(k ∈Z )是增函数, ()f x 在每一个区间2π4π2π2π33k k ⎛⎫++ ⎪⎝⎭,(k ∈Z )是减函数. (Ⅱ)应用洛必达法则和导数sin ()2cos x f x ax x=≤+ 若0x =,则a R ∈; 若0x >,则sin 2cos x ax x ≤+等价于sin (2cos )x a x x ≥+,即sin ()(2cos )x g x x x =+ 则222cos 2sin sin cos '()(2cos )x x x x x x g x x x --+=+. 记()2cos 2sin sin cos h x x x x x x x =--+,2'()2cos 2sin 2cos cos212sin cos212sin 2sin 2sin (sin )h x x x x x x x x x x x x x x x =---+=--+=-=-因此,当(0,)x π∈时,'()0h x <,()h x 在(0,)π上单调递减,且(0)0h =,故'()0g x <,所以()g x 在(0,)π上单调递减, 而000sin cos 1lim ()lim lim (2cos )2+cos sin 3x x x x x g x x x x x x →→→===+-. 另一方面,当[,)x π∈+∞时,sin 111()(2cos )3x g x x x x π=≤≤<+,因此13a ≥.。
最新最新洛必达法则巧解高考压轴题(好东西)
(Ⅱ)若对所有 x≥0 都有 f (x) ≥ ax ,
求 a 的取值范围.
最新洛必达法则巧解高考压轴题 (好东西)
4.2008全国2理
设函数 f (x) sin x . 2 cos x
(Ⅰ)求 f (x) 的单调区间;
(Ⅱ)如果对任何 x≥0 ,都有 f (x) ≤ ax ,
明理由.
最新洛必达法则巧解高考压轴题 (好东西)
6.2010新课标理
设函数 f (x) = ex 1 x ax2 . (Ⅰ)若 a 0 ,求 f (x) 的单调区间; (Ⅱ)若当 x≥0 时 f (x) ≥0,求 a 的取值范围.
最新洛必达法则巧解高考压轴题 (好东西)
7.2010新课标文
已知函数 f (x) x(ex 1) ax2 . (Ⅰ)若 f (x) 在 x 1 时有极值,求函数 f (x)
值范围.
最新洛必达法则巧解高考压轴题 (好东西)
9.2011新课标理
已 知 函 数 f (x) a ln x b , 曲 线 y f (x) 在 点 x 1 x
(1, f (1)) 处的切线方程为 x 2 y 3 0 .
(Ⅰ)求 a 、 b 的值; ( Ⅱ)如果当 x 0 ,且 x 1时, f (x) ln x k ,
1! 2! 3!
n! (n 1)!
其中 (0 1) ;
2. ln(1 x) x x2 x3 2! 3!
(1)n1
xn n!
Rn ,
其中
Rn
(1)n
x n 1
1
(
(n 1)! 1
)n1 ; x
最新洛必达法则巧解高考压轴题 (好3. sin x x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(Ⅱ)当 x 0 时, f (x) 0 ,求 a 的取值范围.
洛必达法则巧解高考压轴题(好东 西)
8.2010全国大纲理
设函数 f (x) 1 ex .
(Ⅰ)证明:当 x 1 时, f (x) x ; x 1
(Ⅱ)设当 x 0 时, f (x) x ,求 a 的取 ax 1
洛必达法则巧解高考压轴题(好东 西)
3.洛必达法则
虽然这些压轴题可以用分类讨论和假设反证的方 法求解,但这种方法往往讨论多样、过于繁杂, 学生掌握起来非常困难.研究发现利用分离参数
的方法不能解决这部分问题的原因是出现了 0 ” 0
型的式子,而这就是大学数学中的不定式问题, 解决这类问题的有效方法就是洛必达法则.
(Ⅰ)求 a 、 b 的值; ( Ⅱ)如果当 x 0 ,且 x 1时, f (x) ln x k , 求 k 的取值范围.
洛必达法则巧解高考压轴题(好东 西)
2.2006全国1理
已知函数 f x 1 x eax .
1 x
(Ⅰ)设 a 0 ,讨论 y f x 的单调性;
(Ⅱ)若对任意 x 0,1 恒有 f x 1,
求 a 的取值范围.
洛必达法则巧解高考压轴题(好东 西)
3.2007全国1理
设函数 f (x) ex ex .
(Ⅰ)证明: f (x) 的导数 f (x)≥ 2 ;
(Ⅱ)若对所有 x≥0 都有 f (x) ≥ ax ,
求 a 的取值范围.
洛必达法则巧解高考压轴题(好东 西)
4.2008全国2理
设函数 f (x) sin x . 2 cos x
(Ⅰ)求 f (x) 的单调区间;
(Ⅱ)如果对任何 x≥0 ,都有 f (x) ≤ ax ,
导数结合洛必达法则巧解高考压轴题 ——高考专项研究
2011年12月20日
洛必达法则巧解高考压轴题(好东 西)
第一部分:历届导数高考压轴题
洛必达法则巧解高考压轴题(好东 西)
1.2006年全国2理
设函数 f(x)=(x+1)ln(x+1),若对所 有的 x≥0,都有 f(x)≥ax 成立,求实数 a 的取值范围.
1! 2! 3!
n! (n 1)!
其中 (0 1) ;
2. ln(1 x) x x2 x3 2! 3!
(1)n1
xn n!
Rn ,
其中
Rn
(1)n
x n 1
1
(
(n 1)! 1
)n1 ; x
洛必达法则巧解高考压轴题(好东 西)
泰勒展开式
x3 x5 3. sin x x
3! 5!
(3) lim f (x) A ( A 可为实数,也可以是 ). xa g(x)
则 lim f (x) lim f (x) A . xa g(x) xa g(x)
洛必达法则巧解高考压轴题(好东 西)
2.2011新课标理的常规解法
已知函数 f (x) a ln x b ,曲线 y f (x) 在点 (1, f (1)) 处的切线方程为 x 2 y 3 0 . x 1 x
洛必达法则巧解高考压轴题(好东 西)
第四部分:洛必达法则及其解法
洛必达法则巧解高考压轴题(好东 西)
1.洛必达法则
洛必达法则:设函数 f (x) 、 g(x) 满足:
(1) lim f (x) lim g(x) 0 ;
xa
xa
(2)在U (a) 内,f (x) 和 g(x) 都存在,且 g(x) 0 ;
明理由.
洛必达法则巧解高考压轴题(好东 西)
6.2010新课标理
设函数 f (x) = ex 1 x ax2 . (Ⅰ)若 a 0 ,求 f (x) 的单调区间; (Ⅱ)若当 x≥0 时 f (x) ≥0,求 a 的取值范围.
洛必达法则巧解高考压轴题(好东 西)
7.2010新课标文
已知函数 f (x) x(ex 1) ax2 . (Ⅰ)若 f (x) 在 x 1 时有极值,求函数 f (x)
x 1 x 求 k 的取值范围.
洛必达法则巧解高考压轴题(好东 西)
10.自编
自编:若不等式 sin x x ax3 对于 x (0, )
2
恒成立,求 a 的取值范围.
洛必达法则巧解高考压轴题(好东 西)
第二部分:泰勒展开式
洛必达法则巧解高考压轴题(好东 西)
泰勒展开式
1. ex 1 x x2 x3 xn xn1 e x ,
洛必达法则巧解高考压轴题(好东 西)
1. 新课标高考命题趋势
近年来的高考数学试题逐步做到科学化、规范化, 坚持了稳中求改、稳中创新的原则,充分发挥数学 作为基础学科的作用,既重视考查中学数学基础知 识的掌握程度,又注重考查进入高校继续学习的潜 能。为此,高考数学试题常与大学数学知识有机接 轨,以高等数学为背景的命题形式成为了热点.
洛必达法则巧解高考压轴题(好东 西)
2.分类讨论和假设反证
许多省市的高考试卷的压轴题都是导数应用问 题,其中求参数的取值范围就是一类重点考查的 题型.这类题目容易让学生想到用分离参数的方 法,一部分题用这种方法很凑效,另一部分题在 高中范围内用分离参数的方法却不能顺利解决, 高中阶段解决它只有华山一条路——分类讨论 和假设反证的方法.
值范围.
洛必达法则巧解高考压轴题(好东 西)
9.2011新课标理
已 知 函 数 f (x) a ln x b , 曲 线 y f (x) 在 点 x 1 x
(1, f (1)) 处的切线方程为 x 2 y 3 0 .
(Ⅰ)求 a 、 b 的值; ( Ⅱ)如果当 x 0 ,且 x 1时, f (x) ln x k ,
(1)k 1
x2k 1 (2k 1)!
Rn
其中 Rn
ቤተ መጻሕፍቲ ባይዱ
(1)k
x2k 1 cos x
(2k 1)!
;
x2 x4 4. cos x 1
2! 4!
(1)k 1
x2k 2 (2k 2)!
Rn
其中 Rn
(1)k
x2k cos x
(2k )!
;
洛必达法则巧解高考压轴题(好东 西)
第三部分:新课标高考命题趋势及方法
求 a 的取值范围.
洛必达法则巧解高考压轴题(好东 西)
5.2008辽宁理
设函数 f (x) ln x ln x ln(x 1) . 1 x
⑴求 f (x) 的单调区间和极值;
⑵是否存在实数 a ,使得关于 x 的不等式 f (x) a 的解
集为 (0, )?若存在,求 a 的取值范围;若不存在,试说