人教版数学高二-2.5等比数列的前n项和(第2课时)教案
高中数学必修5《等比数列的前n项和》教案
高中数学必修5《等比数列的前n项和》教案【一】教学目标熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。
教学重难点熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。
教学过程【方法规律】应用数列知识界实际应用问题的关键是通过对实际问题的综合分析,确定其数学模型是等差数列,还是等比数列,并确定其首项,公差(或公比)等基本元素,然后设计合理的计算方案,即数学建模是解答数列应用题的关键。
一、基础训练1.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个),经过3小时,这种细菌由1个可繁殖成 ( )A、511B、512C、1023D、10242.若一工厂的生产总值的月平均增长率为p,则年平均增长率为( )A、 B、C、 D、二、典型例题例1:某人每期期初到银行存入一定金额A,每期利率为p,到第n期共有本金nA,第一期的利息是nAp,第二期的利息是(n-1)Ap……,第n期(即最后一期)的利息是Ap,问到第n期期末的本金和是多少?评析:此例来自一种常见的存款叫做零存整取。
存款的方式为每月的某日存入一定的金额,这是零存,一定时期到期,可以提出全部本金及利息,这是整取。
计算本利和就是本例所用的有穷等差数列求和的方法。
用实际问题列出就是:本利和=每期存入的金额[存期+1/2存期(存期+1)利率]例2:某人从1999到2002年间,每年6月1日都到银行存入m元的一年定期储蓄,若每年利率q保持不变,且每年到期的存款本息均自动转为新的一年定期,到2003年6月1日,此人到银行不再存款,而是将所有存款的本息全部取回,则取回的金额是多少元?例3、某地区位于沙漠边缘,人与自然进行长期顽强的斗争,到1999年底全地区的绿化率已达到30%,从2000年开始,每年将出现以下的变化:原有沙漠面积的16%将栽上树,改造为绿洲,同时,原有绿洲面积的4%又被侵蚀,变为沙漠.问经过多少年的努力才能使全县的绿洲面积超过60%.(lg2=0.3)例4、.流行性感冒(简称流感)是由流感病毒引起的急性呼吸道传染病.某市去年11月分曾发生流感,据资料记载,11月1日,该市新的流感病毒感染者有20人,以后,每天的新感染者平均比前一天的新感染者增加50人,由于该市医疗部门采取措施,使该种病毒的传播得到控制,从某天起,每天的新感染者平均比前一天的新感染着减少30人,到11月30日止,该市在这30天内感染该病毒的患者共有8670人,问11月几日,该市感染此病毒的新的患者人数最多?并求这一天的新患者人数.高中数学必修5《等比数列的前n项和》教案【二】整体设计教学分析本节是数列一章的最后内容,分两课时完成,第一课时侧重于公式的推导及记忆,第二课时侧重于公式的灵活应用.等比数列的前n项和是教材中很重要的一部分内容,是等比数列知识的再认识和再运用,它对学生进一步掌握、理解等比数列以及数列的知识有着很重要的作用.等比数列前n项和公式的推导,也是培养学生分析、发现、类比等能力的很好的一个工具.在讲求和公式推导时,应指出其运算的依据是等式性质和数运算的通性(交换律、结合律、分配律).培养学生逻辑思维的习惯和代数运算技能.新大纲中对本知识有较高层次的要求,教学地位很重要,是教学全部学习任务中必须优先完成的任务.这项知识内容有广泛的实际应用,很多问题都要转化到等比数列的求和上来才能得到解决.如增长率、浓度配比、细胞分裂、储蓄信贷、养老保险、分期付款的有关计算等许多方面均用到等比数列的知识,因而考题中涉及数列的应用问题屡见不鲜.掌握等比数列的基础知识,培养建模和解模能力是解决数列应用问题的基本途径.等比数列的通项公式与前n项和公式中共涉及五个量,将两个公式结合起来,已知其中三个量可求另两个量,即已知a1,an,q,n,Sn五个量中的任意三个,就可以求出其余的两个量,这其中渗透了方程的思想.其中解指数方程的难度比较大,训练时要控制难度和复杂程度,要大胆地摒弃“烦琐的计算、人为技巧化的难题和过分强调细枝末节的内容”.数列模型运用中蕴含着丰富的数学思想方法(如方程的思想、分类讨论思想、算法思想等),这些思想方法对培养学生的阅读理解能力、运算能力和逻辑思维能力等基本能力有着不可替代的作用.教学中应充分利用信息和多媒体技术,还应给予学生充分的探索空间.三维目标1.通过本节学习,使学生会用方程的思想认识等比数列前n项和公式,会用等比数列前n项和公式及有关知识解决现实生活中存在着的大量的数列求和的问题,将等比数列前n项和公式与等比数列通项公式结合起来解决有关的求解问题.2.通过启发、引导、分析、类比、归纳,并通过严谨科学的解题思想和解题方法的训练,提高学生的数学素养.3.通过解决生产实际和社会生活中的实际问题了解社会、认识社会,形成科学的世界观和价值观.重点难点教学重点:等比数列前n项和公式的推导及灵活运用,及生产实际和社会生活中有关的实际问题.教学难点:建立等比数列模型,用等比数列知识解决有关的生产实际及社会生活中的热点问题.课时安排2课时教学过程第1课时导入新课思路1.(故事导入)国际象棋起源于古代印度,相传有位数学家带着画有64个方格的木盘,和32个雕刻成六种立体形状,分别涂黑白两色的木制小玩具,去见波斯国王并向国王介绍这种游戏的玩法.国王对这种新奇的游戏很快就产生了浓厚的兴趣,一天到晚兴致勃勃地要那位数学家或者大臣陪他玩.高兴之余,他便问那位数学家,作为对他忠心的奖赏,他需要得到什么赏赐呢?数学家开口说道:请您在棋盘上的第一个格子上放1粒麦子,第二个格子上放2粒,第三个格子上放4粒,第四个格子上放8粒……即每一个次序在后的格子中放的麦粒都必须是前一个格子麦粒数目的2倍,直到最后一个格子第64格放满为止,这样我就十分满足了.“好吧!”国王挥挥手,慷慨地答应了数学家的这个谦卑的请求.国王觉得,这个要求太低了,问他:“你怎么只要这么一点东西呢?”数学家笑着恳求道:“陛下还是叫管理国家粮仓的大臣算一算吧!”第二天,管理粮仓的大臣满面愁容地向国王报告了一个数字,国王大吃一惊:“我的天!我哪来这么多的麦子?”这个玩具也随着这个故事传遍全世界,这就是今日的国际象棋.假定千粒麦子的质量为40 g,那么,数学家要求的麦粒的总质量究竟是多少呢?由此传说向学生发问:怎样算出小麦的总质量呢?思路2.(问题导入)买24枚钉子,第一枚14分钱,第二枚12分钱,第三枚1分钱,以此类推,每一枚钉子的钱是前一枚的2倍,共要多少钱?请学生想一想,多数学生认为大概没有多少钱,结果一算吓一跳,大约要4万2千元.事实上,这是等比数列的求和问题,即S=14+12+1+2+…+221=?那么怎样求等比数列的前n项和呢?在学生急于揭开谜底的强烈欲望下展开新课的探究.推进新课新知探究提出问题(1)回忆等差数列前n项和公式的推导过程,是用什么方法推导的?(2)对任意数列{an},前n项和与通项an的关系是什么?(3)对首项为1的等比数列{an},你能探究它的前n项和吗?(4)对任意等比数列{an},怎样推导它的前n项和公式呢?你能联想到哪些推导思路?(5)对于思路1中麦粒问题,国王应发给数学家多少麦粒?对于Sn=1+2+22+…+2n-1的两边为什么要乘以2而不是乘以3或4呢?活动:教师引导学生回忆前面学过的等差数列前n项和问题,我们用倒序相加法推得了它的前n项和公式,并且得到了求等差数列通项公式的一个方法:an=a1,Sn-Sn-1,n=1,n≥2,还知道这个由数列Sn来确定an的方法适用于任何数列,且a1不一定满足由Sn-Sn-1=an求出的通项表达式.类比联想以上方法,怎样探究等比数列的前n项和呢?我们先来探究象棋格里填麦粒的问题,也就是求S=1+2+…+263=?让学生充分观察这个式子的特点,发现每一项乘以2后都得它的后一项,点拨学生找到解决问题的关键是等式左右同乘以2,再相减得和.通过这个问题的解决,先让学生有一个感觉,就是等比数列的前n项和可化为一个比较简单的形式,关键的问题是如何简化.再让学生探究首项为1的等比数列的前n项和,即1,q,q2,…,qn-1的前n项和.观察这个数列,由于各项指数不同,显然不能倒序相加减.但可发现一个规律,就是次数是依次增加的,教师引导学生模仿等差数列写出两个求和式子,给学生以足够的时间让其观察、思考、合作交流、自主探究.经过教师的点拨,学生的充分活动,学生会发现把两个Sn=1+q+q2+…+qn-1错一个位,两边再同乘以公比q,那么相同的指数就对齐了.这一发现是突破性的智慧发现,是石破惊天的发现.这样将Sn=1+q+q2+…+qn-1与qSn=q+q2+q3+…+qn两式相减就有(1-q)Sn=1-qn,以下只需讨论q的取值就可得到Sn了.在上面的特殊简单情形解决过程中,蕴含着一个特殊而且重要的处理问题的方法,那就是“错位相减,消除差别”的方法.我们将这种方法简称为“错位相减法”.在解决等比数列的一般情形时,我们还可以使用“错位相减法”.如果记Sn=a1+a2+a3+…+an,那么qSn=a1q+a2q+a3q+…+anq,要想得到Sn,只要将两式相减,就立即有(1-q)Sn=a1-anq.这里要提醒学生注意q的取值.如果q≠1,则有Sn=a1-anq1-q.上述过程我们略加变化一下,还可以得到如下的过程:如果记Sn=a1+a1q+a1q2+…+a1qn-1,那么qSn=a1q+a1q2+…+a1qn-1+a1qn,要想得到Sn,只要将两式相减,就立即有(1-q)Sn=a1-a1qn.如果q≠1,则有Sn=a11-qn1-q.上述推导过程,只是形式上的不同,其本质没有什么差别,都是用的“错位相减法”.形式上,前一个出现的是等比数列的五个基本量:a1,q,an,Sn,n中a1,q,an,Sn四个;后者出现的是a1,q,Sn,n四个,这将为我们今后运用公式求等比数列的前n项的和提供了选择的余地.值得重视的是:上述结论都是在“如果q≠1”的前提下得到的.言下之意,就是只有当等比数列的公比q≠1时,我们才能用上述公式.对于等比数列的一般情形,如果q=1会是什么样呢?学生很快会看出,若q=1,则原数列是常数列,它的前n项和等于它的任一项的n倍,即Sn=na1.由此我们得到等比数列{an}的前n项和的公式:Sn=na1,q=1,a11-qn1-q,q≠1或Sn=na1,q=1,a1-anq1-q,q≠1.教师进一步启发学生根据等比数列的特征和我们所学知识,还能探究其他的方法吗?经过学生合作探究,联想初中比例的性质等,我们会有以下推导方法:思路一:根据等比数列的定义,我们有a2a1=a3a2=a4a3=…=anan-1=q,再由合比定理,则得a2+a3+a4+…+ana1+a2+a3+…+an-1=q,即Sn-a1Sn-an=q,从而就有(1-q)Sn=a1-anq.当q=1时,Sn=na1,当q≠1时,Sn=a1-anq1-q.思路二:由Sn=a1+a2+a3+…+an,得Sn=a1+a1q+a2q+…+an-1q=a1+q(a1+a2+…+an-1)=a1+q(Sn-an),从而得(1-q)Sn=a1-anq.(以下从略)在思路二中,我们巧妙地利用了Sn-Sn-1=an这个关系式,教师再次向学生强调这是一个非常重要的关系式,应引起足够的重视,几乎在历年的高考中都有它的影子.但要注意这里n≥2,也就是n的取值应使这个关系式有意义,若写Sn-1-Sn-2=an-1,则这里n≥3,以此类推.教师引导学生对比等差数列的前n项和公式,并结合等比数列的通项公式,从方程角度认识这个公式,以便正确灵活地运用它.(1)在等比数列的通项公式及前n项和公式中共有a1,an,n,q,Sn五个量,只要知道其中任意三个量,都可以通过建立方程(组)等手段求出其余两个量;(2)在应用公式求和时,应注意到公式的使用条件q≠1,当q=1时,应按常数列求和,即Sn=na1.在解含字母参数的等比数列求和问题时,常应分类讨论q=1与q≠1两种情况.讨论结果:(1)倒序相加法;(2)an=Sn-Sn-1(n≥2);(3)利用错位相减法;(4)利用an=Sn-Sn-1(n≥2);(5)乘以2的目的是为了错位相减,共有麦粒264-1(颗),每千粒麦子按40 g计算,共约7 000亿吨.应用示例例1求下列等比数列的前8项的和:(1)12,14,18,…;(2)a1=27,a9=1243,q<0.活动:本例目的是让学生熟悉公式,第(1)小题是对等比数列的前n项和公式的直接应用;第(2)小题已知a1=27,n=8,还缺少一个已知条件,由题意显然可以通过解方程求得公比q.题目中要求q<0,一方面是为了简化计算,另一方面是想提醒学生q既可为正数,又可为负数.本题中由条件可得q8=a9a1=1243×27,再由q<0可得q=-13.将所得的值代入公式就可以了.本例可由学生自己探究解答.解:(1)因为a1=12,q=12,所以当n=8时,S8=12[1-128]1-12=255256.(2)由a1=27,a9=1243,可得q8=a9a1=1243×27,又由q<0,可得q=-13,于是当n=8时,S8=271-1243×271--13=1 64081.点评:通过本例要让学生熟悉方程思想,再次让学生明确,等比数列的通项公式与前n项和公式中共五个量:a1,an,q,n,Sn,五个量中已知任意三个就可以求出其余的两个,其中a1,q为最基本的两个量.同时提醒学生注意,由于等比数列涉及到指数问题,有时解题计算会很烦琐,要注意计算化简中的技巧,灵活运用性质.例2(教材本节例2)活动:本例是等比数列求和公式的直接运用,引导学生结合方程思想,按算法的思路来解答.本例可由学生自己完成.点评:通过本例让学生明确,等比数列的通项公式和求和公式共涉及5个量:a1,q,an,n,Sn,已知其中3个量就可以求出另外的2个量.变式训练设{an}是公比为正数的等比数列,若a1=1,a5=16,则数列{an}前7项的和为( )A.63B.64C.127D.128答案:C解析:∵a5=a1q4,∴16=q4.又∵q>0,∴q=2.∴S7=a11-q71-q=127.例3(教材本节例3)活动:本例仍属等比数列求和公式的直接应用.虽然原数列不是等比数列,不能用公式求和,但可这样转化:9=10-1,99=100-1,999=1 000-1,…,这样就容易解决了.点评:让学生体会本例中的转化思想.变式训练求和:2+22+222+…+ .解:原式=29(10-1)+29(102-1)+…+29(10n-1)=29(10+102+…+10n-n)=29[101-10n1-10-n]=2081(10n-1)-29n.例4求数列1,3a,5a2,7a3,…,(2n-1)an-1的前n项的和.活动:教师引导学生观察数列特点,其形式是{an•bn}型数列,且{an}是等差数列,{bn}是等比数列.根据本节等比数列求和公式的推导方法,可采用错位相减法进行求和.教学时可让学生自己独立探究,教师适时地点拨,要注意学生规范书写.解:当a=1时,数列变为1,3,5,7,…,(2n-1),则Sn=n[1+2n-1]2=n2.当a≠1时,有Sn=1+3a+5a2+7a3+…+(2n-1)an-1,①aSn=a+3a2+5a3+7a4+…+(2n-1)an,②①-②,得Sn-aSn=1+2a+2a2+2a3+…+2an-1-(2n-1)an,(1-a)Sn=1-(2n-1)an+2(a+a2+a3+…+an-1)=1-(2n-1)an+2•a1-an-11-a=1-(2n-1)an+2a-an1-a.又1-a≠0,∴Sn=1-2n-1an1-a-2a-an1-a 2.点评:通过本例,让学生反思解题时要善于识别题目类型,善于分类讨论.在应用错位相减时,写出的“Sn”与“qSn”的表达式应特别注意将两式“同项对齐”,以便于下一步准确写出“Sn-qSn”的表达式.变式训练等差数列{an}中,a2=8,S6=66.(1)求数列{an}的通项公式;(2)设数列{Cn}的通项为Cn=2n,求数列{anCn}的前n项和An.解:(1)由已知,得a1+d=8,a1+a662=66,解得a1=6,d=2.∴an=2n+4.(2)由题意,知anCn=(2n+4)•2n,∴An=6•21+8•22+10•23+…+(2n+4)•2n.①在上式中两边同乘以2,得2An=6•22+8•23+10•24+…+(2n+4)•2n+1.②①-②,得-An=6•21+2•22+2•23+…+2•2n-(2n+4)•2n+1=4-(2n+2)•2n+1,∴An=(n+1)•2n+2-4.例5已知数列{an}中,a1,a2,a3,…,an,…构成一个新数列:a1,(a2-a1),…,(an-an-1),…,此数列是首项为1,公比为13的等比数列.(1)求数列{an}的通项;(2)求数列{an}的前n项和Sn.活动:教师引导学生观察新数列的各项,不难发现这样一个事实:新数列的前n项和恰为an,这样即可将问题转化为首项为1,公比为13的等比数列的前n项和,数列{an}的通项公式求出后,计算其前n项和Sn就容易多了 .解:(1)an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)=1+13+(13)2+…+(13)n-1=32[1-(13)n].(2)Sn=a1+a2+a3+…+an=32(1-13)+32[1-(13)2]+…+32[1-(13)n]=32{n-[13+(13)2+…+(13)n]}=32n-34[1-(13)n]=34(2n-1)+14(13)n-1.点评:本例思路新颖,方法独特,解完本例后教师引导学生反思本例解法,注意平时学习中培养思路的灵活性.知能训练1.设等比数列{an}的前n项和为Sn,若S6∶S3=1∶2,则S9∶S3等于( )A.1∶2B.2∶3C.3∶4D.1∶32.在等比数列{an}中,(1)已知a2=18,a4=8,求a1与q;(2)已知a5-a1=15,a4-a2=6,求a3.答案:1.C 解析:∵S6∶S3=1∶2,由a11-q61-q+a11-q31-q=12,得q3=-12.∴S9S3=1-q91-q3=34.2.解:(1)由已知得a1q=18,a1q3=8.解这个方程组,得a1=27,q=23或a1=-27,q=-23.(2)根据题意,有a1q4-a1=15,a1q3-a1q=6.方程两边分别相除,得a1q4-a1a1q3-a1q=156.整理,得2q2-5q+2=0.解这个方程,得q=2或q=12.当q=2时,a1=1;当q=12时,a1=-16.所以a3=4或a3=-4.课堂小结1.由学生总结本节学习的内容:等比数列前n项和公式的推导,特别是在推导过程中,学到了错位相减法;在运用等比数列求和时,注意q的取值范围是很重要的一点,需要放在第一位来思考.2.等比数列求和公式有两种形式,在应用中应根据题目所给的条件灵活选用,注意从方程的角度来观察公式,并结合等比数列的通项公式共5个量,知三可求二,并注意解题中的化简技巧.作业课本习题2—3 B组2、3.[设计感想“探索是教学的生命线”,本教案设计体现以学生为本的思想.为了让学生较好掌握本课内容,本节课主要采用观察法、归纳法等教学方法,同时采用设计变式题的教学手段进行教学.通过具体问题的引入,使学生体会数学源于生活.本教案设计加强数学思想方法的训练.因为数列内容几乎渗透了中学数学所有的数学思想方法,而数列模型运用中更是蕴含着丰富的数学思想方法,这些思想方法对培养学生的阅读理解能力、运算能力和逻辑思维能力等有着不可替代的作用.教学中应充分让学生体会这些思想方法的运用.“问题是数学的心脏”,本教案设计注重了情境教学.通过生动具体的现实问题,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感,体验在学习中获得的成功.(设计者:张晓君)第2课时导入新课思路1.(情境导入)一个人为了积累养老金,他每个月按时到银行存100元,银行的年利率为4%,假设可以任意分段按复利计算,试问此人在5年后共积累了多少养老金?如果存款和复利按日计算,则他又有多少养老金?如果复利和存款连续计算呢?银行复利计息的计算方法正是我们今天要探究的内容,由此展开新课.思路2.(习题导入)在等比数列{an}中,已知a1+a2+a3=8,a4+a5+a6=-4,则数列前15项的和S15为( )A.112B.312C.5D.15本题如果运用方程的思想,求数列{an}的首项a1和公比q之后再求S15,是一种常规思路,但运算量较大.可将原数列按一定规律重新组合成一个新的等比数列,S15又刚好是新数列前5项的和,新数列的首项和公比又容易求得,使得小题巧解.具体解法如下:解析:设b1=a1+a2+a3=8;b2=a4+a5+a6=-4;…;b5=a13+a 14+a15,则b1,b2,b3,b4,b5构成一个等比数列,其首项为8,公比为-12.故S15=S5′=b1+b2+b3+b4+b5=112.选A.由此展开本课的进一步探究.答案:A推进新课新知探究提出问题1回忆等比数列前n项和公式的推导过程,是用什么方法推导的?需要注意什么问题?2比较等差、等比数列的前n项和公式,从推导方法到应用有什么不同?怎样从方程的角度理解等比数列的求和公式?3利用等比数列求和的关键是什么?4你能对等差、等比数列求和问题作一归纳总结吗?5应用等比数列可解决哪些类型的实际问题?活动:教师引导学生回忆上节课所学的等比数列的求和公式,通过“错位相减”的思路方法很巧妙地将等式Sn=a1+a1q+…+a1qn-1的两边同乘以该数列的公比q,使得等式右边各项都向右错了一位;然后通过求Sn-qSn把相同项消去,达到简化的目的,最后解出Sn.这种求和方法具有普通性,教师再次引导学生回顾这种求和方法的精髓,注意的问题是必须注意q是否等于1,如果不确定,就应分q=1与q≠1两种情况或更多的情况进行讨论.等比数列求和的关键与等差数列求和一样,在于数列通项公式的表达形式,由通项公式的形式特点确定相应的求和方法.为了达到求和时的简化运算,应充分利用等比数列的前n项和的性质.(1)若某数列的前n项和公式为Sn=an-1(a≠0,1),则{an}成等比数列.(2)若数列{an}是公比为q的等比数列,则Sn,S2n-Sn,S3n-S2n也成等比数列;若项数为2n(n∈N*),则S偶S奇=q.应用等比数列可解决的实际问题有:产量增减、价格升降、细胞繁殖、贷款利率、增长率等方面的问题.解决方法是建立数列模型,应用数列知识解决问题,要让学生明了数列的实际应用一直是全国各地市高考的热点、重点,考题的形式多种多样,难度为中、高档.等比数列求和问题作为数列的重要内容之一,蕴含着丰富的数学思想方法,教学时可与等差数列对比,归纳、总结.(1)求和问题可以利用等差、等比数列的前n项和公式解决,在具体问题中,既要善于从数列的通项入手观察数列的特点与变化规律,又要注意项数.(2)非等差(比)的特殊数列求和题通常的解题思路是:①设法转化为等差数列或等比数列,这一思考方法往往通过通项分解或错位相减来完成.②不能转化为等差(比)的特殊数列,往往通过裂项相消法、错位相减法和倒序相加法求和.一般地,如果数列能转化为等差数列或等比数列就用公式法;如果数列项的次数及系数有规律,一般可用错位相减法;如果每项可写成两项之差一般可用拆项法;如果能求出通项,可用拆项分组法.(3)数列求和的关键在于数列通项公式的表达形式,根据通项公式的形式特点,观察采用哪种方法是这类题的解题诀窍.(4)通项公式中含有(-1)n的一类数列,在求Sn时要注意需分项数n的奇偶性讨论.讨论结果:(1)(2)(3)(5)略.(4)数列求和的常用方法有:公式法、倒序相加法、错位相减法和裂项相消法,这也是高考常考的几种求和方法.例1某商场今年销售计算机5 000台,如果平均每年的销售量比上一年的销售量增加10%,那么从今年起,大约几年可使总销售量达到30 000台?(结果保留到个位)活动:教师引导学生探究,根据题意,从中发现等比关系,从中抽象出等比数列模型,并明确这是一个已知Sn=30 000求n的问题.本例的解答应先根据等比数列的前n项和公式列方程,再用对数的知识解方程.解:根据题意,每年的销售量比上一年增加的百分率相同,所以,从今年起,每年销售量组成一个等比数列{an},其中a1=5 000,q=1+10%=1.1,Sn=30 000.于是得到5 0001-1.1n1-1.1=30 000,整理,得1.1n=1.6,两边取对数,得nlg1.1=lg1.6,用计算器算得n=lg1.6lg1.1≈0.20.041≈5(年).答:大约5年可以使总销售量达到30 000台.点评:本例是一道关于等比数列模型的应用题,需要从实际问题中抽象出等比数列模型.从实际背景的角度讲,本例的设计一方面是想让学生了解计算机日益普及,其销量越来越大;另一方面,对于一个商场来讲,为实现一定的商品销售目标而制订计划也是一件自然的事情.变式训练某市2003年共有1万辆燃油型公交车.有关部门计划于2004年投入128辆电力型公交车,随后电力型公交车每年的投入比上一年增加50%,试问:(1)该市在2010年应该投入多少辆电力型公交车?(2)到哪一年底,电力型公交车的数量开始超过该市公交车总量的13?解:(1)该市逐年投入的电力型公交车的数量组成等比数列{an},其中a1=128,q=1.5,则在2010年应该投入的电力型公交车为a7=a1•q6=128×1.56=1 458(辆).(2)记Sn=a1+a2+…+an,依据题意,得Sn10 000+Sn>13.于是Sn=1281-1.5n1-1.5>5 000(辆),即1.5n>65732,则有n-lg65732lg1.5≈7.5,因此n≥8.所以,到2011年底,电力型公交车的数量开始超过该市公交车总量的13.例2(教材本节例4)活动:这是本单元教材安排的最后一道例题.教师引导学生写出每个月的产值,建立等比数列的数学模型,通过数量分析理解任一月份的计算表达式和求总和的计算方法.例3某教师购买安居工程集资房72 m2,单价为1 000元/m2,一次性国家财政补贴28 800元,学校补贴14 400元,余款由个人负担.房地产开发公司对教师实行分期付款,每期为1年,等额付款.签订购房合同后,1年付款1次,再过1年又付款1次等等,共付10次,10年后还清.如果按年利率7.5%,每年复利1次计算,那么每年应付多少元?(计算结果精确到百元.下列数据供参考:1.0752≈1.921,1.07510≈2.065,1.07511≈2.221)活动:教师引导学生理清问题中的基本数量关系,建立等比数列的模型,然后按等比数列的知识就很容易解决了.本例由教师与学生共同探究完成.解:设每年应付款x元,那么到最后1次付款时付款金额的本利和为x(1+1.075+1.0752+1.0753+…+1.0759)元;购房余款10年后的本利和为[1 000×72-(28 800+14 400)]•1.07510=28 800×1.07510元,根据10年后还清,得x(1+1.075+1.0752+…+1.0759)=28 800×1.07510,∴x=28 800×1.07510×1.075-11.07510-1≈4 200(元),即每年应付4 200元.点评:解决本例的关键是建立等比数列模型.分期付款以及新生利息之和,应等于购房个人分担部分10年后的本息和.变式训练。
最新人教版高中数学必修五 等比数列前n项和公式的推导与应用优质教案
2.5 等比数列的前n2.5.1 等比数列前n 项和公式的推导与应用从容说课师生将共同分析探究等比数列的前n 项和公式.公式的推导以教材中的“错位相减法”为最基本的方法,“错位相减法”也是一种算法,其设计的思路是“消除差别”,从而达到化简的目的等比数列前n 项和公式的推导还有许多方法,可启发、引导学生进行探索.例如,根据等比数列的定义可得q a aa a a a a a n n n n =====---1223211...再由分式性质,得q a S a S n n n =--1,整理得)1(11≠--=q qqa a S n n教学中应充分利用信息和多媒体技术,还应给予学生充分的探索空间教学重点 1.等比数列前n 项和公式的推导2.等比数列前n 项和公式的应用教学难点 等比数列前n 项和公式的推导教具准备 多媒体课件、投影胶片、投影仪等三维目标一、知识与技能1.了解现实生活中存在着大量的等比数列求和的计算问题;2.探索并掌握等比数列前n 项和公式;3.用方程的思想认识等比数列前n 项和公式,利用公式知三求一;4.体会公式推导过程中的分类讨论和转化化归的思想二、过程与方法1.采用观察、思考、类比、归纳、探究得出结论的方法进行教学;2.发挥学生的主体作用,作好探究性活动三、情感态度与价值观1.通过生活中有趣的实例,鼓励学生积极思考,激发学生对知识的探究精神和严肃认真的科学态度,培养学生的类比、归纳的能力;2.在探究活动中学会思考,学会解决问题的方法;3.通过对有关实际问题的解决,体现数学与实际生活的密切联系,激发学生学习的兴趣.教学过程导入新课师国际象棋起源于古代印度.相传国王要奖赏国际象棋的发明者.这个故事大家听说过吗?生知道一些,踊跃发言师“请在第一个格子里放上1颗麦粒,第二个格子里放上2颗麦粒,第三个格子里放上4颗麦粒,以此类推.每一个格子里放的麦粒都是前一个格子里放的麦粒的2倍.直到第64个格子.请给我足够的麦粒以实现上述要求.”这就是国际象棋发明者向国王提出的要求师假定千粒麦子的质量为40 g,按目前世界小麦年度产量约60亿吨计.你认为国王能不能满足他的要求?生各持己见.动笔,列式,计算生能列出式子:麦粒的总数为1+2+22+…+263师这是一个什么样的问题?你们计算出结果了吗?让我们一起来分析一下.课件展示:1+2+22+…+2 63=?师我们将各格所放的麦粒数看成是一个数列,那么我们得到的就是一个等比数列.它的首项是1,公比是2,求第1个格子到第64个格子所放的麦粒数总和,就是求这个等比数列的前64项的和现在我们来思考一下这个式子的计算方法:记S=1+2+22+23+…+2 63,式中有64项,后项与前项的比为公比2,当每一项都乘以2后,中间有62项是对应相等的,作差可以相互抵消.课件展示:S=1+2+22+23+…+2 63,①2S=2+22+23+…+263+264,②②-①得2S-S=2 64-264-1这个数很大,超过了1.84×10 19,假定千粒麦子的质量为40 g,那么麦粒的总质量超过了7 000亿吨.而目前世界年度小麦产量约60亿吨,因此,国王不能实现他的诺言.师国王不假思索地给国际象棋发明者一个承诺,导致了一个很不幸的后果的发生,这都是他不具备基本的数学知识所造成的.而避免这个不幸的后果发生的知识,正是我们这节课所要探究的知识推进新课[合作探究]师在对一般形式推导之前,我们先思考一个特殊的简单情形:1+q+q2+…+q n=?师这个式子更突出表现了等比数列的特征,请同学们注意观察生观察、独立思考、合作交流、自主探究师若将上式左边的每一项乘以公比q,就出现了什么样的结果呢?生q+q2+…+q n+q n+1生每一项就成了它后面相邻的一项师对上面的问题的解决有什么帮助吗?师生共同探索:如果记S n=1+q+q2+…+q n那么qS n =q+q 2+…+q n +q n +1要想得到S n ,只要将两式相减,就立即有(1-q)S n =1-q n师 提问学生如何处理,适时提醒学生注意q 的取值生 如果q≠1,则有qq S n--=11师 当然,我们还要考虑一下如果q =1问题是什么样的结果生 如果q =1,那么S n =n师 上面我们先思考了一个特殊的简单情形,那么,对于等比数列的一般情形我们怎样思考?课件展示: a 1+a 2+a 3+…+a n =?[教师精讲]师 在上面的特殊简单情形解决过程中,蕴含着一个特殊而且重要的处理问题的方法,那就是“错位相减,消除差别”的方法.我们将这种方法简称为“错位相减法师 在解决等比数列的一般情形时,我们还可以使用“错位相减法如果记S n =a 1+a 2+a 3+…+a n 那么qS n =a 1q+a 2q+a 3q+…+a n要想得到S n ,只要将两式相减,就立即有(1-q)S n =a 1-a n师 再次提醒学生注意q 的取值如果q≠1,则有qq a a S n n --=11师 上述过程如果我们略加变化一下,还可以得到如下的过程:如果记S n =a 1+a 1q+a 1q 2+…+a 1q n -1 那么qS n =a 1q+a 1q 2+…+a 1q n -1+a 1q n要想得到S n ,只要将两式相减,就立即有(1-q)S n =a 1-a 1q n如果q≠1,则有qq a S n n --=1)1(1师 上述推导过程,只是形式上的不同,其本质没有什么差别,都是用的“错位相减法”.形式上,前一个出现的是等比数列的五个基本量:a 1,q,a n ,S n ,n 中a 1,q,a n ,S n 四个;后者出现的是a 1,q,S n ,n 四个,这将为我们今后运用公式求等比数列的前n 项的和提供了选择的余地.值得重视的是:上述结论都是在“如果q≠1”的前提下得到的.言下之意,就是只有当等比数列的公比q≠1时,我们才能用上述公式师 现在请同学们想一想,对于等比数列的一般情形,如果q =1问题是什么样的结果呢? 生 独立思考、合作交流生 如果q =1,S n =na 1 师 完全正确如果q =1,那么S n =na n .正确吗?怎么解释?生 正确.q =1时,等比数列的各项相等,它的前n 项的和等于它的任一项的n 倍师 对了,这就是认清了问题的本质师 等比数列的前n 项和公式的推导还有其他的方法,下面我们一起再来探讨一下:[合作探究]思路一:根据等比数列的定义,我们有:q a a a a a a a a n n =====-1342312...再由合比定理,则得qa a a a a a a a n n=++++++++-1321432......即qa S a S nn n =--1从而就有(1-q)S n =a 1-a n(以下从略思路二:由S n =a 1+a 2+a 3+…+a n 得S n =a 1+a 1q+a 2q+…+a n -1q=a 1+q(a 1+a 2+…+a n -1)=a 1+q(S n -a n从而得(1-q)S n =a 1-an(以下从略师 探究中我们们应该发现,S n -S n -=a n 是一个非常有用的关系,应该引起大家足够的重视.在这个关系式中,n的取值应该满足什么条件? 生 n >师 对的,请同学们今后多多关注这个关系式:S n -S n -1=a n ,n >师 综合上面的探究过程,我们得出:⎪⎩⎪⎨⎧≠--==1,1)1(,1,11q q q a q na S n n 或者1,1,1,11≠⎪⎩⎪⎨⎧--=q q q a a q na n[例题剖析]【例题1】 求下列等比数列的前8项的和:(1)21,41,81,…; (2)a 1=27,a 9=2431,q <[合作探究] 师生共同分析:由(1)所给条件,可得211=a ,21=q ,求n =8时的和,直接用公式即可 由(2)所给条件,需要从24319=a 中获取求和的条件,才能进一步求n =8时的和.而a 9=a 1q 8,所以由条件可得q 8=19a a =272431⨯,再由q <0,可得31-=q ,将所得的值代入公式就可以了生 写出解答:(1)因为211=a ,21=q ,所以当n =8时,256255211)21(1[2188=--=S(2)由a 1=27,24319=a ,可得272431198⨯==a a q ,又由q <0,可得31-=q 于是当n =8时,811640)31(1)2724311(2718=--⨯-=S【例题2】 某商场今年销售计算机5 000台,如果平均每年的销售量比上一年的销售量增加10%,那么从今年起,大约几年可使总销售量达到30 000台(结果保留到个位)?师 根据题意,从中发现等比关系,从中抽象出等比数列,并明确这是一个已知S n =30 000求n 的问题生 理解题意,从中发现等比关系,并找出等比数列中的基本量,列式,计算解:根据题意,每年的销售量比上一年增加的百分率相同,所以,从今年起,每年销售量组成一个等比数列{a n },其中a 1=5 000,q=1+10%=1.1,S n于是得到300001.11)1.11(5000=--n整理得1.1n两边取对数,得n用计算器算得1.1lg 6.1lg =n ≈041.02.0≈5(年答:大约5年可以使总销售量达到30 000台练习:教材第66页,练习第1、2、3题课堂小结本节学习了如下内容:1.等比数列前n 项和公式的推导;特别是在推导过程中,学到了“错位相减法2.等比数列前n 项和公式的应用.因为公式涉及到等比数列的基本量中的4个量,一般需要知道其中的3个,才能求出另外一个量.另外应该注意的是,由于公式有两个形式,在应用中应该根据题意所给的条件,适当选择运用哪一个公式在使用等比数列求和公式时,注意q的取值是至关重要的一个环节,需要放在第一位来思考.布置作业课本第69页习题2.5 A组第1、2、3题板书设计等比数列前n项和公式的推导与应用等比数列的前n项和公式情境问题的推导一般情形的推导例1练习:(学生板演) 例2练习:(学生板演)。
2014-2015学年 高中数学 人教A版必修五 第二章 2.5(二)等比数列的前n项和(二)
研一研·问题探究、课堂更高效
问续 m 项的和不等于 0, 则它们仍组
成等比数列. 即 Sm,S2m-Sm,S3m-S2m,„仍组成等比数列. 请你证明上述结论.
本 讲 栏 目 开 关
证明
∵在等比数列{an}中有 am+n=amqn,
∴Sm=a1+a2+„+am,
§2.5(二)
本 讲 栏 目 开 关
[问题情境] 一件家用电器,现价 20 000 元,实行分期付款,每期付款数相 同,每月为一期,一个月付款一次,共付 12 次,购买后一年还 清,月利率为 0.8%,按复利计算,那么每期付款多少元?要解 决上述问题,需要了解复利的计算方法,这正是这一节的主要内 容之一.
本 讲 栏 目 开 关
§2.5(二)
【学习目标】 1.熟练应用等比数列前 n 项和公式的有关性质解题. 2.能用等比数列的前 n 项和公式解决实际问题.
本 讲 栏 目 开 关
【学法指导】 1.解决与等比数列前 n 项和有关问题的关键在于“基本量” 以及方程思想方法的灵活运用. 2.运用等比数列前 n 项和解题时要注意“整体思想”方法的 灵活运用. 3. 利用等比数列的知识解决实际问题, 需要从实际问题中抽象 出等比数列模型,明确首项 a1,公比 q,以及项数 n 的实际 含义,切忌含糊不清.
§2.5(二)
在分期付款问题中,贷款 a 元,分 m 个月付清,月利率为 r,
每月还 x 元,想一想,每月付款金额 x 元应如何计算? 下面给出了两种推导方法,请你补充完整:
本 讲 栏 目 开 关
方法一:每个月还款 x 元后的剩余欠款按月份构成一个数列,记 作{an},则有: 经过 1 个月,还款 x 元后,剩余欠款为 a1= a(1+r)-x ; 经过 2 个月,还款 x 元后,剩余欠款为 a2=a1(1+r)-x= a(1+r)2-(1+r)x-x ; ____________________ 经过 3 个月,还款 x 元后,剩余欠款为 a3=a2(1+r)-x=
等比数列的前n项和公式(共2课时)高二数学教材配套教学精品课件(人教A版2019选择性必修第二册)
新知探究
①
②
①-②得:
①×q 得
思考1:类比上面求和的方法能否得到等比数列前n项和公式呢?
思考2:要求出Sn,是否可以把上式两边同除以(1-q)?
新知探究
①当1-q≠0,即q≠1时,除以1-q得
②当1-q=0,即q=1时,
注意:分类讨论
新知探究
等比数列前n项和公式
课堂小结
=a1+q(a2+a4+…+a2n)
=a1+qS偶
S奇=a1+qS偶
S偶=a2+a4+…+a2n
S奇=a1+a3+…+a2n-1
S偶=a2+a4+…+a2n
⇔
S偶=qS奇
⇔
新知探究
例4.已知等比数列 共有32项,其公比 ,且奇数项之和比偶数项之和少60,则数列 的所有项之和是( )A. B. C. D.
(1)等比数列求和时,应考虑q=1与q≠1两种情况.
(2)推导等比数列前n项和公式的方法:错位相减法.
(3)步骤: 乘公比,错位写,对位减.
注意:
新知探究
思考3:等比数列的前n项和公式有何函数特征?
03
等比数列前n项和公式的应用
新知探究
新知探究
新知探究
新知探究
B
新知探究
例2.在等比数列中,公比为,前项和为.(1)若,求;(2)若,,求及.
新知探究
新知探究
新知探究
方法总结
新知探究
新知探究
新知探究
新知探究
例4.在公差不为零的等差数列{an}中,a1=1,且a1,a2,a5成等比数列.(1)求{an}的通项公式.(2)设bn=2an,求数列{bn}的前n项和Sn.
4.3.2等比数列的前n项和公式(2)课件-高二人教A版数学选择性【05】
4
把q5 4代入(1)得 a1 10 1q 3
所以S15
a1(1 q15 ) 1 q
a1 1 q
(1
(q5 )3 )
( 10) (21) 3
210
法2:利用性质速解(自主完成)
变式 2.已知各项均为实数的等比数列{an}的前 n 项和为 Sn,若
S10=10,S30=70,则 S40= ( )
数列的前n项和公式解决
实际问题
温故知新:等比数列的前n项和Sn
Sn
a1
na1 (1 q
n
(q )
1 q
1) (q 1)
因为a n
a1q n1 , 所以Sn
a1 anq 1q
注意:
(q 1)
1.当q≠1时,基本量a1,an,q,n,Sn;知三求二
2.使用公式求和时,需注意对q=1和q≠1的情况加以 讨论;
S3n S2n 3na1 2na1 na1
所以Sn,S2n Sn ,S3n S2n 成等比数列,公比为 1.
当q 1时
Sn
a1(1 qn ) 1 q
S2n
Sn
a1 (1 1
q2n ) q
a1(1 qn ) 1 q
a1qn (1 qn ) 1 q
qnSn
S3n
S2n
a1 (1 1
q3n q
2. Sn为等比数列的前n项和,Sn≠0, q≠-1或k不是偶数时, 则Sk, S2k-Sk, S3k-S2k(k∈N*)是等比数列. 性质:Sn+m=Sn+qnSm⇔qn=Sn+Sm-m Sn(q 为公比.
基础巩固练习
1.若等比数列{an}中,Sn=m·3n-5,则实数m=__5___.
教案-《等比数列的前n项和公式》
高二数学组集体备课教案(第七周10月17日)课题:2.5等比数列的前n 项和(两个课时)教学目标:(1)知识目标:理解等比数列的前n 项和公式的推导方法;掌握等比数列的前n 项和公式并能运用公式解决一些简单问题;(2)能力目标:提高学生的建模意识,体会公式探求过程中从特殊到一般的思维方法,渗透方程思想、分类讨论思想;(3)情感目标:培养学生将数学学习放眼生活,用生活眼光看数学的思维品质;教学重点:(1)等比数列的前n 项和公式;(2)等比数列的前n 项和公式的应用;教学难点:等比数列的前n 项和公式的推导;教学方法:问题探索法及启发式讲授法教 具:多媒体教学过程:一、复习提问回顾等比数列定义,通项公式(1)等比数列定义:q a a n n =-1(2n ≥,)0≠q(2)等比数列通项公式:)0,(111≠=-q a q a a n n (3)等差数列前n 项和公式的推导方法:倒序相加法。
二、问题引入:阅读:课本第55页“国王赏麦的故事”。
问题:如何计算引出课题:等比数列的前n 项和。
三、问题探讨:问题:如何求等比数列{}n a 的前n 项和公式=n S 123n a a a a ++++22111111--=+++++n n a a q a q a q a q23636412222S =+++++倒序相加法。
等差数列 n a a a a ,,321+它的前n 项和是=n S n a a a a +++321 根据等差数列的定义1+-=n n a a d[]1111()(2)(n-1)=+++++++n S a a d a d a d (1)[]()(2)-(n-1)=+-+-++n n n n n S a a d a d a d (2) (1)+(2)得:12()=+n n S n a a 1()2+=n n n a a S 探究:等比数列的前n 项和公式是否能用倒序相加法推导?=n S 123n a a a a ++++ 22111111--=+++++n n a a q a q a q a q 221--=+++++n n n n n n n n a a a a S a q q q q 学生讨论分析,得出等比数列的前n 项和公式不能用倒序相加法推导。
§2.5等比数列前n项和公式教学设计
§2.5等比数列前n项和教学设计永吉四中数学郎苗一、教材分析1、教学内容:《等比数列的前n项和》是高中数学人教A版《必修5》第一章《数列》第5节的内容,教学大纲安排本节内容授课时间为两课时,本节课作为第一课时,重在研究等比数列的前n项和公式的推导过程并充分揭示公式的结构特征、内在联系及公式的简单应用.2、教材分析:《等比数列的前n项和》是数列这一章中的一个重要内容,就知识的应用价值上看,它是从大量数学问题和现实问题中抽象出来的一个模型,在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等,另外公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养.就内容的人文价值来看,等比数列的前n项和公式的探究与推导需要学生观察、归纳、证明,这有助于培养学生的创新思维和探索精神,同时也是培养学生应用意识和数学能力的良好载体.二、学情分析1、知识基础:前几节课学生已学习了等差数列求和,等比数列的定义及通项公式等内容,这为过渡到本节的学习起着铺垫作用.2、认知水平与能力:高二学生初步具有自主探究的能力,能在教师的引导下独立、合作地解决一些问题,但从学生的思维特点看,很容易把本节内容与等差数列前n项和公式的形成、特点等方面进行类比,这是积极因素,应因势利导.不利因素是:本节公式的推导与等差数列前n项和公式的推导有所不同,这对学生的思维是一个突破,另外,对于q=1这一特殊情况,学生也往往容易忽略,尤其是在后面使用的过程中容易出错.3、任教班级学生特点:我班学生基础知识还行、思维较活跃,应该能在教师的引导下独立、合作地解决一些问题.三、目标分析教学目标依据教学大纲的教学要求,渗透新课标理念,并结合以上学情分析,我制定了如下教学目标:1.知识与技能理解用错位相减法推导等比数列前n项和公式的过程,掌握公式的特点,并在此基础上能简单的应用公式.2.过程与方法在推导公式的过程中渗透类比,方程,特殊到一般的数学思想、方法,优化学生思维品质.3.情感态度与价值观通过故事引入,学生自主探索公式,激发他们的求知欲,体验错位相减法所折射出的数学方法美及学好数学的必要性.教学重、难点1.重点:等比数列的前n项和公式的推导和公式的简单应用.2.难点:由研究等比数列的结构特点推导出等比数列的前n项和公式四、教学模式与教法、学法教学模式:本课采用“探究—发现—应用”教学模式.教师的教法:利用多媒体辅助教学,突出活动的组织设计与方法引导.学生的学法:突出探究、发现与应用五、教学过程设计数列。
等比数列的前n项和公式(第2课时)(教学课件)高二数学(人教A版2019选择性必修第二册)
列,{ }是公比为的等比数列,我们可以用错位相减法求{ }的前项和.
错位相减法求和的注意点:
宋老师数学精品工作室
1.在写“ ”与“ ”的表达式时应特别注意将两式“错项对齐”以便下一步准
确写出“ − ”的表达式.
2.在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于
n
420
1.05
n
n 420.
4
4
1 1.05
2
当n 5时,S5 63.5.
∴从今年起5年内,通过填埋方式处理的垃圾总量约为63.5万吨.
例12 某牧场今年初牛的存栏数为1200,预计以后
每年存栏数的增长率为8%,且在每年年底卖出
100头牛,设牧场从今年起每年年初的计划存栏数
2
∴所有这些正方形的面积之和将趋近于50.
例11 去年某地产生的生活垃圾为20万吨,其中14万吨垃圾以填埋方式
处理,6万吨垃圾以环保方式处理,预计每年生活垃圾的总量递增5%,同时,
通过环保方式处理的垃圾量每年增加1.5万吨. 为了确定处理生活垃圾的预算,
请写出从今年起n年内通过填埋方式处理的垃圾总量的计算公式,并计算从今
室
Sn (a1 b1 ) (a2 b2 ) (an bn ) (a1 a2 an ) (b1 b2 bn )
3 2 27
20 1.05 (1 1.05n ) n(7.5 1.5n 6)
1
1
1
1
1
{
}
= [
−
]
( + 1)( + 2)
新课标人教A版高中数学必修五第二章第五节《等比数列的前n项和》教案
2.5 等比数列的前n 项和【教学目标】1.知识与技能:探索并掌握等比数列的前n 项和公式,并用公式解决实际问题。
2.过程与方法:由研究等比数列的结构特点推导出等比数列的前n 项和公式。
3.情感态度与价值观:从“错位相减法”这种算法中,体会“消除差别”,培养学生的化简能力,在本节课的学习过程中培养合作交流、解决问题能力。
【教学重难点】教学重点:使学生掌握等比数列的前n 项和公式,用等比数列的前n 项和公式解决实际问题。
教学难点:由研究等比数列的结构特点推导出等比数列的前n 项和公式。
【教学过程】(一)新课导入给出数列:n 2,,2,2,232提问学生此数列是否为等比数列,如果是,那它的首项和公比分别是什么?那它的前n 项和又为多少呢?所以这节课就来探究此问题,引出本节课的课题。
(二)新知探究一般地,对于等比数列n a a a ,,21,它的前n 项和可以写n n a a a S +++= 21,由等比数列的通项公式,上式可以替换成1111-+++=n n q a q a a S ①小组合作探究,观察此式子的特征,让学生探讨如何化解此计算式从而得到n S .学生合作探究得出:将①式左右同时乘以q ,得到n n q a q a q a qS 1211+++= ②,①式和②式有1-n 个相同的项,所以通过两式相减就可以得到n n q a a S q 11)1(-=-,进而得 到qq a S n n --=1)1(1,这时1≠q ,当1=q 时,1na S n =. 师:这种两个式子错开一项的方法叫做错位相减法问:得到的两个前n 项和的公式是数学符号的形式,可不可以用文字语言刻画这两个式子呢?生:当公比不等于1时,等比数列的前n 项和为1减公比分之首项乘以1减公比的项数次方,当公比等于1时,等比数列的前n 项和为项数乘以首项通过对等比数列前n 项和公式和通项公式的观察,发现qq a S n n --=1)1(1可以替换为q q a a S n n --=11.由此学生得到等比数列前n 项和的另一个式子qq a a S n n --=11. (三)课堂练习师:通过刚才对等比数列的前n 项和公式的学习,可以解决开头所提到的问题,师生共同解答。
等比数列的前n项和公式经典教案
等比数列的前n项和公式【学习目标】1.掌握等比数列的前n项和公式及推导公式的思想方法和过程,能够熟练应用等比数列的前n项和公式解决相关问题,提高应用求解能力.2.通过对等比数列的前n项和公式的推导与应用,使学生掌握错位相减法、方程思想、划归思想等数学思想和方法.3.激情参与,惜时高效,感受数学思维的严谨性.1.“我1.2.Ⅱ.1.2.3.等比通项公式a=n1.设A.C2AC.-31D.331、答案 D解析由8a2+a5=0得8a1q+a1q4=0,∴q=-2,则==-11.【我的疑惑】知识要点归纳:1.等比数列前n项和公式:(1)公式:S n==(q≠1).(q=1).(2)注意:应用该公式时,一定不要忽略q=1的情况.2.若{a n}是等比数列,且公比q≠1,则前n项和S n=(1-q n)=A(q n-1).其中A=.3.推导等比数列前n项和的方法叫法.一般适用于求一个等差数列与一个等比数列对应项积的前n项和.4.等比数列{a n}的前n项和为S n,当公比q≠1时,S n==;当q=1时,S n=.5.等比数列前n项和的性质:(1)连续m项的和(如S m、S2m-S m、S3m-S2m),仍构成数列.(注意:q≠-1或m为奇数)(2)S m+n=S m+q m S n(q为数列{a n}的公比).二、典型范例Ⅰ.质疑探究——质疑解惑、合作探究探究点等比数列的前n项和公式问题1:怎么求等比数列{}n a的前n项和n S?写出公式的推导过程。
S n问题2当=故当(1)(2(3)由(4)是数列求和的一种重要方法。
问题探究一错位相减法求和问题教材中推导等比数列前n项和的方法叫错位相减法.这种求和方法是我们应该掌握的重要方法之一,这种方法的适用范围可以拓展到一个等差数列{a n}与一个等比数列{b n}对应项之积构成的新数列求和.下面是利用错位相减法求数列{}前n项和的步骤和过程,请你补充完整.设S n=+++…+,∴S n=,∴S n-S n=,即S n==∴S n==2-.例1 在等比数列{a n }中,S 3=,S 6=,求a n . 解 由已知S 6≠2S 3,则q ≠1,又S 3=,S 6=, 即①,a 1(1-q 6)1-q =632.②))②÷①得1+q 3=9,∴q =2.可求得a 1=,因此a n =a 1q n -1=2n -2.问题探究二 等比数列前n 项和S n 与函数的关系问题 当公比q =1时,因为a 1≠0,所以S n =na 1,是n 的正比例函数(常数项为0的一次函数).当q =1时,数列S 1,S 2,S 3,…,S n ,…的图象是正比例函数y =a 1x 图象上一些孤立的点.A =,的一个指问题1 证明 =S m +(a =S m +q m S ∴S m +n =S m 1A .48 C .50 2A .C .3.设S n A .11 C .-4.设等比数列{a n }的公比q =2,前n 项和为S n ,则等于( )A .2B .4 C.D.5.已知{a n }是等比数列,a 2=2,a 5=,则a 1a 2+a 2a 3+…+a n a n +1等于 ( )A .16(1-4-n ) B .16(1-2-n )C.(1-4-n )D.(1-2-n )6.设{a n }是由正数组成的等比数列,S n 为其前n 项和,已知a 2a 4=1,S 3=7,则S 5等于( ) A. B. C.D.二、填空题7.等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,则{a n}的公比为________.8.设等比数列{a n}的前n项和为S n,若a1=1,S6=4S3,则a4=________.9.若等比数列{a n}中,a1=1,a n=-512,前n项和为S n=-341,则n的值是________.三、解答题10.设等比数列{a n}的前n项和为S n,已知a2=6,6a1+a3=30,求a n和S n.11.在等比数列{a n}中,已知S n=48,S2n=60,求S3n.12.已知等比数列{a n}中,a1=2,a3+2是a2和a4的等差中项.(1)求数列{a n}的通项公式;(2)记13(1)(2)1A.332A.1.1C.103.已知{aA.和5C.4.程和是A.C.5.数列{a n n1n+1n6A.3×44B.3×44+1C.45D.45+16.某企业在今年年初贷款a万元,年利率为γ,从今年年末开始每年偿还一定金额,预计五年内还清,则每年应偿还()A.万元B.万元C.万元D.万元二、填空题7.等比数列{a n}共2n项,其和为-240,且奇数项的和比偶数项的和大80,则公比q=________.8.等比数列{a n}中,前n项和为S n,S3=2,S6=6,则a10+a11+a12=________.9.某工厂月生产总值的平均增长率为q,则该工厂的年平均增长率为________.三、解答题10.在等比数列{a n}中,已知S30=13S10,S10+S30=140,求S20的值.11.利用等比数列前n项和公式证明a n+a n-1b+a n-2b2+…+b n=,其中n∈N*a,b是不为0的常数,且a≠b.12.已知{a n}是以a为首项,q为公比的等比数列,S n为它的前n项和.(1)当S1,S3,S4成等差数列时,求q的值;(2)当S m,S n,S l成等差数列时,求证:对任意自然数k,a m+k,a n+k,a l+k也成等差数列.四、探究与拓展1312≈1.1)过关测试1.D7.8.310.解当a1S n当a1S n11.6312.(1)a n(2)S n13.(1)a课后练习。
2.5 等比数列前n项和的性质及应用(2)
能使问题的解决过程变得简洁明快.
跟踪训练3 设数列{an}是以2为首项,1为公差的等差数列;数列{bn} 是以1为首项,2为公比的等比数列,则ba1 ba2 ba3 … ba6=_1_2_6_.ຫໍສະໝຸດ 解析ban1 ban
b qan11 1
b1 qan 1
qan1an
规律与方法
1.在利用等比数列前n项和公式时,一定要对公比q=1或q≠1作出判 断;若{an}是等比数列,且an>0,则{lg an}构成等差数列. 2.等比数列前n项和中用到的数学思想 (1)分类讨论思想: ①利用等比数列前n项和公式时要分公比q=1和q≠1两种情况讨论; ②研究等比数列的单调性时应进行讨论:当a1>0,q>1或a1<0,0<q<1 时为递增数列;当a1<0,q>1或a1>0,0<q<1时为递减数列;当q<0时为 摆动数列;当q=1时为常数列.
Sn (S3n
S2n
)
∴S2n+S22n=Sn(S2n+S3n).
反思与感悟 处理等比数列前n项和有关问题的常用方法 (1)运用等比数列的前n项和公式,要注意公比q=1和q≠1两种情形, 在解有关的方程(组)时,通常用约分或两式相除的方法进行消元. (2)灵活运用等比数列前n项和的有关性质.
跟踪训练2 在等比数列{an}中,已知Sn=48,S2n=60,求S3n.
类型二 等比数列前n项和的性质 命题角度 1 连续 n 项之和问题
例 2 已知等比数列前 n 项,前 2n 项,前 3n 项的和分别为 Sn,S2n,S3n, 求证:S2n+S22n=Sn(S2n+S3n).
证明 方法二 因为Sn,S2n-Sn,S3n-S2n 成等比数列
等比数列的前n项和教案
等比数列的前n项和教案【篇一:等比数列前n项和教学设计】《等比数列的前n项和》教案一.教学目标知识与技能目标:理解等比数列的前n项和公式的推导方法;掌握等比数列的前n项和公式并能运用公式解决一些简单问题。
过程与方法目标:通过公式的推导过程,提高学生构造数列的意识及探究、分析与解决问题的能力,体会公式探求过程中从特殊到一般的思维方法,渗透方程思想、分类讨论思想及转化思想。
情感与态度目标:通过经历对公式的探索,激发学生的求知欲,鼓励学生大胆尝试、勇于探索、敢于创新,磨练思维品质,从中获得成功的体验,感受思维的奇异美、结构的对称美、形式的简洁美、数学的严谨美。
二.重点难点教学重点:公式的推导、公式的特点和公式的运用;教学难点:公式的推导方法及公式应用的条件。
三.教学方法利用多媒体辅助教学,采用启发---探讨---建构教学相结合。
四.教具准备教学课件,多媒体五.教学过程(一)创设情境,提出问题故事回放:在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求.西萨说:请给我在棋盘的64个方格上,第1个格子里放1千吨小麦,第2个格子里放2千吨,第3个格子里放3千吨,如此下去,第64个格子放64千吨小麦,请给我这些小麦?(二).师生互动,探究问题问题1:同学们,你们知道西萨要的是多少小麦吗?引导学生写出小麦总数,带着这样的问题,学生会动手算起来,通过计算需要1+2+3+?+64=2080(千吨)结果出来后,国王认为西萨胃口太大,而国库空虚,还是提个简单的要求吧!西萨说:国王,我希望在第1个格子里放1颗麦粒,第2个格子里放2颗,第3个格子里放4颗,如此下去,每个格子放的麦粒数是前一格麦粒数的2倍,请给我这么多的麦粒数?问题2:同学们,你们知道西萨要的是多少粒小麦吗?引导学生写出麦粒总数1?2?22?23?????263,同时告诉学生一个抽象的答案,如果按西萨的要求,这是一个多么巨大的数字啊!它相当于全世界两千多年小麦产量的总和.问题3: 1,2,22,?,263是什么数列?有何特征?应归结为什么数学问题呢?探究一:1?2?22?23?????263,记为s64?1?2?22?23?????263??①式,注意观察每一项的特征,有何联系?(学生会发现,后一项都是前一项的2倍)探究二:如果我们把每一项都乘以2,就变成了它的后一项,①式两边同乘以2则有2s64?2?22?23?????264??②式.比较①、②两式,你有什么发现?经过比较、研究,学生发现:①、②两式有许多相同的项,把两式相减,相同的项就消去了,得到:s64?264?1 ,老师指出:这就是错位相减法,并要求学生纵观全过程。
等比数列的前n项和公式 第2课时 高二上学期数学人教A版(2019)选择性必修第二册
奇
=q ;
2°其前 2n+1
S奇 a1
项中, S =q
偶
;
3°其前 2n+1 项中: S 奇- S 偶=a1- a2+ a3- a4+…+ a2n- 1- a2n+ a2n+ 1
a1 a2 n1q a1 a2 n 2
= 1 q = 1 q (q ≠- 1);
6
对点练清:1
6 万吨垃圾以环保方式处理 . 预计每年生活垃圾的总量递增 5% , 同时, 通过
环保方式处理的垃圾总量每年递增 1.5 万吨 . 为了确定处理生活垃圾的预算 ,
请写出从今年起 n 年内通过填埋方式处理的垃圾总量的计算公式 , 并计算
从今年起 5 年内通过填埋方式处理的垃圾总量(精确到 0.1 万吨)?
栏数的增长率为 8%,且在每年年底卖出 100 头。设牧场
从今年起每年年初的计划存栏数依次为 c1,c2,c3,….
(1)写出一个递推公式,表示 cn+1 与 cn 之间的关系;
(2)将(1)中的递推公式表示成 cn+1-k=r(cn-k)的形式,
其中 k,r 为常数;
(3)求 S10=c1+c2+c3+…+c10 的值(精确到 1).
1 Sn =
q 1 ;
1q
a1 an q
2
S
=
n
q 1 .
1q
1 0.61
0.61 1 0.61n1
1 0.61
= 400
整理得: 0.61n-1≈0.04 解得: n≈7.5 .
13
典型例题p38:
高中数学必修5教案等比数列第2课时
高中数学必修5教案等比数列第2课时第一篇:高中数学必修5教案等比数列第2课时等比数列第2课时授课类型:新授课●教学目标知识与技能:灵活应用等比数列的定义及通项公式;深刻理解等比中项概念;熟悉等比数列的有关性质,并系统了解判断数列是否成等比数列的方法过程与方法:通过自主探究、合作交流获得对等比数列的性质的认识。
情感态度与价值观:充分感受数列是反映现实生活的模型,体会数学是来源于现实生活,并应用于现实生活的,数学是丰富多彩的而不是枯燥无味的,提高学习的兴趣。
●教学重点等比中项的理解与应用●教学难点灵活应用等比数列定义、通项公式、性质解决一些相关问题●教学过程Ⅰ.课题导入首先回忆一下上一节课所学主要内容:1.等比数列:如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比;公比通常用字母q表示(q≠an0),即:=q(q≠0)an-12.等比数列的通项公式:an=a1⋅q3.{an}成等比数列⇔列的必要非充分条件4.既是等差又是等比数列的数列:非零常数列Ⅱ.讲授新课1.等比中项:如果在a与b中间插入一个数G,使a,G,b成等比数列,那么称这个数G为a与b的等比中项.即G=±ab(a,b同号)如果在a与b中间插入一个数G,使a,G,b成等比数列,则n-1(a1⋅q≠0),an=am⋅qn-m(am⋅q≠0)an+1+=q(n∈N,q≠0)“an≠0”是数列{an}成等比数anGb=⇒G2=ab⇒G=±ab,aG反之,若G=ab,则≠0)[范例讲解] 课本P58例4 证明:设数列{an}的首项是a1,公比为q1;{bn}的首项为b1,公比为q2,那么数列{an⋅bn}的第n项与第n+1项分别为:2Gb2=,即a,G,b成等比数列。
∴a,G,b成等比数列⇔G=ab(a·baGa1⋅q1n-1⋅b1⋅q2与a1⋅q1⋅b1⋅q2即为a1b1(q1q2)n-1与a1b1(q1q2)nn-1nnan+1⋅bn+1a1b1(q1q2)nΘ==q1q2.n-1an⋅bna1 b1(q1q2)它是一个与n无关的常数,所以{an⋅bn}是一个以q1q2为公比的等比数列拓展探究:对于例4中的等比数列{an}与{bn},数列{an}也一定是等比数列吗? bnana,则cn+1=n+1 bnbn+1探究:设数列{an}与{bn}的公比分别为q1和q2,令cn=∴cn+1bn+1abqa==(n+1)γ(n+1)=1,所以,数列{n}也一定是等比数列。
4.3.2等比数列的前n项和公式课件(第二课时)-高二下学期数学人教A版选择性【05】
分析: (1)可以利用每年存栏数的增长率为8%和每年年底卖出100头 建立cn+1与cn的关系; (2)这是待定系数法的应用,可以将它还原为(1)中的递推公 式形式, 通过比较系数,得到方程组; (3)利用(2)的结论可得出解答.
类比探究
等差数列被均匀分段求和后,得到的数列 仍是等差数列,即S n,S2n-Sn,S3n-S2n…成 等差数列.那么等比数列是不是也有类似的性 质呢?
例1.已知等比数列{an}的公比q 1,前n项和为Sn.证明: Sn,S2n Sn,S3n S2n成等比数列,并求这个数列的公比.
证明: 当q 1时,
所以(1)中的递推公式可以化为cn+1-1250=1.08(cn-1250).
例4 .某牧场今年初牛的存栏数为1200,预计以后每年存栏数的增
长率为8%,且在每年年底卖出100头牛,设牧场从今年起每年年
初的计划存栏数依次为c1,c2,c3,‧‧‧ . (1)写出一个递推公式,表示cn+1与cn之间的关系;
4.3.2 等比数列的前n项和公式
(第二课时)
复习引入
1.等比数列的前n项和公式
已知量 求和公式
首项a1、公比 q(q≠1)与项数n
Sn
a1(1 qn ) 1 q
首项a1、末项an与
公比q(q≠1)
Sn
a1 anq 1 q
首项a1、 公比q=1
Sn na1
2.等差数列前n项和公式的两种形式
Sn
例1.已知等比数列{an}的公比q 1,前n项和为Sn.证明: Sn,S2n Sn,S3n S2n成等比数列,并求这个数列的公比.
高中数学第二章数列第5节等比数列的前n项和第2课时数列求和(习题课)课件新人教A版3必修5
(2)cn=(3n-2)·2n-1, Tn=1·20+4·21+…+(3n-2)·2n-1, 2Tn=1·21+4·22+…+(3n-2)·2n, ∴-Tn=1+3×(21+22+…+2n-1)-(3n-2)·2n =1+6(2n-1-1)-(3n-2)·2n =(5-3n)·2n-5, Tn=(3n-5)·2n+5.
4n,
(x()x(2-x21n)+2+1)+2n. (x≠±1)
当一个数列本身既不是等差数列也不是等比数 列,但如果它的通项公式可以拆分为几项的和,而这 些项又构成等差数列或等比数列,那么就可以用分组 求和法,即原数列的前 n 项和等于拆分成的每个数列 前 n 项和的和.
讲一讲 3.等差数列an的前 n 项和为 Sn,已知 a1=10,a2 为整 数,且 Sn≤S4. (1)求an的通项公式; (2)设 bn=ana1n+1,求数列bn的前 n 项和 Tn.
[尝试解答] (1)由 a1=10,a2 为整数知:等差数列an 的公差 d 为整数.又 Sn≤S4,故 a4≥0,a5≤0;
和.形如 an=(-1)nf(n)类型,可采用两项合并求解.
2.本节课的难点和易错点是“错位相减法”和 “奇偶并项求和法”.如讲 2 和讲 4.
第 2 课时 数列求和(习题课)
[思考]
若数列 c 是公差为 n
d
的等差数列,数列bn
是公比为 q(q≠1)的等比数列,且 an=cn+bn,如何求数
列 a 的前 n 项和? n
名师指津:数列 a 的前 n 项和等于数列 c 和 b n
n
n
的前 n 项和的和.
=
1 3
+3×31211--313n1-1
-
(3n
高二数学 等比数列前n项和及应用
(2)法一 设原等比数列的公比为 q,项数为 2n(n∈N*).
由已知 a1=1,q≠1,有1q1- -11--qq22qnq=22n8=5,170.
②
①
由②÷①,得 q=2, ∴11--44n=85,4n=256,∴n=4. 故公比为 2,项数为 8.
法二 ∵S 偶=a2+a4+…+a2n=a1q+a3q+…+a2n-1q =(a1+a3+…+a2n-1)q=S 奇·q, ∴q=SS偶 奇=18750=2. 又 Sn=85+170=255, 据 Sn=a111--qqn,得11--22n=255,∴2n=256,∴n=8. 故公比 q=2,项数 n=8.
∴S9-3S3=4S3,∴S9=7S3,∴SS96=73.
等差数列与等比数列的综合问题
已知等差数列{an}的前 5 项和为 105,且 a10=2a5. (1)求数列{an}的通项公式; (2)对任意 m∈N+,将数列{an}中不大于 72m 的项的个数记为 bm.求数列{bm}的前 m 项和 Sm. 【思路探究】 (1)由题意能得出 a1,d 的方程组吗? (2)如何求 bm 呢?
●重点难点 重点:等比数列前 n 项和及性质的应用. 难点:等比数列前 n 项和及性质的灵活应用.
课 标 解 读
1.掌握等比数列前n项和的性质的应用.(重点) 2.能用递推公式求通项公式.(难点) 3.掌握等差数列与等比数列的综合应用.(重点)
等比数列前n项和的性质
【问题导思】 在等差数列{an}中,我们知道其前 n 项和 Sn 满足这样的性质, Sn,S2n-Sn,S3n-S2n,…也成等差数列;等比数列的前 n 项和 Sn 是否也满足这一性质呢?试证明之. 【提示】 满足.
用好性质会降低解题的运算量,从而减少错误.
第2课时-等比数列前n项和的性质及应用
第2课时 等比数列前n 项和的性质及应用一、学习目标1.熟练应用等比数列前n 项和公式的性质解题.2.能在具体的问题情境中,发现数列的等比关系,并解决相应的问题.二、导学指导 导学检测及课堂展示一、等比数列前n 项和公式的灵活应用问题1 类比等差数列前n 项和性质中的奇数项、偶数项的问题,等比数列是否也有相似的性质? 提示 若等比数列{a n }的项数有2n 项,则 其偶数项和为S 偶=a 2+a 4+…+a 2n , 其奇数项和为S 奇=a 1+a 3+…+a 2n -1,容易发现两列式子中对应项之间存在联系,即S 偶=a 1q +a 3q +…+a 2n -1q =qS 奇,所以有S 偶S 奇=q . 若等比数列{a n }的项数有2n +1项,则其偶数项和为S 偶=a 2+a 4+…+a 2n ,其奇数项和为S 奇=a 1+a 3+…+a 2n -1+a 2n +1,从项数上来看,奇数项比偶数项多了一项,于是我们有S 奇-a 1=a 3+…+a 2n -1+a 2n +1=a 2q +a 4q +…+a 2n q =qS 偶,即S 奇=a 1+qS 偶.知识梳理若{a n }是公比为q 的等比数列,S 偶,S 奇分别是数列的偶数项和与奇数项和,则:①在其前2n 项中,S 偶S 奇=q ; ②在其前2n +1项中,S 奇-S 偶=a 1-a 2+a 3-a 4+…-a 2n +a 2n +1=a 1+a 2n +1q 1-(-q )=a 1+a 2n +21+q(q ≠-1); S 奇=a 1+qS 偶.例1 (1)已知等比数列{a n }共有2n 项,其和为-240,且(a 1+a 3+…+a 2n -1)-(a 2+a 4+…+a 2n )=80,则公比q =________.(2)若等比数列{a n }共有2n 项,其公比为2,其奇数项和比偶数项和少100,则数列{a n }的所有项之和为________.跟踪训练1 (1)若等比数列{a n }共有奇数项,其首项为1,其偶数项和为170,奇数项和为341,则这个数列的公比为________,项数为________.(2)一个项数为偶数的等比数列{a n },全部各项之和为偶数项之和的4倍,前3项之积为64,则数列的通项公式a n =________.反思感悟:二、等比数列中的片段和问题问题2 你能否用等比数列{a n }中的S m ,S n 来表示S m +n ?提示 思路一:S m +n =a 1+a 2+…+a m +a m +1+a m +2+…+a m +n =S m +a 1q m +a 2q m +…+a n q m=S m +q m S n .思路二:S m +n =a 1+a 2+…+a n +a n +1+a n +2+…+a n +m=S n +a 1q n +a 2q n +…+a m q n=S n +q n S m .问题3 类似于等差数列中的片段和的性质,在等比数列中,你能发现S n ,S 2n -S n ,S 3n -S 2n …(n为偶数且q =-1除外)的关系吗?提示 S n ,S 2n -S n ,S 3n -S 2n …仍成等比数列,证明如下:思路一:当q =1时,结论显然成立;当q ≠1时,S n =a 1(1-q n )1-q ,S 2n =a 1(1-q 2n )1-q ,S 3n =a 1(1-q 3n )1-q. S 2n -S n =a 1(1-q 2n )1-q -a 1(1-q n )1-q =a 1q n (1-q n )1-q, S 3n -S 2n =a 1(1-q 3n )1-q -a 1(1-q 2n )1-q =a 1q 2n (1-q n )1-q, 而(S 2n -S n )2=⎣⎢⎡⎦⎥⎤a 1q n (1-q n)1-q 2,S n (S 3n -S 2n )=a 1(1-q n )1-q ×a 1q 2n (1-q n )1-q , 故有(S 2n -S n )2=S n (S 3n -S 2n ),所以S n ,S 2n -S n ,S 3n -S 2n 成等比数列.思路二:由性质S m +n =S m +q m S n 可知S 2n =S n +q n S n ,故有S 2n -S n =q n S n ,S 3n =S 2n +q 2n S n ,故有S 3n -S 2n =q 2n S n ,故有(S 2n -S n )2=S n (S 3n -S 2n ),所以S n ,S 2n -S n ,S 3n -S 2n 成等比数列.知识梳理1.若{a n }是公比为q 的等比数列,则S n +m =S n + (n ,m ∈N *).2.数列{a n }为公比不为-1的等比数列(或公比为-1,且n 不是偶数),S n 为其前n 项和,则S n ,S 2n -S n , 仍构成等比数列.注意点:等比数列片段和性质的成立是有条件的,即S n ≠0.例2 在等比数列{a n }中,已知S n =48,S 2n =60,求S 3n .1.设等比数列{a n }的前n 项和为S n ,若S 10∶S 5=1∶2,则S 15∶S 5等于( )A .3∶4B .2∶3C .1∶2D .1∶32.在等比数列{a n }中,a 1a 2a 3=1,a 4=4,则a 2+a 4+a 6+…+a 2n 等于( )A .2n-1 B.4n -13 C.1-(-4)n 3 D.1-(-2)n3 3.有一种细菌和一种病毒,每个细菌在每秒钟杀死一个病毒的同时将自身分裂为2个,现在有1个这种细菌和200个这种病毒,问细菌将病毒全部杀死至少需要( )A .6秒钟B .7秒钟C .8秒钟D .9秒钟4.若等比数列{a n }的公比为13,且a 1+a 3+…+a 99=60,则{a n }的前100项和为________.四、小结记录1.知识清单:(1)奇数项和、偶数项和的性质.(2)片段和性质.(3)等比数列前n项和的实际应用.2.方法归纳:公式法、分类讨论.3.常见误区:应用片段和性质时易忽略其成立的条件.今日之事今日毕日积月累成大器课堂反思:。
高中数学: 等比数列的前n项和(二)含解析
A.33
B.72
C.84
D.189
答案 C
解析 由 S3=a1(1+q+q2)=21 且 a1=3,得 q+q2-6=0.∵q>0,∴q=2.∴a3+a4+a5=q2(a1+a2+a3)=22·S3=84.
2.某厂去年产值为 a,计划在 5 年内每年比上一年产值增长 10%,从今年起 5 年内,
该厂的总产值为( )
前 5 项和为( )
15
31
31
15
A. 8 或 5
B.16或 5
C. 16
D. 8
答案 C
解析 若 q=1,则由 9S3=S6 得 9×3a1=6a1,
则 a1=0,不满足题意,故 q≠1. a11-q3 a11-q6
由 9S3=S6 得 9× 1-q = 1-q , 解得 q=2.
故 an=a1qn-1=2n-1,
高中数学
高中数学
11
an=(2)n-1.
1
1
所以数列{an}是以 1 为首项,2为公比的等比数列,其前 5 项和为 1
1 × [1- 5] 2
1
31
1-
S5=
2 =16.
4.一弹性球从 100 米高处自由落下,每次着地后又跳回到原来高度的一半再落下,则
第 10 次着地时所经过的路程和是(结果保留到个位)( )
1
11
1- 1- 1- 2-
∴ a 8+ a 9= a 8 a .
14.现在有某企业进行技术改造,有两种方案,甲方案:一次性贷款 10 万元,第一年
便可获利 1 万元,以后每年比前一年增加 30%的利润;乙方案前一年增加 5 千元,两方案使用期都是 10 年,到期后一次性归
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.5等比数列的前n 项和(第2课时)教案
●学习目标
知识与技能:会用等比数列的通项公式和前n 项和公式解决有关等比数列的q n a a S n n ,,,,1中知道三个数求另外两个数的一些简单问题;提高分析、解决问题能力
过程与方法:通过公式的灵活运用,进一步渗透方程的思想、分类讨论的思想、等价转化的思想.
情感态度与价值观:通过公式推导的教学,对学生进行思维的严谨性的训练,培养他们实事求是的科学态度.
●教学重点
进一步熟练掌握等比数列的通项公式和前n 项和公式
●教学难点
灵活使用公式解决问题
●教学过程
Ⅰ.课题导入
首先回忆一下前一节课所学主要内容:
等比数列的前n 项和公式:
当1≠q 时,q q a S n n --=1)1(1 ① 或q
q a a S n n --=11 ② 当q=1时,1na S n =
当已知1a , q, n 时用公式①;当已知1a , q, n a 时,用公式②
Ⅱ.讲授新课
例1、在等比数列{}n a (n ∈N*)中,若11a =,418
a =,求该数列的前10项和。
例2、等比数列{}n a 的前3项和为13,前6项和为364,求12S 。
例3、已知数列{}n a 的前n 项和2
15-=n n S ,求数列{}n a 的通项公式。
{}n a 是否为等比数列?若是请证明。
若不是请说明理由。
变式:若等比数列{}n a 的前n 项和a S n n +=3,则a 等于 ( )
A. 4-
B. 2-
C. 0
D. 1-
例4、数列{}n a 满足()212
1,111≥+==-n a a a n n 。
(1) 若2-=n n a b ,求证{}n b 为等比数列;(2)求{}n a 的通项公式。
Ⅲ.课堂练习
1、等比数列前n 项和为54,前n 2项和为60,则前n 3项和为 ( )
A. 54
B. 64
C. 3266
D. 3
260 2、一张报纸,其厚度为a ,面积为b ,现将此报纸对折(沿对边中点连线折叠)7次,这时报纸的厚度和面积分别为 ( )
A. b a 81
,8 B. b a 641,64 C. b a 1281,128 D. b a 256
1,256 3、已知公比为q ()1≠q 的等比数列{}n a 的前n 项和为n S , 则数列⎭
⎬⎫⎩⎨⎧n a 1的前n 项和为 ( ) A. n
n
S q B. n n q S C. 11-n n q S D. 121-n n q a S
4、设等比数列{}n a 的前n 项和为n S ,若9632S S S =+,求公比q 。
Ⅳ.课时小结
应熟练掌握等比数列前n 项和公式的应用,能够用一些较特殊的方法解决等比数列问题。
Ⅴ.课后作业
1、等比数列前n 项,前2n 项,前3n 项的和分别是Sn ,S2n ,S3n ,
求证:)S S (S S S n 3n 2n 2n 22n +=+
2、设a 为常数,求数列a ,2a 2,3a 3,…,na n ,…的前n 项和;
(1)a=0时,S n =0
(2)a ≠0时,若a=1,则Sn=1+2+3+…+n=
)1n (n 21- 若a ≠1,S n -aS n =a (1+a+…+a n-1-na n ),Sn=
]na a )1n (1[)a 1(a 1n n 2+++--。