垂径定理及其推论练习题

合集下载

第十讲 垂径定理及其推论

第十讲   垂径定理及其推论

第十讲 垂径定理及其推论一、知识要点回顾:1、圆是_____对称图形,_______________是它的对称轴。

2、垂径定理: 文字叙述是:垂直于弦的直径_______,并且_______________________________。

符号语言:∵CD 是⊙O_____,AB 是⊙O______,且CD__AB 于M∴____=_____,_____=______,_____=______。

3、垂径定理的推论: 。

符号语言: ∵ ∴二、例题讲析:用垂径定理解决问题例1、已知:⊙O 中,弦AB 的长为8cm ,圆心O 到AB 的距离为3cm ,求:⊙O 的半径。

例2:如图,过点B 、C 的⊙O 的圆心在等腰三角形的内部,∠BAC =90°,OA =1,BC =6,求⊙O 的半径。

例3:如图,CD 是⊙O 的直径,AB ⊥CD 于点E , DE=8cm,CE=2cm. 求弦AB 的长.例4:如图,某地有一圆弧开拱桥,桥下水面宽为7.2米,拱顶高出水面2.4米。

现有一艘宽3米、船舱顶部为长方形并高出水面2米的货船要经过这里,此货船能顺利通过这座拱桥吗?三、巩固练习B ACD O M _B _A _O _垂径定理的推论中的条件要特别注意。

B A E D O CC BD OA 1.判断对错:( )1、垂直于弦的直径平分这条弦。

( )2、平分弦的直径垂直于这条弦。

( )3、平分弦的直线必垂直弦。

( )4、弦的垂直平分线经过圆心。

( )5、平分弧的直径平分这条弧所对的弦。

( )6、在圆中,如果一条直线经过圆心且平分弦,必平分此弦所对的弧。

()7、分别过弦的三等分点作弦的垂线,将弦所对的两条弧分别三等分。

( )8、垂直于弦的直线必经过圆心。

2、已知如右图:AB 为⊙O 的直径,弦CD ⊥AB ,垂足为E ,则BC =____,AC =____ ;CE=______ 3、 已知:AB 为⊙O 的弦,⊙O 的直径为26cm, 圆心O 到AB 的距离 为5cm, 求弦AB 的长。

垂径定理专项训练题

垂径定理专项训练题

最重要是三个定理:1、垂径定理 2、圆周角定理及其推论 3、切线的性质和判定 其它的性质和定理:同圆或等圆的半径相等; 圆心角、弧、弦、弦心距之间的关系一、垂径定理垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。

推论:经过圆心、垂直于弦、平分弦、平分优弧、平分劣弧这五个条件中任意两个成立,其它三个也成立 垂径定理的作用:证明线段相等、证明角相等、弧相等、垂直。

1、研究有关弦的问题常用辅助线:作弦心距,构建直角三角形。

2、经过圆内一点的最长弦和最短弦;圆外一点到圆上的点的最短距离和最长距离例1如图,一条公路的转弯处是一段圆弦(即图中弧CD ,点O 是弧CD 的圆心,•其中CD=600m ,E 为弧CD 上一点,且OE ⊥CD ,垂足为F ,EF=90m ,求这段弯路的半径.分析:该题是典型的研究圆中有关弦的问题,根据常用辅助线需要作弦心距OF ,连接 OC 、OD 从而构建出两个直角三角形Rt △OCF 和Rt △ODF 说明:此题需要利用方程思想,利用勾股定理做等量关系构建出关于半径的一元方程例2:半径为10cm 的⊙O 中,弦AB=16cm ,弦CD=12cm ,且AB ∥CD ,则AB 与CD 此题有两个答案,是分类思想在圆中的经典体现,出题率很高。

也是利用勾股定理。

练习:1、已知:AB 是⊙O 的直径,弦CD ⊥AB 于点P ,CD =10cm ,AP:PB =1:5,则⊙O 的半径为_______。

2、在⊙O 中,P 为其内一点,过点P 的最长的弦为8cm ,最短的弦长为4cm ,则OP =____ _。

3、已知圆的半径为5cm ,一弦长为8cm ,则该弦的中点到弦所对的弧的中点的距离为__ _____。

4、已知圆心到圆的两条平行弦的距离分别是2和3,则两条平行弦之间的距离为_ ____。

5、在半径为5cm 的圆内有两条互相平行的弦,一条弦长为8cm ,另一条弦长为6cm ,则这两条弦之间的距离为_____ _。

专题24.3 垂径定理【十大题型】(人教版)(原卷版)

专题24.3 垂径定理【十大题型】(人教版)(原卷版)

专题24.3 垂径定理【十大题型】【人教版】【题型1 利用垂径定理求线段长度】 (1)【题型2 利用垂径定理求角度】 (2)【题型3 利用垂径定理求最值】 (3)【题型4 利用垂径定理求取值范围】 (4)【题型5 利用垂径定理求整点】 (6)【题型6 利用垂径定理求面积】 (7)【题型7 垂径定理在格点中的运用】 (8)【题型9 垂径定理与分类讨论中的综合运用】 (10)【题型10 垂径定理的应用】 (11)【题型1 利用垂径定理求线段长度】【例1】(2022•雨花区校级开学)如图,⊙O的半径OD⊥弦AB交AB于点C,连接AO并延长交⊙O于点E,连接EC.若AB=8,EC=2√13,则CD的长为()A.1B.3C.2D.4【变式1-1】(2022•宁津县二模)如图,已知圆O的半径为10,AB⊥CD,垂足为P,且AB=CD=16,则OP的长为()A.6B.6√2C.8D.8√2【变式1-2】(2022•建华区二模)如图,⊙O的直径AB与弦CD相交于点E,若AE=5,EB=1,∠AEC =30°,则CD的长为()A.5B.2√3C.4√2D.2√2+√3+1【变式1-3】(2022春•徐汇区校级期中)如图,AB是⊙O的弦,D为半径OA的中点,过D作CD⊥OA交弦AB于点E,且CE=CB,若BE=2AE,CD=5,那么⊙O的半径为.【题型2 利用垂径定理求角度】【例2】(2022•泰安模拟)如图,⊙O的半径OA,OB,且OA⊥OB,连接AB.现在⊙O上找一点C,使OA2+AB2=BC2,则∠OAC的度数为()A.15°或75°B.20°或70°C.20°D.30°̂上的【变式2-1】(2022秋•天心区期中)如图,已知⊙O半径OA=4,点B为圆上的一点,点C为劣弧AB一动点,CD⊥OA,CE⊥OB,连接DE,要使DE取得最大值,则∠AOB等于()A.60°B.90°C.120°D.135°【变式2-2】(2022秋•青田县期末)如图,在⊙O中,半径OC过弦AB的中点E,OC=2,OE=√2.(1)求弦AB的长;(2)求∠CAB的度数.【变式2-3】(2022秋•开州区期末)如图,在⊙O中,弦BC与半径OA垂直于点D,连接AB、AC.点E 为AC的中点,连接DE.(1)若AB=6,求DE的长;(2)若∠BAC=100°,求∠CDE的度数.【题型3 利用垂径定理求最值】【例3】(2022•威海模拟)⊙O中,点C为弦AB上一点,AB=1,CD⊥OC交⊙O于点D,则线段CD的最大值是()A.12B.1C.32D.2【变式3-1】(2022•河北模拟)如图所示,在⊙O中,AB为弦,OC⊥AB交AB于点D.且OD=DC.P为⊙O上任意一点,连接P A,PB,若⊙O的半径为1,则S△P AB的最大值为()A.1B.2√33C.3√34D.3√32【变式3-2】(2022秋•龙凤区校级期末)如图,矩形ABCD中,AB=20,AD=15,P,Q分别是AB,AD 边上的动点,PQ=16,以PQ为直径的⊙O与BD交于点M,N,则MN的最大值为.【变式3-3】(2022秋•延平区校级期末)在Rt△ABC中,∠C=90°,BC=3,AC=4,D、E分别是AC、BC上的一点,且DE=3,若以DE为直径的圆与斜边AB相交于M、N,则MN的最大值为()A.910B.65C.85D.125【题型4 利用垂径定理求取值范围】【例4】(2022•包河区校级二模)如图,在⊙O中,直径AB=10,CD⊥AB于点E,CD=8.点F是弧BC 上动点,且与点B、C不重合,P是直径AB上的动点,设m=PC+PF,则m的取值范围是()A.8<m≤4√5B.4√5<m≤10C.8<m≤10D.6<m<10【变式4-1】(2022•佛山)如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.【变式4-2】(2022秋•盐都区校级月考)如图,点P是⊙O内一定点.(1)过点P作弦AB,使点P是AB的中点(不写作法,保留作图痕迹);(2)若⊙O的半径为13,OP=5,①求过点P的弦的长度m范围;②过点P的弦中,长度为整数的弦有条.【变式4-3】(2022秋•天河区校级期中)已知⊙O的半径为5,点O到弦AB的距离OH=3,点P是圆上一动点,设过点P且与AB平行的直线为l,记直线AB到直线l的距离为d.(1)求AB的长;(2)如果点P只有两个时,求d的取值范围;(3)如果点P有且只有三个时,求连接这三个点所得到的三角形的面积.【题型5 利用垂径定理求整点】【例5】(2022•山海关区一模)已知⊙O的直径CD=10,CD与⊙O的弦AB垂直,垂足为M,且AM=4.8,则直径CD上的点(包含端点)与A点的距离为整数的点有()A.1个B.3个C.6个D.7个【变式5-1】(2022秋•新昌县期末)如图,AB是⊙O的弦,OC⊥AB于点C,连接OB,点P是半径OB上任意一点,连接AP,若OB=5,OC=3,则AP的长不可能是()A.6B.7C.8D.9【变式5-2】(2022•桥西区校级模拟)如图,AB是⊙C的弦,直径MN⊥AB于点O,MN=10,AB=8,如图以O为原点建立坐标系.我们把横纵坐标都是整数的点叫做整数点,则线段OC长是3,⊙C上的整数点有个.【变式5-3】(2022秋•肇东市期末)已知⊙O的半径为5,点O到弦AB的距离为3,则⊙O上到弦AB所在直线的距离为2的点有()A.4个B.3个C.2个D.1个【题型6 利用垂径定理求面积】【例6】(2022•武汉模拟)如图,在半径为1的⊙O中有三条弦,它们所对的圆心角分别为60°,90°,120°,那么以这三条弦长为边长的三角形的面积是()A.√2B.1C.√32D.√22【变式6-1】(2022秋•黄州区校级月考)如图,矩形MNGH的四个顶点都在⊙O上,顺次连接矩形各边的中点,得到菱形ABCD,若BD=12,DF=4,则菱形ABCD的面积为.【变式6-2】(2022秋•西城区校级期中)如图,AB为⊙O直径,过点O作OD⊥BC于点E,交⊙O于点D,CD∥AB.(1)求证:E为OD的中点;(2)若CB=6,求四边形CAOD的面积.【变式6-3】(2022•新洲区模拟)如图,点A,C,D均在⊙O上,点B在⊙O内,且AB⊥BC于点B,BC ⊥CD于点C,若AB=4,BC=8,CD=2,则⊙O的面积为()A.125π4B.275π4C.125π9D.275π9【题型7 垂径定理在格点中的运用】【例7】(2022秋•襄都区校级期末)如图所示,一圆弧过方格的格点AB,试在方格中建立平面直角坐标系,使点A的坐标为(0,4),则该圆弧所在圆的圆心坐标是()A.(﹣1,2)B.(1,﹣1)C.(﹣1,1)D.(2,1)【变式7-1】(2022春•海门市期中)如图所示,⊙P过B、C两点,写出⊙P上的格点坐标.【变式7-2】(2022•商城县三模)如图所示的网格中,每个小正方形的边长均为1,点A、B、C均在小正方形的顶点上,点C同时也在AB̂上,若点P是BĈ的一个动点,则△ABP面积的最大值是.【变式7-3】(2017秋•靖江市校级月考)如图,在单位长度为1的正方形网格中建立一直角坐标系,一条圆弧经过网格点A、B、C,请在网格图中进行下列操作(以下结果保留根号):(1)利用网格作出该圆弧所在圆的圆心D点的位置,并写出D点的坐标为;(2)连接AD、CD,则⊙D的半径为,∠ADC的度数.【题型8 垂径定理在坐标系中的运用】【例8】(2022•博山区一模)如图,在平面直角坐标系中,半径为5的⊙E与y轴交于点A(0,﹣2),B (0,4),与x轴交于C,D,则点D的坐标为()A.(4−2√6,0)B.(−4+2√6,0)C.(−4+√26,0)D.(4−√26,0)【变式8-1】(2022秋•西林县期末)如图,⊙P与y轴交于点M(0,﹣4),N(0,﹣10),圆心P的横坐标为﹣4.则⊙P的半径为()A.3B.4C.5D.6【变式8-2】(2022•印江县三模)如图,直线l为y=x,过点A1(1,0)作A1B1⊥x轴,与直线l交于点B1,以原点O为圆心,OB1长为半径画圆弧交x轴于点A2;再作A2B2⊥x轴,交直线l于点B2,以原点O为圆心,OB2长为半径画圆弧交x轴于点A3;…,按此作法进行下去,则点A2022的坐标为.【变式8-3】(2015•宜春模拟)如图,半径为5的⊙P与y轴交于点M(0,﹣4),N(0,﹣10),函数y =﹣2x+m图象过点P,则m=.【题型9 垂径定理与分类讨论中的综合运用】【例9】(2022秋•化德县校级期末)⊙O的半径为10cm,弦AB∥CD,且AB=12cm,CD=16cm,则AB 和CD的距离为()A.2cm B.14cm C.2cm或14cm D.10cm或20cm【变式9-1】(2022•包河区二模)已知圆O的半径为5,弦AB=8,D为弦AB上一点,且AD=1,过点D 作CD⊥AB,交圆O于C,则CD长为()A.1B.7C.8或1D.7或1【变式9-2】(2022秋•方正县期末)如图,⊙O的弦AB与半径OC垂直,点D为垂足,OD=DC,AB=2√3,点E在⊙O上,∠EOA=30°,则△EOC的面积为.【变式9-3】(2022秋•淮南月考)如图,已知⊙O的半径为2.弦AB的长度为2,点C是⊙O上一动点,若△ABC为等腰三角形,则BC2的长为.【题型10 垂径定理的应用】【例10】(2022秋•武昌区校级期末)某地有一座圆弧形拱桥,它的跨度(弧所对的弦的长)24m,拱高(弧的中点到弦的距离)4米,则求拱桥的半径为()A.16m B.20m C.24m D.28m【变式10-1】(2022•望城区模拟)《九章算术》是我国古代著名数学经典,其中对勾股定理的论述比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深1寸,锯道长1尺.如图,已知弦AB=1尺,弓形高CD=1寸,(注:1尺=10寸)问这块圆柱形木材的直径是()A.13寸B.6.5寸C.26寸D.20寸【变式10-2】(2022秋•西城区校级期中)京西某游乐园的摩天轮采用了国内首创的横梁结构,风格更加简约.如图,摩天轮直径88米,最高点A距离地面100米,匀速运行一圈的时间是18分钟.由于受到周边建筑物的影响,乘客与地面的距离超过34米时,可视为最佳观赏位置,在运行的一圈里最佳观赏时长为分钟.【变式10-3】(2022•浙江)如图,公园内有一个半径为20米的圆形草坪,A,B是圆上的点,O为圆心,̂,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB.通∠AOB=120°,从A到B只有路AB过计算可知,这些市民其实仅仅少走了步(假设1步为0.5米,结果保留整数).(参考数据:√3≈1.732,π取3.142)。

垂径定理复习

垂径定理复习

圆的有关概念及性质考点一:垂径定理及推论:1、垂径定理及其推论实质是指一条直线满足:⑴过圆心⑵垂直于弦⑶平分弦⑷平分弦所对的优弧⑸平分弦所对的劣弧五个条件中的两个,那么可推出其中三个,(平分弦时,直径除外)注意解题过程中的灵活运用2、圆中常作的辅助线是过圆心作弦的线A.B.C.8 D.12对应训练一、选择题。

1、下列命题中正确的是()A、平分弦的直径必垂直于弦,并且平分弦所对的两条弧;B、弦所对的两条弧的中点连线垂直平分弦;C、若两段弧的度数相等,则它们是等弧;D、弦的垂线平分弦所对的弧。

2、如图,⊙O的直径AB=12,CD是⊙O的弦,CD⊥AB,垂足为P,且BP:AP=1:5,则CD的长为().A. 2B. 4 C . 45 D. 25第2题第3题第4题3、如图,已知半径OD与弦AB互相垂直,垂足为点C,若AB=8cm,CD=3cm,则圆O的半径为().cm cm225、已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为().cm cm cm或cm D cm或cm6、如图,DC 是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是().第6题第7题7、如图,AB是⊙O的直径,弦CD交AB于点E,且AE=CD=8,∠BAC=∠BOD,则⊙O的半径为()8、已知⊙O的半径为10cm,弦AB∥CD,AB=12 cm,CD=16 cm,则AB和CD的距离是()A、2cmB、14cmC、2cm或14cmD、2cm或12cm二、填空题。

1、如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为cm.第1题第2题第3题2、如图,点A、B、C、D在⊙O上,OB⊥AC,若∠BOC=56°,则∠ADB=度.3、如图AB是⊙O的直径,∠BAC=42°,点D是弦AC的中点,则∠DOC的度数是度.4、如图,M是CD的中点,EM⊥CD,若CD=4,EM=8,则所在圆的半径为.第4题第5题第6题5、如图,⊙O的直径AB与弦CD垂直,且∠BAC=40°,则∠BOD=.Θ与x轴交于O,A两点,点A的6、如图7,在平面直角坐标系中,点O为坐标原点,点P在第一象限,PΘ的半径为13,则点P的坐标为____________.坐标为(6,0),P考点二:圆周角定理及其推论:圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角都等于这推论1、在同圆或等圆中,如果两个圆周角那么它们所对的弧推论2、半圆(或直弦)所对的圆周角是900的圆周角所对的弦是例:如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°,给出以下五个结论:①∠EBC=22.5°;②BD=DC;③AE=2EC;④劣弧AE的长是劣弧DE的2倍;⑤AE=BC.•其中正确结论的序号是_______.对应训练1、如图,点A、B、C在⊙O上,∠AOC=60°,则∠ABC的度数是.第1题第2题第3题第4题2、已知:如图,OA,OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上,则∠ACB的度数为()A.45°B.35°C.25°D.20°3、如图,在△ABC中,AB为⊙O的直径,∠B=60°,∠BOD=100°,则∠C的度数为()A.50°B.60°C.70°D.80°4、如图,CD是⊙O的直径,AB是弦(不是直径),AB⊥CD于点E,则下列结论正确的是()A.AE>BE B.AD=BC C.∠D=12∠AEC D.△ADE∽△CBE5、△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80°B.160°C.100°D.80°或100°6、如图,在半径为5的⊙O中,弦AB=6,点C是优弧AB上一点(不与A,B重合),则cosC的值为.三,解答题。

部编数学九年级上册专题24.2垂径定理的应用(重点题专项讲练)(人教版)(解析版)含答案

部编数学九年级上册专题24.2垂径定理的应用(重点题专项讲练)(人教版)(解析版)含答案

专题24.2 垂径定理的应用【典例1】如图,有一座圆弧形拱桥,桥下水面宽度AB为12m,拱高CD为4m.(1)求拱桥的半径;(2)有一艘宽为5m的货船,船舱顶部为长方形,并高出水面3.4m,则此货船是否能顺利通过此圆弧形拱桥,并说明理由.(1)根据垂径定理和勾股定理求解;(2)连接ON,OB,根据勾股定理即可得到结论.解:(1)如图,连接ON,OB.∵OC⊥AB,∴D为AB中点,∵AB=12m,∴BD=12AB=6m.又∵CD=4m,设OB=OC=ON=r,则OD=(r﹣4)m.在Rt△BOD中,根据勾股定理得:r2=(r﹣4)2+62,解得r=6.5.∴拱桥的半径为6.5m.(2)∵CD=4m,船舱顶部为长方形并高出水面3.4m,∴CE=4﹣3.4=0.6(m),∴OE=r﹣CE=6.5﹣0.6=5.9(m),在Rt△OEN中,EN2=ON2﹣OE2=6.52﹣5.92=7.44,∴EN m).∴MN=2EN=2×≈5.4m>5m.∴此货船能顺利通过这座拱桥.1.(2022•南海区校级一模)如图,武汉晴川桥可以近似地看作半径为250m的圆弧,桥拱和路面之间用数根钢索垂直相连,其正下方的路面AB长度为300m,那么这些钢索中最长的一根为( )A.50m B.45m C.40m D.60m【思路点拨】设圆弧的圆心为O,过O作OC⊥AB于C,交AB于D,连接OA,先由垂径定理得AC=BC=12AB=150,再由勾股定理求出OC=200,然后求出CD的长即可.【解题过程】解:设圆弧的圆心为O,过O作OC⊥AB于C,交AB于D,连接OA,如图所示:则OA=OD=250,AC=BC=12AB=150,∴OC=200,∴CD=OD﹣OC=250﹣200=50(m),即这些钢索中最长的一根为50m ,故选:A .2.(2022•旌阳区二模)筒车是我国古代发明的一种水利灌溉工具,如图1,筒车盛水桶的运行轨道是以轴心O 为圆心的圆,如图2,已知圆心O 在水面上方,且⊙O 被水面截得弦AB 长为4米,⊙O 半径长为3米.若点C 为运行轨道的最低点,则点C 到弦AB 所在直线的距离是( )A .1米B .2米C .米D .(3+米【思路点拨】连接OC ,OC 交AB 于D ,由垂径定理得AD =BD =12AB =2(米),再由勾股定理得OD 后求出CD 的长即可.【解题过程】解:连接OC ,OC 交AB 于D ,由题意得:OA =OC =3米,OC ⊥AB ,∴AD =BD =12AB =2(米),∠ADO =90°,∴OD ==∴CD=OC﹣OD=(3即点C到弦AB所在直线的距离是(3故选:C.3.(2022•宣州区二模)如图所示的是一圆弧形拱门,其中路面AB=2m,拱高CD=3m,则该拱门的半径为( )A.53m B.2m C.83m D.3m【思路点拨】取圆心为O,连接OA,由垂径定理设⊙O的半径为rm,则OC=OA=rm,由拱高CD=3m,OD=(3﹣r)m,OD⊥AB,由垂径定理得出AD=1m,由勾股定理得出方程r2=12+(3﹣r)2,解得:r=53,得出该拱门的半径为53m,即可得出答案.【解题过程】解:如图,取圆心为O,连接OA,设⊙O的半径为rm,则OC=OA=rm,∵拱高CD=3m,∴OD=(3﹣r)m,OD⊥AB,∵AB=2m,∴AD=BD=12AB=1m,∵OA2=AD2+OD2,∴r2=12+(3﹣r)2,解得:r=5 3,∴该拱门的半径为53 m,故选:A.4.(2021秋•海淀区校级期中)数学活动课上,同学们想测出一个残损轮子的半径,小的解决方案如下:如图,在轮子圆弧上任取两点A,B,连接AB,再作出AB的垂直平分线,交AB于点C,交AB于点D,测出AB,CD的长度,即可计算得出轮子的半径.现测出AB=40cm,CD=10cm,则轮子的半径为( )A.50cm B.35cm C.25cm D.20cm【思路点拨】由垂径定理,可得出BC的长;连接OB,在Rt△OBC中,可用半径OB表示出OC的长,进而可根据勾股定理求出得出轮子的半径,即可得出轮子的直径长.【解题过程】解:设圆心为O,连接OB.Rt△OBC中,BC=12AB=20cm,根据勾股定理得:OC2+BC2=OB2,即:(OB﹣10)2+202=OB2,解得:OB=25;故轮子的半径为25cm.故选:C.5.(2021秋•曾都区期中)在圆柱形油槽内装有一些油,油槽直径MN为10分米.截面如图,油面宽AB 为6分米,如果再注入一些油后,当油面宽变为8分米,油面AB上升( )A.1分米B.4分米C.3分米D.1分米或7分米【思路点拨】实质是求两条平行弦之间的距离.根据勾股定理求弦心距,作和或差分别求解.【解题过程】解:连接OA.作OG⊥AB于G,则在直角△OAG中,AG=3分米,因为OA=5cm,根据勾股定理得到:OG=4分米,即弦AB的弦心距是4分米,同理当油面宽AB为8分米时,弦心距是3分米,当油面没超过圆心O时,油上升了1分米;当油面超过圆心O时,油上升了7分米.因而油上升了1分米或7分米.故选:D.6.(2021秋•宁波期末)把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=6cm,则球的半径为( )A.3cm B.134cm C.154cm D.174cm【思路点拨】设球的平面投影圆心为O,过点O作ON⊥AD于点N,延长NO交BC于点M,连接OF,由垂径定理得:NF=EN=12EF=3(cm),设OF=xcm,则OM=(4﹣x)cm,再在Rt△MOF中由勾股定理求得OF的长即可.【解题过程】解:设球的平面投影圆心为O,过点O作ON⊥AD于点N,延长NO交BC于点M,连接OF,如图所示:则NF=EN=12EF=3(cm),∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDNM是矩形,∴MN=CD=6cm,设OF=xcm,则OM=OF,∴ON=MN﹣OM=(6﹣x)cm,在Rt△ONF中,由勾股定理得:ON2+NF2=OF2,即:(6﹣x)2+32=x2,解得:x=15 4,即球的半径长是154cm,故选:C.7.(2022•鄂州)工人师傅为检测该厂生产的一种铁球的大小是否符合要求,设计了一个如图(1)所示的工件槽,其两个底角均为90°,将形状规则的铁球放入槽内时,若同时具有图(1)所示的A、B、E三个接触点,该球的大小就符合要求.图(2)是过球心及A、B、E三点的截面示意图,已知⊙O的直径就是铁球的直径,AB是⊙O的弦,CD切⊙O于点E,AC⊥CD、BD⊥CD,若CD=16cm,AC=BD=4cm,则这种铁球的直径为( )A .10cmB .15cmC .20cmD .24cm【思路点拨】连接OE ,交AB 于点F ,连接OA ,∵AC ⊥CD 、BD ⊥CD ,由矩形的判断方法得出四边形ACDB 是矩形,得出AB ∥CD ,AB =CD =16cm ,由切线的性质得出OE ⊥CD ,得出OE ⊥AB ,得出四边形EFBD 是矩形,AF =12AB =12×16=8(cm ),进而得出EF =BD =4cm ,设⊙O 的半径为rcm ,则OA =rcm ,OF =OE ﹣EF =(r ﹣4)cm ,由勾股定理得出方程r 2=82+(r ﹣4)2,解方程即可求出半径,继而求出这种铁球的直径.【解题过程】解:如图,连接OE ,交AB 于点F ,连接OA ,∵AC ⊥CD 、BD ⊥CD ,∴AC ∥BD ,∵AC =BD =4cm ,∴四边形ACDB 是平行四边形,∴四边形ACDB 是矩形,∴AB ∥CD ,AB =CD =16cm ,∵CD 切⊙O 于点E ,∴OE ⊥CD ,∴OE ⊥AB ,∴四边形EFBD 是矩形,AF =12AB =12×16=8(cm ),∴EF =BD =4cm ,设⊙O 的半径为rcm ,则OA =rcm ,OF =OE ﹣EF =(r ﹣4)cm ,在Rt△AOF中,OA2=AF2+OF2,∴r2=82+(r﹣4)2,解得:r=10,∴这种铁球的直径为20cm,故选:C.8.(2022•上海)如图所示,小区内有个圆形花坛O,点C在弦AB上,AC=11,BC=21,OC=13,则这个花坛的面积为 400π .(结果保留π)【思路点拨】根据垂径定理,勾股定理求出OB2,再根据圆面积的计算方法进行计算即可.【解题过程】解:如图,连接OB,过点O作OD⊥AB于D,∵OD⊥AB,OD过圆心,AB是弦,∴AD=BD=12AB=12(AC+BC)=12×(11+21)=16,∴CD=BC﹣BD=21﹣16=5,在Rt△COD中,OD2=OC2﹣CD2=132﹣52=144,在Rt△BOD中,OB2=OD2+BD2=144+256=400,∴S⊙O=π×OB2=400π,故答案为:400π.9.(2021秋•溧水区期末)在一个残缺的圆形工件上量得弦BC=8cm,BC的中点D到弦BC的距离DE=2cm,则这个圆形工件的半径是 5 cm.【思路点拨】由垂径定理的推论得圆心在直线DE上,设圆心为0,连接OB,半径为R,再由垂径定理得BE=CE=12 BC=4(cm),然后由勾股定理得出方程,解方程即可.【解题过程】解:∵DE⊥BC,DE平分弧BC,∴圆心在直线DE上,设圆心为O,半径为Rcm,如图,连接OB,则OD⊥BC,OE=R﹣DE=(R﹣2)cm,∴BE=CE=12BC=4(cm),在Rt△OEB中,OB2=BE2+OE2,即R2=42+(R﹣2)2,解得:R=5,即这个圆形工件的半径是5cm,故答案为:5.10.(2022•柯桥区一模)《九章算术》是中国传统数学重要的著作之一,奠定了中国传统数学的基本框架.其中卷九中记载了一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”其意思是:如图,AB为⊙O的直径,弦CD⊥AB于点E,BE=1寸,CD=1尺,那么直径AB的长为多少寸?(注:1尺=10寸)根据题意,该圆的直径为 26 寸.【思路点拨】连接OC,由直径AB与弦CD垂直,根据垂径定理得到E为CD的中点,由CD的长求出DE的长,设OC =OA=x寸,则AB=2x寸,OE=(x﹣1)寸,由勾股定理得出方程,解方程求出半径,即可得出直径AB 的长.【解题过程】解:连接OC,∵弦CD⊥AB,AB为圆O的直径,∴E为CD的中点,又∵CD=10寸,∴CE=DE=12CD=5寸,设OC=OA=x寸,则AB=2x寸,OE=(x﹣1)寸,由勾股定理得:OE2+CE2=OC2,即(x﹣1)2+52=x2,解得x=13,∴AB=26寸,即直径AB的长为26寸,故答案为:26.11.(2021秋•瑞安市期末)某公路上有一隧道,顶部是圆弧形拱顶,圆心为O,隧道的水平宽AB为24m,AB离地面的高度AE=10 m,拱顶最高处C离地面的高度CD为18m,在拱顶的M,N处安装照明灯,且M,N离地面的高度相等都等于17m,则MN= 10 m.【思路点拨】根据题意和垂径定理得到CG=8m,AG=12m,CH=1m,根据勾股定理求得半径,进而利用勾股定理求得MH,即可求得MN.【解题过程】解:设CD于AB交于G,与MN交于H,∵CD=18m,AE=10m,AB=24m,HD=17m,∴CG=8m,AG=12m,CH=1m,设圆拱的半径为r,在Rt△AOG中,OA2=OG2+AG2,∴r2=(r﹣8)2+122,解得r=13,∴OC=13m,∴OH=13﹣1=12m,在Rt△MOH中,OM2=OH2+MH2,∴132=122+MH2,解得MH2=25,∴MH=5m,∴MN=10m,故答案为10.12.(2022•荆州)如图,将一个球放置在圆柱形玻璃瓶上,测得瓶高AB=20cm,底面直径BC=12cm,球的最高点到瓶底面的距离为32cm,则球的半径为 7.5 cm(玻璃瓶厚度忽略不计).【思路点拨】设球心为O,过O作OM⊥AD于M,连接OA,设球的半径为rcm,由垂径定理得AM=DM=12AD=6(cm)然后在Rt△OAM中,由勾股定理得出方程,解方程即可.【解题过程】解:如图,设球心为O,过O作OM⊥AD于M,连接OA,设球的半径为rcm,由题意得:AD=12cm,OM=32﹣20﹣r=(12﹣r)(cm),由垂径定理得:AM=DM=12AD=6(cm),在Rt△OAM中,由勾股定理得:AM2+OM2=OA2,即62+(12﹣r)2=r2,解得:r=7.5,即球的半径为7.5cm,故答案为:7.5.13.(2021秋•温州校级月考)如图是郑州圆形“戒指桥”,其数学模型为如图所示.已知桥面跨径AB=20米,D为圆上一点,DC⊥AB于点C,且CD=BC=14米,则该圆的半径长为 26 米.【思路点拨】过O作ON⊥AB于N,过D作DM⊥ON于M,由垂径定理得AN=BN=12AB=10(米),再证四边形DCNM是矩形,则MN=CD=14米,DM=CN=BC+BN=24(米),设该圆的半径长为r米,然后由题意列出方程组,解方程组即可.【解题过程】解:过O作ON⊥AB于N,过D作DM⊥ON于M,如图所示:则AN=BN=12AB=10(米),∠ONC=∠DMN=90°,∵DC⊥AB,∴∠DCN=90°,∴四边形DCNM是矩形,∴MN=CD=14米,DM=CN=BC+BN=24(米),设该圆的半径长为r米,由题意得:ON2=r2−102 OM2=r2−242 OM=ON−14,解得:r=26ON=24 OM=10,即该圆的半径长为26米,故答案为:26.14.(2021秋•金安区校级期末)往直径为680mm的圆柱形油槽内装入一些油以后,截面如图所示,若油面宽AB=600mm,求油的最大深度.【思路点拨】连接OB,过点O作OC⊥AB于点D,交⊙O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD 的长,进而可得出CD的长.【解题过程】解:过点O作OC⊥AB于点D,交弧AB于点C.∵OC⊥AB于点D∴BD=12AB=12×600=300mm,∵⊙O的直径为680mm∴OB=340mm…(5分)∵在Rt△ODB中,OD=160(mm),∴DC=OC﹣OD=340﹣160=180(mm);答:油的最大深度为180mm.15.(2021秋•惠城区校级期中)如图,⊙O为水管横截面,水面宽AB=24cm,水的最大深度为18cm,求⊙O的半径.【思路点拨】由垂径定理可知AD=12cm,设⊙O的半径为rcm,则OD=(18﹣r)cm,在Rt△AOd中,再利用勾股定理即可求出r的值.【解题过程】解:作OD⊥AB于D,交⊙O于E,连接OA,∴AD=12AB=12×24=12cm,设⊙O的半径为rcm,则OD=ED﹣OE=(18﹣r)cm,在Rt△AOD中,由勾股定理得:OA2=OD2+AD2,即r2=(18﹣r)2+122,解得:r=13,即⊙O的半径为13cm.16.(2021秋•奈曼旗期中)如图所示,测得AB是8mm,测得钢珠顶端离零件表面的距离为8mm,求这个圆的直径.【思路点拨】过O作OC⊥AB于C,交优弧AB于D,连接AO,由垂径定理得AC=BC=12AB=4(mm),设⊙O的半径为rmm,则OC=CD﹣OD=(8﹣r)mm,然后在Rt△AOC中,由勾股定理得出方程,解方程即可.【解题过程】解:如图,过O作OC⊥AB于C,交优弧AB于D,连接AO,则AC=BC=12AB=4(mm),CD=8mm,设⊙O的半径为rmm,则OC=CD﹣OD=(8﹣r)mm,在Rt△AOC中,由勾股定理得:42+(8﹣r)2=r2,解得:r=5,即⊙O的半径为5mm,∴⊙O的直径为10mm.17.(2021秋•阜阳月考)《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就,它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸).问这块圆形木材的直径(AC)是多少?”如图所示,请根据所学的知识解答上述问题.【思路点拨】设⊙O的半径为x寸.在Rt△ADO中,AD=5寸,OD=(x﹣1)寸,OA=x寸,则有x2=(x﹣1)2+52,解方程即可.【解题过程】解:设⊙O的半径为x寸,∵OE⊥AB,AB=10寸,∴AD=BD=12AB=5寸,在Rt△AOD中,OA=x,OD=x﹣1,由勾股定理得x2=(x﹣1)2+52,解得x=13,∴⊙O的直径AC=2x=26(寸),答:这块圆形木材的直径(AC)是26寸.18.(2021秋•高新区期中)某居民小区的一处圆柱形的输水管道破裂,维修人员为更换管道,需要确定管道圆形截面的半径,如图是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面图;(要求尺规作图,保留作图痕迹,不写作法)(2)若这个输水管道有水部分的水面宽AB=32cm,水最深处的地方高度为8cm,求这个圆形截面的半径.【思路点拨】(1)根据尺规作图的步骤和方法做出图即可;(2)先过圆心O作半径OD⊥AB,交AB于点D,设半径为r,得出AD、OD的长,在Rt△AOD中,根据勾股定理求出这个圆形截面的半径.【解题过程】解:(1)如图所示;(2)作OD⊥AB于D,并延长交⊙O于C,则D为AB的中点,∵AB=32cm,∴AD=12AB=16.设这个圆形截面的半径为xcm,又∵CD=8cm,∴OC=x﹣8,在Rt△OAD中,∵OD2+AD2=OA2,即(x﹣8)2+162=x2,解得,x=20.∴圆形截面的半径为20cm.19.(2021秋•黔西南州期末)如图,在一座圆弧形拱桥,它的跨度AB为60m,拱高PM为18m,当洪水泛滥到跨度只有30m时,就要采取紧急措施,若某次洪水中,拱顶离水面只有4m,即PN=4m时,试通过计算说明是否需要采取紧急措施.【思路点拨】由垂径定理可知AM=BM、A′N=B′N,利用AB=60,PM=18,可先求得圆弧所在圆的半径,再计算当PN =4时A′B′的长度,与30米进行比较大小即可.【解题过程】解:设圆弧所在圆的圆心为O,连接OA、OA′,设半径为x米,则OA=OA′=OP,由垂径定理可知AM=BM,A′N=B′N,∵AB=60米,∴AM=30米,且OM=OP﹣PM=(x﹣18)米,在Rt△AOM中,由勾股定理可得AO2=OM2+AM2,即x2=(x﹣18)2+302,解得x=34,∴ON=OP﹣PN=34﹣4=30(米),在Rt△A′ON中,由勾股定理可得A′N=16(米),∴A′B′=32米>30米,∴不需要采取紧急措施.20.(2021秋•余干县期中)如图是某蔬菜基地搭建一座圆弧型蔬菜棚,跨度AB=3.2米,拱高CD=0.8米(C为AB的中点,D为弧AB的中点).(1)求该圆弧所在圆的半径;(2)在距蔬菜棚的一端0.4米处竖立支撑杆EF,求支撑杆EF的高度.【思路点拨】(1)设弧AB所在的圆心为O,D为弧AB的中点,CD⊥AB于C,延长DC至O点,设⊙O的半径为R,利用勾股定理求出即可;(2)利用垂径定理以及勾股定理得出HF的长,再求出EF的长即可.【解题过程】解:(1)设弧AB所在的圆心为O,D为弧AB的中点,CD⊥AB于C,延长DC经过O点,则BC=12AB=1.6(米),设⊙O的半径为R,在Rt△OBC中,OB2=OC2+CB2,∴R2=(R﹣0.8)2+1.62,解得R=2,即该圆弧所在圆的半径为2米;(2)过O作OH⊥FE于H,则OH=CE=1.6﹣0.4=1.2=65(米),OF=2米,在Rt△OHF中,HF== 1.6(米),∵HE=OC=OD﹣CD=2﹣0.8=1.2(米),∴EF=HF﹣HE=1.6﹣1.2=0.4(米),即支撑杆EF的高度为0.4米.21.如图①,圆形拱门屏风是中国古代家庭中常见的装饰隔断,既美观又实用,彰显出中国元素的韵味.图②是一款拱门的示意图,其中C为AB中点,D为拱门最高点,线段CD经过圆心,已知拱门的半径为1.5m,拱门最下端AB=1.8m.(1)求拱门最高点D到地面的距离;(2)现需要给房间内搬进一个长和宽为2m,高为1.2m的桌子,已知搬桌子的两名工人在搬运时所抬高度相同,且高度为0.5m 2.236)【思路点拨】(1)如图②中,连接AO.利用勾股定理求出OC即可;(2)如图②﹣1,弦EF=2m,且EF⊥CD,连接OE.求出CJ即可.【解题过程】解:(1)如图②中,连接AO.∵CD⊥AB,CD经过圆心O,∴AC=CB=0.9m,∴OC= 1.2(m),∴CD=OD+PC=1.5+1.2=2.7(m),∴拱门最高点D到地面的距离为2.7m;(2)如图②﹣1,弦EF=2m,且EF⊥CD,连接OE.∵CD⊥EF,CD经过圆心,∴EJ=JF=1m,≈1.118,∴OJ=2∴CJ=1.2﹣1.118=0.082(m),∵0.5>0.082,∴搬运该桌子时能够通过拱门.22.(2021秋•姑苏区校级月考)诗句“君到姑苏见,人家尽枕河”所描绘的就是有东方威尼斯之称的水城苏州.小勇要帮忙船夫计算一艘货船是否能够安全通过一座圆弧形的拱桥,现测得桥下水面AB宽度16m时,拱顶高出水平面4m,货船宽12m,船舱顶部为矩形并高出水面3m.(1)请你帮助小勇求此圆弧形拱桥的半径;(2)小勇在解决这个问题时遇到困难,请你判断一下,此货船能顺利通过这座拱桥吗?说说你的理由.【思路点拨】(1)根据垂径定理和勾股定理求解;(2)连接ON,利用勾股定理求出EN,得出MN的长,即可得到结论.【解题过程】解:(1)如图,连接OB.∵OC⊥AB,∴D为AB中点,∵AB=16m,∴BD=12AB=8(m),又∵CD=4m,设OB=OC=r,则OD=(r﹣4)m.在Rt△BOD中,根据勾股定理得:r2=(r﹣4)2+82,解得r=10.答:此圆弧形拱桥的半径为10m.(2)此货船不能顺利通过这座拱桥,理由如下:连接ON,∵CD=4m,船舱顶部为长方形并高出水面3m,∴CE=4﹣3=1(m),∴OE=r﹣CE=10﹣1=9(m),在Rt△OEN中,由勾股定理得:EN∴MN=2EN=<12m.∴此货船B不能顺利通过这座拱桥.。

【人教版】数学九年级全一册24.垂直于弦的直径——垂径定理的推论及应用随堂练习(课件版)

【人教版】数学九年级全一册24.垂直于弦的直径——垂径定理的推论及应用随堂练习(课件版)

用垂径定理及其推论解决实际问题
【例 3】如图,实线为一条公路,公路有一段是圆弧 (弧 AB),已知 AB=12 米,CD=2 米,半径 OC⊥AB, 求 OA 的长.
解:∵半径 OC⊥AB,∴AD=A2B =6. 在 Rt△AOD 中, OA2=OD2+AD2=(OC-DC)2+AD2=(OA-2)2+62. ∴OA2-(OA-2)2=62. 解得 OA=10. 答:OA 的长为 10 米.
AD=12 AB=5.
∴OA2=(OA-1)2+52. 解得 OA=13. ∴⊙O 的半径为 13.
3.如图,M 是⊙O 中弦 CD 的中点,EM 经过圆心 O 交⊙O 于点 E,并且 CD=6,EM=9,求⊙O 的半径.
解:如图,连接 OC. ∵M 是弦 CD 的中点,EM 过圆心 O, ∴CM=MD,EM⊥CD. ∵CD=6,∴CM=3. 设 OC=x,则 OM=9-x. 在 Rt△COM 中,根据勾股定理,得 32+(9-x)2=x2. 解得 x=5. ∴⊙O 的半径为 5.
垂径定理的推论
【例 1】如图,在⊙O 中,点 A 是圆上一点,OA 与 弦 CD 交 于 点 B , 且 BC = BD , 则 ∠OBD =
_______9_0__°_______,A⌒C =____A⌒_D______.
2.如图,CD 是直径,AB 是弦,CD 平分 AB,则下列
结论正确的有_①___②__③__④__.(填序号)
(2)求证,AB∥CD, ∴EF⊥CD. ∵EF 过圆心 O,∴CF=DF. ∴EC=ED.
8.如图是一块残破轮片的示意图,点 O 是这块轮片
的圆心,AB=120 mm,C 是A⌒B 上一点,OC⊥AB,
垂足为 D,CD=20 mm,求原轮片的半径 r.

最新垂径定理及其推论练习题教学讲义ppt课件

最新垂径定理及其推论练习题教学讲义ppt课件
❖ 脊柱推拿多为一短有力的推扳力手法作用在 患椎的横突或棘突上,以松动或扳动脊椎关 节。而一般的按摩等放松手法,不被列入脊 柱推拿的范畴。
脊柱推拿可能的作用机制
❖ 由于研究条件等因素所限,对脊柱推拿治疗 机理研究的相对较少,对其治疗机理大多仅 为推测。
解除滑膜嵌顿
❖ 最早是由欧洲脊柱推拿治疗者提出,认为脊柱小关 节间的滑膜嵌入是造成脊柱活动受限和疼痛的主要 原因。
2.已知⊙o的弦AB=6㎝,直径CD=10㎝,且AB⊥CD,那么 C到AB的距离等于 1㎝或9㎝
3.已知⊙O的弦AB=4㎝,圆心O到AB的中点C的距离为1㎝, 那么⊙O的半径为 5 cm
4.如图,在⊙O中弦AB⊥AC,
B
OM⊥AB,ON⊥AC,垂足分别为M,
M
A
N,且OM=2,0N=3,则AB= 6 , AC= 4 ,OA= 13
❖ 快速的推拿手法可使神经根和关节周围的粘 连得到一定程度的松解。
纠正关节错位
❖ 脊椎关节位置异常致椎间孔变小和横突孔狭 窄扭转位移,使神经根受压以及椎动脉管腔 狭窄和扭曲,出现神经根和椎动脉受损的症 状。
❖ 推拿可调整椎间盘与神经根的位置,恢复正 常的颈腰椎关节解剖序列,有利于椎间盘、 韧带和关节囊等处组织水肿的消退,静脉回 流的改善,促使神经根周围炎症减退,从而 达到治疗目的。
❖ 脊柱椎间小关节各有自己独立的关节囊,当颈随头 作各个方向的运动,椎间关节间隙增大时,关节囊 内层的滑膜或滑膜皱襞就有可能嵌入,成为疼痛源。
❖ 脊柱推扳或旋转推拿手法可使嵌入的滑膜或滑膜皱 襞得到解除,从而达到治疗目的。
解除肌肉痉挛
❖ 骨骼肌张力的异常升高以及肌肉痉挛时,肌肉的形 态、组织性质、解剖位置和生化等方面并无病理改 变,只是功能上出现非协调性的异常收缩。

垂径定理及推论

垂径定理及推论

EABC O1. (2013 浙江省舟山市) 如图,⊙O 的半径O D⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC .若A B=8,C D=2,则E C的长为( ▲ )(A)215ﻩ (B )8(C )210ﻩﻩ (D)213答案:D20130929082532907539 4.2 垂径定理及推论 选择题 基础知识 2013-09-292. (2013 浙江省温州市) 如图,在⊙O 中,OC ⊥弦AB于点C ,AB =4,O C=1,则OB 的长是(A) 3 (B ) 5 (C)15 (D ) 17答案:B20130924151843286232 4.2 垂径定理及推论 选择题 基础知识 2013-09-243. (2013 湖北省宜昌市) 如图,DC 是O ⊙的直径,弦AB CD ⊥于F ,连接BC DB ,.则下列结论错误..的是( ). (A)AD BD = (B)AFBF = (C )OF CF = (D )90DBC ∠=°答案:C20130922103714437704 4.2 垂径定理及推论 选择题 基本技能 2013-09-224. (2013 湖北省襄阳市) 如图,水平放置的圆柱形排水管道的截面直径是1m,其中水面的宽AB 为0.8m ,则排水管内水的深度为m.答案:0.220130922101400859477 4.2 垂径定理及推论 填空题 基本技能 2013-09-225. (2013 湖北省黄石市) 如右图,在Rt ABC 中,90ACB ∠=,3AC =,4BC =,以点C 为圆心,CA 为半径的圆与AB 交于点D ,则AD 的长为 A. 95 B. 245 C. 185 D. 52CA DB答案:C20130922091825984700 4.2 垂径定理及推论 选择题 基础知识 2013-09-226. (2013 湖北省黄冈市) 如图,M 是CD 的中点,EM CD ⊥,若48CD EM ==,,则CED 所在圆的半径为.答案:17420130922090529390698 4.2 垂径定理及推论 填空题 基本技能 2013-09-227. (2013 浙江省绍兴市) 绍兴是著名的桥乡,如图,圆拱桥的拱顶到水面的距离CD 为8m,桥拱半径OC 为5 m,则水面宽AB 为( ) (A)4m (B )5m (C)6m (D )8m答案:D20130922090202878151 4.2 垂径定理及推论 选择题 基础知识 2013-09-228. (2013 黑龙江省绥化市) 如图,在O 中,弦AB 垂直平分半径OC ,垂足为D ,若O 的半径为2,则弦AB 的长为 .答案:320130922084405390571 4.2 垂径定理及推论 填空题 基本技能 2013-09-229. (2013 黑龙江省齐齐哈尔市) CD 是O ⊙的一条弦,作直径AB 使AB CD ⊥,垂足为E ,若10,8AB CD ==,则BE 的长是( ).(A )8 (B)2 (C)2或8 (D)3或7答案:C20130922083135734113 4.2 垂径定理及推论 选择题 基本技能 2013-09-2210. (2013 黑龙江省哈尔滨市) 如图,直线AB 与O ⊙相切于点A ,AC 、CD 是O ⊙的两条弦,且CD AB ∥,若O ⊙的半径为52,4CD =,则弦AC 的长为______.答案:520130922075310093177 4.2 垂径定理及推论 填空题 基本技能 2013-09-2211. (2013 四川省泸州市) 已知O ⊙的直径10CD =cm,AB 是O ⊙的弦,AB CD ⊥,垂足为M ,且8AB =cm,则AC 的长为( )(A )5 (B )45(C)25或5m (D)23或43m答案:C20130918113356390655 4.2 垂径定理及推论 选择题 基础知识 2013-09-1812. (2013 四川省乐山市) 如图,圆心在y 轴的负半轴上,半径为5的⊙B与y轴的正半轴交于点A (0,1),过点P (0,-7)的直线l 与⊙B 相交于C 、D 两点,则弦CD 长的所有可能的整数值有(A)1个(B)2个(C)3个(D)4个答案:C20130918081431484943 4.2 垂径定理及推论选择题基础知识2013-09-1813.(2013 四川省广安市)如图,已知半径OD与弦AB互相垂直,垂足为点C,若AB=8cm,CD=3cm,则圆O的半径为( )A. 256cm B. 5cmC. 4cm D.196cm答案:A20130917163944625451 4.2垂径定理及推论选择题基础知识2013-09-1714.(2013 上海市) 在⊙O中,已知半径长为3,弦AB长为4,那么圆心O到AB的距离为___________.20130917095552078049 4.2 垂径定理及推论 填空题 基础知识 2013-09-1715. (2013 广西南宁市) 如图,AB 是O ⊙的直径,弦CD 交AB 于点E ,且8AE CD ==,12BAC BOD ∠=∠,则O ⊙的半径为( ).(A) (B)5 (C)4 (D)3答案:B20130916101021603939 4.2 垂径定理及推论 选择题 基础知识 2013-09-1616. (2013 山东省潍坊市) 如图,O ⊙的直径12AB =,CD 是O ⊙的弦,CD AB ⊥,垂足为P ,且15BPAP =∶∶,则CD 的长为( ). (A )24 (B )28 (C)52 (D)54答案:D20130916092125279380 4.2 垂径定理及推论 选择题 基础知识 2013-09-1617. (2013 山东省济南市) 如图,AB 是O ⊙的直径,C 是O ⊙上一点,A B=10,AC =6,OD BC ⊥,垂足为D ,则B D的长为(A)2 (B )3 (C)4 (D )6答案:C20130913165737468633 4.2垂径定理及推论选择题基础知识2013-09-1318.(2013 青海省西宁市) 如图,AB为⊙O的直径,弦CD⊥AB于点E,若CD=6,且AE:BE=1:3,则AB= .4答案:320130913154105593643 4.2 垂径定理及推论填空题基础知识2013-09-13 19. (2013浙江省丽水市) 一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是()(A)4 (B)5(C)6 (D)8答案:C20130913144415376549 4.2垂径定理及推论选择题基础知识2013-09-1320. (2013 宁夏回族自治区)如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为cm.答案:3220130913113826765103 4.2 垂径定理及推论 填空题 基础知识 2013-09-1321. (2013 广西来宾市) 如图是一圆形水管的截面图,已知O ⊙的半径13OA =,水面宽24AB =,则水的深度CD 是_________.答案:820130912164424597039 4.2 垂径定理及推论 填空题 基础知识 2013-09-1222. (2013 广东省广州市) 如图7,在平面直角坐标系中,点O 为坐标原点,点P 在第一象限,P Θ与x 轴交于O,A两点,为13,则点P的坐标为 __点A的坐标为(6,0),P Θ的半径__________.答案:(3,2)(第6题图)ODCBA20130912153342876804 4.2 垂径定理及推论 填空题 基础知识 2013-09-1223. (2013 甘肃省兰州市) 如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面A B宽为8cm ,水的最大深度为2cm,则该输水管的半径为A.3cm B.4cm C.5cm D.6cm答案:C20130912135826385227 4.2 垂径定理及推论 选择题 基础知识 2013-09-1224. (2013 福建省泉州市) 第二节三角形的内角和定理及推论)在ABC△中,2060A B ∠=∠=°,°,则ABC △的形状是( ) (A)等边三角形ﻩﻩ(B)锐角三角形 (C )直角三角形 (D )钝角三角形答案:D20130911171046633721 4.2 垂径定理及推论 选择题 基础知识 2013-09-1125. (2013 福建省南平市) 如图,在⊙O 中,直径CD ⊥弦A B,则下列结论中正确..的是 A . AD =AB B.∠B OC=2∠D C.∠D +∠B OC =90°D .∠D =∠B答案:B20130911162738535416 4.2 垂径定理及推论 选择题 基础知识 2013-09-1126. (2013 江苏省徐州市) 如图,AB 是O ⊙的直径,弦CD AB ⊥,垂足为P ,若8CD =,3OP =,则O ⊙的半径为().(A)10 (B)8 (C)5 (D)3答案:C20130910160329453578 4.2 垂径定理及推论 选择题 基础知识 2013-09-1027. (2013 四川省资阳市) 在⊙O中,AB 为直径,点C 为圆上一点,将劣弧沿弦AC 翻折交AB 于点D,连结CD .(1)如图5-1,若点D 与圆心O 重合,AC =2,求⊙O的半径r ;(6分)(2)如图5-2,若点D 与圆心O 不重合,∠BAC =25°,请直接写出∠DC A的度数. (2分)答案:(1) 过点O 作A C的垂线交AC 于E 、交劣弧于F ,由题意可知,OE=EF ,ﻩ1分∵ OE ⊥AC ,∴AE =12AC ,3ﻩ分 在Rt △AOE 中,222AO OE AE =+, ························· 4分∴2211()2r r =+,∴r =233.ﻩ6分 (2)∠D CA =40°. ································ 8分 图5-1 图5-220130909163119111594 4.2 垂径定理及推论 应用题 基础知识 2013-09-0928. (2013 吉林省长春市) 如图,MN是⊙O 的弦,正方形OABC 的顶点B 、C 在MN上,且点B是CM 的中点.若正方形O ABC 的边长为7,则MN 的长为 .答案:2820130908142630328054 4.2 垂径定理及推论 填空题 基础知识 2013-09-0829. (2013 吉林省) 如图,AB 是O ⊙的弦,OC AB ⊥于点C ,连接OA OB ,.点P 是半径OB 上任意一点,连接AP .若5cm 3cm OA OC ==,,则AP 的长度可能是 cm(写出一个符合条件的数值即可).答案:6(答案不唯一,大于或等于5并且小于或等于8的任意一个数值皆可)20130908134053453816 4.2 垂径定理及推论 填空题 基础知识 2013-09-0830. (2013 四川省内江市) 在平面直角坐标系xOy 中,以原点O为圆心的圆过点A(13,0),直线y=kx ﹣3k +4与⊙O 交于B、C两点,则弦BC 的长的最小值为 .答案: 24201309051556425727784.2垂径定理及推论填空题基础知识2013-09-05。

专题2.2 垂径定理及其推论【十大题型】(举一反三)(苏科版)(解析版)

专题2.2 垂径定理及其推论【十大题型】(举一反三)(苏科版)(解析版)

专题2.2 垂径定理及其推论【十大题型】【苏科版】【题型1 由垂径定理及其推论判断正误】 (1)【题型2 根据垂径定理与勾股定理综合求值】 (3)【题型3 根据垂径定理与全等三角形综合求值】 (8)【题型4 在坐标系中利用垂径定理求值或坐标】 (14)【题型5 利用垂径定理求平行弦问题】 (19)【题型6 利用垂径定理求同心圆问题】 (23)【题型7 垂径定理的实际应用】 (27)【题型8 垂径定理在格点中的运用】 (33)【题型9 利用垂径定理求整点】 (37)【题型10 利用垂径定理求最值或取值范围】 (41)【知识点1垂径定理及其推论】(1)垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)垂径定理的推论推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.推论2:弦的垂直平分线经过圆心,并且平分弦所对的两条弧.推论3:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.【题型1由垂径定理及其推论判断正误】【例1】(2023春·九年级单元测试)如图,CD是⊙O的直径,弦AB⊥CD于点E,连接BC、BD,下列结论中不一定正确的是()A.AE=BE B.AD=BD C.OE=DE D.AC=BC【答案】C【分析】根据垂径定理判断即可;【详解】∵直径CD垂直于弦AB于点E,则由垂径定理可得,AE=BE,AD=BD,AC=BC,故选项A,B,D 正确;OE=DE无法得出,故C错误.故选C.【点睛】本题主要考查了垂径定理的应用,准确分析判断是解题的关键.【变式1-1】(2023春·北京海淀·九年级人大附中校考阶段练习)在学习了《圆》这一章节之后,甲、乙两位同学分别整理了一个命题:甲:相等的弦所对的圆心角相等;乙:平分弦的直径垂直于这条弦.下面对这两个命题的判断,正确的是A.甲对乙错B.甲错乙对C.甲乙都对D.甲乙都错【答案】D【分析】根据在同圆或等圆中, 如果两个圆心角以及它们对应的两条弧、两条弦中有一组量相等, 则另外两组量也相等,可判断甲命题;由垂径定理可得判断乙命题.【详解】(1)在同圆或等圆中, 相等的弦所对的弧对应相等,故甲命题错误; (2)平分弦的直径垂直于不是直径的弦; 故乙命题项错误;故选D.【点睛】本题主要考查同圆或等圆中,弧、弦、圆心角的关系及垂径定理.【变式1-2】(2023春·全国·九年级专题练习)下列命题正确的是()A.垂直于弦的直径平分弦所对的两条弧B.弦的垂直平分线经过圆心C.平分弦的直径垂直于弦D.平分弦所对的两条弧的直线垂直于弦【答案】ABD【分析】根据垂径定理及其推论进行判断即可.【详解】A、垂直于弦的直径平分弦所对的两条弧,正确;B、弦的垂直平分线经过圆心,正确;C、平分弦(不是直径)的直径垂直于弦,故错误;D、平分弦所对的两条弧的直线垂直于弦,正确;故选ABD.【点睛】本题考查了垂径定理:熟练掌握垂径定理及其推论是解决问题的关键.【变式1-3】(2023·福建三明·泰安模拟)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,则下列结论正确的是( )A .DE=BEB .BC =BD C .△BOC 是等边三角形D .四边形ODBC 是菱形【答案】B【详解】试题分析:∵AB ⊥CD ,AB 过O ,∴DE=CE ,BC =BD ,根据已知不能推出DE=BE ,△BOC 是等边三角形,四边形ODBC 是菱形.故选B .【考点】垂径定理.【题型2 根据垂径定理与勾股定理综合求值】【例2】(2023·贵州遵义·统考三模)在半径为r 的圆中,弦BC 垂直平分OA ,若BC =6,则r 的值是( )A B .C .D 【答案】C【分析】设BC 、OA 交于D ,根据题意和垂径定理得到OD =12r ,BD =3,∠ODB =90°,在Rt △OBD 由勾股定理得到r 2=32+,解方程即可得到答案.【详解】解:设BC 、OA 交于D ,∵弦BC 垂直平分OA ,BC =6,∴OD =12OA =12r ,BD =12BC =3,∠ODB =90°,在Rt△OBD中,由勾股定理得OB2=OD2+BD2,∴r2=32+,解得r=故选C.【点睛】本题主要考查了勾股定理和垂径定理,利用方程的思想求解是解题的关键.【变式2-1】(2023春·浙江·九年级统考阶段练习)如图,已知⊙O的半径为5,弦AB=8,点E在AB上运动,连结OE,过点E作EF⊥OE交⊙O于点F,当EF最大时,OE+EF的值为.【答案】7【分析】当OE⊥AB,EF最大,即点F与点B重合,过O作OE⊥AB于E,连接OB,根据垂径定理得到BE=4,根据勾股定理得到【详解】解:当OE⊥AB,EF最大,即点F与点B重合,过O作OE⊥AB于E,连接OB,∵AB=8,∴BE=4,∵OB=5,∴,∴OE+EF=OE+OB=7,故答案为7.【点睛】本题考查了垂径定理,勾股定理,正确的作出辅助线是解题的关键.【变式2-2】(2023·湖北孝感·校联考一模)如图,△ABC内接于⊙O,OC⊥OB,OD⊥AB于D交AC于E 点,已知⊙O的半径为1,则AE2+CE2的值为()A.1B.2C.3D.4【答案】B【分析】连接BE,根据垂径定理得到AD=DB,得到EA=EB,∠EAO=∠EBO=∠ACO,根据勾股定理计算即可.【详解】解:连接BE,如图,∵OD⊥AB,∴AD=DB,∴EA=EB,∠EAO=∠EBO=∠ACO,∵∠ECB+∠EBC=∠ECO+45°+∠EBC=∠OBE+45°+∠EBC=90°,∴∠BEC=90°,在直角△BEC中,BE2+CE2=BC2,∵OC⊥OB,且OC=OB=OA∴BC2=2OA2=2,∴BE2+CE2=2,即AE2+CE2=2.故选:B.【变式2-3】(2023春·江苏泰州·九年级校考阶段练习)如图,在⊙O中,AB是直径,P为AB上一点,过点P作弦MN,∠NPB=45°.(1)若AP=2,BP=6,求MN的长;(2)若MP=3,NP=5,求AB的长;(3)当P在AB上运动时(∠NPB=45°不变)请求出其范围.【答案】(1)2)3)不变,值为12【分析】(1)作OH⊥MN于H,连接ON,先计算出OA=4,OP=2,在Rt△POH中,由于∠OPH=45°,则Rt△OHN中,利用勾股定理计算出OH⊥MN得到HM=HN,所以(2)作OH⊥MN于H,连接ON,先计算出HM=HN=4,PH=1,在Rt△POH中,由∠OPH=45°得到OH=1,再在Rt△OHN中利用勾股定理可计算出(3) 作OH⊥MN于H,连接ON,根据垂定理得HM=HN,设圆的半径为R,在Rt△OHN中,利用勾股定理得到OH2+NH2=ON2=R2,在Rt△POH中,由∠OPH=45°得OH=PH,则PH2+NH2=R2,然后变形PM2+PN2可得到2(PH2+NH2),所以PM2+PN2的值为2R2,又AB=2R,代入计算即可求出答案.【详解】解:(1)作OH⊥MN于H,连接ON,∵AP=2,BP=6,∴AB=8,∴OA=4,OP=2,在Rt△POH中,∵∠OPH=45°,∴在Rt△OHN中,∵ON=4,∴∵OH⊥MN,∴HM=HN,∴(2)作OH⊥MN于H,连接ON,则HM=HN,∵MP=3,NP=5,∴MN=8,∴HM=HN=4,∴PH=1,在Rt△POH中,∵∠OPH=45°,∴OH=1,在Rt△OHN中,∵HN=4,OH=1,∴∴(3的值不发生变化,为定值1,2作OH⊥MN于H,连接ON,则HM=HN,设圆的半径为R,在Rt△OHN中,OH2+NH2=ON2=R2,在Rt△POH中,∵∠OPH=45°,∴OH=PH,∴PH2+NH2=R2,∵PM2+PN2=(HM-PH)2+(NH+PH)2=(NH-PH)2+(NH+PH)2=2(PH2+NH2)=2R2.又AB2=4R2,=2R2 4R2=1 2的值不发生变化,为定值12.【点睛】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.【题型3根据垂径定理与全等三角形综合求值】【例3】(2023春·江苏·九年级专题练习)如图,⊙O的弦AB垂直于CD,点E为垂足,连接OE.若AE=1,AB=CD=6,则OE的值是( )A.B.C.D.【答案】A【分析】如图所示,过O点作OH⊥AB于H点,OF⊥CD于F点,连接OB、OC,根据垂径定理可求出EH的值,再证Rt△OBH≌Rt△OCF(HL),可得OH=OF,根据正方形的判定可得四边形OHEF为正方形,由此即可求解.【详解】解:如图所示,过O点作OH⊥AB于H点,OF⊥CD于F点,连接OB、OC,∴根据垂径定理得,DF =CF =12CD =12×6=3,AH =BH =12AB =12×6=3,∵AE =1,∴EH =AH−AE =3−1=2,在Rt △OBH 和Rt △OCF 中,OB =OC BH =CF ,∴Rt △OBH≌Rt △OCF(HL),∴OH =OF ,∵CD ⊥AB ,∴∠HEF =90°,∵∠OHE =∠OFE =90°,∴四边形OHEF 为正方形,OE 是正方形的对角线,∴OE ==故选:A .【点睛】本题考查圆与三角形的综合,掌握圆的基础值,垂径定理,全等三角形的判定和性质,正方形的判定和性质等知识的综合运用是解题的关键.【变式3-1】(2023春·全国·九年级专题练习)如图,AB 为圆O 直径,F 点在圆上,E 点为AF 中点,连接EO ,作CO ⊥EO 交圆O 于点C ,作CD ⊥AB 于点D ,已知直径为10,OE =4,求OD 的长度.【答案】3【分析】根据垂径定理的逆定理得到OE ⊥AF ,由CO ⊥EO ,得到OC ∥AF ,即可得到∠OAE =∠COD ,然后通过证得△AEO ≌△ODC ,证得CD =OE =4,然后根据勾股定理即可求得OD .【详解】解:∵E 点为AF 中点,∴OE ⊥AF ,∵CO ⊥EO ,∴OC ∥AF ,∴∠OAE =∠COD ,∵CD ⊥AB ,∴∠AEO =∠ODC ,在△AEO 和△ODC 中,∠OAE =∠COD ∠AEO =∠ODC OA =OC,∴△AEO ≌△ODC (AAS ),∴CD =OE =4,∵OC =5,∴OD3.【点睛】本题考查垂径定理的逆定理、平行线的判定与性质、全等三角形的判定与性质、勾股定理,熟练掌握垂径定理和全等三角形的判定与性质是解答的关键【变式3-2】(2023·上海·统考中考真题)已知:在圆O 内,弦AD 与弦BC 交于点G,AD =CB,M,N 分别是CB 和AD 的中点,联结MN,OG .(1)求证:OG ⊥MN ;(2)联结AC,AM,CN ,当CN//OG 时,求证:四边形ACNM 为矩形.【答案】(1)见解析;(2)见解析【分析】(1)连结OM,ON ,由M 、N 分别是CB 和AD 的中点,可得OM ⊥BC ,ON ⊥AD ,由AB =CD , 可得OM =ON ,可证RtΔEOP≌RtΔFOP (HL ),MG =NG ,∠MGO =∠NGO ,根据等腰三角形三线合一性质OG ⊥MN ;(2)设OG 交MN 于E ,由RtΔEOP≌RtΔFOP ,可得MG =NG ,可得∠CMN =∠ANM ,CM =12CB =12AD =AN ,可证△CMN≌△ANM 可得AM =CN ,由CN ∥OG ,可得∠AMN =∠CNM =90°,由∠AMN +∠CNM=180°可得AM ∥CN ,可证ACNM 是平行四边形,再由∠AMN =90°可证四边形ACNM 是矩形.【详解】证明:(1)连结OM,ON ,∵M 、N 分别是CB 和AD 的中点,∴OM ,ON 为弦心距,∴OM ⊥BC ,ON ⊥AD ,∴∠GMO =∠GNO =90°,在⊙O 中,AB =CD ,∴OM =ON ,在Rt △OMG 和Rt △ONG 中,OM =ON OG =OG ,∴RtΔGOM≌RtΔGON (HL ),∴MG =NG ,∠MGO =∠NGO ,∴OG ⊥MN ;(2)设OG 交MN 于E ,∵RtΔGOM≌RtΔGON (HL ),∴MG =NG ,∴∠GMN =∠GNM ,即∠CMN =∠ANM ,∵CM =12CB =12AD =AN ,在△CMN 和△ANM 中CM =AN ∠CMN =∠ANM MN =NM,∴△CMN≌△ANM,∴AM=CN,∠AMN=∠CNM,∵CN∥OG,∴∠CNM=∠GEM=90°,∴∠AMN=∠CNM=90°,∴∠AMN+∠CNM=90°+90°=180°,∴AM∥CN,∴ACNM是平行四边形,∵∠AMN=90°,∴四边形ACNM是矩形.【点睛】本题考查垂径定理,三角形全等判定与性质,等腰三角形判定与性质,平行线判定与性质,矩形的判定,掌握垂径定理,三角形全等判定与性质,等腰三角形判定与性质,平行线判定与性质,矩形的判定是解题关键.【变式3-3】(2023春·江西赣州·九年级统考期末)按要求作图(1)如图1,已知AB是⊙O的直径,四边形ACDE为平行四边形,请你用无刻度的直尺作出∠AOD的角平分线OP;(2)如图2,已知AB是⊙O的直径,点C是BD的中点,AB∥CD,请你用无刻度的直尺在射线DC上找一点P,使四边形ABPD是平行四边形.【答案】(1)见解析(2)见解析【分析】(1)连接AD,EC交于点F,作射线OF交⊙O于点P,OP即为所求;(2)连接DB,OC交于点E,作射线AE交DC于点P,四边形ABPD即为所求.【详解】(1)解:如图1,连接AD,EC交于点F,作射线OF交⊙O于点P,OP即为所求;∵四边形ACDE 为平行四边形,∴AF =DF ,∵OA =OD ,∴ OP 是∠AOD 的角平分线;(2)如图2,连接OD ,连接DB ,OC 交于点E ,作射线AE 交射线DC 于点P ,四边形ABPD 即为所求;∵点C 是BD 的中点,∴OC ⊥DB ,∵OD =OB ,∴DE =EB ,∵AB∥CD ,∴∠ABE =∠PDE ,在△ABE 与△PDE 中,∠ABE =∠PDE∠AEB =∠PED DE =BE,∴△ABE≌△PDE ,∴AB =DP,∵AB∥DP,∴四边形ABPD是平行四边形.【点睛】本题考查了平行四边形的性质与判定,垂径定理,三线合一,掌握以上知识是解题的关键.【题型4在坐标系中利用垂径定理求值或坐标】【例4】(2023春·九年级单元测试)如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图像被⊙P截得的弦AB的长为a的值是( )A.4B.3+C.D.3+【答案】B【分析】作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连接PB,求出D点坐标为(3,3),可得△OCD为等腰直角三角形,从而△PED也为等腰直角三角形.根据垂径定理得AE=BE=Rt△PBE中,利用勾股定理求出PE=1,再求出PD的长即可求解.【详解】解:作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连接PB,如图,∵⊙P的圆心坐标是(3,a),∴OC=3,PC=a,把x=3代入y=x得y=3,∴D点坐标为(3,3),∴CD=3,∴△OCD为等腰直角三角形,∴∠PDE =∠ODC =45°,∵PE ⊥AB ,∴△PED 为等腰直角三角形,AE =BE =12AB =12×=在Rt △PBE 中,PB =3,∴PE =1,∴PD =∴a =3故选B .【点睛】本题考查了一次函数的性质,勾股定理,等腰直角三角形的判定与性质,以及垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.正确作出辅助线是解答本题的关键.【变式4-1】(2023·全国·九年级专题练习)如图,在平面直角坐标系中,点A 的坐标是(10,0),点B 的坐标是(8,0),点C ,D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形,求点C 的坐标.【答案】点C 的坐标为(1,3)【分析】连接CM ,作MN ⊥CD 于N ,CH ⊥OA 于H ,根据题意得CD =OB =8,CN =MH ,CH =MN ,根据垂径定理得出CN =DN = 12 CD =4.MO =MC =5, 在Rt △MNC 中,勾股定理得出MN =3,进而得出C 的纵坐标为3,又OH =OM−MH =5−4=1,即可求解.【详解】解:如图,连接CM ,作MN ⊥CD 于N ,CH ⊥OA 于H .∵四边形OCDB 为平行四边形,B 点的坐标是(8,0),∴CD =OB =8,CN =MH ,CH =MN .又∵MN⊥CD,CD=4.∴CN=DN=12∵点A的坐标是(10,0),∴OA=10,∴MO=MC=5.在Rt△MNC中,MN===3.∴CH=3.又OH=OM−MH=5−4=1.∴点C的坐标为(1,3).【点睛】本题考查了平行四边形的性质,坐标与图形,垂径定理,勾股定理,掌握垂径定理是解题的关键.【变式4-2】(2023·江苏南京·九年级专题练习)如图,在平面直角坐标系中,一个圆与两坐标轴分别交于A、B、C、D四点.已知A(6,0),B(﹣2,0),C(0,3),则点D的坐标为.【答案】(0,−4)【详解】设圆心为P,过点P作PE⊥AB于点E,PF⊥CD于点F,先根据垂径定理可得EA=EB=4,FC=FD,进而可求出OE=2,再设P(2,m),即可利用勾股定理表示出PC2,PA2,最后利用PA=PA列方程即可求出m值,进而可得点D坐标.【解答】解:设圆心为P,过点P作PE⊥AB于点E,PF⊥CD于点F,则EA=EB=AB=4,FC=FD,2∴OE =EB ﹣OB =4﹣2=2,∴E (2,0),设P (2,m ),则F (0,m ),连接PC 、PA ,在Rt △CPF 中,PC 2=(3﹣m )2+22,在Rt △APE 中,PA 2=m 2+42,∵PA =PC ,∴(3﹣m )2+22=m 2+42,∴m =±12(舍正),∴F (0,−12),∴CF =DF =3−(−12)=72,∴OD =OF +DF =12+72=4,∴D (0,﹣4),故答案为:(0,﹣4).【点睛】本题考查垂径定理,涉及到平面直角坐标系,勾股定理等,解题关键是利用半径相等列方程.【变式4-3】(2023春·湖北鄂州·九年级校联考期末)如图,在平面直角坐标系中,⊙O 经过点(0,10),直线y =kx +2k−4与⊙O 交于B 、C 两点,则弦BC 的最小值是( )A.B.C.D.以上都不对【答案】C【分析】易知直线y=kx+2k−4过定点D(−2,−4),运用勾股定理可求出OD,由⊙O经过点(0,10),可求出半径OB=10,由于过圆内定点D的所有弦中,与OD垂直的弦最短,因此只需运用垂径定理及勾股定理就可解决问题.【详解】解:对于直线y=kx+2k−4,当x=−2时,y=−4,故直线y=kx+2k−4恒经过点(−2,−4),记为点D.由于过圆内定点D的所有弦中,与OD垂直的弦最短,即当OD⊥BC时,BC最短,连接OB,如图所示,∵D(−2,−4),∴OD==∵⊙O经过点(0,10),∴OB=10,∴BD∵OB⊥BC,∴BC=2BD=∴弦BC的最小值是故选:C.【点睛】本题主要考查了直线上点的坐标特征、垂径定理、勾股定理等知识,发现直线恒经过点(−2,−4)以及运用“过圆内定点D的所有弦中,与OD垂直的弦最短”这个经验是解决该题的关键.【题型5利用垂径定理求平行弦问题】【例5】(2023·全国·九年级专题练习)在半径为10的⊙O中,弦AB=12,弦CD=16,且AB∥CD,则AB 与CD之间的距离是.【答案】2或14【分析】由于弦AB与CD的具体位置不能确定,故应分两种情况进行讨论:①弦AB与CD在圆心同侧;②弦AB 与CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.【详解】解:①当弦AB与CD在圆心同侧时,如图①,过点O作OF⊥AB,垂足为F,交CD于点E,连接OA,OC,∵AB∥CD,∴OE⊥CD,∵AB=12,CD=16,∴CE=8,AF=6,∵OA=OC=10,∴由勾股定理得:EO=6,OF=8,∴EF=OF−OE=2;②当弦AB与CD在圆心异侧时,如图,过点O作OE⊥CD于点E,反向延长OE交AB于点F,连接OA,OC,同理EO==6,OF=8,EF=OF+OE=14,所以AB与CD之间的距离是2或14.故答案为:2或14.【点睛】本题考查了勾股定理和垂径定理,解答此题时要注意进行分类讨论,不要漏解.【变式5-1】(2023春·浙江杭州·九年级校考阶段练习)如图,矩形ABCD与圆心在AB上的☉O交于点G,B,F,E,GB =5,EF =4,那么AD = .【答案】32【分析】连接OF,过点O作OH⊥EF,垂足为H,根据垂径定理,在△OHF中,勾股定理计算.【详解】如图,连接OF,过点O作OH⊥EF,垂足为H,EF=2,则EH=FH=12∵GB=5,∴OF =OB =52,在△OHF 中,勾股定理,得OH =32,∵四边形ABCD 是矩形,∴四边形OADH 也是矩形,∴AD =OH =32,故答案为:32.【点睛】本题考查了垂径定理、勾股定理,熟练掌握两个定理是解题的关键.【变式5-2】(2023春·九年级课时练习)如图,AB ,CD 是半径为15的⊙O 的两条弦,AB =24,CD =18,MN 是直径,AB ⊥MN 于点E ,CD ⊥MN 于点F ,P 为EF 上任意一点,则PA +PC 的最小值为 .【答案】【分析】由于A 、B 两点关于MN 对称,因而PA +PC =PB +PC ,即当B 、C 、P 在一条直线上时,PA +PC 的值最小,即BC 的值就是PA +PC 的最小值.【详解】解:连接BC ,OB ,OC ,作CH 垂直于AB 于H .∵AB =24,CD =18,MN 是直径,AB ⊥MN 于点E ,CD ⊥MN 于点F ,∴BE =12AB =12,CF =12CD =9,∴OE =9,OF =12,∴CH =OE +OF =9+12=21,BH =BE +EH =BE +CF =12+9=21,在Rt △BCH 中,根据勾股定理得:BC即PA +PC 的最小值为故答案为:【点睛】本题考查垂径定理以及最短路径问题,灵活根据垂径定理确定最短路径是解题关键.【变式5-3】(2023·全国·九年级专题练习)如图,A,B,C,D在⊙O上,AB//CD经过圆心O的线段EF⊥AB 于点F,与CD交于点E,已知⊙O半径为5.(1)若AB=6,CD=8,求EF的长;(2)若CD=EF=BF,求弦AB的长;【答案】(1)7;(2)8AB=3,再由勾股定理求出OF的长,同理求出OE的【分析】(1)连接AO和DO,由垂径定理得AF=12长,即可求出EF的长;(2)连接BO和DO,先由垂径定理和勾股定理求出OE的长,设EF=BF=x,在Rt△OBF中,利用勾股定理列式求出x的值,得到BF的长,即可求出AB的长.【详解】解:(1)连接AO和DO,∵EF⊥AB,且EF过圆心,AB=3,∴AF=12∵AO=5,∴OF=4,∵AB//CD,∴EF⊥CD,CD=4,同理DE=12OE=3,∴EF=OF+OE=4+3=7;(2)如图,连接BO和DO,∵CD=∴DE=∴OE=1,设EF=BF=x,则OF=x−1,在Rt△OBF中,OF2+BF2=BO2,(x−1)2+x2=25,解得x1=4,x2=−3(舍去),∴BF=4,∴AB=2BF=8.【点睛】本题考查垂径定理,解题的关键是熟练掌握垂径定理,并能够结合勾股定理进行运用求解.【题型6利用垂径定理求同心圆问题】【例6】(2023春·湖北孝感·九年级校联考阶段练习)如图,两个圆都是以O为圆心.(1)求证:AC=BD;(2)若AB=10,BD=2,小圆的半径为5,求大圆的半径R的值.【答案】(1)见解析;(2【分析】(1)作OE⊥AB,由垂径定理得AE=BE,CE=DE,即可得到AC=BD;(2)连接OB,OD,由AB=10,则BE=5,由勾股定理,得OE2=OD2−DE2,OE2=OB2−BE2,DE=BE−BD=5−2=3,即可求出大圆半径.【详解】解:(1)如图:作OE⊥AB于E,由垂径定理,得:AE=BE,CE=DE,∴BE−DE=AE−CE,即AC=BD;(2)如图,连接OD,OB,∵AB=10,∴BE=AE=5,DE=5-2=3,在Rt△OBE和Rt△ODE中,由勾股定理,得:OE2=OD2−DE2,OE2=OB2−BE2,∴OD2−DE2=OB2−BE2,即52−32=OB2−52,解得:OB∴【点睛】本题考查了垂径定理,以及勾股定理,熟练掌握垂径定理和勾股定理进行计算是解题的关键.【变式6-1】(2023春·浙江台州·九年级统考期末)如图,一人口的弧形台阶,从上往下看是一组同心圆被一条直线所截得的一组圆弧.已知每个台阶宽度为32cm(即相邻两弧半径相差32cm),测得AB=200cm,AC=BD=40cm,则弧AB所在的圆的半径为cm【答案】134【分析】由于所有的环形是同心圆,画出同心圆圆心,设弧AB所在的圆的半径为r,利用勾股定理列出方程即可解答.【详解】解:设弧AB所在的圆的半径为r,如图.作OE⊥AB于E,连接OA,OC,则OA=r,OC=r+32,∵OE⊥AB,∴AE=EB=100cm,在RT△OAE中OE2=OA2−AE2=r2−1002,在RT△OCE中,OE2=OC2−CE2=(r+32)2−1402,则r2−1002=(r+32)2−1402解得:r=134.故答案为:134.【点睛】本题考查垂径定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.【变式6-2】(2023春·九年级课时练习)将一盛有不足半杯水的圆柱形玻璃水杯拧紧杯盖后放倒,水平放置在桌面上,水杯的底面如图所示,已知水杯内径(图中小圆的直径)是8cm,水的最大深度是2cm,则杯底有水面AB的宽度是( )cm.A.6B.C.D.【答案】C【分析】作OD ⊥AB 于C ,交小圆于D ,可得CD=2,AC=BC ,由AO 、BO 为半径,则OA=OD=4;然后运用勾股定理即可求得AC 的长,即可求得AB 的长.【详解】解:作OD ⊥AB 于C ,交小圆于D ,则CD=2,AC=BC ,∵OA=OD=4,CD=2,∴OC=2,∴∴AB=2AC=故答案为C.【点睛】本题考查的是垂径定理的应用及勾股定理,作出辅助线、构造出直角三角形是解答本题的关键.【变式6-3】(2023·浙江杭州·九年级)如图,两个同心圆的半径分别为2和4,矩形ABCD 的边AB 和CD 分别是两圆的弦,则矩形ABCD 面积的最大值是 .【答案】16【分析】过点O 作OP ⊥AB 于P 并反向延长交CD 于N ,作OM ⊥AD 于点M ,连接OA 、OD ,根据面积之间的关系得出S △AOD =12S 矩形APND =14S 矩形ABCD ,从而得出S 矩形ABCD 最大时,S △AOD 也最大,过点D 作AO 边上的高h ,根据垂线段最短可得h≤OD ,利用三角形的面积公式即可求出S △AOD 的最大值,从而求出结论.【详解】解:过点O 作OP ⊥AB 于P 并反向延长交CD 于N ,作OM ⊥AD 于点M ,连接OA 、OD∴AO=2,OD=4,四边形APND 和四边形PBCN 为矩形,PN ⊥CD ,∴OM=AP根据垂径定理可得:点P 和点N 分别为AB 和CD 的中点,∴S 矩形APND =12S 矩形ABCD∵△AOD 的高OM 等于矩形APND 的宽,△AOD 的底为矩形APND 的长∴S △AOD =12S 矩形APND =14S 矩形ABCD∴S 矩形ABCD 最大时,S △AOD 也最大过点D 作AO 边上的高h ,根据垂线段最短可得h≤OD (当且仅当OD ⊥OA 时,取等号)∴S △AOD =12AO·h≤12AO·OD=12×2×4=4故S △AOD 的最大值为4∴S 矩形ABCD 的最大值为4÷14=16故答案为:16.【点睛】此题考查的是垂径定理、各图形面积的关系和三角形面积的最值问题,掌握垂径定理、利用边的关系推导面积关系和垂线段最短是解决此题的关键.【题型7 垂径定理的实际应用】【例7】(2023·浙江温州·校联考二模)如图,是某隧道的入口,它的截面如图所示,是由APB 和直角∠ACB 围成,且点C 也在APB 所在的圆上,已知AC =4m ,隧道的最高点P 离路面BC 的距离DP =7m ,则该道路的路面宽BC = m ;在APB 上,离地面相同高度的两点E ,F 装有两排照明灯,若E 是AP 的中点,则这两排照明灯离地面的高度是m .【答案】【分析】先求得圆心的位置,根据垂径定理得到AM=CM=2,即可求得半径为5,根据勾股定理即可求得CD,进而求得BC,根据勾股定理求得PA,从而以及垂径定理求得PN,利用勾股定理求得ON,通过证得△EOK≅△OPN求得EK=ON,进一步即可求得EQ.【详解】作AC的垂直平分线OM,交PD于O,交AC于M,则O是圆心,连接OC,∴OD=MC=1AC=2,2∵PD=7,∴圆的半径为7−2=5,∴CD∴BC=2CD=连接PA、OE交于N,作AH⊥PD于H,EQ⊥BC于Q,∵PD=7,DH=AC=4,∴PH=7−4=3,∵AH=CD=∴PA==∵E是AP的中点,∴OE垂直平分PA,∴PN∴ON∵EQ∥PD,∴∠OEK=∠EOP,在△EOK和△OPN中,∠OEK=∠PON∠EKO=∠ONP=90°EO=PO,∴△EOK≅△OPN(AAS),∴EK=ON=∴EQ=EK+KQ+2,故答案为.【点睛】本题考查了垂径定理和勾股定理的应用,三角形全等的判定和性质,作出辅助线构建直角三角形是解题的关键.【变式7-1】(2023春·浙江嘉兴·九年级平湖市林埭中学校联考期中)某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.(1)请你用直尺和圆规补全这个输水管道的圆形截面(保留作图痕迹);(2)若这个输水管道有水部分的水面宽AB=8cm,水面最深地方的高度为2cm,求这个圆形截面的半径.【答案】(1)见解析(2)5cm【分析】(1)运用尺规作图的步骤和方法即可解答;(2)作OD⊥AB于D,并延长交⊙O于C,则D为AB的中点,则AD=4cm,设这个圆形截面的半径为x cm,在Rt△AOD中,运用勾股定理求出x即可.【详解】(1)如图所示;(2)作OD⊥AB于D,并延长交⊙O于C,则D为AB的中点,∵AB=8cm,AB=4cm.∴AD=12设这个圆形截面的半径为x cm,又∵CD=2cm,∴OD=(x−2)cm,在Rt△AOD中,∵OD2+AD2=OA2,即(x−2)2+42=x2,解得x=5cm.∴圆形截面的半径为5cm.【点睛】本题考查了垂经定理和勾股定理,根据题意画出图形和灵活应用勾股定理是解答本题的关键.【变式7-2】(2023春·河北邢台·九年级校联考期末)“筒车”是一种以水流作动力,取水灌田的工具.如图,“筒车”盛水筒的运行轨迹是以轴心O为圆心的圆,已知圆心O始终在水面上方.且当圆被水面截得的弦AB 为6米时,水面下盛水筒的最大深度为1米(即水面下方部分圆上一点距离水面的最大距离).(1)求该圆的半径;(2)若水面上涨导致圆被水面截得的弦AB从原来的6米变为8米时,则水面下盛水筒的最大深度为多少米?【答案】(1)5米(2)2米AB=3,DE=1,再由勾股定理【分析】(1)作OD⊥AB于点E,交⊙O于点D,由垂径定理可得AE=12即可求出圆的半径;AB=4米.在Rt△AOE中,由勾股定理可得,AE2+OE2=OA2,则OE=3米,(2)当AB=8米时,AE=12即可求出DE的长.【详解】(1)解:如图,作OD⊥AB于点E,交⊙O于点D.AB=3米,DE=1米.则AE=12设圆的半径为r米,在Rt△AOE中,AE2+OE2=OA2,∴32+(r−1)2=r2,解得r=5,∴该圆的半径为5米;AB=4米.(2)解:当AB=8米时,AE=12在Rt△AOE中,AE2+OE2=OA2,∴42+OE2=52,∴OE=3米,∴DE=5−3=2(米).答:水面下盛水筒的最大深度为2米.【点睛】本题考查垂径定理,熟练掌握垂径定理的定义并运用是解题的关键.【变式7-3】(2023·湖南·统考中考真题)问题情境:筒车是我国古代发明的一种水利灌溉工具,既经济又环保,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理(如图①).假定在水流量稳定的情况下,筒车上的每一个盛水筒都按逆时针做匀速圆周运动,每旋转一周用时120秒.问题设置:把筒车抽象为一个半径为r的⊙O.如图②,OM始终垂直于水平面,设筒车半径为2米.当t=0时,某盛水筒恰好位于水面A处,此时∠AOM=30°,经过95秒后该盛水筒运动到点B处.(参考数据,≈1.414 1.732)问题解决:(1)求该盛水筒从A处逆时针旋转到B处时,∠BOM的度数;(2)求该盛水筒旋转至B处时,它到水面的距离.(结果精确到0.1米)【答案】(1)∠BOM=45°;(2)该盛水筒旋转至B处时,它到水面的距离为0.3米.【分析】(1)先求得该盛水筒的运动速度,再利用周角的定义即可求解;(2)作BC⊥OM于点C,在Rt△OAD中,利用含30度角的直角三角形的性质以及勾股定理求得OD的长,在Rt△OBC中,利用勾股定理求得OC的长,据此即可求解.【详解】(1)解:∵旋转一周用时120秒,=3°,∴每秒旋转360°120当经过95秒后该盛水筒运动到点B处时,∠AOB=360°−3°×95=75°,∵∠AOM=30°,∴∠BOM=75°−30°=45°;(2)解:作BC⊥OM于点C,设OM与水平面交于点D,则OD⊥AD,在Rt△OAD中,∠AOD=30°,OA=2,OA=1,OD=∴AD=12在Rt△OBC中,∠BOC=45°,OB=2,∴BC=OC=∴CD=OD−OC=≈0.3(米),答:该盛水筒旋转至B处时,它到水面的距离为0.3米.【点睛】本题考查了圆的性质,含30度角的直角三角形的性质以及勾股定理,解答本题的关键是明确题意,找出所求问题需要的条件.【题型8垂径定理在格点中的运用】【例8】(2023春·湖北武汉·九年级校联考期末)如图是由小正方形组成的7×6网格,每个小正方形的顶点叫做格点.仅用无刻度的直尺在给定网格中完成画图.(1)在图(1)中,A,B,C三点是格点,画经过这三点的圆的圆心O,并在该圆上画点D,使AD=BC;(2)在图(2)中,A,E,F三点是格点,⊙I经过点A.先过点F画AE的平行线交⊙I于M,N两点,再画弦MN的中点G.【答案】(1)见解析(2)见解析【分析】(1)首先根据网格的特点和圆的性质求得点D,然后根据矩形的对角线互相平分和圆的性质求得点O即可;(2)设AE与⊙I的交点为C,根据网格的特点和平行线的求得直线BF交⊙I于M,N两点,然后连接AN,CM 交于点D,连接DI并延长交MN与点G即可求解.【详解】(1)如图所示,连接AD,BC相交于点O,由网格可得,AD1=BC=3,由网格的特点可得,D2B∥AC∵点A,C,B,D2在同一个圆上∴AD2=BC=3∴点D1和D2即为所要求作的D点;∵∠DAB=∠ABC=∠BCD=90°∴四边形ABCD是矩形,∴OA=OB=OC=OD,∴点O即为经过A,B,C三点的圆的圆心,∴点O即为所求作的点;‘(2)如图所示,∵AC∥MN,点A,C,N,M在⊙I上∴AM=CN∴四边形AMNC是等腰梯形,。

【北师大版】数学九(下)3.垂径定理的推论及应用同步练习本(课件版)

【北师大版】数学九(下)3.垂径定理的推论及应用同步练习本(课件版)

B. 4 cm D. 6 cm
5. 如图,水平放置的圆柱形排水管道的截面直径是 1 m,
其中水面的宽 AB 为 0.8 m,则排水管道内水的最大
深度为 0.2
m.
重难易错
6. 如图,破残的圆形轮片上,弦 AB 的垂直平分线交AB于 点 C,交弦 AB 于点 D. 已知 AB = 12 cm,CD = 4 cm.
2
2
2
在 Rt△EOC 中,OC2 = CE2 + OE2,
∴OC2 = 122 +
1 OC
2
.
2
∴OC = 8 3. ∴☉O 的周长 = 2π·OC = 16 3π.
3. 如图,C 为☉O 的弦 AB 的中点,AB = 2,求☉O 的 面积.
解:∵C 为 AB 的中点, ∴AC = 1AB = 1,OC ⊥ AB.
2
∴OA2 = (OA - 1)2 + 52. 解得 OA = 13.
12. 如图,排水管截面的半径为 5 分米,水面宽 AB = 6 分米,OC ⊥ AB,求水的最大深度 CD.
解:如图,连接 OA. 则 OA = OC = 5 分米.
∵AB = 6 分米,∴AD = BD = AB = 3(分米).
2
在 Rt△OAD 中, OD = OA2 − AD2= 4(分米), ∴CD = OC - OD = 1(分米). 答:水的最形状的拱桥,桥下水面宽度 AB 为 7.2 m,拱顶 C 高出水平面 2.4 m,现有一艘宽 3 m,顶部为长方 形并高出水面 2 m 的货船要经过这里. 此货船能顺利通过拱 桥吗?为什么?
(1)求作此残片所在的圆心 O;(不写作法,保留作 图痕迹)
(2)求(1)中所作圆的半径.

圆的认识2圆的对称性垂径定理及其推论+练习课件+ 2023—2024学年华东师大版数学九年级下册

圆的认识2圆的对称性垂径定理及其推论+练习课件+ 2023—2024学年华东师大版数学九年级下册

桥,桥下水面宽度AB为12 m,拱高CD为4 m.
(1)求拱桥所在圆的半径;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
解:(1)设拱桥所在圆的圆心为O,连结OB,OD,则易知
OD⊥AB,点C在OD的延长线上.∵OC⊥AB,∴D为AB

的中点.∵AB=12 m,∴BD= AB=6 m.

设OB=OC=r m,∵CD=4 m,∴OD=(r-4)m.
垂足分别是点D、E,连结DE.
(1)求线段DE的长;
解:(1)∵OD经过圆心O,OD⊥AC,
∴AD=DC.同理得CE=EB.
∴DE是△ABC的中位线.

∴DE= AB.∵AB=8,∴DE=4.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
(2)若点O到AB的距离为3,求☉O的半径.
解:(2)过点O作OH⊥AB于点H,连结OA,
(r-15)
含 r 的 代 数 式 表 示 OD , 则 OD =
cm. 在
Rt△OAD中,由勾股定理可列出关于r的方程:r2= 452+
(r-15)2 ,解得r=75.通过单位换算,得到车轮直径约
为六尺六寸,可验证此车轮为兵车之轮.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
9.已知☉O的半径为7,AB是☉O的弦,点P在弦AB上.若PA=

专题-垂径定理的应用

专题-垂径定理的应用

垂径定理的应用知识考点:垂径定理及其推论是指:一条直线①过圆心;②垂直于一条弦;③平分这条弦(平分弦时,直径除外);④平分弦所对的劣弧;⑤平分弦所对的优弧。

“知二推三”数学符号:①CD过O点;②ABCD⊥;③BMAM=;④AC BC=;⑤AD BD=;一、作弦心距+用勾股定理思考1:如图,O的弦AB长为m,圆心O到AB的弦心距为d,O的半径为r,试探究r,m,d 之间的数量关系.①单勾股例1如图,在ABCBACBC=,以点C为圆心,CB为半径∠=︒,2∠=︒,20∆中,已知130ACB的圆交AB于点D,则BD的长为.(限时训练第3题)例1 变式1 例2 【变式练习1】如图,AB为O的直径,弦CD ABEB=,则O的CD=,1⊥于点E,已知6半径为.(课堂完成)②双勾股例2 如图,已知半径为2的O 有两条互相垂直的弦AB 和CD ,其交点E 到圆心O 的距离为1,则22AB CD += .(限时训练第6题)【变式练习2】(2018长沙26题改编)如图,A ,B ,C ,D 是半径为1的O 上按逆时针方向排列的四个动点,AC BD ⊥,当2267AC BD +时,求OE 的取值范围;(课堂完成)二、弧中点→连半径,得垂径思考2: 如图,AB 是O 的弦,C 是AB 的中点,你能得到那些结论?例2 如图,AB 为O 直径,D 为BC 弧的中点,DE AC ⊥于E , (1)求证:DE 为O 的切线;(2)已知:2CE =,4DE =,求O 的半径.(限时训练第7题)【变式练习3】如图,CD为O的直径,弦AB CD=,⊥,垂足为E,AB BFAB=,则弦AF的长度为.(课堂完成)1CE=,6【变式练习4】如图,已知AB是O的直径,O与Rt ACD∆的两直角边分别交于点E、F,点F是弧BE的中点,90∠=︒,连接AF.C(1)求证:直线DF是O的切线.(2)若1BD=,2∠的值.(课堂完成)OB=,求tan AFC【拓展提升】如图,在平面直角坐标系xoy 中,点E 在x 轴的正半轴上,E 交x 轴于A 、B 两点,交y 轴于C 、D 两点,且G 为BC 弧的中点,若点A 的坐标为(2,0)-,4AE =(1)求点C 的坐标; (2)求CAG ∠的度数;(3)若F 点的坐标为(10,0),问直线FG 与E 的位置关系,并说明理由.限时训练1.如图,一条公路的转弯处是一段圆弧()AB ,点O 是这段弧所在圆的圆心,40AB m =,点C 是AB 的中点,点D 是AB 的中点,且10CD m =,则这段弯路所在圆的半径为( ) A .25mB .24mC .30mD .60m2.如图,O 的半径为4,ABC ∆是O 的内接三角形,连接OB 、OC .若BAC ∠与BOC ∠互补,则弦BC 的长为( ) A .33B .43C .53D .63第1题 第2题 第3题3.如图,在ABC ∆中,已知130ACB ∠=︒,20BAC ∠=︒,2BC =,以点C 为圆心,CB 为半径的圆交AB 于点D ,则BD 的长为 .4.如图,AB 是O 的弦,C 、D 分别是弦AB 和弧AB 的中点,OC AB ⊥于C ,若25AB cm =,1CD cm =,则O 的半径长为 cm .第4题 第5题 第6题5.如图,一下水管道横截面为圆形,直径为100cm ,下雨前水面宽为60cm ,一场大雨过后,水面宽为80cm ,则水位上升 cm .6.如图,已知半径为2的O 有两条互相垂直的弦AB 和CD ,其交点E 到圆心O 的距离为1,则22AB CD += .7.如图,AB 为O 直径,D 为BC 弧的中点,DE AC ⊥于E , (1)求证:DE 为O 的切线;(2)已知:2CE =,4DE =,求O 的半径.(此部分课堂完成)【变式练习1】 如图,AB 为O 的直径,弦CD AB ⊥于点E ,已知6CD =,1EB =,则O 的半径为 .【变式练习2】(2018长沙26题改编)如图,A ,B ,C ,D 是半径为1的O 上按逆时针方向排列的四个动点,AC BD ⊥,当2267AC BD +时,求OE 的取值范围;【变式练习3】如图,CD 为O 的直径,弦AB CD ⊥,垂足为E ,AB BF =,1CE =,6AB =,则弦AF 的长度为 .(课堂完成)【变式练习4】如图,已知AB 是O 的直径,O 与Rt ACD ∆的两直角边分别交于点E 、F ,点F 是弧BE 的中点,90C ∠=︒,连接AF . (1)求证:直线DF 是O 的切线.(2)若1BD =,2OB =,求tan AFC ∠的值.(课堂完成)可做出周考的剩题1.如图,AB 是O 的直径,4AB =,点M 是OA 的中点,过点M 的直线与O 交于C 、D 两点.若45CMA ∠=︒,则弦CD 的长为 .2.已知O 的直径10CD cm =,AB 是O 的弦,AB CD ⊥,垂足为M ,且8AB cm =,则AC 的长为( ) A .25cmB .45cmC .25cm 或45cmD .23cm 或43cm3.如图,点C 为AB 弧的中点,点D 为O 上一点,30D ∠=︒,4BC cm =,求O 的半径长.。

垂径定理及其推论练习题

垂径定理及其推论练习题

5㎝
2.已知⊙o的弦AB=6㎝,直径CD=10㎝,且AB⊥CD,那么C到AB
的距离等于
1㎝或9㎝
3.已知⊙O的弦AB=4㎝,圆心O到AB的中点C的距离为1㎝,那么
⊙O的半径为
5 cm
4.如图,在⊙O中弦AB⊥AC,
B
OM⊥AB,ON⊥AC,垂足分别为M,
M
A
N,且OM=2,0N=3,则AB= 6,
AC= 4 ,OA=
13
O
N
C
第八页,编辑于星期六:十八点 四十五分。
1. 已知A、B、C是⊙O上三点,且AB=AC,
圆心O到BC的距离为3厘米,圆的半径为5厘 米,求AB长。
第九页,编辑于星期六:十八点 四十五分。
跟踪练习
1.已知⊙O的半径为5厘米,弦AB的长为8
厘米,求此弦的中点到这条弦所对的弧的中 点的距离。
C
·O
AE
D
∵ CD是直径, AE=BE
∴ CD⊥ABA,⌒C ⌒ A⌒D ⌒
B
=BC, =BD.
第三页,编辑于星期六:十八点 四十五分。
判断下列说法的正误
①平分弧的直径必平分弧所对的弦 ②平分弦的直线必垂直弦
③垂直于弦的直径平分这条弦 ④平分弦的直径垂直于这条弦
⑤弦的垂直平分线是圆的直径 ⑥平分弦所对的一条弧的直径必垂直这条弦 ⑦在圆中,如果一条直线经过圆心且平分弦,Biblioteka 2.如图,⊙O的直径为10,
弦AB=8,P为AB上的一个动
点,那么OP长的取值范围


第十页,编辑于星期六:十八点 四十五分。
3.某圆直径是10,内有两条平行 弦,长度分别为6和8。求这两条平 行弦间的距离。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B A P O
y x
垂径定理及其推论练习题
1.下面四个命题中正确的一个是( )
A .平分一条直径的弦必垂直于这条直径
B .平分一条弧的直线垂直于这条弧所对的弦
C .弦的垂线必过这条弦所在圆的圆心
D .在一个圆内平分一条弧和它所对弦的直线必过这个圆的圆心 2.下列命题中,正确的是( ).
A .过弦的中点的直线平分弦所对的弧
B .过弦的中点的直线必过圆心
C .弦所对的两条弧的中点连线垂直平分弦,且过圆心
D .弦的垂线平分弦所对的弧 3、⊙O 的直径为10,弦AB 的长为8,M 是弦AB 上的动点,则OM 的长的取值范围是( ) (A )5OM 3≤≤ (B )5OM 4≤≤
(C )5OM 3<< (D )5OM 4<<
4、已知:如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,且AB=8m ,OC=5m ,则DC 的长为( ) A 、3cm B 、2.5cm C 、2cm D 、1cm 5过⊙O 内一点P 的最长弦为10cm ,最短的弦为6cm ,则OP 的长为 . 6、如图,在⊙O 中,直径AB 丄弦CD 于点M ,AM=18,BM=8,则CD 的长为__________ . 7、如图,∠PAC=30°,在射线AC 上顺次截取AD=3cm ,DB=10cm ,以DB 为直径作⊙O 交射线AP 于E 、F 两点,则线段EF 的长是_________ cm .
8、如图,AB 是⊙O 的弦,AB 长为8,P 是⊙O 上一个动点(不与A 、B 重合),过点O 作OC ⊥AP 于点C ,OD ⊥PB 于点D ,则CD 的长为_____________ .
9、如图,AB 为⊙O 的直径,CD 为⊙O 的一条弦,CD ⊥AB ,垂足为E ,已知CD=6,AE=1,则⊙0的半径为 ____________.
10、如图所示,若⊙O 的半径为13cm ,点P 是弦AB 上一动点,且到圆心的最短距离5cm ,则弦AB 的长为______________ .
11、已知圆的半径为5cm ,一弦长为8cm ,则弦的中点到弦所对弧的中点的距离为__ _____。

12、在弓形ABC 中,弦AB=24,弓形高CD=6,则弓形所在圆的半径等于 。

13、在半径为5cm 的⊙O 中,有一点P 满足OP =3 cm ,则过P 的整数弦有 条。

14、如图,⊙O 中弦AB ⊥CD 于E ,AE =2,EB =6,ED =3,则⊙O 的半径为 。

15.如图,在直角坐标系中,以点P 为圆心的圆弧与轴交于A 、B 两点,已知P(4,2) 和A(2,0),则点B 的坐标是
16.如图,AB 是⊙O 的直径,OD ⊥AC 于点D ,BC=6cm ,则OD= cm
17.如图,矩形ABCD 与圆心在AB 上的圆O 交于点G 、B 、F 、E ,GB=10,EF=8,那
• E O
D C B A
O D
A
B
C
A B
C
D M
N O
么AD=
18.如图,是一个隧道的截面,如果路面AB 宽为8米,净高CD 为8么这个隧道所在圆的半径OA 是___________米 21、已知:⊙O 的半径1=OA ,弦AB 、AC 的长分别是2、3.则BAC
∠的度数为_____________。

22.在直径为50cm 的⊙O 中,弦AB=40cm ,弦CD=48cm ,且AB ∥CD ,则AB 与CD 之间的距离是_________________.
23.如图所示,⊙O 的直径AB 和弦CD 交于E ,已知AE=6cm ,EB=2cm ,∠CEA=30°,求CD 的长.
24、如图所示,在Rt △ABC 中,∠C =900,AC =3,BC =4,以点C 为圆心,CA 为半径的圆与AB 、BC 分别交于点D 、E ,求AB 和AD 的长。

25、如图,AB 、AC 为⊙O 的两条弦,D 、E 分别为AB 、AC 中点,求证:AM =AN .
26、如图,AB 、CD 都是⊙O 的弦,且AB ∥CD ,求证: AC = BD 。

C A
D E
A
B C D
O
A C
D
B 27、如图为一圆弧形拱桥,半径OA = 10m ,拱高为4m ,求拱桥跨度AB 的长。

28、如图,已知:在⊙O 中,AB 是直径,CD 是弦,CD CE ⊥交AB 于E ,CD DF ⊥交AB 于F .求证:BF AE =.
29、如图所示,P 为弦AB 上一点,CP ⊥OP 交⊙O 于点C ,AB =8,AP:PB =1:3,求PC 的长。

30.如图所示,破残的圆形轮片上,弦AB 的垂直平分线交弧AB 于点C ,交弦AB 于点D 。

已知:AB=24cm ,CD=8cm (1)求作此残片所在的圆(不写作法,保留作图痕迹);
(2)求(1)中所作圆的半径.
31、如图,AB 、CD 是半径为5的⊙O 的两条弦,AB=8,CD=6,MN 是直径,AB ⊥MN 于点E ,CD ⊥MN 于点F ,P 为EF 上的任意一点,则PA+PC 的最小值为多少?
A
C B
D O O
A P B
C。

相关文档
最新文档