垂径定理及推论(2020年各省市中考题)

合集下载

垂径定理及推论(2021年各省市中考题)

垂径定理及推论(2021年各省市中考题)

EAB C DO 1. (2021 浙江省舟山市) 如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC .假设AB =8,CD =2,那么EC 的长为〔 ▲ 〕〔A 〕215 〔B 〕8 〔C 〕210〔D 〕213答案:D2007539 垂径定理及推论 选择题 根底知识 2021-09-292. (2021 浙江省温州市) 如图,在⊙O 中,OC ⊥弦AB 于点C ,AB =4,OC =1,那么OB 的长是〔A 〕 3 〔B 〕 5 〔C 〕15 〔D 〕 17答案:B2086232 垂径定理及推论 选择题 根底知识 2021-09-243. (2021 湖北省宜昌市) 如图,DC 是O ⊙的直径,弦AB CD ⊥于F ,连接BC DB ,.那么以下结论错误的选....项是..〔 〕. 〔A 〕AD BD = 〔B 〕AFBF = 〔C 〕OF CF = 〔D 〕90DBC ∠=°答案:C2037704 垂径定理及推论 选择题 全然技术 2021-09-224. (2021 湖北省襄阳市) 如图,水平放置的圆柱形排水管道的截面直径是1m ,其中水面的宽AB 为,那么排水管内水的深度为 m.答案:2059477 垂径定理及推论 填空题 全然技术 2021-09-225. (2021 湖北省黄石市) 如右图,在Rt ABC 中,90ACB ∠=,3AC =,4BC =,以点C 为圆心,CA 为半径的圆与AB 交于点D ,那么AD 的长为 A. 95 B. 245 C. 185 D. 52CA DB2084700 垂径定理及推论 选择题 根底知识 2021-09-226. (2021 湖北省黄冈市) 如图,M 是CD 的中点,EM CD ⊥,假设48CD EM ==,,那么CED 所在圆的半径为.答案:1742090698 垂径定理及推论 填空题 全然技术 2021-09-227. (2021 浙江省绍兴市) 绍兴是闻名的桥乡,如图,圆拱桥的拱顶到水面的距离CD 为8m ,桥拱半径OC 为5 m ,那么水面宽AB 为〔 〕 〔A 〕4m 〔B 〕5m 〔C 〕6m 〔D 〕8m答案:D2078151 垂径定理及推论 选择题 根底知识 2021-09-228. (2021 黑龙江省绥化市) 如图,在O 中,弦AB 垂直平分半径OC ,垂足为D ,假设O 的半径为2,那么弦AB的长为 .答案:232090571 垂径定理及推论 填空题 全然技术 2021-09-229. (2021 黑龙江省齐齐哈尔市) CD 是O ⊙的一条弦,作直径AB 使AB CD ⊥,垂足为E ,假设10,8AB CD ==,那么BE 的长是〔 〕.〔A 〕8 〔B 〕2 〔C 〕2或8 〔D 〕3或7答案:C2034113 垂径定理及推论 选择题 全然技术 2021-09-2210. (2021 黑龙江省哈尔滨市) 如图,直线AB 与O ⊙相切于点A ,AC 、CD 是O ⊙的两条弦,且CD AB ∥,假设O ⊙的半径为52,4CD =,那么弦AC 的长为______.答案:2093177 垂径定理及推论 填空题 全然技术 2021-09-2211. (2021 四川省泸州市) O ⊙的直径10CD =cm,AB 是O ⊙的弦,AB CD ⊥,垂足为M ,且8AB =cm,那么AC 的长为( )〔A 〕〔B 〕〔C 〕或〔D 〕或答案:C2090655 垂径定理及推论 选择题 根底知识 2021-09-1812. (2021 四川省乐山市) 如图,圆心在y 轴的负半轴上,半径为5的⊙B 与y 轴的正半轴交于点A (0,1),过点P (0,-7)的直线l 与⊙B 相交于C 、D 两点,那么弦CD 长的所有可能的整数值有〔A 〕1个 〔B 〕2个 〔C 〕3个 〔D 〕4个答案:C2084943 垂径定理及推论 选择题 根底知识 2021-09-1813. (2021 四川省广安市) 如图,半径OD 与弦AB 相互垂直,垂足为点C ,假设AB =8cm ,CD =3cm ,那么圆O 的半径为〔 〕A. 256cm B. 5cm C. 4cm D. 196cm答案:A2025451 垂径定理及推论 选择题 根底知识 2021-09-1714. (2021 上海市) 在⊙O 中,半径长为3,弦AB 长为4,那么圆心O 到AB 的距离为___________.2078049 垂径定理及推论 填空题 根底知识 2021-09-1715. (2021 广西南宁市) 如图,AB 是O ⊙的直径,弦CD 交AB 于点E ,且8AE CD ==,12BAC BOD ∠=∠,那么O ⊙的半径为〔 〕.〔A 〕 〔B 〕5 〔C 〕4 〔D 〕3答案:B2003939 垂径定理及推论 选择题 根底知识 2021-09-1616. (2021 山东省潍坊市) 如图,O ⊙的直径12AB =,CD 是O ⊙的弦,CD AB ⊥,垂足为P ,且15BP AP =∶∶,那么CD 的长为〔 〕. 〔A 〕24〔B 〕28〔C 〕52 〔D 〕54答案:D2079380 垂径定理及推论 选择题 根底知识 2021-09-16BD的长为〔A〕2 〔B〕3 〔C〕4 〔D〕6答案:C2068633 垂径定理及推论选择题根底知识2021-09-1318. (2021 青海省西宁市) 如图,AB为⊙O的直径,弦CD⊥AB于点E,假设CD=6,且AE:BE=1:3,那么AB= .4答案:32093643 垂径定理及推论填空题根底知识2021-09-1319. (2021 浙江省丽水市) 一条排水管的截面如以下图,排水管的半径OB=10,水面宽AB=16,那么截面圆心O到水面的距离OC是〔〕〔A〕4 〔B〕5〔C〕6 〔D〕8答案:C20. (2021 宁夏回族自治区) 如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好通过圆心O,那么折痕AB 的长为cm.答案:322065103 垂径定理及推论 填空题 根底知识 2021-09-1321. (2021 广西宾客市) 如图是一圆形水管的截面图,O ⊙的半径13OA =,水面宽24AB =,那么水的深度CD 是_________.答案:82097039 垂径定理及推论 填空题 根底知识 2021-09-1222. (2021 广东省广州市) 如图7,在平面直角坐标系中,点O 为坐标原点,点P 两点,点A 的坐标为〔6,0〕,P Θ的半径为13,在第一象限,P Θ与x 轴交于O,A____________. 那么点P 的坐标为答案:〔3,2〕2076804 垂径定理及推论 填空题 根底知识 2021-09-1223. (2021 甘肃省兰州市) 如图是一圆柱形输水管的横截面,阴影局部为有水局部,若是水面AB 宽为8cm ,水的最大〔第6题图〕ODCBAB .4cmC .5cmD .6cm答案:C2085227 垂径定理及推论 选择题 根底知识 2021-09-1224. (2021 福建省泉州市) 第二节三角形的内角和定理及推论〕在ABC △中,2060A B ∠=∠=°,°,那么ABC △的形状是〔 〕 〔A 〕等边三角形 〔B 〕锐角三角形〔C 〕直角三角形 〔D 〕钝角三角形答案:D2033721 垂径定理及推论 选择题 根底知识 2021-09-1125. (2021 福建省南平市) 如图,在⊙O 中,直径CD ⊥弦AB ,那么以下结论中正确的选项是......A . AD =AB B .∠BOC =2∠DC .∠D +∠BOC =90°D .∠D =∠B答案:B2035416 垂径定理及推论 选择题 根底知识 2021-09-1126. (2021 江苏省徐州市) 如图,AB 是O ⊙的直径,弦CD AB ⊥,垂足为P ,假设8CD =,3OP =,那么O⊙的半径为〔 〕.答案:C2053578 垂径定理及推论 选择题 根底知识 2021-09-1027. (2021 四川省资阳市) 在⊙O 中,AB 为直径,点C 为圆上一点,将劣弧沿弦AC 翻折交AB 于点D ,连结CD .〔1〕如图5-1,假设点D 与圆心O 重合,AC =2,求⊙O 的半径r ;〔6分〕〔2〕如图5-2,假设点D 与圆心O 不重合,∠BAC =25°,请直接写出∠DCA 的度数. 〔2分〕答案:〔1〕 过点O 作AC 的垂线交AC 于E 、交劣弧于F ,由题意可知,OE =EF , ········· 1分∵ OE ⊥AC ,∴AE =12AC , ····························· 3分 在Rt △AOE 中,222AO OE AE =+, ························· 4分∴2211()2r r =+,∴r =233. ···························· 6分〔2〕∠DCA =40°. ································· 8分2021594 垂径定理及推论 应用题 根底知识 2021-09-0928. (2021 吉林省长春市) 如图,MN 是⊙O 的弦,正方形OABC 的极点B 、C 在MN 上,且点B 是CM 的中点.假设正方形OABC 的边长为7,那么MN 的长为 .图5-1图5-2答案:282028054 垂径定理及推论 填空题 根底知识 2021-09-0829. (2021 吉林省) 如图,AB 是O ⊙的弦,OC AB ⊥于点C ,连接OA OB ,.点P 是半径OB 上任意一点,连接AP .假设5cm 3cm OA OC ==,,那么AP 的长度可能是 cm 〔写出一个符合条件的数值即可〕.答案:6〔答案不唯一,大于或等于5而且小于或等于8的任意一个数值皆可〕2053816 垂径定理及推论 填空题 根底知识 2021-09-0830. (2021 四川省内江市) 在平面直角坐标系xOy 中,以原点O 为圆心的圆过点A 〔13,0〕,直线y=kx ﹣3k+4与⊙O 交于B 、C 两点,那么弦BC 的长的最小值为 .答案: 242072778 垂径定理及推论 填空题 根底知识 2021-09-05。

垂径定理

垂径定理

垂径定理垂径定理内容:垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。

数学表达为:如右图,DC为圆O的直径,直径DC垂直于弦AB,则AE=EB,劣弧AC等于劣弧BC。

1定义垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧2证明如图,在⊙O中,DC为直径,AB是弦,AB⊥DC于点E,AB、CD交于E,求证:AE=BE,弧AC=弧BC,弧AD= 弧BD垂径定理证明图证明:连OA、OB分别交于点A、点B.∵OA、OB是⊙O的半径∴OA=OB∴△OAB是等腰三角形∵AB⊥DC∴AE=BE,∠AOE=∠BOE(等腰三角形的三线合一性质)∴弧AD=弧BD,∠AOC= 角BOC∴弧AC=弧BC3推论推论一:平分弦(不是直径)的直径垂直于这条弦,并且平分这条弦所对的两段弧推论二:弦的垂直平分线经过圆心,并且平分这条弦所对的弧推论三:平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧推论四:在同圆或者等圆中,两条平行弦所夹的弧相等(证明时的理论依据就是上面的五条定理)但是在做不需要写证明过程的题目中,可以用下面的方法进行判断:一条直线,在下列5条中只要具备其中任意两条作为条件,就可以推出其他三条结论1.平分弦所对的优弧2.平分弦所对的劣弧(前两条合起来就是:平分弦所对的两条弧)3.平分弦(不是直径)4.垂直于弦5.经过圆心4有关性质知识点圆、圆的对称性、点和圆的位置关系、不在同一直线上的三点确定一个圆、三角形的外接圆、垂径定理逆定理、圆心角、弧、弦、弦心距之间的关系、圆周角定理、圆内接四边形的性质大纲要求1.正确理解和应用圆的点集定义,掌握点和圆的位置关系;2.熟练地掌握确定一个圆的条件,即圆心、半径;直径;不在同一直线上三点。

一个圆的圆心只确定圆的位置,而半径也只能确定圆的大小,两个条件确定一条直线,三个条件确定一个圆,过三角形的三个顶点的圆存在并且唯一;3.熟练地掌握和灵活应用圆的有关性质:同(等)圆中半径相等、直径相等直径是半径的2倍;直径是最大的弦;圆是轴对称图形,经过圆心的任一条直线都是对称轴;圆是中心对称图形,圆心是对称中心;圆具有旋转不变性;垂径定理及其推论;圆心角、圆周角、弧、弦、弦心距之间的关系;4.掌握和圆有关的角:圆心角、圆周角的定义及其度量;圆心角等于同(等)弧上的圆周角的2倍;同(等)弧上的圆周角相等;直径(半圆)上的圆周角是直角;90°的圆周角所对的弦是直径;5.掌握圆内接四边形的性质定理:它沟通了圆内外图形的关系,并能应用它解决有关问题;6.注意:(1)垂径定理及其推论是指:一条弦①在“过圆心”②“垂直于另一条弦”③“平分这另一条弦”④“平分这另一条弦所对的劣弧”⑤“平分这另一条弦所对的优弧”的五个条件中任意具有两个条件,则必具有另外三个结论(当①③为条件时要对另一条弦增加它不是直径的限制),条理性的记忆,不但简化了对它实际代表的10条定理的记忆且便于解题时的灵活应用,垂径定理提供了证明线段相等、角相等、垂直关系等的重要依据;(2)有弦可作弦心距组成垂径定理图形;见到直径要想到它所对的圆周角是直角,想垂径定理;想到过它的端点若有切线,则与它垂直,反之,若有垂线则是切线,想到它被圆心所平分;(3)见到四个点在圆上想到有4组相等的同弧所对的圆周角,要想到应用圆内接四边形的性质。

专题24.3 垂径定理【十大题型】(人教版)(原卷版)

专题24.3 垂径定理【十大题型】(人教版)(原卷版)

专题24.3 垂径定理【十大题型】【人教版】【题型1 利用垂径定理求线段长度】 (1)【题型2 利用垂径定理求角度】 (2)【题型3 利用垂径定理求最值】 (3)【题型4 利用垂径定理求取值范围】 (4)【题型5 利用垂径定理求整点】 (6)【题型6 利用垂径定理求面积】 (7)【题型7 垂径定理在格点中的运用】 (8)【题型9 垂径定理与分类讨论中的综合运用】 (10)【题型10 垂径定理的应用】 (11)【题型1 利用垂径定理求线段长度】【例1】(2022•雨花区校级开学)如图,⊙O的半径OD⊥弦AB交AB于点C,连接AO并延长交⊙O于点E,连接EC.若AB=8,EC=2√13,则CD的长为()A.1B.3C.2D.4【变式1-1】(2022•宁津县二模)如图,已知圆O的半径为10,AB⊥CD,垂足为P,且AB=CD=16,则OP的长为()A.6B.6√2C.8D.8√2【变式1-2】(2022•建华区二模)如图,⊙O的直径AB与弦CD相交于点E,若AE=5,EB=1,∠AEC =30°,则CD的长为()A.5B.2√3C.4√2D.2√2+√3+1【变式1-3】(2022春•徐汇区校级期中)如图,AB是⊙O的弦,D为半径OA的中点,过D作CD⊥OA交弦AB于点E,且CE=CB,若BE=2AE,CD=5,那么⊙O的半径为.【题型2 利用垂径定理求角度】【例2】(2022•泰安模拟)如图,⊙O的半径OA,OB,且OA⊥OB,连接AB.现在⊙O上找一点C,使OA2+AB2=BC2,则∠OAC的度数为()A.15°或75°B.20°或70°C.20°D.30°̂上的【变式2-1】(2022秋•天心区期中)如图,已知⊙O半径OA=4,点B为圆上的一点,点C为劣弧AB一动点,CD⊥OA,CE⊥OB,连接DE,要使DE取得最大值,则∠AOB等于()A.60°B.90°C.120°D.135°【变式2-2】(2022秋•青田县期末)如图,在⊙O中,半径OC过弦AB的中点E,OC=2,OE=√2.(1)求弦AB的长;(2)求∠CAB的度数.【变式2-3】(2022秋•开州区期末)如图,在⊙O中,弦BC与半径OA垂直于点D,连接AB、AC.点E 为AC的中点,连接DE.(1)若AB=6,求DE的长;(2)若∠BAC=100°,求∠CDE的度数.【题型3 利用垂径定理求最值】【例3】(2022•威海模拟)⊙O中,点C为弦AB上一点,AB=1,CD⊥OC交⊙O于点D,则线段CD的最大值是()A.12B.1C.32D.2【变式3-1】(2022•河北模拟)如图所示,在⊙O中,AB为弦,OC⊥AB交AB于点D.且OD=DC.P为⊙O上任意一点,连接P A,PB,若⊙O的半径为1,则S△P AB的最大值为()A.1B.2√33C.3√34D.3√32【变式3-2】(2022秋•龙凤区校级期末)如图,矩形ABCD中,AB=20,AD=15,P,Q分别是AB,AD 边上的动点,PQ=16,以PQ为直径的⊙O与BD交于点M,N,则MN的最大值为.【变式3-3】(2022秋•延平区校级期末)在Rt△ABC中,∠C=90°,BC=3,AC=4,D、E分别是AC、BC上的一点,且DE=3,若以DE为直径的圆与斜边AB相交于M、N,则MN的最大值为()A.910B.65C.85D.125【题型4 利用垂径定理求取值范围】【例4】(2022•包河区校级二模)如图,在⊙O中,直径AB=10,CD⊥AB于点E,CD=8.点F是弧BC 上动点,且与点B、C不重合,P是直径AB上的动点,设m=PC+PF,则m的取值范围是()A.8<m≤4√5B.4√5<m≤10C.8<m≤10D.6<m<10【变式4-1】(2022•佛山)如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.【变式4-2】(2022秋•盐都区校级月考)如图,点P是⊙O内一定点.(1)过点P作弦AB,使点P是AB的中点(不写作法,保留作图痕迹);(2)若⊙O的半径为13,OP=5,①求过点P的弦的长度m范围;②过点P的弦中,长度为整数的弦有条.【变式4-3】(2022秋•天河区校级期中)已知⊙O的半径为5,点O到弦AB的距离OH=3,点P是圆上一动点,设过点P且与AB平行的直线为l,记直线AB到直线l的距离为d.(1)求AB的长;(2)如果点P只有两个时,求d的取值范围;(3)如果点P有且只有三个时,求连接这三个点所得到的三角形的面积.【题型5 利用垂径定理求整点】【例5】(2022•山海关区一模)已知⊙O的直径CD=10,CD与⊙O的弦AB垂直,垂足为M,且AM=4.8,则直径CD上的点(包含端点)与A点的距离为整数的点有()A.1个B.3个C.6个D.7个【变式5-1】(2022秋•新昌县期末)如图,AB是⊙O的弦,OC⊥AB于点C,连接OB,点P是半径OB上任意一点,连接AP,若OB=5,OC=3,则AP的长不可能是()A.6B.7C.8D.9【变式5-2】(2022•桥西区校级模拟)如图,AB是⊙C的弦,直径MN⊥AB于点O,MN=10,AB=8,如图以O为原点建立坐标系.我们把横纵坐标都是整数的点叫做整数点,则线段OC长是3,⊙C上的整数点有个.【变式5-3】(2022秋•肇东市期末)已知⊙O的半径为5,点O到弦AB的距离为3,则⊙O上到弦AB所在直线的距离为2的点有()A.4个B.3个C.2个D.1个【题型6 利用垂径定理求面积】【例6】(2022•武汉模拟)如图,在半径为1的⊙O中有三条弦,它们所对的圆心角分别为60°,90°,120°,那么以这三条弦长为边长的三角形的面积是()A.√2B.1C.√32D.√22【变式6-1】(2022秋•黄州区校级月考)如图,矩形MNGH的四个顶点都在⊙O上,顺次连接矩形各边的中点,得到菱形ABCD,若BD=12,DF=4,则菱形ABCD的面积为.【变式6-2】(2022秋•西城区校级期中)如图,AB为⊙O直径,过点O作OD⊥BC于点E,交⊙O于点D,CD∥AB.(1)求证:E为OD的中点;(2)若CB=6,求四边形CAOD的面积.【变式6-3】(2022•新洲区模拟)如图,点A,C,D均在⊙O上,点B在⊙O内,且AB⊥BC于点B,BC ⊥CD于点C,若AB=4,BC=8,CD=2,则⊙O的面积为()A.125π4B.275π4C.125π9D.275π9【题型7 垂径定理在格点中的运用】【例7】(2022秋•襄都区校级期末)如图所示,一圆弧过方格的格点AB,试在方格中建立平面直角坐标系,使点A的坐标为(0,4),则该圆弧所在圆的圆心坐标是()A.(﹣1,2)B.(1,﹣1)C.(﹣1,1)D.(2,1)【变式7-1】(2022春•海门市期中)如图所示,⊙P过B、C两点,写出⊙P上的格点坐标.【变式7-2】(2022•商城县三模)如图所示的网格中,每个小正方形的边长均为1,点A、B、C均在小正方形的顶点上,点C同时也在AB̂上,若点P是BĈ的一个动点,则△ABP面积的最大值是.【变式7-3】(2017秋•靖江市校级月考)如图,在单位长度为1的正方形网格中建立一直角坐标系,一条圆弧经过网格点A、B、C,请在网格图中进行下列操作(以下结果保留根号):(1)利用网格作出该圆弧所在圆的圆心D点的位置,并写出D点的坐标为;(2)连接AD、CD,则⊙D的半径为,∠ADC的度数.【题型8 垂径定理在坐标系中的运用】【例8】(2022•博山区一模)如图,在平面直角坐标系中,半径为5的⊙E与y轴交于点A(0,﹣2),B (0,4),与x轴交于C,D,则点D的坐标为()A.(4−2√6,0)B.(−4+2√6,0)C.(−4+√26,0)D.(4−√26,0)【变式8-1】(2022秋•西林县期末)如图,⊙P与y轴交于点M(0,﹣4),N(0,﹣10),圆心P的横坐标为﹣4.则⊙P的半径为()A.3B.4C.5D.6【变式8-2】(2022•印江县三模)如图,直线l为y=x,过点A1(1,0)作A1B1⊥x轴,与直线l交于点B1,以原点O为圆心,OB1长为半径画圆弧交x轴于点A2;再作A2B2⊥x轴,交直线l于点B2,以原点O为圆心,OB2长为半径画圆弧交x轴于点A3;…,按此作法进行下去,则点A2022的坐标为.【变式8-3】(2015•宜春模拟)如图,半径为5的⊙P与y轴交于点M(0,﹣4),N(0,﹣10),函数y =﹣2x+m图象过点P,则m=.【题型9 垂径定理与分类讨论中的综合运用】【例9】(2022秋•化德县校级期末)⊙O的半径为10cm,弦AB∥CD,且AB=12cm,CD=16cm,则AB 和CD的距离为()A.2cm B.14cm C.2cm或14cm D.10cm或20cm【变式9-1】(2022•包河区二模)已知圆O的半径为5,弦AB=8,D为弦AB上一点,且AD=1,过点D 作CD⊥AB,交圆O于C,则CD长为()A.1B.7C.8或1D.7或1【变式9-2】(2022秋•方正县期末)如图,⊙O的弦AB与半径OC垂直,点D为垂足,OD=DC,AB=2√3,点E在⊙O上,∠EOA=30°,则△EOC的面积为.【变式9-3】(2022秋•淮南月考)如图,已知⊙O的半径为2.弦AB的长度为2,点C是⊙O上一动点,若△ABC为等腰三角形,则BC2的长为.【题型10 垂径定理的应用】【例10】(2022秋•武昌区校级期末)某地有一座圆弧形拱桥,它的跨度(弧所对的弦的长)24m,拱高(弧的中点到弦的距离)4米,则求拱桥的半径为()A.16m B.20m C.24m D.28m【变式10-1】(2022•望城区模拟)《九章算术》是我国古代著名数学经典,其中对勾股定理的论述比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深1寸,锯道长1尺.如图,已知弦AB=1尺,弓形高CD=1寸,(注:1尺=10寸)问这块圆柱形木材的直径是()A.13寸B.6.5寸C.26寸D.20寸【变式10-2】(2022秋•西城区校级期中)京西某游乐园的摩天轮采用了国内首创的横梁结构,风格更加简约.如图,摩天轮直径88米,最高点A距离地面100米,匀速运行一圈的时间是18分钟.由于受到周边建筑物的影响,乘客与地面的距离超过34米时,可视为最佳观赏位置,在运行的一圈里最佳观赏时长为分钟.【变式10-3】(2022•浙江)如图,公园内有一个半径为20米的圆形草坪,A,B是圆上的点,O为圆心,̂,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB.通∠AOB=120°,从A到B只有路AB过计算可知,这些市民其实仅仅少走了步(假设1步为0.5米,结果保留整数).(参考数据:√3≈1.732,π取3.142)。

2020年九年级中考数学专题复习:圆的垂径定理的应用(含解析)

2020年九年级中考数学专题复习:圆的垂径定理的应用(含解析)

中考数学专题复习:圆的垂径定理的应用(含解析)班级:姓名:一、单选题1.如图,把一个宽度为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么光盘的直径是( )A. 5cmB. 8cmC. 10cmD. 12cm2.下列命题:①三点确定一个圆,②弦的平分线过圆心,③弦所对的两条弧的中点的连线是圆的直径,④平分弦的直线平分弦所对的弧,其中正确的命题有()A. 3个B. 2个C. 1个D. 0个3.如图,⊙O的半径为5,AB为弦,半径OC⊥AB,垂足为点E,若CE=2,则AB的长是( )A. 4B. 6C. 8D. 104.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是( )A. 0.5B. 1C. 2D. 45.如图,⊙O的弦AB=8,C是AB的中点,且OC=3,则⊙O的半径等于( )A. 8B. 5C. 10D. 46.如图表示一圆柱形输水管的横截面,阴影部分为有水部分,如果输水管的半径为5cm,水面宽AB为8cm,则水的最大深度CD为()A. 4cmB. 3cmC. 2cmD. 1cm7.如图,以O为圆心的两个同心圆中,半径分别为3和5,若大圆的弦AB与小圆相交,则弦AB的长的取值范围是()A. 8≤AB≤10B. 8<AB<10C. 8<AB≤10D. 6≤AB≤108.如图,△ABC内接于⊙O,D为线段AB的中点,延长OD交⊙O于点E,连接AE,BE,则下列五个结论①AB⊥DE,②AE=BE,③OD=DE,④∠AEO=∠C,⑤弧AE=弧AEB,正确结论的个数是( )A. 2B. 3C. 4D. 59.如图,⊙O的直径AB的长为10,弦AC长为6,∠ACB的平分线交⊙O于D,则AD长为()A. 8B. 5C. D.二、填空题10.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=16厘米,则球的半径为________厘米.11.如图,已知⊙O的半径为5,点P是弦AB上的一动点,且弦AB的长为8.则OP的取值范围为________.12.“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”此问题的实质就是解决下面的问题:“如图,CD为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,求CD的长”.根据题意可得CD的长为________.三、解答题13.如图①是某校存放学生自行车的车棚的示意图(尺寸如图所示,单位:m),车棚顶部是圆柱侧面的一部分,其展开图是矩形;如图②是车棚顶部截面的示意图, 所在圆的圆心为点O,车棚顶部是用一种帆布覆盖的,求覆盖棚顶的帆布的面积.(不考虑接缝等因素,计算结果保留π)14.如图,在破残的圆形残片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点D,已知AB=8 cm,CD=2 cm.求破残的圆形残片的半径.15.如图,某公司的一座石拱桥是圆弧形(劣弧),其跨度AB为24m,拱高CD为8m,求石拱桥拱的半径.四、综合题16.如图,C、D两点在以AB为直径的半圆O上,AD平分∠BAC,AB=20,AD=4 ,DE⊥AB于E.(1)求DE的长.(2)求证:AC=2OE.17.如图,在平面直角坐标系中,四边形OABC四个顶点的坐标分别为O(0,0),A(﹣3,0),B(﹣4,2),C(﹣1,2).将四边形OABC绕点O顺时针旋转90°后,点A,B,C分别落在点A′,B′,C′处.(1)请你在所给的直角坐标系中画出旋转后的四边形OA′B′C′;(2)点C旋转到点C′所经过的弧的半径是________,点C经过的路线长是________.答案解析部分一、单选题1.【答案】C【考点】垂径定理的应用【解析】【解答】解:设光盘的圆心为O,如图所示:过点O作OA垂直直尺于点A,连接OB,设OB=r,∵一边与光盘边缘两个交点处的读数恰好是“2”和“10”,∴AB=×(10﹣2)=4,∵刻度尺宽2cm,∴OA=r﹣2,在Rt△OAB中,OA2+AB2=OB2 ,即(r﹣2)2+42=r2 ,解得:r=5.∴该光盘的直径是10cm.故选:C.【分析】设光盘的圆心为O,过点O作OA垂直直尺于点A,连接OB,再设OB=r,利用勾股定理求出r的值即可.2.【答案】C【考点】垂径定理的应用,三角形的外接圆与外心,命题与定理【解析】【解答】解:①不在同一直线上的3个点确定一个圆,故错误;②弦的垂直平分线经过圆心,故错误;③根据圆的轴对称性可得,正确;④平分弦(非直径)的直径平分弦所对的弧,故错误;正确的有1个,故选C.【分析】根据垂径定理的知识及过3点圆的知识可得正确选项.3.【答案】C【考点】垂径定理的应用【解析】【分析】由于半径OC⊥AB,利用垂径定理可知AB=2AE,又CE=2,OC=5,易求OE,在Rt△AOE中利用勾股定理易求AE,进而可求AB.【解答】如右图,连接OA,∵半径OC⊥AB,∴AE=BE=AB,∵OC=5,CE=2,∴OE=3,在Rt△AOE中,∴AB=2AE=8,故选C.【点评】本题考查了垂径定理、勾股定理,解题的关键是利用勾股定理先求出AE4.【答案】B【考点】垂径定理的应用【解析】【解答】解:设半径为r,过O作OE⊥AB交AB于点D,连接OA、OB,则AD=AB=×0.8=0.4米,设OA=r,则OD=r﹣DE=r﹣0.2,在Rt△OAD中,OA2=AD2+OD2 ,即r2=0.42+(r﹣0.2)2 ,解得r=0.5米,故此输水管道的直径=2r=2×0.5=1米.故选B.【分析】根据题意知,已知弦长和弓形高,求半径(直径).根据垂径定理和勾股定理求解.5.【答案】B【考点】垂径定理的应用【解析】【分析】连接OA,即可证得△OAM是直角三角形,根据垂径定理即可求得AM,根据勾股定理即可求得OA的长.【解答】连接OA,∵M是AB的中点,∴OM⊥AB,且AM=4在直角△OAM中,OA==5故选B.【点评】本题主要考查了垂径定理,以及勾股定理,根据垂径定理求得AM的长,证明△OAM是直角三角形是解题的关键.6.【答案】C【考点】勾股定理,垂径定理的应用【解析】【解答】解:如图所示:∵输水管的半径为5cm,水面宽AB为8cm,水的最大深度为CD,∴DO⊥AB,∴AO=5cm,AC=4cm,∴CO= =3(cm),∴水的最大深度CD为:2cm.故选:C.【分析】根据题意可得出AO=5cm,AC=4cm,进而得出CO的长,即可得出答案.7.【答案】C【考点】勾股定理,垂径定理的应用【解析】【分析】此题可以首先计算出当AB与小圆相切的时候的弦长.连接过切点的半径和大圆的一条半径,根据勾股定理和垂径定理,得AB=8.若大圆的弦AB与小圆有两个公共点,即相交,此时AB>8;又因为大圆最长的弦是直径10,则8<AB≤10.【解答】当AB与小圆相切,∵大圆半径为5,小圆的半径为3,∵大圆的弦AB与小圆有两个公共点,即相交,∴8<AB≤10.故选C.【点评】本题综合运用了切线的性质、勾股定理和垂径定理.此题可以首先计算出和小圆相切时的弦长,再进一步分析相交时的弦长.8.【答案】B【考点】垂径定理的应用,圆周角定理【解析】【分析】已知OE是⊙O的半径,D是弦AB的中点,可根据垂径定理的推论来判断所给出的结论是否正确.【解答】∵OE是⊙O的半径,且D是AB的中点,∴OE⊥AB,弧AE=弧BE=弧AEB;(故①⑤正确)∴AE=BE;(故②正确)由于没有条件能够证明③④一定成立,所以一定正确的结论是①②⑤;故选B.9.【答案】D【考点】垂径定理的应用,圆周角定理【解析】【分析】首先连接BD,易得△ABD是等腰直角三角形,然后由特殊角的三角函数值,求得AD的长.【解答】连接BD,∵AB是⊙O的直径,∴∠ACB=∠ADB=90°,∵CD是∠ACB的平分线,∴∠ACD=∠ACB=45°,∴∠ABD=∠ACD=45°,∴AD=BD,∵AB=10,∴AD=AB•sin45°=.故选D.【点评】此题考查了圆周角定理、等腰直角三角形的性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用二、填空题10.【答案】10【考点】勾股定理,垂径定理的应用【解析】【解答】解:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,设OF=x,则OM=16﹣x,MF=8,在直角三角形OMF中,OM2+MF2=OF2即:(16﹣x)2+82=x2解得:x=10故答案为:10.【分析】首先找到EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,设OF=x,则OM是16﹣x,MF=8,然后在直角三角形MOF中利用勾股定理求得OF的长即可.11.【答案】3≤OP≤5【考点】垂径定理的应用【解析】【解答】解:过点O作OE⊥AB,垂足为E,连结OA.则可得当点P与点E重合时,线段OP为最短距离.∵点O为圆心,OE⊥AB,AB为圆的一条弦,∴AE=BE.∵AB=8,∴AE=BE=4.∵OE⊥AB,AE=4,OA=5,∴OE=3.当点P落在点A或点B处时,OP的长度最长,等于圆的半径,即为5.故OP的取值范围是3≤OP≤5.12.【答案】26【考点】垂径定理的应用【解析】【解答】解:连接OA,AB⊥CD,由垂径定理知,点E是AB的中点,AE= AB=5,OE=OC﹣CE=OA﹣CE,设半径为r,由勾股定理得,OA2=AE2+OE2=AE2+(OA﹣CE)2 ,即r2=52+(r﹣1)2 ,解得:r=13,所以CD=2r=26,即圆的直径为26.【分析】根据垂径定理和勾股定理求解.三、解答题13.【答案】解:如图,连结OB,过点O作OE⊥AB,垂足为E,交于F,由垂径定理知,E是AB的中点,F是的中点,从而EF是弓形的高.∵AB=4,∴AE= AB=2 m,EF=2 m.设半径为Rm,则OE=(R-2)m.在Rt△AOE中,∴R2=(R-2)2+(2 )2.∴R=4.在Rt△AEO中,∵AO=2OE,∴∠OAE=30°,∠AOE=60°,∴∠AOB=120°.∴的长为=(m).∴覆盖棚顶的帆布的面积为×60=160π(m2).【考点】含30度角的直角三角形,勾股定理,垂径定理的应用,弧长的计算【解析】【分析】如图,连结OB,过点O作OE⊥AB,垂足为E,交于F,由垂径定理知:E是AB的中点,F是AB⌢的中点,从而EF是弓形的高;设半径为Rm,则OE=(R-2)m.在Rt△AOE中,根据勾股定理计算出半径R,再由在直角三角形中,30度所对的直角边等于斜边的一半,从而得出∠AOB的度数,根据弧长公式即可求出弧AB的长度,最后得出覆盖棚顶的帆布的面积.14.【答案】解:在直线CD上取圆心O ,连接OA ,设半径为r cm.∵弦AB的垂直平分线交弧AB于点C ,交弦AB于点D .在Rt△ADO中,OA2=AD2+OD2 ,∴r2=42+(r-2)2 ,∴r=5答:破残的圆形残片的半径为5 cm.【考点】勾股定理,垂径定理的应用【解析】【分析】设圆的半径为r cm,根据AB CD和已知条件求出AD=AB,在Rt △ADO中,利用勾股定理为等量关系列方程,求出半径即可.15.【答案】解:延长CD到O,使得OC=OA,则O为圆心,∵拱桥的跨度AB=24cm,拱高CD=8cm,∴AD=12cm,∴AD2=OA2﹣(OC﹣CD)2 ,即122=AO2﹣(AO﹣8)2 ,解得AO=13cm.即圆弧半径为13米.答:石拱桥拱的半径为13m.【考点】勾股定理,垂径定理的应用【解析】【分析】将拱形图进行补充,构造直角三角形,利用勾股定理和垂径定理解答四、综合题16.【答案】(1)解:连接BD.∵AB为直径,∴∠ADB=90°,在Rt△ADB中,BD= ==4 ,∵S△ADB= AD•BD= AB•DE∴AD•BD=AB•DE,∴DE= = =4 ,即DE=4 ;(2)解:证明:连接OD,作OF⊥AC于点F.∵OF⊥AC,∴AC=2AF,∵AD平分∠BAC,∴∠BAC=2∠BAD.又∵∠BOD=2∠BAD,∴∠BAC=∠BOD,Rt△OED和Rt△AFO中,∵∴△AFO≌△OED(AAS),∴AF=OE,∵AC=2AF,∴AC=2OE.【考点】全等三角形的判定与性质,垂径定理的应用【解析】【分析】(1)出现直径时,连接直径的端点和圆周上的一点,构成90度圆周角,利用勾股定理和面积法可以解决;(2)过圆心向弦引垂线,由垂径定理,得平分,构造出AC的一半,再证△AFO≌△OED,可证出结论.17.【答案】(1)解:如图所示,四边形OA′B′C′即为所求作的图形(2);π【考点】垂径定理的应用,弧长的计算,旋转的性质,作图-旋转变换【解析】【解答】解:(2)根据勾股定理,OC= = ,C经过的路线长= = π.【分析】(1)根据网格结构找出点A、B、C的对应点A′、B′、C′的位置,然后顺次连接即可;(2)先利用勾股定理求出OC的长度,再根据弧长的计算公式列式进行计算即可得解.。

垂径定理专题备战2023年中考数学考点微专题

垂径定理专题备战2023年中考数学考点微专题

考向4.8 垂径定理专题例(2020·浙江衢州·中考真题)如图,△ABC内接于⊙O,AB为⊙O的直径,AB=10,AC=6,连结OC,弦AD分别交OC,BC于点E,F,其中点E是AD的中点.(1)求证:∠CAD=∠CBA.(2)求OE的长.(1)证明:∵AE=DE,OC是半径,∴AC CD=,∴∠CAD=∠CBA;(2)解:如图:∵AB是直径,∴∠ACB=90°,∵AE=DE,∴OC⊥AD,∴∠AEC=90°,∴∠AEC=∠ACB,∴△AEC∽△BCA,∴CE AC AC AB=,∴6 610 CE=,∴CE=3.6,∵OC=12AB=5,∴OE=OC﹣EC=5﹣3.6=1.4.1、垂径定理是中考必考题,在填空、选择及大题中都要出现,理解并掌握其半径和弦的在位置关系垂直的前提下理解其数量关系。

2、本题考查了垂径定理,圆周角定理,相似三角形的判定和性质,证明△AEC∽△BCA是解题关键.1、垂径定理的理解:垂直定理是指在弦与半(直径)垂直的前提下形成的数量关系;2、涉及的知识点有:勾股定理、面积问题、相似、全等、等腰三角形的“三线合一”、圆周角与圆心角关系等等;3、涉及到的数学思想:方程思想、转化思想等等;一、单选题1.(2021·广东增城·一模)如图,AB是半圆O的直径,AC,BC是弦,OD⊥AC于点D,若OD=1.5,则BC等于()A.1.5 B.2 C.3 D.4.52.(2021·湖北黄冈·一模)如图,CD为⊙O的直径,弦AB⊥CD,垂足为M,若AB=12,OM:MD=5:8,则⊙O的周长为()A.26πB.13πC.965πD.39105π3.(2021·黑龙江香坊·一模)如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,AE=1,则弦CD的长是()A7B.7C.6 D.84.(2021·河南安阳·模拟预测)如图,⊙O的半径为5,弦AB=8,P是弦AB上的一个动点(不与A,B重合),下列符合条件的OP的值是()A .6.5B .5.5C .3.5D .2.55.(2021·全国·模拟预测)如图,AB 为O 的直径,CD 为O 的弦,AB CD ⊥于E ,下列说法错误的是( )A .CE DE =B .AC AD = C .OE BE = D .2∠=∠COB BAD 6.(2021·四川·成都市树德实验中学二模)如图,在半径为5的O 中,半径OD ⊥弦AB 于点C ,连接AO 并延长交O 于点E ,连接EC EB 、.若2CD =,则EC 的长为( )A .215B .8C .210D .213二、填空题 7.(2021·黑龙江香坊·三模)△ABC 为半径为5的⊙O 的内接三角形,若弦BC =8,AB =AC ,则点A 到BC 的距离为_____.8.(2021·西藏日喀则·二模)如图,已知⊙O 的直径CD 垂直于弦AB ,∠ACD=22.5°,若CD=6cm ,则AB 的长为_____cm .9.(2021·湖北咸宁·一模)如图,30PAC ∠=︒,在射线AC 上顺次截取3AD cm =,10DB cm =,以DB 为直径作O 交射线AP 于E 、F 两点,则线段EF 的长是__________cm .10.(2021·上海崇明·一模)如图,在直角坐标系中,以点P 为圆心的弧与x 轴交于A 、B 两点,已知点P 的坐标为()1,y ,点A 的坐标为()1,0-,那么点B 的坐标为___________.11.(2021·黑龙江·哈尔滨市萧红中学一模)如图将⊙O 沿弦AB 折叠,AB 恰好经过圆心O ,若⊙O 的半径为3,则AB 的长为_______.12.(2021·江苏·南通田家炳中学二模)AB 是O 的弦,OM AB ⊥,垂足为M ,连接OA .若60AOM ∠=︒,3OM =,则弦AB 的长为______.三、解答题13.(2021·河南·一模)已知如图,O 的直径AB 垂直于弦CD ,垂足为E ,15A ∠=︒,半径为2,则弦CD 的长为多少?14.(2021·河北承德·一模)如图,△ABC 中,AB=AC ,⊙O 是△ABC 的外接圆,BO 的延长交边AC 于点D .(1)求证:∠BAC=2∠ABD ;(2)当△BCD 是等腰三角形时,求∠BCD 的大小.一、填空题1.(2021·湖南长沙·中考真题)如图,在⊙O 中,弦AB 的长为4,圆心O 到弦AB 的距离为2,则AOC ∠的度数为______.2.(2021·黑龙江牡丹江·中考真题)半径等于12的圆中,垂直平分半径的弦长为________ . 3.(2021·四川阿坝·中考真题)如图,AB 为O 的直径,弦CD AB ⊥于点H ,若10AB =,8CD =,则OH 的长度为__.4.(2020·江苏南通·中考真题)已知⊙O 的半径为13cm ,弦AB 的长为10cm ,则圆心O 到AB 的距离为_____cm .5.(2021·辽宁朝阳·中考真题)已知⊙O 的半径是7,AB 是⊙O 的弦,且AB 的长为73,则弦AB 所对的圆周角的度数为__________.6.(2021·四川宜宾·中考真题)如图,⊙O 的直径AB =4,P 为⊙O 上的动点,连结AP ,Q 为AP 的中点,若点P 在圆上运动一周,则点Q 经过的路径长是______.7.(2020·黑龙江牡丹江·中考真题)AB 是O 的弦,OM AB ⊥,垂足为M ,连接OA .若AOM 中有一个角是30°,23OM =,则弦AB 的长为_________.8.(2021·贵州黔东南·中考真题)小明很喜欢钻研问题,一次数学杨老师拿来一个残缺的圆形瓦片(如图所示)让小明求瓦片所在园的半径,小明连接瓦片弧线两端AB ,量的弧AB 的中心C 到AB 的距离CD =1.6cm ,AB =6.4cm ,很快求得圆形瓦片所在圆的半径为 _________cm .9.(2021·广西河池·中考真题)如图,在平面直角坐标系中,以()23M ,为圆心,AB 为直径的圆与x 轴相切,与y 轴交于A ,C 两点,则点B 的坐标是____________.10.(2021·江苏南京·中考真题)如图,AB 是O 的弦,C 是AB 的中点,OC 交AB 于点D .若8cm,2cm AB CD ==,则O 的半径为________cm .11.(2021·内蒙古通辽·中考真题)如图,AB 是⊙O 的弦,23AB =,点C 是⊙O 上的一个动点,且60ACB ∠=︒,若点M ,N 分别是AB ,BC 的中点,则图中阴影部分面积的最大值是__________.12.(2021·青海西宁·中考真题)如图,AB 是O 的直径,弦CD AB ⊥于点E ,10CD =,2BE =,则O 的半径OC =_______.13.(2021·四川德阳·中考真题)在锐角三角形ABC 中,∠A =30°,BC =2,设BC 边上的高为h ,则h 的取值范围是 __________________.14.(2021·四川成都·中考真题)如图,在平面直角坐标系xOy 中,直线32333y x =+与O 相交于A ,B 两点,且点A 在x 轴上,则弦AB 的长为_________.15.(2021·安徽·中考真题)如图,圆O 的半径为1,ABC 内接于圆O .若60A ∠=︒,75B ∠=︒,则AB =______.16.(2020·内蒙古鄂尔多斯·中考真题)如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,∠BCD =30°,CD =23,则阴影部分面积S 阴影=_____.17.(2021·湖北恩施·中考真题)《九章算术》被尊为古代数学“群经之首”,其卷九勾股篇记载:今有圆材埋于壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?如图,大意是,今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深CD 等于1寸,锯道AB 长1尺,问圆形木材的直径是多少?(1尺=10寸)答:圆形木材的直径___________寸;18.(2020·浙江·中考真题)如图,已知AB 是半圆O 的直径,弦CD ∥AB ,CD =8.AB =10,则CD 与AB 之间的距离是_____.19.(2020·湖北襄阳·中考真题)在⊙O 中,若弦BC 垂直平分半径OA ,则弦BC 所对的圆周角等于_________°.20.(2019·宁夏·中考真题)如图,AB 是圆O 的弦,OC AB ⊥,垂足为点C ,将劣弧AB 沿弦AB 折叠交于OC 的中点D ,若210AB =,则圆O 的半径为_____.21.(2020·青海·中考真题)已知⊙O 的直径为10cm ,AB ,CD 是⊙O 的两条弦,//AB CD ,8cm AB =,6cm CD =,则AB 与CD 之间的距离为________cm .22.(2021·辽宁本溪·中考真题)如图,AB 是半圆的直径,C 为半圆的中点,(2,0)A ,(0,1)B ,反比例函数(0)ky x x=>的图象经过点C ,则k 的值为________.23.(2019·辽宁盘锦·中考真题)如图,△ABC内接于⊙O,BC是⊙O的直径,OD⊥AC于点D,连接BD,半径OE⊥BC,连接EA,EA⊥BD于点F.若OD=2,则BC=_____.∆是O的内接正三角形,点O是圆心,点D,24.(2020·贵州贵阳·中考真题)如图,ABC∠的度数是____度.E分别在边AC,AB上,若DA EB=,则DOE25.(2020·黑龙江穆棱·5⊙O中,弦AB垂直于弦CD,垂足为P,AB=CD=4,则S△ACP=______.二、解答题26.(2021·山东临沂·中考真题)如图,已知在⊙O中,AB BC CD==,OC与AD相交于点E.求证:(1)AD∥BC(2)四边形BCDE为菱形.27.(2021·北京·中考真题)如图,O是ABC的外接圆,AD是O的直径,AD BC⊥于点E.∠=∠;(1)求证:BAD CADOE=,(2)连接BO并延长,交AC于点F,交O于点G,连接GC.若O的半径为5,3求GC和OF的长.28.(2021·浙江·中考真题)如图,已知AB是⊙O的直径,ACD∠是AD所对的圆周角,∠=︒.30ACD(1)求DAB∠的度数;(2)过点D作DE ABAB=,求DF的长.⊥,垂足为E,DE的延长线交⊙O于点F.若41.C【分析】先根据垂径定理得到AD=CD,则OD为△ABC的中位线,然后根据三角形中位线性质得到BC的长.解:∵OD⊥AC,∴AD=CD,而OA=OB,∴OD为△ABC的中位线,∴BC=2OD=2×1.5=3.故选:C.【点拨】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理和三角形中位线性质.2.B解:试题分析:连接OA,根据垂径定理得到AM=12AB=6,设OM=5x,DM=8x,得到OA=OD=13x,根据勾股定理得到OA=132,则可求周长.解:连接OA,∵CD为⊙O的直径,AB⊥CD,∴AM=12AB=6,∵OM:MD=5:8,∴设OM=5x ,DM=8x ,∴OA=OD=13x ,∴AM=22OA OM -=12x=6,∴x=12,∴OA=132, ∴⊙O 的周长=2π•OA=13π.故选B .3.B【分析】根据垂径定理,构造直角三角形,连接OC ,在RT △OCE 中应用勾股定理即可. 解:试题解析:由题意连接OC ,得OE=OB-AE=4-1=3,CE=DE= 22OC OE -=7, CD=2CE=27,故选B .4.C【分析】连接OB ,作OM ⊥AB 与M .根据垂径定理和勾股定理,求出OP 的取值范围即可判断.解:连接OB ,作OM ⊥AB 与M .∵OM ⊥AB ,∴AM =BM =12AB =4, 在直角△OBM 中,∵OB =5,BM =4,∴2222543OM OB BM =--.∴35OP ≤<,故选:C .【点拨】本题考查了垂径定理、勾股定理,常把半弦长,半圆心角,圆心到弦距离转换到同一直角三角形中,然后通过直角三角形予以求解.5.C【分析】根据垂径定理解题.解:CD 为O 的弦,AB CD ⊥于E ,CE ED ∴=,AC AD =,BC BD =,2CD BD ∴=2COB BAD ∴∠=∠故选项A 、B 、D 正确,无法判断OE BE =,故选项C 错误,故选:C【点拨】本题考查垂径定理,是重要考点,难度较易,掌握相关知识是解题关键. 6.D【分析】由垂径定理和勾股定理得4AC BC ==,再证OC 是△ABE 的中位线,得26BE OC ==,然后由勾股定理求解即可.解:∵⊙O 的半径为5,∴OA =OD =5,∵CD =2,∴3OC OD CD =-=,∵OD ⊥AB , ∴4AC BC =,∵OA =OE ,∴OC 是△ABE 的中位线,∴BE =2OC =6,∴EC ==故选:D .【点拨】本题考查了垂径定理、勾股定理以及三角形中位线定理等知识;熟练掌握垂径定理和勾股定理是解题的关键.7.8或2【分析】分两种情况考虑:当三角形ABC 为锐角三角形时,过点A 作AH 垂直于BC ,根据题意得到AH 过圆心O ,连接OB ,在直角三角形OBH 中,由OB 与BH 长,利用勾股定理求出OH 的长,进而可求出AH 的长;当三角形ABC 为钝角三角形时,同理求出AH 的长即可;解:作AH ⊥BC 于H ,连结OB ,如图,∵AB=AC ,AH ⊥BC ,∴BH=CH=12BC=4,AH必过圆心,即点O在AH上,在Rt△OBH中,OB=5,BH=4,∴OH=22OB BH-=3,当点O在△ABC内部,如图1,AH=AO+OH=5+3=8,当点O在△ABC内部,如图2,AH=AO﹣OH=5﹣3=2,∴综上所述,点A到BC的距离为8或2,故答案为8或2.【点拨】本题考查三角形的外接圆与外心,垂径定理及其推论,熟练掌握三角形的外接圆的性质和垂径定理是解答关键,还要注意分类讨论.8.32【分析】连接AO,如图,由OA=OC得到∠OCA=∠CAO=22.5°,则利用三角形外角性质可得∠AOD=45°,接着根据垂径定理得到AE=BE,且可判断△OAE为等腰直角三角形,然后根据等腰直角三角形的性质可得22OE AE AO==,322AE=,所以AB=2AE=32.解:如图,连接AO,OA=OC,∴∠OCA=∠CAO=22.5°,∴∠AOD=45°,∵CD⊥AB,∴AE=BE,△OAE为等腰直角三角形,而CD=6,∴OA=3,则2OE AE AO==32=根据垂径定理,232AB AE == . 故答案为32 .【点拨】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了等腰三角形的性质.9.6【分析】过O 点作OH EF ⊥于H ,连OF ,根据垂径定理得EH FH =,在Rt AOH 中,358AOAD OD ,30A ∠=︒,利用含30度的直角三角形三边的关系可得到142OH OA ,再利用勾股定理计算出HF ,由2EF HF 得到答案.解:过O 点作OH EF ⊥于H ,连OF ,如图则EH FH =,在Rt AOH 中,358AO AD OD ,30A ∠=︒,则142OH OA ,在Rt OHF 中,4OH =,5OF =,则223HFOF OH , 则26EF HF cm .故答案为6.【点拨】本题考查了垂径定理,含30度的直角三角形三边的关系以及勾股定理,熟悉相关性质是解题的关键.10.()3,0【分析】连接P A 、PB ,作PF AB ⊥于点F ,再根据圆的垂径定理即可得出答案. 解:如图,连接P A 、PB ,作PF AB ⊥于点F ,根据题意可知OF =1,再由垂径定理可知,AF =BF =AO +OF =2,所以OB =OF +BF =1+2=3,即B 点坐标为(3,0).故答案为:(3,0)..【点拨】本题考查垂径定理.作出PF AB ⊥,再结合垂径定理“垂直于弦的直径平分弦且平分这条弦所对的两条弧”是解答本题的关键.11.2π【分析】连接OA 、OB ,作OC ⊥AB 于C ,根据翻转变换的性质得到OB=OA ,根据等腰三角形的性质、三角形内角和定理求出∠AOB ,根据弧长公式计算即可.解:连接OA 、OB ,作OC ⊥AB 于C ,由题意得,OC=12OA , ∴∠OAC=30°,∵OA=OB ,∴∠OBA=∠OAC=30°,∴∠AOB=120°, ∴12032180180n r AB πππ⨯===, 故答案为:2π.【点拨】本题考查的是弧长的计算、垂径定理、含30度角的直角三角形的性质、翻转变换的性质,掌握弧长公式是解题的关键.12.6【分析】利用垂径定理得到AM BM =,由60AOM ∠=︒,利用正切求出AM ,得到AB 的长.解:如图,OM AB ⊥,AM BM ∴=,∵60AOM ∠=︒,3OM = ∴tan 333AM OM AOM =∠,26AB AM ∴==,故答案为6.【点拨】本题主要考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.同时也考查了解三角形.13.2【分析】根据垂径定理得到CE =DE ,∠CEO =90°,根据圆周角定理得到∠COE =30°,根据直角三角形的性质得到CE =12OC =1,最后由垂径定理得出结论. 解:∵O 的直径AB 垂直于弦CD ,∴CE DE =,90CEO ∠=︒,∵15A ∠=︒,∴30COE ∠=︒,在Rt OCE 中,2OC =,30COE ∠=︒, ∴112CE OC ==,(直角三角形中,30度角所对的直角边是斜边的一半) ∴22CD CE ==.【点拨】本题是圆的计算题,考查了垂径定理和勾股定理的运用,是常考题型;熟练掌握垂直弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.14.(1)见解析;(2)67.5°或72°【分析】(1)连接OA .利用垂径定理以及等腰三角形的性质解决问题即可.(2)分三种情形:①若BD=CB ,则∠C=∠BDC=∠ABD+∠BAC=3∠ABD .②若CD=CB ,则∠CBD=∠CDB=3∠ABD .③若DB=DC ,则D 与A 重合,这种情形不存在.分别利用三角形内角和定理构建方程求解即可.解:(1)连接OA ,如下图1所示:∵AB=AC,∴AB AC,∴OA⊥BC,∴∠BAO=∠CAO.∵OA=OB,∴∠ABD=∠BAO,∴∠BAC=2∠ABD.(2)如图2中,延长AO交BC于H.①若BD=CB,则∠C=∠BDC=∠ABD+∠BAC=3∠ABD.∵AB=AC,∴∠ABC=∠C,∴∠DBC=2∠ABD.∵∠DBC+∠C+∠BDC=180°,∴8∠ABD=180°,∴∠C=3∠ABD=67.5°.②若CD=CB,则∠CBD=∠CDB=3∠ABD,∴∠C=4∠ABD.∵∠DBC+∠C+∠CDB=180°,∴10∠ABD=180°,∴∠BCD=4∠ABD=72°.③若DB=DC,则D与A重合,这种情形不存在.综上所述:∠C的值为67.5°或72°.【点拨】本题考查了垂径定理,等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,注意分类讨论思想的应用.1.45︒【分析】先根据垂径定理可得122AC AB ==,再根据等腰直角三角形的判定与性质即可得. 解:由题意得:OC AB ⊥,4AB =,122AC AB ∴==, 2OC =,AC OC ∴=,Rt AOC ∴是等腰直角三角形,45AOC =∴∠︒,故答案为:45︒.【点拨】本题考查了垂径定理、等腰直角三角形的判定与性质,熟练掌握垂径定理是解题关键.2.123解:试题分析:圆心为O ,AB 为弦,半径与弦的交点为C ,则OC ⊥AB ,OA=12,OC=6,根据勾股定理可得AC=63,所以AB=2AC=123.考点:垂径定理.3.3【分析】连接OC ,由垂径定理可求出CH 的长度,在Rt △OCH 中,根据CH 和⊙O 的半径,即可由勾股定理求出OH 的长.解:连接OC ,Rt △OCH 中,OC=12AB=5,CH=12CD=4; 由勾股定理,得:2222543OC CH --;即线段OH 的长为3.故答案为:3.【点拨】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.4.12【分析】如图,作OC⊥AB于C,连接OA,根据垂径定理得到AC=BC=12AB=5,然后利用勾股定理计算OC的长即可.解:如图,作OC⊥AB于C,连接OA,则AC=BC=12AB=5,在Rt△OAC中,OC=22135=12,所以圆心O到AB的距离为12cm.故答案为:12.【点拨】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.5.60°或120°【分析】∠ACB和∠ADB为弦AB所对的圆周角,连接OA、OB,如图,过O点作OH⊥AB于H,根据垂径定理得到AH=BH=732,则利用余弦的定义可求出∠OAH=30°,所以∠AOB =120°,然后根据圆周角定理得到∠ACB=60°,根据圆内接四边形的性质得到∠ADB=120°.解:∠ACB和∠ADB为弦AB所对的圆周角,连接OA、OB,如图,过O点作OH⊥AB于H,则AH=BH=12AB73,在Rt△OAH中,∵cos∠OAH=AHOA=73273∴∠OAH=30°,∵OA=OB,∴∠OBH=∠OAH=30°,∴∠AOB=120°,∴∠ACB=1∠AOB=60°,2∵∠ADB+∠ACB=180°,∴∠ADB=180°﹣60°=120°,即弦AB所对的圆周角的度数为60°或120°.故答案为60°或120°.【点拨】本题考查了圆周角定理:同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理.6.2π【分析】连接OQ,以OA为直径作⊙C,确定出点Q的运动路径即可求得路径长.解:连接OQ.在⊙O中,∵AQ=PQ,OQ经过圆心O,∴OQ⊥AP.∴∠AQO=90°.∴点Q在以OA为直径的⊙C上.∴当点P在⊙O上运动一周时,点Q在⊙C上运动一周.∵AB=4,∴OA=2.∴⊙C的周长为2π.∴点Q经过的路径长为2π.故答案为:2π【点拨】本题考查了垂径定理的推论、圆周角定理的推论、圆周长的计算等知识点,熟知相关定理及其推论是解题的基础,确定点Q的运动路径是解题的关键.7.12或4【分析】分∠OAM=30°,∠AOM=30°,两种情况分别利用正切的定义求解即可. 解:∵OM⊥AB,∴AM=BM,若∠OAM=30°,则tan∠OAM=2333 OMAM AM==,∴AM=6,∴AB=2AM=12;若∠AOM=30°,则tan∠AOM=3323AM AMOM==,∴AM=2,∴AB=2AM=4.故答案为:12或4.【点拨】本题考查了垂径定理,三角函数,解题时要根据题意分情况讨论.8.4【分析】圆的两弦的中垂线的交点,就是圆心;连接AC,作AC的中垂线,与直线CD的交点就是圆心,已知圆心即可作出圆;连接圆心与A,根据勾股定理即可求得半径.解:如图,连接OA ,∵CD 是弦AB 的垂直平分线, ∴1 3.22AD AB ==, 设圆的半径是r .在直角△ADO 中, 3.2 1.6AO r AD DO r ===-,, .根据勾股定理得,()2223.2 1.6r r =+- ,∴4r =故答案为:4【点拨】本题主要考查圆的确定和垂径定理,熟练掌握垂径定理得出关于半径的方程是解题的关键.9.(4,35)-【分析】如图,连接BC ,设圆与x 轴相切于点D ,连接MD 交BC 与点E ,结合已知条件,则可得BC MD ⊥,勾股定理求解EM ,进而即可求得B 的坐标.解:如图,连接BC ,设圆与x 轴相切于点D ,连接MD 交BC 与点E ,则MD x ⊥轴,AB 为直径,则90ACB ∠=︒,BC MD ∴⊥,//BC x ∴轴,()23M ,,3MB MD ∴==,2CE EB ==, 2222325ME MB EB ∴=-=-=,CB 4=,35DE MD ME ∴=-=-,//BC x 轴,(4,35)B ∴-.故答案为:(4,35)-.【点拨】本题考查了圆的性质,直径所对的圆周角是直角,垂径定理,切线的性质,勾股定理,坐标与图形,掌握以上知识是解题的关键.10.5【分析】连接OA ,由垂径定理得AD =4cm ,设圆的半径为R ,根据勾股定理得到方程2224(2)R R =+-,求解即可解:连接OA ,∵C 是AB 的中点,∴OC AB ⊥∴14cm 2AD AB == 设O 的半径为R ,∵2cm CD =∴(2)cm OD OC CD R =-=-在Rt OAD ∆中,222OA AD OD =+,即2224(2)R R =+-,解得,5R =即O 的半径为5cm故答案为:5【点拨】本题考查的是垂径定理及勾股定理,根据垂径定理判断出OC 是AB 的垂直平分线是解答此题的关键.11.4334【分析】阴影面积由弓形ADB 面积加上△MNB 的面积,而弓形面积不变,因此只需要求出△MNB 的最大面积,由M ,N 为AB ,BC 的中点,所以MN 是△ABC 的中位线,所以△BMN ∽△BAC ,所以S △BMN =14S △ABC ,求出△ABC 的最大面积即可,而AB 边为定值,当点C 到AB 的距离最大,三角形面积最大,当CM ⊥AB 时,三角形面积最大,即可求出阴影面积最大值.解:连接OA ,OB ,连接OM ,如图∵60ACB ∠=︒ ,∴2120AOB ACB ∠=∠=︒,∵M 为AB 中点,∴OM ⊥AB ,132AMBM AB ,60AOM BOM∴30OAM ∠=︒,设OM =x ,则AO =2x ,在Rt △AOM 中222,OM AM AO 即 222(3)(2)x x += , 解得x =1, 即1,2OM AO ,S 弓形ADB =S 扇形OADB AOB S =2120214231336023,∵M ,N 为边AB ,BC 的中点,∴MN ∥AC ,∴BMNBAC , ∴14BMN ABC S S ,当C ,O ,M 在同一直线上时,△ABC 的面积最大,由垂径定理可知,AC =BC ,又∵∠ACB =60°,∴△ABC 为等边三角形,∴AC =,在Rt △ACM 中, 2222(23)(3)3CMAC AM ,∴ABC S的最大值为:132⨯=, ∴1133=33444BMN ABC S S , ∴阴影面积的最大值为:4334333434. 故填:4334. 【点拨】本题考查弓形面积,扇形面积,圆心角与圆周角关系,三角形的中位线,相似三角形的性质,垂径定理,勾股定理,解题关键是将不规则面积转化为规则图形的面积. 12.294【分析】设半径为r ,则OC OB r ==,得到2OE r =-,由垂径定理得到5CE =,再根据勾股定理,即可求出答案.解:由题意,设半径为r ,则OC OB r ==,∵2BE =,∴2OE r =-,∵AB 是O 的直径,弦CD AB ⊥于点E ,∴点E 是CD 的中点,∵10CD =,∴1052CE ==, 在直角△OCE 中,由勾股定理得222OC CE OE =+, 即2225(2)r r =+-,解得:294r =. 故答案为:294. 【点拨】本题考查了垂径定理,勾股定理,解题的关键是熟练掌握垂径定理和勾股定理进行解题.13.2323h <+ 【分析】如图,BC 为O 的弦,2OB OC ==,证明OBC ∆为等边三角形得到60BOC ∠=︒,则根据圆周角定理得到30BAC ∠=︒,作直径BD 、CE ,连接BE 、CD ,则90DCB EBC ∠=∠=︒,当点A 在DE 上(不含D 、E 点)时,ABC ∆为锐角三角形,易得323CD BC ==,当A 点为DE 的中点时,A 点到BC 的距离最大,即h 最大,延长AO 交BC 于H ,如图,根据垂径定理得到AH BC ⊥,所以1BH CH ==,3OH =,则23AH =+,然后写出h 的范围. 解:如图,BC 为O 的弦,2OB OC ==,2BC =,OB OC BC ∴==,OBC ∴∆为等边三角形,60BOC ∴∠=︒,1302BAC BOC ∴∠=∠=︒, 作直径BD 、CE ,连接BE 、CD ,则90DCB EBC ∠=∠=︒,∴当点A 在DE 上(不含D 、E 点)时,ABC ∆为锐角三角形,在Rt BCD ∆中,30D BAC ∠=∠=︒,323CD BC ∴==,当A 点为DE 的中点时,A 点到BC 的距离最大,即h 最大,延长AO 交BC 于H ,如图,A 点为DE 的中点,∴AB AC =,AH BC ∴⊥,1BH CH ∴==,33OH BH ∴==,23AH OA OH ∴=+=+,h ∴的范围为2323h <+.故答案为2323h <+.【点拨】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径.也考查了垂径定理和勾股定理.14.【分析】过O作OE⊥AB于C,根据垂径定理可得AC=BC=12AB,可求OA=2,OD在Rt△AOD中,由勾股定理AD=△OAC∽△DAO,由相似三角形性质可求AC解:过O作OE⊥AB于C,∵AB为弦,∴AC=BC=12AB,∵直线y与O相交于A,B两点,∴当y=0x=,解得x=-2,∴OA=2,∴当x=0时,y=∴OD在Rt△AOD中,由勾股定理AD=∵∠ACO=∠AOD=90°,∠CAO=∠OAD,∴△OAC∽△DAO,AC AOAO AD=即2AOACAD===,∴AB=2AC故答案为【点拨】本题考查直线与圆的位置关系,垂径定理,直线与两轴交点,勾股定理,三角形相似判定与性质,掌握以上知识、正确添加辅助线是解题关键.15.2【分析】先根据圆的半径相等及圆周角定理得出∠ABO =45°,再根据垂径定理构造直角三角形,利用锐角三角函数解直角三角形即可解:连接OB 、OC 、作OD ⊥AB∵60A ∠=︒∴∠BOC =2∠A =120°∵OB =OC∴∠OBC =30°又75B ∠=︒∴∠ABO =45°在Rt △OBD 中,OB =1∴BD ==22∵OD ⊥AB ∴BD =AD 2∴AB 22【点拨】本题考查垂径定理、圆周角定理,正确使用圆的性质及定理是解题关键16.23π 【分析】连接OC .证明OC ∥BD ,推出S 阴=S 扇形OBD 即可解决问题.解:连接OC .∵AB ⊥CD ,∴BC BD =,CE =DE 3∴∠COD =∠BOD ,∵∠BOD =2∠BCD =60°,∴∠COB =60°,∵OC =OB =OD ,∴△OBC ,△OBD 都是等边三角形,∴OC =BC =BD =OD ,∴四边形OCBD 是菱形,∴OC//BD ,∴S △BDC =S △BOD , ∴S 阴=S 扇形OBD , ∵OD =sin 60ED ︒=2, ∴S 阴=2602360π••=23π, 故答案为:23π. 【点拨】本题考查扇形的面积,菱形的判定和性质,平行线的判定和性质等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.17.26【分析】延长DC ,交⊙O 于点E ,连接OA ,由题意易得DE 即为⊙O 的直径,1CD =寸,10AB =寸,则有5AC =寸,设OA =x 寸,最后根据垂径定理及勾股定理可进行求解. 解:延长DC ,交⊙O 于点E ,连接OA ,如图所示:由题意得CD ⊥AB ,点C 为AB 的中点,1CD =寸,10AB =寸,∴DE 为⊙O 的直径,∴5AC =寸,设OA =x 寸,则()1OC x =-寸,∴在Rt △AOC 中,222AC OC OA +=,即()22251x x +-=,解得:13x =,∴圆形木材的直径为26寸;故答案为26.【点拨】本题主要考查垂径定理,熟练掌握垂径定理是解题的关键.18.3【分析】过点O 作OH ⊥CD 于H ,连接OC ,先利用垂径定理得到CH=4,然后在Rt △OCH 中,利用勾股定理即可求解.解:过点O 作OH ⊥CD 于H ,连接OC ,如图,则CH =DH =12CD =4,在Rt △OCH 中,OH 2254-3,所以CD 与AB 之间的距离是3.故答案为3.【点拨】此题主要考查垂径定理和勾股定理,熟练掌握垂径定理和勾股定理是解题关键. 19.120°或60°【分析】根据弦BC 垂直平分半径OA 及OB=OC 证明四边形OBAC 是矩形,再根据OB=OA ,OE=12求出∠BOE=60°,即可求出答案.解:设弦BC 垂直平分半径OA 于点E ,连接OB 、OC 、AB 、AC ,且在优弧BC 上取点F ,连接BF 、CF ,∴OB=AB ,OC=AC ,∵OB=OC ,∴四边形OBAC 是菱形,∴∠BOC=2∠BOE ,∵OB=OA ,OE=12, ∴cos ∠BOE=12,∴∠BOE=60°,∴∠BOC=∠BAC=120°,∴∠BFC=12∠BOC=60°,∴ 弦BC 所对的圆周角为120°或60°,故答案为:120°或60°.【点拨】此题考查圆的基本知识点:圆的垂径定理,同圆的半径相等的性质,圆周角定理,菱形的判定定理及性质定理,锐角三角函数,熟练掌握圆的各性质定理是解题的关键. 20.32.【分析】连接OA ,设半径为x ,用x 表示OC ,根据勾股定理建立x 的方程,便可求得结果.解:解:连接OA ,设半径为x ,将劣弧AB 沿弦AB 折叠交于OC 的中点D ,23OC x ∴=,OC AB ⊥, 1102AC AB ∴= 222OA OC AC -=,222()103x x ∴-=, 解得,32x =.故答案为32.【点拨】本题主要考查了圆的基本性质,垂径定理,勾股定理,关键是根据勾股定理列出半径的方程.21.7或1.【分析】分两种情况考虑:当两条弦位于圆心O 同一侧时,当两条弦位于圆心O 两侧时;利用垂径定理和勾股定理分别求出OE 和OF 的长度,即可得到答案.解:分两种情况考虑:当两条弦位于圆心O 一侧时,如图1所示,过O 作OE ⊥CD ,交CD 于点E ,交AB 于点F ,连接OC ,OA ,∵AB ∥CD ,∴OE ⊥AB ,∴E 、F 分别为CD 、AB 的中点,∴CE=DE=12CD=3cm ,AF=BF=12AB=4cm ,在Rt △AOF 中,OA=5cm ,AF=4cm ,根据勾股定理得:OF=3cm ,在Rt △COE 中,OC=5cm ,CE=3cm ,根据勾股定理得:OE═4cm ,则EF=OE -OF=4cm -3cm=1cm ;当两条弦位于圆心O 两侧时,如图2所示,同理可得EF=4cm+3cm=7cm ,综上,弦AB 与CD 的距离为7cm 或1cm .故答案为:7或1.【点拨】此题考查了垂径定理,勾股定理,利用了分类讨论的思想,熟练掌握垂径定理是解本题的关键.22.94 【分析】连接CD ,并延长交x 轴于点P ,分别求出PD ,PO ,CD 和PC 的长,过点C 作CF ⊥x 轴于点F ,求出PF ,CF 的长,进一步得出点C 的坐标,从而可得出结论. 解:连接CD ,并延长交x 轴于点P ,如图,∵C 为半圆的中点,∴CP ⊥AB ,即∠ADP =90°又∠AOB =90°∴∠APD =∠ABO∵A (2,0),B (0,1)∴AO =2,OB =1 ∴2222125AB AO BO +=+= ∴152AD AB == 又1tan 2PD OB A AD OA === ∴115522PD AD === ∴5535PC PD CD =+= ∴2222555()()424AP PD AD =++ ∴53244OP AO AP =-=-= 过点C 作CF ⊥x 轴于点F , ∴sin sin 5CF AO APD ABO PC AB ∠=∠=== ∴353255CF PC == ∴22223533()()424PF PC CF --∴333442OF OP PF =+=+== ∴点C 的坐标为(32,32) ∵点C 在反比例函数(0)k y x x=>的图象上 ∴339224k =⨯=, 故答案为:94 【点拨】本题考查反比例函数的解析式,解题的关键是利用过某个点,这个点的坐标应适合这个函数解析式;求出点C 坐标是关键.23.【分析】根据垂径定理得到AD =DC ,由等腰三角形的性质得到AB =2OD =2×2=4,得到∠BAE =∠CAE =12∠BAC =12×90°=45°,求得∠ABD =∠ADB =45°,求得AD =AB =4,于是得到DC =AD =4,根据勾股定理即可得到结论.解:∵OD ⊥AC ,∴AD =DC ,∵BO =CO ,∴AB =2OD =2×2=4,∵BC 是⊙O 的直径,∴∠BAC =90°,∵OE ⊥BC ,∴∠BOE =∠COE =90°,∴BE EC =,∴∠BAE =∠CAE =12∠BAC =12×90°=45°,∵EA ⊥BD ,∴∠ABD =∠ADB =45°,∴AD =AB =4,∴DC =AD =4,∴AC =8,∴BC故答案为【点拨】本题考查了三角形的外接圆与外心,圆周角定理,垂径定理,勾股定理,正确的识别图形是解题的关键.24.120【分析】本题可通过构造辅助线,利用垂径定理证明角等,继而利用SAS定理证明三角形全等,最后根据角的互换结合同弧所对的圆周角等于圆心角的一半求解本题.解:连接OA,OB,作OH⊥AC,OM⊥AB,如下图所示:因为等边三角形ABC,OH⊥AC,OM⊥AB,由垂径定理得:AH=AM,又因为OA=OA,故△OAH≅△OAM(HL).∴∠OAH=∠OAM.又∵OA=OB,AD=EB,∴∠OAB=∠OBA=∠OAD,∴△ODA≅△OEB(SAS),∴∠DOA=∠EOB,∴∠DOE=∠DOA+∠AOE=∠AOE+∠EOB=∠AOB.又∵∠C=60°以及同弧AB,∴∠AOB=∠DOE=120°.故本题答案为:120.【点拨】本题考查圆与等边三角形的综合,本题目需要根据等角的互换将所求问题进行转化,构造辅助线是本题难点,全等以及垂径定理的应用在圆综合题目极为常见,圆心角、弧、圆周角的关系需熟练掌握.25.12或32或92【分析】作OE垂直于AB于E,OF垂直于CD于F,连接OD、OB,则可以求出OE、OF 的长度,进而求出OP的长度,进一步得PE与PF长度,最后可求出答案.解:如图所示,作OE垂直于AB于E,OF垂直于CD于F,∴AE =BE =1AB 2=2,DF=CF=12CD =2, 在Rt OBE △中,∵5BE=2,∴OE=1,同理可得OF=1,∵AB 垂直于CD ,∴四边形OEPF 为矩形,又∵OE =OF =1,∴四边形OEPF 为正方形,又∵ACP S △ 有如图四种情况,∴(1)ACP S △=12AP∙CP=12×1×3=32, (2)ACP S △=12AP∙PC=12×1×1=12, (3)ACP S △=12PC∙PA=12×3×3=92, (4)ACP S △=12AP∙PC=12×3×1=32, 故答案为:12或32或92【点拨】本题主要考查的是垂径定理和勾股定理还有圆的综合运用,熟练掌握方法是关键. 26.(1)见解析;(2)见解析【分析】(1)连接BD ,根据圆周角定理可得∠ADB =∠CBD ,根据平行线的判定可得结论;(2)证明△DEF ≌△BCF ,得到DE =BC ,证明四边形BCDE 为平行四边形,再根据BC CD 得到BC =CD ,从而证明菱形.。

垂径定理及其推论练习题

垂径定理及其推论练习题

O
P
B
3.某圆直径是10,内有两条平行 弦,长度分别为6和8。求这两条平 行弦间的距离。
1、两条辅助线:
半径、圆心到弦的垂线段 2、一个Rt△:
A
O · C B
半径、圆心到弦的垂线段、半弦 3、两个定理: 垂径定理、勾股定理
爱是什么? 一个精灵坐在碧绿的枝叶间沉思。 风儿若有若无。 一只鸟儿飞过来,停在枝上,望着远处将要成熟的稻田。 精灵取出一束黄澄澄的稻谷问道:“你爱这稻谷吗?” “爱。” “为什么?” “它驱赶我的饥饿。” 鸟儿啄完稻谷,轻轻梳理着光润的羽毛。 “现在你爱这稻谷吗?”精灵又取出一束黄澄澄的稻谷。 鸟儿抬头望着远处的一湾泉水回答:“现在我爱那一湾泉水,我有点渴了。” 精灵摘下一片树叶,里面盛了一汪泉水。 鸟儿喝完泉水,准备振翅飞去。 “请再回答我一个问题,”精灵伸出指尖,鸟儿停在上面。 “你要去做什么更重要的事吗?我这里又稻谷也有泉水。” “我要去那片开着风信子的山谷,去看那朵风信子。” “为什么?它能驱赶你的饥饿?” “不能。” “它能滋润你的干渴?” “不能。”爱是什么? 一个精灵坐在碧绿的枝叶间沉思。 风儿若有若无。 一只鸟儿飞过来,停在枝上,望着远处将要成熟的稻田。 精灵取出一束黄澄澄的稻谷问道:“你爱这稻谷吗?” “爱。” “为什么?” “它驱赶我的饥饿。” 鸟儿啄完稻谷,轻轻梳理着光润的羽毛。 “现在你爱这稻谷吗?”精灵又取出一束黄澄澄的稻谷。 鸟儿抬头望着远处的一湾泉水回答:“现在我爱那一湾泉水,我有点渴了。” 精灵摘下一片树叶,里面盛了一汪泉水。 鸟儿喝完泉水,准备振翅飞去。 “请再回答我一个问题,”精灵伸出指尖,鸟儿停在上面。 “你要去做什么更重要的事吗?我这里又稻谷也有泉水。” “我要去那片开着风信子的山谷,去看那朵风信子。” “为什么?它能驱赶你的饥饿?” “不能。” “它能滋润你的干渴?” “不能。”

垂径定理及练习题

垂径定理及练习题

垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: ①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。

推论2:圆的两条平行弦所夹的弧相等。

即:在⊙O 中,∵AB ∥CD ∴弧AC =弧BD垂径定理练习题1、已知:AB 是⊙O 的直径,弦CD ⊥AB 于点P ,CD =10cm ,AP:PB =1:5,则⊙O 的半径为_______。

2、在⊙O 中,P 为其内一点,过点P 的最长的弦为8cm ,最短的弦长为4cm ,则OP =____ _。

3、已知圆的半径为5cm ,一弦长为8cm ,则该弦的中点到弦所对的弧的中点的距离为__ _____。

4、已知圆心到圆的两条平行弦的距离分别是2和3,则两条平行弦之间的距离为_ ____。

5、在半径为5cm 的圆内有两条互相平行的弦,一条弦长为8cm ,另一条弦长为6cm ,则这两条弦之间的距离为_____ _。

6、如图,在⊙O 中,OA 是半径,弦AB =310cm ,D 是弧AB 的中点,OD 交AB 于点C ,若∠OAB =300, 则⊙O 的半径____cm 。

7、在⊙O 中,半径OA =10cm ,AB 是弦,C 是AB 弦的中点,且OC:AC=3:4,则AB=_____。

8、在弓形ABC 中,弦AB=24,高CD=6,则弓形所在圆的半径等于 。

9.如图,在以O 为圆心的两个同心圆中,大圆的弦AB 交小圆于C 、D 两点,AB =10cm ,CD =6cm ,则AC 的长为_____。

最新垂径定理及其推论练习题教学讲义ppt课件

最新垂径定理及其推论练习题教学讲义ppt课件
❖ 脊柱推拿多为一短有力的推扳力手法作用在 患椎的横突或棘突上,以松动或扳动脊椎关 节。而一般的按摩等放松手法,不被列入脊 柱推拿的范畴。
脊柱推拿可能的作用机制
❖ 由于研究条件等因素所限,对脊柱推拿治疗 机理研究的相对较少,对其治疗机理大多仅 为推测。
解除滑膜嵌顿
❖ 最早是由欧洲脊柱推拿治疗者提出,认为脊柱小关 节间的滑膜嵌入是造成脊柱活动受限和疼痛的主要 原因。
2.已知⊙o的弦AB=6㎝,直径CD=10㎝,且AB⊥CD,那么 C到AB的距离等于 1㎝或9㎝
3.已知⊙O的弦AB=4㎝,圆心O到AB的中点C的距离为1㎝, 那么⊙O的半径为 5 cm
4.如图,在⊙O中弦AB⊥AC,
B
OM⊥AB,ON⊥AC,垂足分别为M,
M
A
N,且OM=2,0N=3,则AB= 6 , AC= 4 ,OA= 13
❖ 快速的推拿手法可使神经根和关节周围的粘 连得到一定程度的松解。
纠正关节错位
❖ 脊椎关节位置异常致椎间孔变小和横突孔狭 窄扭转位移,使神经根受压以及椎动脉管腔 狭窄和扭曲,出现神经根和椎动脉受损的症 状。
❖ 推拿可调整椎间盘与神经根的位置,恢复正 常的颈腰椎关节解剖序列,有利于椎间盘、 韧带和关节囊等处组织水肿的消退,静脉回 流的改善,促使神经根周围炎症减退,从而 达到治疗目的。
❖ 脊柱椎间小关节各有自己独立的关节囊,当颈随头 作各个方向的运动,椎间关节间隙增大时,关节囊 内层的滑膜或滑膜皱襞就有可能嵌入,成为疼痛源。
❖ 脊柱推扳或旋转推拿手法可使嵌入的滑膜或滑膜皱 襞得到解除,从而达到治疗目的。
解除肌肉痉挛
❖ 骨骼肌张力的异常升高以及肌肉痉挛时,肌肉的形 态、组织性质、解剖位置和生化等方面并无病理改 变,只是功能上出现非协调性的异常收缩。

专题3.3垂径定理(举一反三)(北师大版)(原卷版)

专题3.3垂径定理(举一反三)(北师大版)(原卷版)

专题3.3 垂径定理【十大题型】【北师大版】【题型1 利用垂径定理求线段长度】 (1)【题型2 利用垂径定理求角度】 (2)【题型3 利用垂径定理求最值】 (3)【题型4 利用垂径定理求取值范围】 (4)【题型5 利用垂径定理求整点】 (6)【题型6 利用垂径定理求面积】 (7)【题型7 垂径定理在格点中的运用】 (8)【题型9 垂径定理与分类讨论中的综合运用】 (10)【题型10 垂径定理的应用】 (11)【题型1 利用垂径定理求线段长度】【例1】(2022•雨花区校级开学)如图,⊙O的半径OD⊥弦AB交AB于点C,连接AO并延长交⊙O于点E,连接EC.若AB=8,EC=2√13,则CD的长为()A.1B.3C.2D.4【变式11】(2022•宁津县二模)如图,已知圆O的半径为10,AB⊥CD,垂足为P,且AB=CD=16,则OP的长为()A.6B.6√2C.8D.8√2【变式12】(2022•建华区二模)如图,⊙O的直径AB与弦CD相交于点E,若AE=5,EB=1,∠AEC=30°,则CD的长为()A.5B.2√3C.4√2D.2√2+√3+1【变式13】(2022春•徐汇区校级期中)如图,AB是⊙O的弦,D为半径OA的中点,过D作CD⊥OA交弦AB于点E,且CE=CB,若BE=2AE,CD=5,那么⊙O的半径为.【题型2 利用垂径定理求角度】【例2】(2022•泰安模拟)如图,⊙O的半径OA,OB,且OA⊥OB,连接AB.现在⊙O上找一点C,使OA2+AB2=BC2,则∠OAC的度数为()A.15°或75°B.20°或70°C.20°D.30°̂上的【变式21】(2022秋•天心区期中)如图,已知⊙O半径OA=4,点B为圆上的一点,点C为劣弧AB一动点,CD⊥OA,CE⊥OB,连接DE,要使DE取得最大值,则∠AOB等于()A.60°B.90°C.120°D.135°【变式22】(2022秋•青田县期末)如图,在⊙O中,半径OC过弦AB的中点E,OC=2,OE=√2.(1)求弦AB的长;(2)求∠CAB的度数.【变式23】(2022秋•开州区期末)如图,在⊙O中,弦BC与半径OA垂直于点D,连接AB、AC.点E为AC的中点,连接DE.(1)若AB=6,求DE的长;(2)若∠BAC=100°,求∠CDE的度数.【题型3 利用垂径定理求最值】【例3】(2022•威海模拟)⊙O中,点C为弦AB上一点,AB=1,CD⊥OC交⊙O于点D,则线段CD的最大值是()A.12B.1C.32D.2【变式31】(2022•河北模拟)如图所示,在⊙O中,AB为弦,OC⊥AB交AB于点D.且OD=DC.P为⊙O上任意一点,连接P A,PB,若⊙O的半径为1,则S△P AB的最大值为()A.1B.2√33C.3√34D.3√32【变式32】(2022秋•龙凤区校级期末)如图,矩形ABCD中,AB=20,AD=15,P,Q分别是AB,AD 边上的动点,PQ=16,以PQ为直径的⊙O与BD交于点M,N,则MN的最大值为.【变式33】(2022秋•延平区校级期末)在Rt△ABC中,∠C=90°,BC=3,AC=4,D、E分别是AC、BC上的一点,且DE=3,若以DE为直径的圆与斜边AB相交于M、N,则MN的最大值为()A.910B.65C.85D.125【题型4 利用垂径定理求取值范围】【例4】(2022•包河区校级二模)如图,在⊙O中,直径AB=10,CD⊥AB于点E,CD=8.点F是弧BC上动点,且与点B、C不重合,P是直径AB上的动点,设m=PC+PF,则m的取值范围是()A.8<m≤4√5B.4√5<m≤10C.8<m≤10D.6<m<10【变式41】(2022•佛山)如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.【变式42】(2022秋•盐都区校级月考)如图,点P是⊙O内一定点.(1)过点P作弦AB,使点P是AB的中点(不写作法,保留作图痕迹);(2)若⊙O的半径为13,OP=5,①求过点P的弦的长度m范围;②过点P的弦中,长度为整数的弦有条.【变式43】(2022秋•天河区校级期中)已知⊙O的半径为5,点O到弦AB的距离OH=3,点P是圆上一动点,设过点P且与AB平行的直线为l,记直线AB到直线l的距离为d.(1)求AB的长;(2)如果点P只有两个时,求d的取值范围;(3)如果点P有且只有三个时,求连接这三个点所得到的三角形的面积.【题型5 利用垂径定理求整点】【例5】(2022•山海关区一模)已知⊙O的直径CD=10,CD与⊙O的弦AB垂直,垂足为M,且AM=4.8,则直径CD上的点(包含端点)与A点的距离为整数的点有()A.1个B.3个C.6个D.7个【变式51】(2022秋•新昌县期末)如图,AB是⊙O的弦,OC⊥AB于点C,连接OB,点P是半径OB上任意一点,连接AP,若OB=5,OC=3,则AP的长不可能是()A.6B.7C.8D.9【变式52】(2022•桥西区校级模拟)如图,AB是⊙C的弦,直径MN⊥AB于点O,MN=10,AB=8,如图以O为原点建立坐标系.我们把横纵坐标都是整数的点叫做整数点,则线段OC长是3,⊙C上的整数点有个.【变式53】(2022秋•肇东市期末)已知⊙O的半径为5,点O到弦AB的距离为3,则⊙O上到弦AB所在直线的距离为2的点有()A.4个B.3个C.2个D.1个【题型6 利用垂径定理求面积】【例6】(2022•武汉模拟)如图,在半径为1的⊙O中有三条弦,它们所对的圆心角分别为60°,90°,120°,那么以这三条弦长为边长的三角形的面积是()A.√2B.1C.√32D.√22【变式61】(2022秋•黄州区校级月考)如图,矩形MNGH的四个顶点都在⊙O上,顺次连接矩形各边的中点,得到菱形ABCD,若BD=12,DF=4,则菱形ABCD的面积为.【变式62】(2022秋•西城区校级期中)如图,AB为⊙O直径,过点O作OD⊥BC于点E,交⊙O于点D,CD∥AB.(1)求证:E为OD的中点;(2)若CB=6,求四边形CAOD的面积.【变式63】(2022•新洲区模拟)如图,点A,C,D均在⊙O上,点B在⊙O内,且AB⊥BC于点B,BC ⊥CD于点C,若AB=4,BC=8,CD=2,则⊙O的面积为()A.125π4B.275π4C.125π9D.275π9【题型7 垂径定理在格点中的运用】【例7】(2022秋•襄都区校级期末)如图所示,一圆弧过方格的格点AB,试在方格中建立平面直角坐标系,使点A的坐标为(0,4),则该圆弧所在圆的圆心坐标是()A.(﹣1,2)B.(1,﹣1)C.(﹣1,1)D.(2,1)【变式71】(2022春•海门市期中)如图所示,⊙P过B、C两点,写出⊙P上的格点坐标.【变式72】(2022•商城县三模)如图所示的网格中,每个小正方形的边长均为1,点A、B、C均在小正方形的顶点上,点C同时也在AB̂上,若点P是BĈ的一个动点,则△ABP面积的最大值是.【变式73】(2017秋•靖江市校级月考)如图,在单位长度为1的正方形网格中建立一直角坐标系,一条圆弧经过网格点A、B、C,请在网格图中进行下列操作(以下结果保留根号):(1)利用网格作出该圆弧所在圆的圆心D点的位置,并写出D点的坐标为;(2)连接AD、CD,则⊙D的半径为,∠ADC的度数.【题型8 垂径定理在坐标系中的运用】【例8】(2022•博山区一模)如图,在平面直角坐标系中,半径为5的⊙E与y轴交于点A(0,﹣2),B (0,4),与x轴交于C,D,则点D的坐标为()A.(4−2√6,0)B.(−4+2√6,0)C.(−4+√26,0)D.(4−√26,0)【变式81】(2022秋•西林县期末)如图,⊙P与y轴交于点M(0,﹣4),N(0,﹣10),圆心P的横坐标为﹣4.则⊙P的半径为()A.3B.4C.5D.6【变式82】(2022•印江县三模)如图,直线l为y=x,过点A1(1,0)作A1B1⊥x轴,与直线l交于点B1,以原点O为圆心,OB1长为半径画圆弧交x轴于点A2;再作A2B2⊥x轴,交直线l于点B2,以原点O为圆心,OB2长为半径画圆弧交x轴于点A3;…,按此作法进行下去,则点A2022的坐标为.【变式83】(2015•宜春模拟)如图,半径为5的⊙P与y轴交于点M(0,﹣4),N(0,﹣10),函数y =﹣2x+m图象过点P,则m=.【题型9 垂径定理与分类讨论中的综合运用】【例9】(2022秋•化德县校级期末)⊙O的半径为10cm,弦AB∥CD,且AB=12cm,CD=16cm,则AB 和CD的距离为()A.2cm B.14cm C.2cm或14cm D.10cm或20cm【变式91】(2022•包河区二模)已知圆O的半径为5,弦AB=8,D为弦AB上一点,且AD=1,过点D 作CD⊥AB,交圆O于C,则CD长为()A.1B.7C.8或1D.7或1【变式92】(2022秋•方正县期末)如图,⊙O的弦AB与半径OC垂直,点D为垂足,OD=DC,AB=2√3,点E在⊙O上,∠EOA=30°,则△EOC的面积为.【变式93】(2022秋•淮南月考)如图,已知⊙O的半径为2.弦AB的长度为2,点C是⊙O上一动点,若△ABC为等腰三角形,则BC2的长为.【题型10 垂径定理的应用】【例10】(2022秋•武昌区校级期末)某地有一座圆弧形拱桥,它的跨度(弧所对的弦的长)24m,拱高(弧的中点到弦的距离)4米,则求拱桥的半径为()A.16m B.20m C.24m D.28m【变式101】(2022•望城区模拟)《九章算术》是我国古代著名数学经典,其中对勾股定理的论述比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深1寸,锯道长1尺.如图,已知弦AB=1尺,弓形高CD=1寸,(注:1尺=10寸)问这块圆柱形木材的直径是()A.13寸B.6.5寸C.26寸D.20寸【变式102】(2022秋•西城区校级期中)京西某游乐园的摩天轮采用了国内首创的横梁结构,风格更加简约.如图,摩天轮直径88米,最高点A距离地面100米,匀速运行一圈的时间是18分钟.由于受到周边建筑物的影响,乘客与地面的距离超过34米时,可视为最佳观赏位置,在运行的一圈里最佳观赏时长为分钟.【变式103】(2022•浙江)如图,公园内有一个半径为20米的圆形草坪,A,B是圆上的点,O为圆心,̂,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB.通∠AOB=120°,从A到B只有路AB过计算可知,这些市民其实仅仅少走了步(假设1步为0.5米,结果保留整数).(参考数据:√3≈1.732,π取3.142)。

第07讲 垂径定理

第07讲 垂径定理

第07讲垂径定理(核心考点讲与练)【知识梳理】一.垂径定理(1)垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)垂径定理的推论推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.推论2:弦的垂直平分线经过圆心,并且平分弦所对的两条弧.推论3:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.二.垂径定理的应用垂径定理的应用很广泛,常见的有:(1)得到推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.(2)垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.这类题中一般使用列方程的方法,这种用代数方法解决几何问题即几何代数解的数学思想方法一定要掌握.【核心考点精讲】一.垂径定理(共5小题)1.(2022•拱墅区一模)已知AB是⊙O的弦,半径OC⊥AB于点D.若DO=DC,AB=12,则⊙O的半径为()A.4B.4C.6D.62.(2016秋•北仑区期末)⊙O的直径AB和弦CD相交于点E,已知AE=6,EB=2,∠CEA=30°,则弦CD的长为()A.8B.4C.2D.23.(2022春•长兴县月考)如图,AB是⊙O的直径,CD⊥AB于点E,连结CO并延长,交弦AD于点F.若AB=10,BE=2,则OF的长度是()A.B.3C.D.4.(2022•博山区一模)如图,在平面直角坐标系中,半径为5的⊙E与y轴交于点A(0,﹣2),B(0,4),与x轴交于C,D,则点D的坐标为()A.B.C.D.5.(2021秋•北仑区校级期中)如图,⊙•O的直径AB=5,弦AC=3,点D是劣弧BC上的动点,CE⊥DC交AD于点E,则OE的最小值是()A.B.C.2﹣D.﹣1二.垂径定理的应用(共4小题)6.(2021秋•鹿城区校级期中)如图是一个小圆同学设计的一个鱼缸截面图,弓形ACB是由优弧AB与弦AB组成,AC是鱼缸的玻璃隔断,弓形AC部分不注水,已知CD⊥AB,且圆心O在CD上,AB=CD=80cm.注水时,当水面恰好经过圆心时,则水面宽EF为cm;注水过程中,求水面宽度EF的最大值为cm.7.(2022•旌阳区二模)筒车是我国古代发明的一种水利灌溉工具,如图1,筒车盛水桶的运行轨道是以轴心O为圆心的圆,如图2,已知圆心O在水面上方,且⊙O被水面截得弦AB长为4米,⊙O半径长为3米.若点C为运行轨道的最低点,则点C到弦AB所在直线的距离是()A.1米B.2米C.米D.米8.(2021秋•温岭市期末)把一个球放入长方体纸盒,球的一部分露出盒外,球与纸盒内壁都刚好相切,其截面如图所示,若露出部分的高度为6cm,AF=DE=3cm,则这个球的半径是cm.9.(2021秋•诸暨市期末)一根排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=12,如果再注入一些水,当水面AB的宽变为16时,则水面AB上升的高度为.【过关检测】一.选择题(共7小题)1.(2022春•市中区校级月考)如图,在⊙O中,OC⊥AB于点C,若⊙O的半径为10,OC=5,则弦AB的长为()A.5B.10C.5D.102.(2021秋•温州期末)如图,在⊙O中,半径OC⊥AB于点D.已知OC=5,OD=4,则弦AB的长为()A.3B.4C.5D.63.(2021秋•嘉兴期末)如图,⊙O的直径AB=12,弦CD垂直AB于点P.若BP=2,则CD的长为()A.2B.4C.4D.84.(2021秋•嵊州市期末)如图,CD是⊙O的弦,直径AB⊥CD,垂足为M,连结AD.若CD=8,BM=2,则AD的长为()A.10B.5C.4D.35.(2021秋•东阳市期末)在圆柱形油槽内装有一些油,截面如图所示,已知截面⊙O半径为5cm,油面宽AB为6cm,如果再注入一些油后,油面宽变为8cm,则油面AB上升了()cm.A.1B.3C.3或4D.1或7 6.(2021秋•宁波期末)把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=6cm,则球的半径为()A.3cm B.cm C.cm D.cm 7.(2021秋•拱墅区期中)如图,在⊙O中,直径AB=10,弦DE⊥AB于点C,若OC:OA=4:5,则DE的长为()A.6B.7C.8D.9二.填空题(共8小题)8.(2021秋•余姚市期末)如图1,水车又称孔明车,是我国最古老的农业灌溉工具,是珍贵的历史文化遗产.如图2,圆心O在水面上方,且⊙O被水面截得的弦AB长为8米,半径为5米,则圆心O到水面AB的距离为米.9.(2021秋•瑞安市期末)如图,AB为⊙O的直径,弦CD⊥AB于点E,CD=10,BE=3,则AE长为.10.(2021秋•拱墅区期末)如图,一个底部呈球形的烧瓶,球的半径为5cm,瓶内原有液体的最大深度CD=4cm.部分液体蒸发后,瓶内液体的最大深度下降为2cm,则截面圆中弦AB的长减少了cm(结果保留根号).11.(2021秋•温州校级月考)如图是郑州圆形“戒指桥”,其数学模型为如图所示.已知桥面跨径AB=20米,D为圆上一点,DC⊥AB于点C,且CD=BC=14米,则该圆的半径长为米.12.(2022•瑞安市开学)如图,矩形ABCD中,E,F分别是边AB,BC上的两个动点,将△BEF沿着直线EF作轴对称变换,得到△B′EF,点B′恰好在边AD上,过点D,F,B′作⊙O,连结OF.若OF⊥BC,AB′=CF=3时,则AE=.13.(2021秋•镇海区期末)⊙O的弦AB的长为8cm,弦AB的弦心距为3cm,则⊙O的半径为cm.14.(2020•金华模拟)如图,依据九上教材中的丁字尺,小明开始自制丁字尺:F、A、D、E在同一直线上,AF⊥AB,AB∥CD,AF=4cm,AD=DE=2cm.(1)现有一圆经过F、E,弧EF为劣弧,且与AB交于G,如果测得AG的长为10cm,那么圆的半径为;(2)小明在DC上制作单位刻度时不小心把尺子割断了,只余DM=1cm,此时只运用这把残破的丁字尺的已知数据(一条线段不能分段测量且不能作延长线),能计算或测量(不计误差)得到的最大半径是.15.(2022•海曙区一模)如图,圆O的半径为4,点P是直径AB上定点,AP=1,过P 的直线与圆O交于C,D两点,则△COD面积的最大值为;作弦DE∥AB,CH ⊥DE于H,则CH的最大值为.三.解答题(共5小题)16.(2021秋•西湖区校级月考)如图,CD为⊙O的直径,CD⊥AB于E,CE=8,DE=2,求AB的长.17.(2021•柯桥区模拟)如图,在⊙O中,过半径OD的中点C作AB⊥OD交⊙O于A、B两点,且AB=2.(1)求OD的长;(2)计算阴影部分的周长.18.(2021秋•玄武区校级月考)如图,AB是⊙O直径,弦CD⊥AB于点E,过点C作DB 的垂线,交AB的延长线于点G,垂足为点F,连结AC.(1)求证:AC=CG;(2)若CD=EG=8,求⊙O的半径.19.(2021秋•下城区校级月考)如图,有一座圆弧形拱桥,它的跨度AB为30m,拱高PM 为9m,当洪水泛滥到跨度只有15m时,就要采取紧急措施,若某次洪水中,拱顶离水面只有2m,即PN=2m时,试求:(1)拱桥所在的圆的半径;(2)通过计算说明是否需要采取紧急措施.20.(2020秋•永嘉县校级期末)如图,AB是⊙O的直径,四边形ABCD内接于⊙O,OD 交AC于点E,AD=CD.(1)求证:OD∥BC;(2)若AC=10,DE=4,求BC的长.。

垂径定理及其推论练习题课件

垂径定理及其推论练习题课件

推论的意义和价值
意义
垂径定理的推论是圆中弦长与圆心到直线的距离和半径之间关系的深刻揭示,对 于解决实际问题中涉及圆和直线的问题具有重要的指点意义。
价值
推论的应用范围广泛,不仅在几何、代数等领域有广泛应用,而且在工程、建筑 、天文等领域也有实际应用价值。例如,在桥梁设计和建造过程中,垂径定理的 推论可用于计算桥梁主跨的长度和拱高,以确保桥梁的安全性和稳定性。
证明的思路和方法
思路
通过构造辅助线,将垂径定理的证明 转化为直角三角形的问题,利用勾股 定理进行证明。
方法
作直径端点与圆心的连线,构造两个 直角三角形,利用勾股定理证明垂径 定理。
证明过程
步骤1
作直径端点与圆心的连线。
步骤2
根据勾股定理,证明垂径定理成立。
步骤3
总结垂径定理的内容和适用范围。
证明中的注意事项
PART 04
垂径定理的练习题
垂径定理的练习题
• 请输入您的内容
PART 05
练习题的解答和分析
解答过程
题目1
解答
题目2
解答
已知圆O的半径为5,弦AB的 长度为8,求弦AB的中垂线与 半径OA之间的夹角。
第一,利用垂径定理计算出圆 心O到弦AB的垂线段OC的长 度为$sqrt{5^2 - 4^2} = 3$ 。然后,利用直角三角形的性 质,可以求出角COB的大小为 $60^circ$。
垂径定理的重要性
基础几何知识
垂径定理是几何学中的基 础知识点,是进一步学习 其他几何知识的前提。
解决实际问题
垂径定理在实际问题中有 着广泛的应用,掌握它能 够更好地解决实际问题。
培养逻辑思维
学习垂径定理需要严谨的 逻辑思维和推理能力,有 助于培养学生的数学素养 和解决问题的能力。

垂径定理典型例题及练习

垂径定理典型例题及练习

【基础知识回顾】一、圆的定义及性质:1、圆的定义:⑴形成性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转形成的图形叫做圆,固定的端点叫线段OA叫做⑵描述性定义:圆是到定点的距离等于的点的集合【名师提醒:1、在一个圆中,圆心决定圆的半径决定圆的2、直径是圆中的弦】2、弦与弧:弦:连接圆上任意两点的叫做弦弧:圆上任意两点间的叫做弧,弧可分为、、三类3、圆的对称性:⑴轴对称性:圆是轴对称图形,有条对称轴的直线都是它的对称轴⑵中心对称性:圆是中心对称图形,对称中心是【名师提醒:圆不仅是中心对称图形,而且具有旋转性,即绕圆心旋转任意角度都被与原来的图形重合】二、垂径定理及推论:1、垂径定理:垂直于弦的直径,并且平分弦所对的2、推论:平分弦()的直径,并且平分弦所对的【名师提醒:1、垂径定理及其推论实质是指一条直线满足:⑴过圆心⑵垂直于弦⑶平分弦⑷平分弦所对的优弧⑸平分弦所对的劣弧五个条件中的两个,那么可推出其中三个,注意解题过程中的灵活运用2、圆中常作的辅助线是过圆心作弦的线3、垂径定理常用作计算,在半径r弦a弦心d和弦h中已知两个可求另外两个】三、圆心角、弧、弦之间的关系:1、圆心角定义:顶点在的角叫做圆心角2、定理:在中,两个圆心角、两条弧、两条弦中有一组量它们所对应的其余各组量也分别【名师提醒:注意:该定理的前提条件是“在同圆或等圆中”】四、圆周角定理及其推论:1、圆周角定义:顶点在并且两边都和圆的角叫圆周角2、圆周角定理:在同圆或等圆中,圆弧或等弧所对的圆周角都等于这条弧所对的圆心角的推论1、在同圆或等圆中,如果两个圆周角那么它们所对的弧推论2、半圆(或直弦)所对的圆周角是900的圆周角所对的弦是【名师提醒:1、在圆中,一条弦所对的圆心角只有一个,而它所对的圆周角有个,它们的关系是欽绲腫賁軔铼剮誒緦骞恹輿筍谭黲枨贵珑莳苋鸩捡耸殚脐剀继剧荞缚鐃鳩俪谥圆颏輻嗇惡呛櫪组颓緗轢箩約鱼產辐鹃钠俭躒劲苎鸭拦尘谖。

人教版九年级上册垂径定理的推论

人教版九年级上册垂径定理的推论

③ 平分弦 ⑤ 平分弦所对的劣弧
① 直径过圆心 ② 垂直于弦 ④ 平分弦所对优弧
(8) (9)平分弦并且平分弦所对的一条弧的直 径过圆心,垂直于弦,并且平分弦所对的另一条弧 .
④ 平分弦所对的优弧 ⑤ 平分弦所对的劣弧
① 直径过圆心 ② 垂直于弦 ③ 平分弦
(10)平分弦所对的两条弧的直径过圆心, 并且垂直平分弦.
条件 结论
命题
①③ ②④⑤ 平分弦(不是直径)的直径垂直于弦并且平分弦所对的两条弧.
①④ ②③⑤ 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对
①⑤ ②③④ 的另一条弧.
②③ ①④⑤ 弦的垂直平分线经过圆心,并且平分这条弦所对的两条弧.
②④ ①③⑤ 垂直于弦并且平分弦所对的一条弧的直线经过圆心,并且平 ②⑤ ①③④ 分弦和所对的另一条弧.
2
2
OD=OC-CD=R-
在Rt△OAD中,由勾股定理,得 A
C
D
B
OA2=AD2+OD2
R
即 R22+(R-)2
O
解得 R(m)
∴赵州桥的主桥拱半径约为.
随堂练习
1. 判断:
(1)垂直于弦的直线平分这条弦,并且平分弦所对
的两弧.
()
(2)平分弦所对的一条弧的直径一定平分这条弦所
对的另一弧.
(√ )
A
B
D
(2)平分弦(不是直径)的直径垂直于弦, 并且平分弦所对的两条弧.
注意 为什么强调这里的弦不是直径?
M
A
一个圆的任意两
条直径总是互相平分,
但它们不一定互相垂 直.因此这里的弦如
C
O
果是直径,结论不一
定成立.

2022届中考知识点强化练习:垂径定理(解答题篇)(word版含答案)

2022届中考知识点强化练习:垂径定理(解答题篇)(word版含答案)

2022届中考知识点强化练习:垂径定理(解答题篇)一、解答题(共11小题;共143分)1. ____________________________ 垂径定理:垂直于弦的直径_________ 弦,并且平分弦所对的两条__________________________________几何语言(如图):•.•直径CD LAB,2.如图,刀B是。

的一条弦,CD经过圆心。

且与刀8交于点E,若AE = BE, AB = 2^7, ED =1,求CD的长.3.如图,48是O0的直径,交弦CZ)于点E,点E是CD的中点.(1)__________________________________________ 若 O0 的半径为 5, CD = 8,则 OE = , BE =;(2)___________________________________ 若 C D = 16, BE = 4,则 CE= , O。

的半径为.4.如图,有一座弧形的拱桥,桥下水面的宽度AB为7.2 m,拱顶高出水面的最大高度CD的长为2.4 m,现有一艘宽 3 m,船舱顶部为长方形并且高出水面 2 m的货船要经过这里,此货船能顺利通过这座弧形拱桥吗?则点P坐标为(4,2)或(-4,2).②当匕PBG = 90°时,PB lx轴,则 PC 是直径,PC = 8, FC=4A/3得 PB = 4,点 P 坐标为(-2,75,4).③当匕BPG = 90。

,则是直径,这时有PC Lx轴得PC = 4,点P坐标为(2\/5,4).符合条件的点P坐标为(4,2)或(-4,2)或(-2西4)或(2V3,4).5.如图,AB是。

的弦,D为0。

上不与A, B重合的一点,DC 1 AB于点C,® = O,连接DM.求证:"DM = 3DM.6.如图所示,某窗户是由矩形和弓形组成,己知弓形的跨度/!B = 3m,弓形的高EF=lm,现计划安装玻璃,请帮工程师求出徐所在。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. (2013 浙江省舟山市) 如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC .若AB =8,CD =2,则EC 的长为(▲ )(A )2(B )8 (C )2(D )答案:D 07539 4.2 垂径定理及推论 选择题 基础知识 2013-09-292. (2013 浙江省温州市) 如图,在⊙O 中,OC ⊥弦AB 于点C ,AB =4,OC =1,则OB 的长是(A ) 3 (B ) 5(C )15 (D ) 17答案:B6232 4.2 垂径定理及推论 选择题 基础知识 2013-09-243. (2013 湖北省宜昌市) 如图,DC 是O ⊙的直径,弦AB CD ⊥于F ,连接BC DB ,.则下列结论错误..的是( ). (A )»»AD BD = (B )AF BF = (C )OF CF = (D )90DBC ∠=°答案:C7704 4.2 垂径定理及推论 选择题 基本技能 2013-09-224. (2013 湖北省襄阳市) 如图,水平放置的圆柱形排水管道的截面直径是1m ,其中水面的宽AB 为0.8m ,则排水管内水的深度为 m.答案:0.259477 4.2 垂径定理及推论 填空题 基本技能 2013-09-225. (2013 湖北省黄石市) 如右图,在Rt ABC V 中,90ACB ∠=o ,3AC =,4BC =,以点C 为圆心,CA 为半径的圆与AB 交于点D ,则AD 的长为 A. 9B. 24C. 185D. 52答案:C84700 4.2 垂径定理及推论 选择题 基础知识 2013-09-226. (2013 湖北省黄冈市) 如图,M 是CD 的中点,EM CD ⊥,若48CD EM ==,,则¼CED 所在圆的半径为.答案:174B90698 4.2 垂径定理及推论 填空题 基本技能 2013-09-227. (2013 浙江省绍兴市) 绍兴是著名的桥乡,如图,圆拱桥的拱顶到水面的距离CD 为8m ,桥拱半径OC 为5 m ,则水面宽AB 为( )(A )4m (B )5m(C )6m (D )8m答案:D78151 4.2 垂径定理及推论 选择题 基础知识 2013-09-228. (2013 黑龙江省绥化市) 如图,在O e 中,弦AB 垂直平分半径OC ,垂足为D ,若O e 的半径为2,则弦AB 的长为 . 答案:23 0571 4.2 垂径定理及推论 填空题 基本技能 2013-09-22 9. (2013 黑龙江省齐齐哈尔市) CD 是O ⊙的一条弦,作直径AB 使AB CD ⊥,垂足为E ,若10,8AB CD ==,则BE 的长是( ).(A )8 (B )2 (C )2或8 (D )3或7答案:C34113 4.2 垂径定理及推论 选择题 基本技能 2013-09-2210. (2013 黑龙江省哈尔滨市) 如图,直线AB 与O ⊙相切于点A ,AC 、CD 是O ⊙的两条弦,且CD AB ∥,若O ⊙的半径为52,4CD =,则弦AC 的长为______. 答案:250177 4.2 垂径定理及推论 填空题 基本技能 2013-09-2211. (2013 四川省泸州市) 已知O ⊙的直径10CD =cm,AB 是O ⊙的弦,AB CD ⊥,垂足为M ,且8AB =cm,则AC 的长为( )(A )25cm (B )45cm (C )25cm 或45cm (D )23cm 或43cm 答案:C1 4.2 垂径定理及推论 选择题 基础知识 2013-09-1812. (2013 四川省乐山市) 如图,圆心在y 轴的负半轴上,半径为5的⊙B 与y 轴的正半轴交于点A (0,1),过点P (0,-7)的直线l 与⊙B 相交于C 、D 两点,则弦CD 长的所有可能的整数值有(A )1个 (B )2个 (C )3个 (D )4个答案:C4.2 垂径定理及推论 选择题 基础知识 2013-09-18 84943(2013 四川省广安市) 如图,已知半径OD 与弦AB 互相垂直,13.垂足为点C ,若AB =8cm ,CD =3cm ,则圆O 的半径为( ) 256cm B. 5cm A.C. 4cmD. 196cm答案:A5451 4.2 垂径定理及推论 选择题 基础知识 2013-09-1714. (2013 上海市) 在⊙O 中,已知半径长为3,弦AB 长为4,那么圆心O 到AB 的距离为___________. 答案:5 0049 4.2 垂径定理及推论 填空题 基础知识 2013-09-1715. (2013 广西南宁市) 如图,AB 是O ⊙的直径,弦CD 交AB 于点E ,且8AE CD ==,12BAC BOD ∠=∠,则O ⊙的半径为( ). (A )42 (B )5 (C )4 (D )3答案:B03939 4.2 垂径定理及推论 选择题 基础知识 2013-09-1616. (2013 山东省潍坊市) 如图,O ⊙的直径12AB =,CD 是O ⊙的弦,CD AB ⊥,垂足为P ,且15BP AP =∶∶,则CD 的长为( ).(A )24 (B )28(C )52 (D )54答案:D79380 4.2 垂径定理及推论 选择题 基础知识 2013-09-1617. (2013 山东省济南市) 如图,AB 是O ⊙的直径,C 是O ⊙上一点,AB =10,AC =6,OD BC ⊥,垂足为D ,则BD 的长为(A )2 (B )3 (C )4 (D )6答案:C8633 4.2 垂径定理及推论 选择题 基础知识 2013-09-1318. (2013 青海省西宁市) 如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,若CD =6,且AE :BE =1:3,则AB = .答案:343643 4.2 垂径定理及推论 填空题 基础知识 2013-09-1319. (2013 浙江省丽水市) 一条排水管的截面如图所示,已知排水管的半径OB =10,水面宽AB =16,则截面圆心O 到水面的距离OC 是( )(A )4 (B )5(C )6 (D )8答案:C6549 4.2 垂径定理及推论 选择题 基础知识 2013-09-1320. (2013 宁夏回族自治区) 如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB 的长为 cm.答案:32B A 第12题图 (第6题图)O D C B A1 4.2 垂径定理及推论 填空题 基础知识 2013-09-1321. (2013 广西来宾市) 如图是一圆形水管的截面图,已知O ⊙的半径13OA =,水面宽24AB =,则水的深度CD 是_________.答案:87039 4.2 垂径定理及推论 填空题 基础知识 2013-09-1222. (2013 广东省广州市) 如图7,在平面直角坐标系中,点O 为坐标原点,点P 在第一象限,P Θ与x 轴交于O,A 两点,点A 的坐标为(6,0),P Θ的半径为13,则点P 的坐标为 ____________.答案:(3,2)6804 4.2 垂径定理及推论 填空题 基础知识 2013-09-1223. (2013 甘肃省兰州市) 如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB 宽为8cm ,水的最大深度为2cm ,则该输水管的半径为A .3cmB .4cmC .5cmD .6cm 答案:C5227 4.2 垂径定理及推论 选择题 基础知识 2013-09-1224. (2013 福建省泉州市) 第二节三角形的内角和定理及推论)在ABC △中,2060A B ∠=∠=°,°,则ABC △的形状是( )(A )等边三角形 (B )锐角三角形 (C )直角三角形 (D )钝角三角形答案:D3721 4.2 垂径定理及推论 选择题 基础知识 2013-09-1125. (2013 福建省南平市) 如图,在⊙O 中,直径CD ⊥弦AB ,则下列结论中正确..的是 A . AD =AB B .∠BOC =2∠DC .∠D +∠BOC =90°D .∠D =∠B 答案:B 5416 4.2 垂径定理及推论 选择题 基础知识 2013-09-1126. (2013 江苏省徐州市) 如图,AB 是O ⊙的直径,弦CD AB ⊥,垂足为P ,若8CD =,3OP =,则O ⊙的半径为( ). (A)10 (B)8 (C)5 (D)3 答案:C78 4.2 垂径定理及推论 选择题 基础知识 2013-09-1027. (2013 四川省资阳市) 在⊙O 中,AB 为直径,点C 为圆上一点,将劣弧沿弦AC 翻折交AB 于点D ,连结CD .(1)如图5-1,若点D 与圆心O 重合,AC =2,求⊙O 的半径r ;(6分)(2)如图5-2,若点D 与圆心O 不重合,∠BAC =25°,请直接写出∠DCA 的度数. (2分) 答案:(1) 过点O 作AC 的垂线交AC 于E 、交劣弧于F ,由题意可知,OE =EF , ···································· 1分 图5-1 图5-2∵ OE ⊥AC ,∴AE =12AC , ······························ 3分 在Rt △AOE 中,222AO OE AE =+, ························· 4分∴2211()2r r =+,∴r =····························· 6分 (2)∠DCA =40°. ································· 8分 1594 4.2 垂径定理及推论 应用题 基础知识 2013-09-0928. (2013 吉林省长春市) 如图,MN 是⊙O 的弦,正方形OABC 的顶点B 、C 在MN 上,且点B 是CM 的中点.若正方形OABC 的边长为7,则MN 的长为 .答案:2820130 4.2 垂径定理及推论 填空题 基础知识 2013-09-0829. (2013 吉林省) 如图,AB 是O ⊙的弦,OC AB ⊥于点C ,连接OA OB ,.点P 是半径OB 上任意一点,连接AP .若5cm 3cm OA OC ==,,则AP 的长度可能是 cm (写出一个符合条件的数值即可).答案:6(答案不唯一,大于或等于5并且小于或等于8的任意一个数值皆可)3816 4.2 垂径定理及推论 填空题 基础知识 2013-09-0830. (2013 四川省内江市) 在平面直角坐标系xOy 中,以原点O 为圆心的圆过点A (13,0),直线y=kx ﹣3k+4与⊙O 交于B 、C 两点,则弦BC 的长的最小值为 .答案: 242778 4.2 垂径定理及推论 填空题 基础知识 2013-09-05。

相关文档
最新文档