等比数列前n项和公式ppt教学提纲

合集下载

等比数列的前n项和PPT课件

等比数列的前n项和PPT课件
等比数列的前n项和ppt课件
xx年xx月xx日
contents
目录
• 引言 • 等比数列的前n项和公式推导 • 等比数列的前n项和的应用 • 特殊等比数列的前n项和 • 等比数列的前n项和求解方法 • 习题解答与练习
01
引言
课程背景
教学内容的重要性
等比数列是数学中的一个重要概念,其前n项和在数学、物理 、工程等领域有着广泛的应用。
特殊情况
当公比q不等于1时,等比数列的前n项和公式为 Sn=a1(1-q^n)/(1-q)。
05
等比数列的前n项和求解方法
利用公式求解等比数列的前n项和
公式法
利用等比数列的前n项和公式求解,当已知等比数列的首项a1和公比q时,可以直 接套用公式求出前n项和。
记忆口诀
为了方便记忆,可以总结一个简单的记忆口诀:“首项乘1减公比除以1减公比的 n次方”,这个口诀可以快速帮助我们记忆公式。
02
等比数列的前n项和公式推导
公比为r的等比数列求和公式推导
公式推导
$S_n = \frac{a_1}{1-r} * (1 - r^n)$
VS
推导步骤
将等比数列的每一项分别代入求和公式中 ,得到$S_n = a_1 + a_2 + \cdots + a_n$,再将$a_1 = ar, a_2 = ar^2, \cdots, a_n = ar^n$代入$S_n$中,经过 化简得到最终的求和公式。
04
特殊等比数列的前n项和
等差数列的前n项和公式
公式总结
等差数列的前n项和公式为Sn=n/2(a1+an),其中n为项数, a1为首项,an为末项。
公式证明
通过采用倒序相加法,将前n项和与后n项和相加,得到 2Sn=n(a1+an),从而得到前n项和公式。

等比数列的前n项和PPT课件

等比数列的前n项和PPT课件

讲授新课
1 2 22 23 24 263
这一格放 的麦粒可 以堆成一 座山!!!
263
湖南省长沙市一中卫星远程学校
讲授新课
分析: 由于每格的麦粒数都是前一格的2倍,
共有64格每格所放的麦粒数依次为:
湖南省长沙市一中卫星远程学校
讲授新课
分析: 由于每格的麦粒数都是前一格的2倍,
共有64格每格所放的麦粒数依次为:
1, 2, 22 , 23 , , 263.
湖南省长沙市一中卫星远程学校
讲授新课
分析: 由于每格的麦粒数都是前一格的2倍,
共有64格每格所放的麦粒数依次为:
1, 2, 22 , 23 , , 263.
它是以1为首项,公比是2的等比数列,
湖南省长沙市一中卫星远程学校
讲授新课
分析: 由于每格的麦粒数都是前一格的2倍,
湖南省长沙市一中卫星远程学校
等比数列的前n项和公式的推导1
一般地,设等比数列a1, 它的前n项和是
a2,
a3,
…,
an这…种求和
的方法,就
是错位相
减法!
湖南省长沙市一中卫星远程学校
等比数列的前n项和公式的推导1
一般地,设等比数列a1, a2, a3, …, an… 它的前n项和是
∴当q≠1时,

湖南省长沙市一中卫星远程学校
讲授新课
请同学们考虑如何求出这个和?
S64 1 2 22 23 263 ① 2S64 2(1 2 22 23 263 )
即 2S64 2 22 23 263 264 ②
由②-①可得:
2S64 S64 (2 22 23 263 264) (1 2 22 23 263 )

等比数列的前n项和数列总结教学提纲

等比数列的前n项和数列总结教学提纲

等比数列的前n 项和一、等比数列的前n 项和公式1.乘法运算公式法∵S n =a 1+a 2+a 3+…+a n =a 1+a 1q +a 1q 2+…+a 1q n -1=a 1(1+q +q 2+…+q n -1)=a 1·1-q 1+q +q 2+…+q n -11-q =a 11-q n1-q, ∴S n =a 11-q n1-q. 2.方程法∵S n =a 1+a 1q +a 1q 2+…+a 1q n -1=a 1+q (a 1+a 1q +…+a 1q n -2)=a 1+q (a 1+a 1q +…+a 1q n -1-a 1q n -1)=a 1+q (S n -a 1q n -1),∴(1-q )S n =a 1-a 1q n .∴S n =a 11-q n1-q. 3.等比性质法∵{a n }是等比数列,∴a 2a 1=a 3a 2=a 4a 3=…=a n a n -1=q . ∴a 2+a 3+…+a n a 1+a 2+…+a n -1=q , 即S n -a 1S n -a n =q 于是S n =a 1-a n q 1-q =a 11-q n1-q. 二、等比数列前n 项和公式的理解(1)在等比数列的通项公式及前n 项和公式中共有a 1,a n ,n ,q ,S n 五个量,知道其中任意三个量,都可求出其余两个量.(2)当公比q ≠1时,等比数列的前n 项和公式是S n =a 11-q n 1-q ,它可以变形为S n =-a 11-q ·q n +a 11-q ,设A =a 11-q,上式可写成S n =-Aq n +A .由此可见,非常数列的等比数列的前n 项和S n 是由关于n 的一个指数式与一个常数的和构成的,而指数式的系数与常数项互为相反数.当公比q =1时,因为a 1≠0,所以S n =na 1是n 的正比例函数(常数项为0的一次函数).等比数列前n 项和性质(1)在等比数列{a n }中,连续相同项数和也成等比数列,即:S k ,S 2k -S k ,S 3k -S 2k ,…仍成等比数列.(2)当n 为偶数时,偶数项之和与奇数项之和的比等于等比数列的公比,即S 偶S 奇=q . (3)若一个非常数列{a n }的前n 项和S n =-Aq n +A (A ≠0,q ≠0,n ∈N *),则数列{a n }为等比数列,即S n =-Aq n +A ⇔数列{a n }为等比数列.题型一 等比数列前n 项和公式的基本运算(在等比数列{a n }的五个量a 1,q ,a n ,n ,S n 中,a 1与q 是最基本的元素,当条件与结论间的联系不明显时,均可以用a 1和q 表示a n 与S n ,从而列方程组求解,在解方程组时经常用到两式相除达到整体消元的目的,这是方程思想与整体思想在数列中的具体应用;在解决与前n 项和有关的问题时,首先要对公比 q =1或q ≠1进行判断,若两种情况都有可能,则要分类讨论.)1、在等比数列{a n}中,(1)若S n=189,q=2,a n=96,求a1和n;(2)若q=2,S4=1,求S8.2、设等比数列{a n}的前n项和为S n,若S3+S6=2S9,求数列的公比q.题型二等比数列前n项和性质的应用3、一个等比数列的首项为1,项数是偶数,其奇数项的和为85,偶数项和为170,求出数列的公比和项数.4、等比数列{a n}中,若S2=7,S6=91,求S4.题型三等比数列前n项和的实际应用5、借贷10 000元,以月利率为1%,每月以复利计息借贷,王老师从借贷后第二个月开始等额还贷,分6个月付清,试问每月应支付多少元?(1.016≈1.061,1.015≈1.051)[规范解答] 方法一设每个月还贷a元,第1个月后欠款为a0元,以后第n个月还贷a元后,还剩下欠款a n元(1≤n≤6),则a0=10 000,a1=1.01a0-a,a2=1.01a1-a=1.012a0-(1+1.01)a,……a6=1.01a5-a=……=1.016a0-[1+1.01+…+1.015]a.由题意,可知a6=0,即1.016a0-[1+1.01+…+1.015]a=0,a=1.016×1021.016-1.因为1.016=1.061,所以a=1.061×1021.061-1≈1 739.故每月应支付1 739元.方法二一方面,借款10 000元,将此借款以相同的条件存储6个月,则它的本利和为S1=104(1+0.01)6=104×(1.01)6(元).另一方面,设每个月还贷a元,分6个月还清,到贷款还清时,其本利和为S2=a(1+0.01)5+a(1+0.01)4+…+a=a[1+0.016-1]1.01-1=a[1.016-1]×102(元).由S1=S2,得a=1.016×1021.016-1. 以下解法同法一,得a≈1 739.故每月应支付1 739元.方法技巧错位相减法求数列的和若数列{a n}为等差数列,数列{b n}为等比数列,由这两个数列的对应项乘积组成的新数列为{a n b n},当求该数列的前n项的和时,常常采用将{a n b n}的各项乘以公比q,并向后错位一项与{a n b n}的同次项对应相减,即可转化为特殊数列的求和,所以这种数列求和的方法称为错位相减法.6、已知等差数列{a n}的前3项和为6,前8项和为-4.(1)求数列{a n}的通项公式;(2)设b n=(4-a n)q n-1(q≠0,n∈N*),求数列{b n}的前n项和S n.数列归纳整合一、数列的概念及表示方法(1)定义:按照一定顺序排列着的一列数.(2)表示方法:列表法、图象法、通项公式法和递推公式法.(3)分类:按项数有限还是无限分为有穷数列和无穷数列;按项与项之间的大小关系可分为递增数列、递减数列、摆动数列和常数列.(4)a n 与S n 的关系:a n =⎩⎪⎨⎪⎧ S 1n =1,S n -S n -1n ≥2.二、等差数列、等比数列性质的对比 等差数列 等比数列性质 ①设{a n }是等差数列,若s +t =m +n ,则a s+a t =a m +a n ;②从等差数列中抽取等距离的项组成的数列是一个等差数列;③等差数列中连续m 项的和组成的新数列是等差数列,即:S m ,S 2m -S m ,S 3m -S 2m ,…是等差数列 ①设{a n }是等比数列,若s +t =m +n ,则a s ·a t =a m ·a n ; ②从等比数列中抽取等距离的项组成的数列是一个等比数列; ③等比数列中连续m 项的和组成的新数列是等比数列,即:S m ,S 2m -S m ,S 3m -S 2m ,…是等比数列(注意:当q =-1且m 为偶数时,不是等比数列)函数特性 ①等差数列{an}的通项公式是n 的一次函数,即an =an +b(a≠0,a =d ,b =a1-d); ②等差数列{an}的前n 项和公式是一个不含常数项的n 的二次函数,即Sn =an2+bn(d≠0) ①等比数列{an}的通项公式是n 的指数型函数,即an =c·qn ,其中c≠0,c =a1q ; ②等比数列{an}的前n 项和公式是一个关于n 的指数型函数,即Sn =aqn -a(a≠0,q≠0,q≠1)三、等差数列、等比数列的判断方法(1)定义法:a n +1-a n =d (常数)⇔{a n }是等差数列;a n +1a n=q (q 为常数,q ≠0)⇔{a n }是等比数列. (2)中项公式法:2a n +1=a n +a n +2⇔{a n }是等差数列;a n +12=a n ·a n +2(a n ≠0)⇔{a n }是等比数列.(3)通项公式法:a n =an +b (a ,b 是常数)⇔{a n }是等差数列;a n =c ·q n (c ,q 为非零常数)⇔{a n }是等比数列.(4)前n 项和公式法:S n =an 2+bn (a ,b 为常数,n ∈N *)⇔{a n }是等差数列;S n =aq n -a (a ,q 为常数,且a ≠0,q ≠0,q ≠1,n ∈N *)⇔{a n }是等比数列.专题一 数列通项公式的求法数列的通项公式是数列的核心之一,它如同函数中的解析式一样,有解析式便可研究函数的性质,而有了数列的通项公式,便可求出数列中的任何一项及前n 项和.常见的数列通项公式的求法有以下几种:(1)观察归纳法求数列的通项公式就是观察数列的特征,横向看各项之间的关系结构,纵向看各项与序号n 的内在联系,结合常见数列的通项公式,归纳出所求数列的通项公式.(2)利用公式法求数列的通项公式数列符合等差数列或等比数列的定义,求通项时,只需求出a 1与d 或a 1与q ,再代入公式a n =a 1+(n -1)d 或a n =a 1q n -1中即可.(3)利用a n 与S n 的关系求数列的通项公式如果给出的条件是a n 与S n 的关系式,可利用a n =⎩⎪⎨⎪⎧ S 1n =1,S n -S n -1n ≥2,先求出a 1=S 1,再通过计算求出a n (n ≥2)的关系式,检验当n =1时,a 1是否满足该式,若不满足该式,则a n 要分段表示.(4)利用累加法、累乘法求数列的通项公式形如:已知a 1,且a n +1-a n =f (n )(f (n )是可求和数列)的形式均可用累加法;形如:已知a 1,且a n +1a n=f (n )(f (n )是可求积数列)的形式均可用累乘法. (5)构造法(利用数列的递推公式研究数列的通项公式)若由已知条件直接求a n 较难,可以通过整理变形等,从中构造出一个等差数列或等比数列,从而求出通项公式.1、已知数列{a n }满足a n +1=a n +3n +2且a 1=2,求a n .2、数列{a n }中,若a 1=1,a n +1=n +1n +2a n(n ∈N *),求通项公式a n . 3、已知数列{a n }满足a n +1=3a n +2(n ∈N *),a 1=1,求通项公式.4、设S n 为数列{a n }的前n 项的和,且S n =32(a n -1)(n ∈N *),求数列{a n }的通项公式. 专题二 数列求和求数列的前n 项和S n 通常要掌握以下方法:1、公式法:直接由等差、等比数列的求和公式求和,注意对等比数列q ≠1的讨论.2、错位相减法:主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广.3、分组转化法:把数列的每一项分成两项,使其转化为几个等差、等比数列再求和.4、裂项相消法:把数列的通项拆成两项之差求和,正负相消剩下首尾若干项.5、倒序相加法:把数列正着写和倒着写再相加(即等差数列求和公式的推导过程的推广).1、求数列214,418,6116,…,2n +12n +1的前n 项和S n . 2、在数列{a n }中,a n =1n +1+2n +1+…+n n +1,又b n =2a n ·a n +1,求数列{b n }的前n 项的和. 3、求和S n =x +2x 2+3x 3+…+nx n .专题三 数列的交汇问题数列是高中代数的重点内容之一,也是高考的必考内容及重点考查的范围,它始终处在知识的交汇点上,如数列与函数、方程、不等式等其他知识交汇进行命题.1、已知单调递增的等比数列{a n }满足a 2+a 3+a 4=28,且 a 3+2是a 2,a 4的等差中项.(1)求数列{a n }的通项公式;(2)若b n =a n log 12a n ,S n =b 1+b 2+…+b n ,对任意正整数n ,S n +(n +m )a n +1<0恒成立,试求m 的取值范围. 2、数列{a n }的前n 项和S n =2n 2+2n ,数列{b n }的前n 项和T n =2-b n .(1)求数列{a n }与{b n }的通项公式;(2)设c n =a n 2·b n ,证明:当且仅当n ≥3时,c n +1<c n .。

等比数列前n项和公式课件PPT

等比数列前n项和公式课件PPT
等比数列的特殊前n项和
对于等比数列,当公比q=1时,前n项和公式为Sn=na1;当q=-1时,Sn=a1a1*q^n/1+q。
等比数列前n项和公式的变种
倒序相加法
错位相减法
将等比数列的前n项和公式倒序相加, 可以得到新的求和公式。
通过错位相减法,可以求出等比数列 的通项公式。
分组求和法
将等比数列分组求和,可以简化计算 过程。
公式与其他数学知识的结合
总结词:综合运用
详细描述:等比数列前n项和公式可以与其他数学知识结合使用,以解决更复杂的数学问题。例如,可以与等差数列、函数、 极限等知识结合,用于解决一些综合性数学问题。
03
等比数列前n项和公式的扩展
特殊等比数列的前n项和
等差数列的前n项和
等差数列是一种特殊的等比数列,其前n项和公式为Sn=n/2 * (a1+an),其中 a1为首项,an为第n项。
等比数列前n项和公式的证明方法
数学归纳法
通过数学归纳法证明等比数列的前n 项和公式。
累乘法
通过累乘法证明等比数列的前n项和公 式。
04
等比数列前n项和公式的练习 与巩固
基础练习题
详细描述:通过简单的等比数列求和问题,让 学生熟悉并掌握等比数列前n项和的公式。
解题思路:利用等比数列前n项和公式,将数列中的 每一项表示为2的幂,然后求和。
05
等比数列前n项和公式的总结 与回顾
本节课的重点回顾
等比数列前n项和公 式的推导过程
等比数列前n项和公 式的适用范围和限制 条件
如何应用等比数列前 n项和公式解决实际 问题
本节课的难点解析
如何理解和掌握等比数列前n项和公 式的推导过程

等比数列的前n项和公式第一课时PPT课件

等比数列的前n项和公式第一课时PPT课件

公式的应用
例一:求等比数列1/2,1/4,1/8,….的前8项的和.
学生解法:解 因为 q= 1/2 ≠1
sn
12[1(12)8] 112
255 256
再次提示学生公式的前提:q ≠1
公式的应用
例二:求数列 a,a2,a3,a4,...,.a.n,..前..n项的和。
错解1: 错解2:
a[1an] sn 1a
21
推导公式
sn=a1+a2+a3+……an 根据等比数列的通项公式,上式可写成
sn=a1+a1q+a1q2+……a1qn-1
(1)
(1)的两边乘以q得,
qsn= a1q1+a1q2+……a1qn-1+ a1qn (2) (1)的两边分别减去(2)的两边,得
(1-q)sn= a1- a1qn
推导公式 由此得到q≠1时,等比数列的前n项和的公式
目的:再现过程,突破障碍。提高效率,激发兴趣。
学法指导:当今课程改革的一个重要内容是改善学生
的学习方式。因此在教学中,通过引导学 生进行反思,使学生发现推导方法的本质, 从而培养学生合情推理能力,逻辑思维能 力,科学思维方式和自学能力以及勇于探 索的精神。
2021/3/7
12
教学策略
--支架式教学法 小结回顾
项的和;
33 3
(2)求等比数列 项的和;
2
,4
,8
…从第3项到第7
2021/3/7
30
小结与回顾
小结: ① 通过这堂课,你学到了什么?
② 给你留下印象最深的是什么?
作业:
③ 你还有一些什么想法?…… ① 必做题:习题P135 :1(1,3)、2、4

等比数列的前n项和公式(1) PPT教学课件(高二数学人教A版 选必修二)

等比数列的前n项和公式(1) PPT教学课件(高二数学人教A版 选必修二)
高中数学
问题2 国际象棋起源于古印度.相传国王要奖赏国际象棋的
发明者,问他想要什么.发明者说:“请在棋盘的第1个格子 里放上1颗麦粒,第2个格子里放上2颗麦粒,第3个格子里放 上4颗麦粒……依次类推,每个格子里放的麦粒数都是前一 个格子里放的麦粒数的2倍,直到第64个格子.请给我足够的 麦粒以实现上述要求.”国王觉得这个要求不高,就欣然同 意了.
高中数学
改进:为了看清式子的特点,我们不妨把各项都用首项和公 比来表示. Sn a1 a1q a1q2 a1qn3 a1qn2 a1qn1. ①
追问7:观察 ① 式,相邻两项有什么特征?怎样把某一项变 成它的后一项?
an q n≥2,q 0
an1
高中数学
改进:为了看清式子的特点,我们不妨把各项都用首项和公 比来表示.
高中数学
回顾:等差数列的前 n 项和公式的推导过程. 等差数列 a1, a2 , a3, an 的前 n 项和是 Sn a1 a2 a3 an2 an1 an. 根据等差数列的定义 an1 an d. Sn a1 a2 a3 an2 an1 an
高中数学
回顾:等差数列的前 n 项和公式的推导过程. 等差数列 a1, a2 , a3, an 的前 n 项和是 Sn a1 a2 a3 an2 an1 an. 根据等差数列的定义 an1 an d. Sn a1 a2 a3 an2 an1 an Sn an an1 an2 a3 a2 a1
高中数学
改进:为了看清式子的特点,我们不妨把各项都用首项和公 比来表示. Sn a1 a1q a1q2 a1qn3 a1qn2 a1qn1.
高中数学
改进:为了看清式子的特点,我们不妨把各项都用首项和公 比来表示. Sn a1 a1q a1q2 a1qn3 a1qn2 a1qn1. ① 追问7:观察 ① 式,相邻两项有什么特征?怎样把某一项变 成它的后一项?

高中数学《等比数列前n项和公式》课件

高中数学《等比数列前n项和公式》课件

反思与感悟 解决此类问题的关键是建立等比数列模型及弄清数列 的项数,所谓复利计息,即把上期的本利和作为下一期本金,在计 算时每一期本金的数额是不同的,复利的计算公式为S=P(1+r)n, 其中P代表本金,n代表存期,r代表利率,S代表本利和.
跟踪训练3 一个热气球在第一分钟上升了25 m的高度,在以后的每一 分钟里,它上升的高度都是它在前一分钟里上升高度的80%,这个热 气球上升的高度能超过125 m吗?
跟踪训练2 在等比数列{an}中,S2=30,S3=155,求Sn.
方法二 若q=1,则S3∶S2=3∶2,
而事实上,S3∶S2=31∶6,故q≠1.
a111--qq2=30,

所以a111--qq3=155,

两式作比,得1+1+q+q q2=361,
解得aq1==55,
a1=180, 或q=-65,
达标检测
1.等比数列1,x,x2,x3,…的前n项和Sn等于
1-xn A. 1-x
1-xn-1 B. 1-x
1-xn

C.
1-x
,x≠1,
n,x=1
解析 当x=1时,Sn=n; 1-xn
当 x≠1 时,Sn= 1-x .
D.1-1-xnx-1,x≠1, n,x=1
1234
2.设等比数列{an}的公比 q=2,前 n 项和为 Sn,则Sa42等于
A.2 解析
B.4
√C.125
17 D. 2
方法一 由等比数列的定义,S4=a1+a2+a3+a4=aq2+a2+a2q+
a2q2,得Sa42=1q+1+q+q2=125. 方法二 ∵S4=a111--qq4,a2=a1q,∴Sa42=11--qq4q=125.

等比数列求和PPT教学课件2

等比数列求和PPT教学课件2

学生填写:
父母喜欢你,老师欣赏你,你的感受是(
);
反之(
)。
你是班干部,威信很高,你的感受是(
);
反之(
)。
你的学习成绩很优秀,你的感受是(
);
反之(
)。
你自认为长得不好看,同学也因为你的丑嘲笑你,你的
感受是(
);同学鼓励你,你的感受是( )。
结论
青少年是否具有自尊自信,能否正确对待自尊自信, 要受到多种因素的影响。这些因素包括:父母、老师对 自己的态度和评语;在学校集体中的位置;学习成绩的 优劣;个人对自己的认识和评价能力等等。
因为上述因素的影响,常常使青少年不能正确对待自 尊自信。所以,正确认识自尊自信,掌握正确的尺度, 对青少年树立自尊自信是十分重要的。
正确认识自尊自信,掌握正确的尺度
1、要自尊自信,不要虚荣忌妒。
看图片并讨论: 问:图片中的女孩只因别人的一句话而盲目减
肥,摧残自己的身体,最终住进了医院。她的这种 做法是自尊自信的表现吗?你在生活中有没有类似 的行为呢?
正确认识自尊自信,掌握正确的尺度
1、要自尊自信,不要虚荣忌妒。 2、要自尊自信,不要自卑。
请看图片并分析自卑的危害:
轮椅上的科学巨匠
正确认识自尊自信,掌握正确的尺度
1、要自尊自信,不要虚荣忌妒。 2、要自尊自信,不要自卑。 3、要自尊自信,不要自傲自负。
“虚心使人进步,骄傲使人落后”。 虚心是自尊自信的表现。
等比数列前n项和
第2课时
一.复习旧知识:
1.等比数列前n项和公式
a1 (1qn ) a1 anq
1q
1q
S n
na1
( q 1) ( q 1)
2.等差数ቤተ መጻሕፍቲ ባይዱ中的有关性质

等比数列的前n项和公式ppt课件

等比数列的前n项和公式ppt课件

,q 1

Sn

na1 q

1
(2) 公式推导过程中用到的“错位相减” 方法;
(3) 公式的运用.
a1, q, n, Sn
12
5
对于一般的等比数列我们又将怎样求得它的前n项和呢?
设{an}为等比数列, a1为首项, q为公比,它的前n项和
Sn a1 a1q a1q2
两边同时乘以 q为
a1qn2 a1qn1

错 位
qSn a1q a1q2 a1q3
a1qn1 a1qn
4
5 9
,
பைடு நூலகம்
远望巍巍塔七层, 红光点点倍自增, 共灯三百八十一, 请问尖头几盏灯?
10
一个等比数列的首项为
9 4
,末项为
4 9
,
各数项列的是和有为几项2316组1 ,求成数? 列的公比并判断
11
课堂小结
(1)等比数列的前n项和公式


Sn

a1
1 qn 1 q
a1 anq 1 q
相 减
由③- 4 得
(1 q)Sn a1 1 qn
6
(1 q)Sn a1 1 qn

Sn

a1
1 qn 1 q
分类讨论
等比数列的
通项公式
当 q 1时,
an a1qn1
Sn

a1
1 qn 1 q
a1 anq ; 1 q
当 q 1时, 即{an}是一个常数列
2 22 23
263 264
4
S64 1 2 22 262 263

等比数列的前N项和公式--课件

等比数列的前N项和公式--课件

前置作业
问题2
传说国际象棋的发明人是印度的大臣西萨•班•达依尔,舍罕王为了表
彰大臣的功绩,准备对大臣进行奖赏.
国王问大臣:“你想得到什么样的奖赏?”,这位聪明的大臣说:
“陛下,请您在这张棋盘的第一个格子内放上1颗麦粒,在第二个格子内
放上2颗麦粒,在第三个格子内放上4颗麦粒,在第四个格子内放上8颗麦
Sn
a1(1 qn ) (q 1 q
1).
(6.7)
知道了等比数列an中的a1、n和q(q 1),
利用公式(6.7)可以直接计算Sn.
等比数列的前n项和公式:
Sn
a1(1 qn ) 1 q
(q
1).
(6.7)
由于 a1qn an1 anq,
因此公式(6.7)还可以写成
Sn
a1 anq 1 q
发现,即使把全国的麦子都拿来,也兑现不了他对这位大臣的奖赏承
诺.
这位大臣所要求的麦粒数究竟是多少呢?
各个格的麦粒数组成首项为1,公比为2的等比数列,大臣西萨•班•达
依尔所要的奖赏就是这个数列的前64项和.
等比数列的前n项和公式推导
等比数列an 的前n项和为
Sn a1 a2 a3 an.
(1)
1、老师这一个月要给你多少钱? 2、你这一个月要返回老师多少钱?
解答:
1、老师这一个月要给你多少钱?
10000×31=310000元
2、你这一个月要返回老师多少钱?
第1天 第2天 第3天 第4天 、、、 第31天
1
2
22
23 、、、 230
等比数列 1,2,22,23,、、、,230
S31= 1+2+22+23+ … +230 = ? a1=1, q=2 S31=

高中数学同步教学课件 等比数列的前n项和公式

高中数学同步教学课件  等比数列的前n项和公式

反思感悟
求等比数列的前n项和,要确定首项、公比、项数或首项、末项、公比, 应注意公比q=1是否成立.
跟踪训练1 (1)在等比数列{an}中,首项 a1=8,公比 q=12,那么它的前 5
项和 S5 的值为Biblioteka √A.321B.323
C.325
D.327
S5=a111--qq5=811--12125=321.
例1 求下列等比数列前8项的和: (1)12,14,18,…;
因为 a1=12,q=12, 所以 S8=1211--12128=225556.
(2)a1=27,a9=2143,q<0.
由 a1=27,a9=2143,可得2143=27q8. 又因为 q<0,解得 q=-13, 所以 S8=a11--aq8q=a11--aq9=217---214313=1 86140.
跟踪训练3 国家计划在西部地区退耕还林6 370万亩,2015年底西部已 退耕还林的土地面积为515万亩,以后每年退耕还林的面积按12%递增. 试问从2015年底,到哪一年底西部地区才能完成退耕还林计划?(精确到 年,参考数据:1.128≈2.476,1.127≈2.211)
设从2015年底起以后每年的退耕还林的土地依次为a1,a2,a3,…, an万亩. 则a1=515(1+12%),a2=515(1+12%)2,…, an=515(1+12%)n,…. Sn=a1+a2+…+an =5151+10-.121.112-1.12n=6 370-515, 所以515×1.12×(1.12n-1)=5 855×0.12,
跟踪训练2
等比数列{an}的各项均为实数,其前n项和为Sn,已知S3=
7 4

S6=643,则a8=_3_2__.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

归纳总结、内化知识
小结
Sn
a1 anq 1 q
当q 1时,
1、等比数列前n项和:
Sn
a1(1 qn) 1 q

位 相 减

当q 1时,Sn na1.
2、注意选择适当的公式,必要是分情况讨论。
3、学会建立等比数列的数学模型,来解决实际问题。
归纳总结:鼓励学生自己总结,使自身的认知结构得以提高和发展。
Sn
a1(1 qn) 1 q
(1) a1,an,q,Sn 和各已知 a1,n,q,Sn
三个可求第四个。
(2)注 意 求 和 公 式 是 qn, 不 要 和 通 项 公 式 中 的 qn1混 淆 。 (3)注 意 q是 否 等 于 1, 如 果 不 确 定 , 就 要 分 q1和 q1两 种 情 况 讨 论 。
中职数学基础模块下册
第六章 数列
6.3.3 等比数列的前n项和公式 教学法
6.3.3 等比数列的前n项和公式
教学重点、难点
❖ 教学重点:等比数列前n项和公式的推导与应用。
❖ 教学难点:公式的推导方法和公式的灵活运用。公式推导 所使用的“错位相减法”是高中数学数列求和方 法中最常用的方法之一,它蕴含了重要的数学 思想,所以既是重点也是难点.
作业布置、强化知识:
必做: 课本P17-18 练习6.3.3 1.2题
选做:
等比数列中,S3
7 2
,
S6
623,求an。
必做题,有助学生课后巩固提高, 选作题是注意分层教学和因材施教, 让学有余力的学生有思考的空间
类比联想、 推导公式 一般地,设有等比数列: a1,a2,a3,,an,,
它的前n项和是: Sna1a2a3an. 1 )
No (1)的两边乘以q q n S a 1 q a 2 q a 3 q a n 1 q a n q .
由定义 qnS a2a3a4ananq. 2)
S6 426 41 =18,446,744,073,709,551,615
这位宰相所要求的,竟是全世界在两千年内所产 的小麦的总和!
让学生充分地比较,等比数列前n项和的公式推导关键是变“加”为 “减”,在教师看来这是“天经地义”的,但在学生看来却是“不可思 议”的,因此教学中应着力在这儿做文章,从而抓住培养学生的辩 证思维能力的良好契机.
第4格: 2 3
……
第63格: 2 62
第64格: 2 63
这位聪明的宰相到底要求的是多少麦粒呢?
1 2 2 2 2 3 2 6 2 2 6 3 ?
这实际上是求首项为1,公比为2的等比数列的前64项的和。
S 6 41 2 2 2 2 3 2 63 2 S 6 4 2 2 2 2 3 2 6 3 2 64
6.3.3 等比数列的前n项和公式
教学过程
❖ 创设情境、提出问题 ❖ 类比联想、推导公式 ❖ 例题选讲、变式强化 ❖ 拓展训练 、深化认识 ❖ 归纳总结、内化知识 ❖ 作业布置、强化知识
创设情境、提出问题
数学小故事
相传,古印度的舍罕王打算重赏国际 象棋的发明者——宰相西萨·班·达依尔。 于是,这位宰相跪在国王面前说:
陛下,请您在这张棋盘的第一 个小格内,赏给我一粒麦子; 在第二个小格内给两粒,第三 格内给四粒,照这样下去,每 一小格都比前一小格加一倍。 陛下啊,把这样摆满棋盘上所 有64格的麦粒,都赏给您的仆 人罢!
鼓励学生合作讨论, 通过自己的努力解决问题, 激发进一步深入学习的兴趣和欲望。
第1格: 1 第2格: 2 第3格: 2 2
12,2
1, 4
3
1, 8
4
116,的前n项的和.
解:
111 1 Sn12243841 6( n
1 2n
)
反思
(11 2) (21 4) (38 1) (n2 1 n)
(1 2 3 n )(12148121n)
n(n 1) 2
1 2
[1 ( 1 ) n ] 2
1 1
n2 n 2
121n
Image (1)-(2) SnqnSa1anq整理 (1q)Sna1anq
a aq 当q
1时,Sn
a1 anq 1 q
n
n1 1
Sn
a1(1 qn ) 1 q
当q 1时,Sn na1.
错位相减法
深化学生对公式的认识和理解:
等比数列的前n项和公
式当q 1时,
Sn
a1 anq 1 q
当q 1时, Sn na1.
课堂练习 1.求等比数列中,
(1)已知 a1 4 , q
1 2
,求S10。
(2)已知 a1 1 , ak 243 , q 3 ,求Sk。
解:(1)
S10
a1(1q10) 1q
4[1(12)10]1023
11
128
2
(2) Ska11 aqkq11 2 43 33364
拓展训练 、深化认识
求数列1
例题选讲:
针对知识点精选例题,初步掌握公式运用
例。1 .写出等比数列 1,-3,9,-27…的前n项和公式并求
出数列的前8项的和。
解:因为 a1
1,q
33,所以 1
Байду номын сангаас
等比数

n项和公式为:
Sn11 [1 (( 3 3 ))n]1(4 3)n

1 ( 3) 8
S8
4
1640
变式强化: 深化对公式的理解与灵活运用,巩固强化。
2
分组求和
采用变式教学设计题组,通过直接套用公式、变式运用公式、研究公式特点
这三个层次的问题解决,促进学生新的数学认知结构的形成.通过以上形式,
让全体学生都参与教学,以此培养学生的参与意识和竞争意识.
选用公式、变用公式、理解内化
变式练习:求和 ( 11 x)(2x12)(nx1n)n (Nx0)
该题有助于培养学生对含有参数的问题 进行分类讨论的数学思想. 训练学生注意考察q是否为1的情况,突破易错点。
相关文档
最新文档