09数学试题

合集下载

09年高考数学卷(江西.文)含详解

09年高考数学卷(江西.文)含详解

绝密★启用前2009年普通高等学校招生全国统一考试(江西卷)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至4页,共150分。

考生注意:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上,考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

2. 第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

第Ⅱ卷用黑色墨水签字笔在答题卡上书写作答。

在试题卷上作答,答案无效。

3. 考试结束,监考员将试题卷、答题卡一并收回。

参考公式如果事件,A B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件,A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 343V R π= n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径()(1)k kn k n n P k C p p -=- 第Ⅰ卷一.选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的. 1.下列命题是真命题的为A .若11x y=,则x y = B .若21x =,则1x = C .若x y =, D .若x y <,则 22x y <2.函数y =的定义域为A .[4,1]-B .[4,0)-C .(0,1]D .[4,0)(0,1]-3.50 名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名,参加乙项的学生有25名,则仅参加了一项活动的学生人数为 A .50 B .45 C .40 D .354.函数()(1)cos f x x x =的最小正周期为 A .2π B .32π C .π D .2π5.已知函数()f x 是(,)-∞+∞上的偶函数,若对于0x ≥,都有(2()f x f x +=),且当[0,2)x ∈时,2()log (1f x x =+),则(2008)(2009)f f -+的值为 A .2- B .1- C .1 D .26.若122n nn n n C x C x C x +++ 能被7整除,则,x n 的值可能为A .4,3x n ==B .4,4x n ==C .5,4x n ==D .6,5x n ==7.设1F 和2F 为双曲线22221x y a b-=(0,0a b >>)的两个焦点, 若12F F ,,(0,2)P b 是正三角形的三个顶点,则双曲线的离心率为A .32 B .2 C .52D .3 8.公差不为零的等差数列{}n a 的前n 项和为n S .若4a 是37a a 与的等比中项,832S =,则10S 等于A. 18B. 24C. 60D. 909.如图,在四面体ABCD 中,截面PQMN 是正方形,则在下列命题中,错误..的为A . AC BD ⊥B . AC ∥截面PQMNC . AC BD = D . 异面直线PM 与BD 所成的角为4510.甲、乙、丙、丁4个足球队参加比赛,假设每场比赛各队取胜的概率相等,现任意将这4个队分成两个组(每组两个队)进行比赛,胜者再赛,则甲、乙相遇的概率为 A .16 B .14 C .13 D .1211.如图所示,一质点(,)P x y 在xOy 平面上沿曲线运动,速度大小不变,其在x 轴上的投影点(,0)Q x 的运动速度()V V t =的图象大致为AC D12.若存在过点(1,0)的直线与曲线3y x =和21594y ax x =+-都相切,则a 等于 P QMNABCD(V ((V (A .1-或25-64B .1-或214C .74-或25-64D .74-或7绝密★启用前2009年普通高等学校招生全国统一考试(江西卷)文科数学第Ⅱ卷注意事项:第Ⅱ卷2页,须用黑色墨水签字笔在答题卡上书写作答,若在试题上作答,答案无效。

2009年中考数学试题汇编之三角形与全等三角形试题及答案[1]

2009年中考数学试题汇编之三角形与全等三角形试题及答案[1]

2009年中考试题专题之16-三角形与全等三角形试题及答案一、选择题 1.(2009年江苏省)如图,给出下列四组条件: ①AB DE BC EF AC DF ===,,; ②AB DE B E BC EF =∠=∠=,,; ③B E BC EF C F ∠=∠=∠=∠,,; ④AB DE AC DF B E ==∠=∠,,.其中,能使ABC DEF △≌△的条件共有( ) A .1组 B .2组 C .3组 D .4组2.(2009年浙江省绍兴市)如图,D E ,分别为ABC △的AC ,BC 边的中点,将此三角形沿DE 折叠,使点C 落在AB 边上的点P 处.若48CDE ∠=°,则APD ∠等于( ) A .42° B .48° C .52° D .58°3. (2009年义乌)如图,在ABC 中,90C ∠=。

,EF//AB,150∠=。

,则B ∠的度数为A .50。

B. 60。

C.30。

D. 40。

【关键词】三角形内角度数【答案】D4.(2009年济宁市)如图,△ABC 中,∠A =70°,∠B =60°,点D 在BC 的延长线上,则∠ACD 等于A. 100°B. 120°C. 130°D. 150°A BD5、(2009年衡阳市)如图2所示,A 、B 、C 分别表示三个村庄,AB=1000米,BC=600米,AC=800米,在社会主义新农村建设中,为了丰富群众生活,拟建一个 文化活动中心,要求这三个村庄到活动中心的距离相等,则活动中心P 的位置应在( ) A .AB 中点 B .BC 中点 C .AC 中点 D .∠C 的平分线与AB 的交点6、(2009年海南省中考卷第5题)已知图2中的两个三角形全等,则∠α度数是( )A.72°B.60°C.58°D.50° 7、(2009 黑龙江大兴安岭)如图,为估计池塘岸边A 、B 两点的距离,小方在池塘的一侧选取一点O ,测得15=OA 米,10=OB 米,A 、B 间的距离不可能是 ( ) A .5米 B .10米 C . 15米 D .20米8、(2009年崇左)一个等腰三角形的两边长分别为2和5,则它的周长为( ) A .7 B .9 C .12 D .9或12 9、(2009年湖北十堰市)下列命题中,错误的是( ). A .三角形两边之和大于第三边 B .三角形的外角和等于360° C .三角形的一条中线能将三角形面积分成相等的两部分 D .等边三角形既是轴对称图形,又是中心对称图形10、(09湖南怀化)如图,在Rt ABC △中,90=∠B ,ED 是AC 的垂直平分线,交AC 于点D ,交BC 于点E .已知10=∠BAE ,则C ∠的度数为( )A .30 B .40 C .50 D .6011、(2009年清远)如图,AB CD ∥,EF AB ⊥于E EF ,交CD 于F ,已知160∠=°,则2∠=( )A .20°B .60°C .30°D .45°A DB12、(2009年广西钦州)如图,在等腰梯形ABCD 中,AB =DC ,AC 、BD 交于点O ,则图中全等三角形共有( ) A .2对 B .3对C .4对D .5对【形ADO13、(2009年甘肃定西)如图4,四边形ABCD 中,AB =BC ,∠ABC =∠CDA =90°,BE ⊥AD于点E ,且四边形ABCD 的面积为8,则BE =( )A .2B .3C.D.14、(2009年广西钦州)如图,AC =AD ,BC =BD ,则有( ) A .AB 垂直平分CD B .CD 垂直平分AB C .AB 与CD 互相垂直平分D .CD 平分∠ACBABCD15、(2009肇庆)如图,Rt ABC △中, 90ACB ∠=°,DE 过点C ,且DE AB ∥,若 55ACD ∠=°,则∠B 的度数是( ) A .35° B .45° C .55° D .65°CDB AEF12A B E21CDBA16、(2009年邵阳市)如图,将Rt △ABC(其中∠B =340,∠C =900)绕A 点按顺时针方向旋转到△AB 1 C 1的位置,使得点C 、A 、B 1 在同一条直线上,那么旋转角最小等于( ) A.560B.680C.1240D.180017、(2009年湘西自治州)一个角是80°,它的余角是( )A .10°B .100°C .80°D .120°18、(2009河池)如图,在Rt △ABC 中,90∠=A ,AB =AC= E 为AC 的中点,点F 在底边BC 上,且⊥FE BE ,则△CEF 的面积是( )A . 16B . 18C .D .19、(2009柳州)如图所示,图中三角形的个数共有( ) A .1个 B .2个 C .3 个 D .4个20、(2009年牡丹江)如图, ABC △中,CD AB ⊥于D ,一定能确定ABC △为直角三角形的条件的个数是( ) ①1A ∠=∠,②CD DBAD CD=,③290B ∠+∠=°,④345BC AC AB =∶∶∶∶,⑤ACBD AC CD =·· A .1 B .2 C .3 D .4 【21、(2009桂林百色)如图所示,在方格纸上建立的平面直角坐标系中, 将△ABO 绕点O 按顺时针方向旋转90°, 得A B O ''△ ,则点A '的坐标为( ).A .(3,1)B .(3,2)C .(2,3)D .(1,3)22、(2009年长沙)已知三角形的两边长分别为3cm 和8cm ,则此三角形的第三边的长可能是( )A .4cmB .5cmC .6cmD .13cm 23、(2009年湖南长沙)已知三角形的两边长分别为3cm 和8cm ,则此三角形的第三边的长1C ACFAEC D BA可能是( ) A .4cm B .5cm C .6cm D .13cm24、(2009陕西省太原市)如图,ACB A C B '''△≌△,BCB ∠'=30°,则ACA '∠的度数为( ) A .20° B .30° C .35°D .40°25、 (2009陕西省太原市)如果三角形的两边分别为3和5,那么连接这个三角形三边中点,所得的三角形的周长可能是( )A .4B .4.5C .5D .5.526、(2009年牡丹江)尺规作图作AOB ∠的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得OCP ODP △≌△的根据是( ) A .SAS B .ASA C .AAS D .SSS27、(2009年新疆)如图,将三角尺的直角顶点放在直尺的一边上,130250∠=∠=°,°,则3∠的度数等于( ) A .50° B .30° C .20° D .15°28、(2009年牡丹江市)尺规作图作AOB ∠的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得OCP ODP △≌△的根据是( ) A .SAS B .ASA C .AAS D .SSS123C AB B 'A '【29、(2009年包头)已知在Rt ABC △中,390sin 5C A ∠==°,,则tan B 的值为( ) A .43B .45C .54D .34【30、(2009年齐齐哈尔市)如图,为估计池塘岸边A B 、的距离,小方在池塘的一侧选取一点O ,测得15OA =米,OB =10米,A B 、间的距离不可能是( ) A .20米 B .15米 C .10米 D .5米31、(2009年台湾)图(三)、图(四)、图(五)分别表示甲、乙、丙三人由A 地到B 地的路线图。

09小升初数学模拟试题九(苏教版)(含答案)

09小升初数学模拟试题九(苏教版)(含答案)

小升初数学模拟试题九(苏教版)一、选择题(共10小题)1.跳绳比赛上,小丽跳45个,小云跳的个数比小丽的2倍多一些,比小丽的3倍少一些,小云可能跳了()个.A.90B.135C.110D.852.布袋里放了5个球:〇〇〇●●,任意摸一个再放回,小明连续摸了4次都是白球.如果再摸一次,认为下面说法正确的是()A.可能摸到黑球B.一定能摸到黑球C.摸到黑球的可能性大D.不可能再摸到白球a3.北京的温度+5℃表示的是零上5℃,同时黑龙江的温度为﹣8℃,则﹣8℃表示的是()A.零上8℃B.零下8℃C.8℃4.把一个长方体铁块熔铸成一个正方体后,体积()A.变大B.变小C.不变D.无法比较5.口袋里有除颜色外都相同的10个球,其中5个红球,4个黄球,1个白球,从中任意摸出一个,有()可能的结果.A.5种B.4种C.3种D.1种6.一块试验田,今年预计比去年增产10%,实际比预计降低了10%.实际产量与去年产量比()A.实际产量高B.去年产量高C.产量相同7.学校体育室购进一批足球与篮球共360个,其中购进足球个数的25%比购进位篮球个数的 还多20个,学校体育室购进足球()个.A.120B.160C.200D.2408.一个圆柱和一个圆锥等底等高,圆柱体积是1立方分米,圆锥体积是()A.3立方分米B.1立方分米C. 立方分米D.5立方分米9.下面的几何体从侧面看,图形是的有()。

A.(1)(2)(4)B.(2)(3)(4)C.(1)(3)(4)10.A、B、C、D四人一起完成一件工作,D做了一天就因病请假了,A结果做了6天,B做了5天,C做了4天,D作为休息的代价,拿出48元给A、B、C三人作为报酬,算劳务费,则这48元中A应分()元.A.18B.19.2C.20D.32二、判断题(共5小题)11.a(a不为0)和它的倒数成正比例.()12.因为 = ,所以 的分数单位是 .()13.甲数比乙数少 ,则甲数与乙数的比是4:3。

2009年九年级数学中考试题专题之6-一元一次方程和二元一次方程组试题及答案

2009年九年级数学中考试题专题之6-一元一次方程和二元一次方程组试题及答案

2009年中考试题专题之6-一元一次方程和二元一次方程组试题及答案一、选择1、(2009年某某省内江市)若关于x ,y 的方程组⎩⎨⎧=+=-n my x m y x 2的解是⎩⎨⎧==12y x ,则n m -为( )A .1B .3C .5D .22、(2009年某某市、某某市)已知21x y =⎧⎨=⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解,则a b -的值为( ).A .1B .-1C . 2D .33、(2009年某某市)家电下乡是我国应对当前国际金融危机,惠农强农,带动工业生产,促进消费,拉动内需的一项重要举措.国家规定,农民购买家电下乡产品将得到销售价格13%的补贴资金.今年5月1日,甲商场向农民销售某种家电下乡手机20部.已知从甲商场售出的这20部手机国家共发放了2340元的补贴,若设该手机的销售价格为x 元,以下方程正确的是( )A .2013%2340x ⋅=B .20234013%x =⨯C .20(113%)2340x -=D .13%2340x ⋅=4、(2009年某某市)一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有()A .4种B .3种C .2种D .1种5、(2009年某某省)A 种饮料B 种饮料单价少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设B 种饮料单价为x 元/瓶,那么下面所列方程正确的是()A .2(1)313x x -+=B .2(1)313x x ++=C .23(1)13x x ++=D .23(1)13x x +-=6、(2009年某某市)班长去文具店买毕业留言卡50X ,每X 标价2元,店老板说可以按标价九折优惠,则班长应付()A .45元B .90元C .10元D .100元7、(2009某某某某)已知21x y =⎧⎨=⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解,则a b -的值为( ).A .1B .-1C . 2D .38、(2009某某)方程组233x y x y -=⎧⎨+=⎩,的解是( )A .12x y =⎧⎨=⎩,.B .21x y =⎧⎨=⎩,.C .11x y =⎧⎨=⎩,.D .23x y =⎧⎨=⎩,.9、(2009年日照)若关于x ,y 的二元一次方程组⎩⎨⎧=-=+k y x ,k y x 95的解也是二元一次方程632=+y x 的解,则k 的值为A.43-B.43C.34D.34-10、(2009年某某)二元一次方程组2,0x y x y +=⎧⎨-=⎩的解是( )A .0,2.x y =⎧⎨=⎩B .2,0.x y =⎧⎨=⎩C .1,1.x y =⎧⎨=⎩D .1,1.x y =-⎧⎨=-⎩11、(2009年某某)已知三角形的两边长分别为3cm 和8cm ,则此三角形的第三边的长可能是( ) A .4cmB .5cmC .6cmD .13cm12、(2009年某某)已知有10包相同数量的饼干,若将其中1包饼干平分给23名学生,最少剩3片。

九年级数学专题09 中心对称 (知识点串讲)(原卷版)

九年级数学专题09 中心对称 (知识点串讲)(原卷版)

专题09 中心对称重点突破中心对称概念:把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫作对称中心.这两个图形旋转后能重合的对应点叫作关于对称中心的对称点.如图,ABO∆绕着点O旋转180︒后,与CDO∆完全重合,则称CDO∆和ABO∆关于点O对称,点C是点A关于点O的对称点.O DAB C中心对称图形概念:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫作中心对称图形,这个点就是它的对称中心.中心对称与中心对称图形的区别与联系:1.中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;2.中心对称的两个图形是全等图形.找对称中心的方法和步骤:方法1:连接两个对应点,取对应点连线的中点,则中点为对称中心.方法2:连接两个对应点,在连接两个对应点,两组对应点连线的交点为对称中心.关于原点对称的点的坐标规律两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点P’(-x,-y)考查题型考查题型一中心对称图形的识别典例1.(2019·夏河县期中)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.变式1-1.(2020·扬州市期中)下列图形中,是中心对称图形的是()A.B.C.D.变式1-2.(2020·沈阳市期中)下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.变式1-3.(2020·昆明市期末)下列四个银行标志中,既是中心对称图形,又是轴对称图形的是( ) A.B.C.D.考查题型二判断中心对称图形的对称中心典例2.(2019·德州市期中)如图,已知图形是中心对称图形,则对称中心是()A .点CB .点DC .线段BC 的中点D .线段FC 的中点变式2-1.(2020·绵阳市期末)如图所示的中心对称图形中,对称中心是( )A .1OB .2OC .3OD .4O变式2-2.(2019·济南市期中)如图,将ABC ∆绕点()1,1C 旋转180︒得到''.A B C ∆设点A 的坐标为(,)a b , 则点'A 的坐标为( )A .()1,1a b -+-+B .()1,1a b ----C .()2,2a b -+-+D .2,2()a b ----考查题型三 中心对称的性质典例3.(2020·阜阳市期末)如图,△ABC 与△A′B′C′关于点O 成中心对称,则下列结论不成立的是( )A .点A 与点A'是对称点B .BO B'O =C .AB//A'B'D .ACB C'A'B'∠∠=变式3-1.(2018·唐山市期末)如图是一个以O 为对称中心的中心对称图形,若∠A=30°, ∠C=90°,OC=1,则AB 的长为( )A .2B .4C .23D .43变式3-2.(2020·襄阳市期中)如图所示,△ABC 与△A′B′C′是成中心对称的两个图形,则下列说法不正确的是( )A .AB=A′B′,BC=B′C′B .AB ∥A′B′,BC ∥B′C′ C .S △ABC =S △A′B′C′D .△ABC ≌△A′OC′变式3-3.(2019·德源市期末)如图,ABC ∆与'''A B C ∆关于O 成中心对称,下列结论中不一定成立的是( )A .'''ABC A CB ∠=∠ B .'OA OA =C .''BC B C =D .'OC OC =考查题型四 根据中心对称的性质求面积典例4.(2018·鹤岗市期中)如图,已知长方形的长为10cm ,宽为4cm ,则图中阴影部分的面积为( )A .20cm 2B .15cm 2C .10cm 2D .25cm 2变式4-1.(2019·郑州市期末)用一条直线 m 将如图 1 的直角铁皮分成面积相等的两部分.图 2、图 3 分别是甲、乙两同学给出的作法,对于两人的作法判断正确的是( )A.甲正确,乙不正确B.甲不正确,乙正确C.甲、乙都正确D.甲、乙都不正确变式4-2.(2018·龙岩市期末)如图,在面积为12的□ABCD中,对角线BD绕着它的中点O按顺时针方向旋转一定角度后,其所在直线分别交AB、CD于点E、F,若AE=2EB,则图中阴影部分的面积等于()A.3 B.1 C.43D.23考查题型五在方格纸中补画图形使之成为中心对称图形典例5.(2018·银川市期末)在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形.该小正方形的序号是()A.①B.②C.③D.④变式5-1.(2018·日照市期中)如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠,且组成的图形既是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有( )A.2种B.3种C.4种D.5种变式5-2.(2019·宝鸡市期中)在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中涂色部分构成中心对称图形.该小正方形的序号是()A .①B .②C .③D .④考查题型六 关于原点对称的点的坐标典例6.(2020·信阳市期末)在平面直角坐标系中,点()3,5P --关于原点对称的点的坐标是( ) A .()3,5-B .()3,5-C .()3,5D .()3,5--变式6-1.(2019·西安市期中)在平面直角坐标系中,点P (-20,a )与点Q (b ,13)关于原点对称,则a+b 的值为( )A .33B .-33C .-7D .7变式6-2.(2019·南通市期中)在平面直角坐标系中,点()23,1P m -+关于原点对称点在( ) A .第一象限B .第二象限C .第三象限D .第四象限变式6-3.(2019·北京市期中)已知点A (x ﹣2,3)与点B (x+4,y ﹣5)关于原点对称,则y x 的值是( ) A .2B .12C .4D .8变式6-4.(2019·滨州市期中)若在平面直角坐标系内A(m-1,6),B(-2,n)两点关于原点对称,则m+n 的值为( ) A .9B .-3C .3D .5巩固训练一、单选题(共10小题)1.(2019春 芜湖市期末)下列图形中,既是中心对称图形,又是轴对称图形的是( )A .B .C .D .2.(2019春 济南市期末)如图,在平面直角坐标系中,ABC ∆的顶点A 在第一象限,点B 、C 的坐标分别为(2,1)、()6,1,90BAC ∠=︒,AB AC =,直线AB 交y 轴于点P ,若ABC ∆与A B C '''∆关于点P 成中心对称,则点A '的坐标为( )A .(4,5)--B .(5,4)--C .(3,4)--D .(4,3)--3.(2019春 济南市期末)已知点P (a +1,12a-+)关于原点的对称点在第四象限,则a 的取值范围在数轴上表示正确的是( ) A . B . C .D .4.(2019春 黄石市期中)正方形ABCD 在直角坐标系中的位置如图所示,将正方形ABCD 绕点A 按顺时针方向旋转180°后,C 点的坐标是( )A .(2,0)B .(3,0)C .(2,-1)D .(2,1)5.(2018春 郑州市期末)国产越野车“BJ40”中,哪个数字或字母既是中心对称图形又是轴对称图形( ) A .B B .J C .4 D .06.(2018春 德州市期末)已知点A(a +b ,4)与点B(-2,a -b)关于原点对称,则a 2-b 2等于( ) A.8B.-8C.5D.-57.(2019·滨州市期中)小明把如图所示的平行四边形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板 的任何一个点的机会都相等),则飞镖落在阴影区域的概率是( )A .12B .13C .14D .168.(2019·西城区期中)如图,已知△ABC 与△CDA 关于点O 成中心对称,过点O 任作直线EF 分别交AD,BC 于点E,F,则下则结论:①点E 和点F,点B 和点D 是关于中心O 的对称点;②直线BD 必经过点O;③四边形ABCD 是中心对称图形;④四边形DEOC 与四边形BFOA 的面积必相等;⑤△AOE 与△COF 成中心对称.其中正确的个数为 ( )A .2B .3C .4D .59.(2018春 重庆市期末)已知点()11,1p a -和()22,1p b -关于原点对称,则()2008a b +的值为( )A .1B .0C .-1D .()20053-10.(2016春 沈阳市期末)将点P (-2,3)向右平移3个单位得到点P 1,点P 2与点P 1关于原点对称,则P 2的坐标是( )A .(-5,-3)B .(1,-3)C .(-1,-3)D .(5,-3) 二、填空题(共5小题)11.(2018春 南阳市期末)在平面直角坐标系中,点A 的坐标为(a ,3),点B 的坐标是(4,b ),若点A 与点B 关于原点O 对称,则ab=_____.12.(2018春 泸西县期末)若点(,1)与(﹣2,b )关于原点对称,则=_______.13.(2019春 东营市期中)已知M (a ,﹣3)和N (4,b )关于原点对称,则(a+b )2002=_____. 14.(2018春 长沙市期末)点()2,3M -关于x 轴对称的点A 的坐标是________,点M 关于y 轴对称的C 的坐标是________,点M 关于原点对称的点B 的坐标是________.15.(2018春 南京市期中)抛物线y =2x 2-4x +5绕它的坐标原点O 旋转180°后的二次函数表达式为________.三、解答题(共2小题)16.(2016春 苏州市期中)如图,在平面直角坐标系中,Rt ABC ∆的三个顶点分别是(4,2)A -、(0,4)B 、(0,2)C .(1)画出ABC ∆关于点C 成中心对称的△11A B C ;平移ABC ∆,若点A 的对应点2A 的坐标为(0,4)-,画出平移后对应的△222A B C ;(2)△11A B C 和△222A B C 关于某一点成中心对称,则对称中心的坐标为 .17.(2018春 连云港市期末)在边长为1个单位长度的小正方形组成的网格中,建立如图所示的平面直角坐标系△ABC 是格点三角形(顶点在网格线的交点上)(1)先作△ABC 关于原点O 成中心对称的△A 1B 1C 1,再把△A 1B 1C 1向上平移4个单位长度得到△A 2B 2C 2; (2)△A 2B 2C 2与△ABC 是否关于某点成中心对称?若是,直接写出对称中心的坐标;若不是,请说明理由.。

2009年浙江高考理科数学卷(含详细答案解析)

2009年浙江高考理科数学卷(含详细答案解析)

绝密★考试结束前2009年普通高等学校招生全国统一考试(浙江卷)数 学(理科) 本试题卷分选择题和非选择题两部分。

全卷共5页,选择题部分1至2页,非选择题部分3至5页。

满分150分,考试时间120分钟。

请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分(共50分)注意事项: 1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸上。

2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

不能答在试题卷上。

参考公式:如果事件,A B 互斥,那么 棱柱的体积公式()()()P A B P A P B +=+ V Sh =如果事件,A B 相互独立,那么 其中S 表示棱柱的底面积,h 表示棱柱的高()()()P A B P A P B ⋅=⋅ 棱锥的体积公式如果事件A 在一次试验中发生的概率是p ,那么 13V Sh =n 次独立重复试验中事件A 恰好发生k 次的概率 其中S 表示棱锥的底面积,h 表示棱锥的高()(1),(0,1,2,,)k kn k n n P k C p p k n -=-= 棱台的体积公式球的表面积公式 )(312211S S S S h V ++= 24S R π= 其中S 1、S 2分别表示棱台的上、下底面积,球的体积公式 h 表示棱台的高334R V π=其中R 表示球的半径一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的.1.设U =R ,{|0}A x x =>,{|1}B x x =>,则UAB =( )A .{|01}x x ≤<B .{|01}x x <≤C .{|0}x x <D .{|1}x x >答案:B【解析】 对于{}1U C B x x =≤,因此UAB ={|01}x x <≤.2.已知,a b 是实数,则“0a >且0b >”是“0a b +>且0ab >”的 ( )A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件答案:C【解析】对于“0a >且0b >”可以推出“0a b +>且0ab >”,反之也是成立的 3.设1z i =+(i 是虚数单位),则22z z+= ( ) A .1i -- B .1i -+ C .1i - D . 1i +答案:D 【解析】对于2222(1)1211z i i i i z i+=++=-+=++ 4.在二项式251()x x-的展开式中,含4x 的项的系数是( )A .10-B .10C .5-D .5答案:B【解析】对于()251031551()()1rrrr r r r T C x C x x--+=-=-,对于1034,2r r -=∴=,则4x 的项的系数是225(1)10C -=5.在三棱柱111ABC A B C -中,各棱长相等,侧掕垂直于底面,点D 是侧面11BB C C 的中心,则AD 与平面11BB C C 所成角的大小是 ( ) A .30 B .45 C .60 D .90答案:C【解析】取BC 的中点E ,则AE ⊥面11BB C C ,AE DE ∴⊥,因此AD 与平面11BB C C 所成角即为ADE ∠,设AB a =,则32AE a =,2a DE =,即有0tan 3,60ADE ADE ∠=∴∠=.6.某程序框图如图所示,该程序运行后输出的k 的值是 ( ) A .4 B .5 C .6 D .7答案:A【解析】对于0,1,1k s k ==∴=,而对于1,3,2k s k ==∴=,则2,38,3k s k ==+∴=,后面是113,382,4k s k ==++∴=,不符合条件时输出的4k =.7.设向量a ,b 满足:||3=a ,||4=b ,0⋅=a b .以a ,b ,-a b 的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为 ( ) A .3 B .4 C .5 D .6 答案:C【解析】对于半径为1的圆有一个位置是正好是三角形的内切圆,此时只有三个交点,对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,但5个以上的交点不能实现. 8.已知a 是实数,则函数()1sin f x a ax =+的图象不可能...是 ( )答案:D【解析】对于振幅大于1时,三角函数的周期为2,1,2T a T aππ=>∴<,而D 不符合要求,它的振幅大于1,但周期反而大于了2π.9.过双曲线22221(0,0)x y a b a b-=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线的交点分别为,B C .若12AB BC =,则双曲线的离心率是 ( ) A 2 B 3 C 5 D 10答案:C【解析】对于(),0A a ,则直线方程为0x y a +-=,直线与两渐近线的交点为B ,C ,22,,(,)a ab a ab B C a b a b a b a b ⎛⎫- ⎪++--⎝⎭,则有22222222(,),,a b a b ab ab BC AB a b a b a b a b ⎛⎫=-=- ⎪--++⎝⎭,因222,4,5AB BC a b e =∴=∴=. 10.对于正实数α,记M α为满足下述条件的函数()f x 构成的集合:12,x x ∀∈R 且21x x >,有212121()()()()x x f x f x x x αα--<-<-.下列结论中正确的是 ( )A .若1()f x M α∈,2()g x M α∈,则12()()f x g x M αα⋅⋅∈B .若1()f x M α∈,2()g x M α∈,且()0g x ≠,则12()()f x M g x αα∈ C .若1()f x M α∈,2()g x M α∈,则12()()f x g x M αα++∈D .若1()f x M α∈,2()g x M α∈,且12αα>,则12()()f x g x M αα--∈ 答案:C【解析】对于212121()()()()x x f x f x x x αα--<-<-,即有2121()()f x f x x x αα--<<-,令2121()()f x f x k x x -=-,有k αα-<<,不妨设1()f x M α∈,2()g x M α∈,即有11,f k αα-<<22g k αα-<<,因此有1212f g k k αααα--<+<+,因此有12()()f x g x M αα++∈.非选择题部分(共100分)注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。

【09年数学中考原题】江西省南昌市2009年中考数学试卷(word版含答案)

【09年数学中考原题】江西省南昌市2009年中考数学试卷(word版含答案)

y
(第 15 题)
y1 = x
B A C O
②当 x > 2 时, y2 > y1 ; ③当 x = 1 时, BC = 3 ; ④当 x 逐渐增大时, y1 随着 x 的增大而增大, y2 随着 x 的 增大而减小. 其中正确结论的序号是 . (本大题共 小题, 三, 本大题共 4 小题,每小题 6 分,共 24 分) ( 17. 化简求值: [(x-y)2+y(4x-y)-8x]÷2x,其中 x=8,y=2009.
数学试题参考答案及评分意见
说明: 说明: 1.如果考生的解答与本参考答案不同,可根据试题的主要考查内容参照评分标准制 定相应的评分细则后评卷. 2.每题都要评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅;当考 生的解答在某一步出现错误, 影响了后继部分时, 如果该步以后的解答未改变这一题的内容 和难度,则可视影响的程度决定后面部分的给分,但不得超过后面部分应给分数的一半;如 果这一步以后的解答有较严重的错误,就不给分. 3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数. 小题, 一,选择题(本大题共 8 小题,每小题 3 分,共 24 分) 选择题( 1 2 3 4 5 6 题号 答案 A D C B A B 小题, 二,填空题(本大题共 8 小题,每小题 3 分,共 24 分) 填空题( 9.如 π,2,3,7 等 10. (Ⅰ) x = 4 ; (Ⅱ)0.464 11.(-2,3) 12.2 13.3600πcm2 14. 2 < x < 5 15.120 16.①③④ (说明:1.第 9 小题答案不唯一,只要符合题意即可满分; 2.第 16 小题,填了②的,不得分;未填②的,①,③,④中每填一个得 1 分) (本大题共 小题, 三, 本大题共 4 小题,每小题 6 分,共 24 分) ( 17.解:原式=(x2-2xy+y2+4xy-y2-8x)÷2x 2 分 =x(x+2y-8) ÷2x =

2009-数二真题、标准答案及解析

2009-数二真题、标准答案及解析

(6)设函数 y = f ( x) 在区间−1,3 上的图形为:
则函数 F ( x) = x f (t ) dt 的图形为 0
( A)
(B)
(C)
(D)
【答案】 D
【解析】此题为定积分的应用知识考核,由 y = f (x) 的图形可见,其图像与 x 轴及 y 轴、
x = x0 所围的图形的代数面积为所求函数 F (x) ,从而可得出几个方面的特征:
a
a3 = −6b ,故排除 B,C .
另外,
lim
x→0
1− a cos ax −3bx2
存在,蕴含了1−
a
cos
ax

0
(
x

0)
,故
a
=
1.
排除
D
.
所以本题选 A .
(3) 设函数 z = f ( x, y) 的全微分为 dz = xdx + ydy ,则点 (0, 0)
( A) 不是 f ( x, y) 的连续点 ( B) 不是 f ( x, y) 的极值点
【解析】1 =
+ ek x dx = 2 + ekxdx = 2 lim 1 ekx b

0
k b→+
0
【答案】 −2
因为极限存在所以 k 0 1=0− 2
k k = −2
(11) lim 1e−x sin nxdx = n→ 0
【答案】0
【解析】令 In = e−x sin nxdx = −e−x sin nx + n e−x cos nxdx
y = t2 ln(2 − t2 )
【答案】 y = 2x
【解析】

2009年高考陕西数学(理科)试题及参考答案

2009年高考陕西数学(理科)试题及参考答案

长期以来,由于化肥施用过多,生物有机肥料投入严重不足,造成土壤有机质不足,土壤板结,再加上过多的使用农药、除草剂,从而破坏了生态平衡,污染了环境.虽然农作物产量有了一定的提高,但农产品品质严重下降.为此,我国肥料必须发展生物、有机肥料,开发生物、有机、无机复混型的高效肥料,以确保我国农业实现"高产、优质、高效益"目论环境友好型肥料技术的研发与推广时间:2011-04-18 06:14:02 来源:作者:杨晒金(贵州省铜仁市农牧科技局土壤肥料工作站,贵州铜仁 554300)摘要:文章对肥料技术与肥料施用现状进行了简要描述,在现有肥料技术理论的基础上提出了新型环境友好型肥料技术的概念,表明了它较传统肥料技术的优点,并对新型环境友好肥料的研发与推广提出了自己的建议。

关键词:环境友好型;肥料技术;重金属;研发中图分类号:TQ126.35 文献标识码:A 文章编号:1674-0432(2011)-03时至今日,化肥的施用、误用、滥用对于生态环境、农产品的质量安全与人类的健康产生的负面效应业已为世人所瞩目。

作为农业科研战线的工作者,笔者认为有义务和责任去研发环境友好型肥料生产技术,在增加农作物的产量的同时实现安全优质生产,实现环境友好型、资源节约型农业发展战略目标,提高农业经济效益与社会效益。

1 肥料技术与肥料施用现状在中国的现实农业生产中,鉴于生产者对肥料知识的欠缺而引起的肥料误用、滥用以及肥料自身的可利用率偏低。

笔者认为,就提高肥料自身的的可利用率而言,缓/控释复合肥是适合中国目前农业情势而宜继续努力研发的重点项目,因为21世纪肥料发展的总体走势之一就是缓/控释复合肥的研发与推广。

故此,我们应当大力开发符合中国国情的缓/控释复合肥。

目前,中国所研发的包裹型复合肥,较国外同类产品而质量可靠、成本相对低廉,已经在中国农业生产中被推广应用。

但综观当前中国市场上的包裹型复合肥,毕竟是化工肥料的彼此之间的包裹,依然是化工肥料的混合,肥料利用效率纵然提高了,但对土壤、生态环境、农产品安全与人体健康的现实的与潜在的危害难以消除。

十年真题(-2019)高考数学真题分类汇编 专题09 立体几何与空间向量选择填空题 理(含解析)

十年真题(-2019)高考数学真题分类汇编 专题09 立体几何与空间向量选择填空题 理(含解析)

专题09立体几何与空间向量选择填空题历年考题细目表题型年份考点试题位置单选题2019表面积与体积2019年新课标1理科12单选题2018几何体的结构特征2018年新课标1理科07单选题2018表面积与体积2018年新课标1理科12单选题2017三视图与直观图2017年新课标1理科07单选题2016三视图与直观图2016年新课标1理科06单选题2016空间向量在立体几何中的应用2016年新课标1理科11单选题2015表面积与体积2015年新课标1理科06单选题2015三视图与直观图2015年新课标1理科11单选题2014三视图与直观图2014年新课标1理科12单选题2013表面积与体积2013年新课标1理科06单选题2013三视图与直观图2013年新课标1理科08单选题2012三视图与直观图2012年新课标1理科07单选题2012表面积与体积2012年新课标1理科11单选题2011三视图与直观图2011年新课标1理科06单选题2010表面积与体积2010年新课标1理科10填空题2017表面积与体积2017年新课标1理科16填空题2011表面积与体积2011年新课标1理科15填空题2010三视图与直观图2010年新课标1理科14历年高考真题汇编1.【2019年新课标1理科12】已知三棱锥P﹣ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为()A.8πB.4πC.2πD.π【解答】解:如图,由PA=PB=PC,△ABC是边长为2的正三角形,可知三棱锥P﹣ABC为正三棱锥,则顶点P在底面的射影O为底面三角形的中心,连接BO并延长,交AC于G,则AC⊥BG,又PO⊥AC,PO∩BG=O,可得AC⊥平面PBG,则PB⊥AC,∵E,F分别是PA,AB的中点,∴EF∥PB,又∠CEF=90°,即EF⊥CE,∴PB⊥CE,得PB⊥平面PAC,∴正三棱锥P﹣ABC的三条侧棱两两互相垂直,把三棱锥补形为正方体,则正方体外接球即为三棱锥的外接球,其直径为D.半径为,则球O的体积为.故选:D.2.【2018年新课标1理科07】某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3 D.2【解答】解:由题意可知几何体是圆柱,底面周长16,高为:2,直观图以及侧面展开图如图:圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度:2.故选:B.3.【2018年新课标1理科12】已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.B.C.D.【解答】解:正方体的所有棱中,实际上是3组平行的棱,每条棱所在直线与平面α所成的角都相等,如图:所示的正六边形平行的平面,并且正六边形时,α截此正方体所得截面面积的最大,此时正六边形的边长,α截此正方体所得截面最大值为:6.故选:A.4.【2017年新课标1理科07】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10 B.12 C.14 D.16【解答】解:由三视图可画出直观图,该立体图中只有两个相同的梯形的面,S梯形2×(2+4)=6,∴这些梯形的面积之和为6×2=12,故选:B.5.【2016年新课标1理科06】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是( )A.17πB.18πC.20πD.28π【解答】解:由题意可知三视图复原的几何体是一个球去掉后的几何体,如图:可得:,R=2.它的表面积是:4π•2217π.故选:A.6.【2016年新课标1理科11】平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.【解答】解:如图:α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABA1B1=n,可知:n∥CD1,m∥B1D1,∵△CB1D1是正三角形.m、n所成角就是∠CD1B1=60°.则m、n所成角的正弦值为:.故选:A.7.【2015年新课标1理科06】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A.14斛B.22斛C.36斛D.66斛【解答】解:设圆锥的底面半径为r,则r=8,解得r,故米堆的体积为π×()2×5,∵1斛米的体积约为1.62立方,∴1。

部编数学七年级上册专题09压轴大题分类练(三大考点)(期末真题精选)(解析版)含答案

部编数学七年级上册专题09压轴大题分类练(三大考点)(期末真题精选)(解析版)含答案

专题09 压轴大题分类练(三大考点)一.新定义(热点题型)1.在数轴上,把原点记作点O ,表示数1的点记作点A .对于数轴上任意一点P (不与点O ,点A重合),将线段PO 与线段PA 的长度之比定义为点P 的特征值,记作P ,即P =PO PA,例如:当点P 是线段OA 的中点时,因为PO =PA ,所以P =1.(1)如图,点P 1,P 2,P 3为数轴上三个点,点P 1表示的数是−14,点P 2与P 1关于原点对称.①P 2= 13 ;②比较P 1,P 2,P 3的大小 P 1<P 2<P 3 (用“<”连接);(2)数轴上的点M 满足OM =13OA ,求M ;(3)数轴上的点P 表示有理数p ,已知P <100且P 为整数,则所有满足条件的p 的倒数之和为 198 .试题分析:(1)①根据定义求出线段P 2A 与P 2O 的值即可解答;②根据定义分别求出P 1,P 3的值即可比较;(2)分两种情况,点M 在原点的右侧,点M 在原点的左侧;(3)根据题意可知,分两种情况,点P 在点A 的右侧,点P 在OA 之间.答案详解:解:(1)①∵点P 1表示的数是−14,点P 2与P 1关于原点对称,∴点P 2表示的数是14,∵点A 表示的数是1,∴P 2A =1−14=34,P 2O =14,∴P 2=P 2O P 2A =1434=13,②∵点P 1表示的数是−14,∴P 1A =1﹣(−14)=54,P 1O =14,∴P 1=P 1O P 1A =1454=15,∵1<P 3<2,∴1<P 3O <2,0<P 3A <1,∴P 3=P 3O P 3A >1,∴P 1<P 2<P 3,所以答案是:①13,②P 1<P 2<P 3;(2)分两种情况:当点M 在原点的右侧,∵OM =13OA ,∴OM =13,∴点M 表示的数为:13,∴MO =13,MA =1−13=23,∴M =MO MA =1323=12,当点M 在原点的左侧,∵OM =13OA ,∴OM =13,∴点M 表示的数为:−13,∴MO =13,MA =1﹣(−13)=43,∴M =MO MA =1343=14,∴M 的值为:12或14;(3)∵P <100且P 为整数,PA∴PO >PA 且PO 为PA 的倍数,当P =PO PA=1时,∴PO =PA ,即点P 为OA 的中点,∴p =12,∴当P =1时,p 的值为12,当P =PO PA=2时,∴PO =2PA ,当点P 在OA 之间,∴p =2(1﹣p ),∴p =23,当点P 在点A 的右侧,∴p =2(p ﹣1),∴p =2,∴当P =2时,p 的值为:2或23,当P =PO PA=3时,∴PO =3PA ,当点P 在OA 之间,∴p =3(1﹣p ),∴p =34,当点P 在点A 的右侧,∴p =3(p ﹣1),∴p =32,∴当P =3时,p 的值为:34或32,PA∴PO=4PA,当点P在OA之间,∴p=4(1﹣p),∴p=4 5,当点P在点A的右侧,∴p=4(p﹣1),∴p=4 3,∴当P=4时,p的值为:45或43,…当P=POPA=99时,∴PO=99PA,当点P在OA之间,∴p=99(1﹣p),∴p=99 100,当点P在点A的右侧,∴p=99(p﹣1),∴p=99 98,∴当P=99时,p的值为:99100或9998,∴所有满足条件的p的倒数之和为:2+32+12+43+23+54+34+...+10099+9899=2+(32+12)+(43+23)+(54+34)+...+(10099+9899)=2+2+2+2+...+2=2×99=198,所以答案是:198.2.对于点M ,N ,给出如下定义:在直线MN 上,若存在点P ,使得MP =kNP (k >0),则称点P 是“点M 到点N 的k 倍分点”.例如:如图,点Q 1,Q 2,Q 3在同一条直线上,Q 1Q 2=3,Q 2Q 3=6,则点Q 1是点Q 2到点Q 3的13倍分点,点Q 1是点Q 3到点Q 2的3倍分点.已知:在数轴上,点A ,B ,C 分别表示﹣4,﹣2,2.(1)点B 是点A 到点C 的 12 倍分点,点C 是点B 到点A 的 23 倍分点;(2)点B 到点C 的3倍分点表示的数是 1或4 ;(3)点D 表示的数是x ,线段BC 上存在点A 到点D 的2倍分点,写出x 的取值范围.试题分析:(1)通过计算BA BC ,CB CA的值,利用题干中的定义解答即可;(2)设这点为E ,对应的数字为a ,利用分类讨论的思想方法根据EB EC=3分别列出方程,解方程即可得出结论;(3)分两种情况:①点D 在点B 的左侧,②点D 在点C 的右侧,分别计算出x 的两个临界值即可得出结论.答案详解:解:(1)∵点A ,B ,C 分别表示﹣4,﹣2,2,∴BA =﹣2﹣(﹣4)=2,BC =2﹣(﹣2)=4,CA =2﹣(﹣4)=6.∵BA BC =24=12,∴点B 是点A 到点C 的12倍分点,∵CB CA =46=23,∴点C 是点B 到点A 的23倍分点.所以答案是:12;23;(2)设这点为E ,对应的数字为a ,则EB EC=3.当点E 在B ,C 之间时,∵EBEC=3,∴x−(−2)2−x=3,解得:x=1.当点E在C点的右侧时,∵EBEC=3,∴x−(−2)x−2=3,解得:x=4.综上,点B到点C的3倍分点表示的数是1或4.所以答案是:1或4.(3)①点D在点B的左侧,∵−2−(−4)−2−x=2,解得:x=﹣3.∴x的最小值为﹣3.∴x的取值范围为﹣3≤x≤﹣2;②点D在点C的右侧,∵2−(−4)x−2=2,解得:x=5,∴x的最大值为5,∴x的取值范围2≤x≤5,综上,线段BC上存在点A到点D的2倍分点,则x的取值范围为:﹣3≤x≤﹣2或2≤x≤5.3.知识背景:已知a,b为有理数,规定:f(a)=|a﹣2|,g(b)=|b+3|,例如:f(﹣3)=|﹣3﹣2|=5,g(﹣2)=|﹣2+3|=1.知识应用:(1)若f(a)+g(b)=0,求3a﹣5b的值;(2)求f(a﹣1)+g(a﹣1)的最值;知识迁移:若有理数a,b,c满足|a﹣b+c+3|=a+b+c﹣3,且关于x的方程ax﹣2c=2a﹣cx有无数解,f(2b﹣4)≠0,求|a+2b+c+5|﹣|a+b+c+7|﹣|﹣3﹣b|的值.试题分析:(1)根据题中的新规定列出等式,再利用非负数的性质求出a与b的值,代入原式计算即可得到结果;(2)根据题中的新规定列出等式,根据数轴上两点间的距离公式及绝对值的代数意义求出最小值即可;知识迁移:求出a+c=0,b>3,再计算绝对值即可.答案详解:解:(1)∵f(a)=|a﹣2|,g(b)=|b+3|,∴f(a)+g(b)=|a﹣2|+|b+3|=0,∴a=2,b=﹣3,∴3a﹣5b=3×2﹣5×(﹣3)=6+15=21;(2)f(a﹣1)+g(a﹣1)=|a﹣3|+|a+2|,∵|a﹣3|+|a+2|表示点a到3和﹣2的距离之和,∴|a﹣3|+|a+2|≥5,∴f(a﹣1)+g(a﹣1)有最小值5;知识迁移:整理ax﹣2c=2a﹣cx得(a+c)x=2(a+c),∵方程有无数解,∴a+c=0,∵|a﹣b+c+3|=|(a+c)﹣(b﹣3)|,当a+c≥b﹣3时,|a﹣b+c+3|=a+c﹣b+3=a+b+c﹣3,∴b=3,∴a+c≥0;当a+c≤b﹣3时,|a﹣b+c+3|=b﹣3﹣a﹣c=a+b+c﹣3,∴a+c=0,∴b≥3;∵f(2b﹣4)≠0,∴|2b﹣4﹣2|≠0,∴b≠3,∴b>3,∴|a+2b+c+5|﹣|a+b+c+7|﹣|﹣3﹣b|=|2b+5|﹣|b+7|﹣|﹣3﹣b|=2b +5﹣(b +7)﹣(3+b )=﹣5.4.如图,点A 、O 、C 、B 为数轴上的点,O 为原点,A 表示的数是﹣8,C 表示的数是2,B 表示的数是6.我们将数轴在点O 和点C 处各弯折一次,弯折后CB 与AO 处于水平位置,线段OC 处产生了一个坡度,我们称这样的数轴为“折坡数轴”,其中O 为“折坡数轴”原点,在“折坡数轴”上,每个点对应的数就是把“折坡数轴”拉直后对应的数.记AB 为“折坡数轴”拉直后点A 和点B 的距离:即AB =AO +OC +CB ,其中AO 、OC 、CB 代表线段的长度.(1)若点T 为“折坡数轴”上一点,且TA +TB =16,请求出点T 所表示的数;(2)定义“折坡数轴”上,上坡时点的移动速度变为水平路线上移动速度的一半,下坡时移动速度变为水平路线上移动速度的2倍.动点P 从点A 处沿“折坡数轴”以每秒2个单位长度的速度向右移动到点O ,再上坡移动,当移到点C 时,立即掉头返回(掉头时间不计),在点P 出发的同时,动点Q 从点B 处沿“折坡数轴”以每秒1个单位长度的速度向左移动到点C ,再下坡到点O ,然后再沿OA 方向移动,当点P 重新回到点A 时所有运动结束,设点P 运动时间为t 秒,在移动过程中:①点P 在第 212 秒时回到点A ;②当t = 2或225或315或345 时,PQ =2PO .(请直接写出t 的值)试题分析:(1)首先判断出点T 的位置,设T 表示的数为x ,根据T 的位置分两种情况列出方程求解即可;(2)①分别根据“时间=路程÷速度”求出点P 运动的时间,再求和即可;②分别求出点Q 在运动时间,结合点P ,点Q 的不同位置,根据PQ =2PO 列出方程求解即可. 答案详解:解:(1)∵AB =AO +OC +CB =|﹣8|+6=14,而TA +TB =16,16>AB ,∴T 不在AB 内,设T 表示的数为x ,当T 在点A 的左侧时,TA +TB =TA +TA +AB =(﹣8﹣x )+(﹣8﹣x )+14=16,解得:x =﹣9;当T 在点B 的右侧时,TA +TB =TB +TB +AB =(﹣8﹣x )+(﹣8﹣x )+14=16,解得:x =7,所以答案是:﹣9和7;(2)①∵AO =8,∴点P 从A 到O 所需时间为:t 1=AO 2=82=4,∵OC =2,∴点P 从O 到C 所需时间为:t 2=OC12×2=2,返回时,点P 从C 到O 所需时间为:t 3=OC 2×2=24=12,点P 从O 到A 所需时间为:t 4=t 1=4,∴点P 运动的总时间t =t 1+t 2+t 3+t 4=212,故点P 在212秒时回到了点A ,所以答案是:212;②(Ⅰ)当点P 在AO 上,点Q 在BC 上时,PQ =PO +OC +CQ =(8﹣2t )+2+(4﹣t )=14﹣3t ,PO =8﹣2t ,∵PQ =2PO ,∴14﹣3t =2(8﹣2t ),解得:t =2;(Ⅱ)当P 在OC 上,此时Q 在OC 上,设点Q 在OC 上的时间为t ′,a )当OP +QC =OC ,即t ′+2t ′=2,即t ′=23时,P 、Q 相遇,PQ =OC ﹣OP ﹣QC =2﹣t ′﹣2t ′,PO =t ′,由PQ =2PO 得:2﹣t ′﹣2t ′=2t ′,解得:t ′=25,∴t =4+25=225;b )当Q 到达点O 时,点P 刚到OC 的中点,并继续向上走2﹣1=1(秒),PQ =OP +OQ =t ′+(t ′﹣1),PO =t ′,由PQ =2PO 得:2t ′﹣1=2t ′,此时无解;c )当Q 在OA 上,P 在OC 向下移动时,PQ =OQ +OP =(t ′﹣1)+[2﹣2×2(t ′﹣2)],PO =2﹣2×2(t ′﹣2),由PQ =2PO 得,(t ′﹣1)+[2﹣2×2(t ′﹣2)]=2[2﹣2×2(t ′﹣2)],解得:t ′=115,此时,t =4+t ′=315;(Ⅲ)当点P 重新回到OA 上,设P 回到O 点后运动时间为t ″,在t ″之间,点P 、Q 已经运动了4+2+12=132(秒),此时,Q 在OA 上走了132−4﹣1=32,即OQ =32×1=32,1)PQ =OQ ﹣OP =(32+t ″)﹣2t ″,PO =2t ″,由PQ =2PO 得:(32+t ″)﹣2t ″=2t ″,解得,t ″=310,此时,t =132+310=345;2)当P 在Q 右侧,超过Q 后,PQ =OP ﹣OQ =2t ″﹣(32+t ″),PO =2t ″,由PQ =2PO 得:2t ″﹣(32+t ″)=4t ″,解得,t ″=−12(舍去),综上所述,当t =2或225或315或345秒时,PQ =2PO .所以答案是:2或225或315或345.5.对数轴上的点和线段,给出如下定义:点M是线段a的中点,点N是线段b的中点,称线段MN 的长度为线段a与b的“中距离”.已知数轴上,线段AB=2(点A在点B的左侧),EF=6(点E在点F的左侧).(1)当点A表示1时,①若点C表示﹣2,点D表示﹣1,点H表示4,则线段AB与CD的“中距离”为3.5,线段AB与CH的“中距离”为 1 ;②若线段AB与EF的“中距离”为2,则点E表示的数是 1或﹣3 .(2)线段AB、EF同时在数轴上运动,点A从表示1的点出发,点E从原点出发,线段AB的速度为每秒1个单位长度,线段EF的速度为每秒2个单位长度,开始时,线段AB、EF都向数轴正方向运动;当点E与点B重合时,线段EF随即向数轴负方向运动,AB仍然向数轴正方向运动.运动过程中,线段AB、EF的速度始终保持不变.设运动时间为t秒.①当t=2.5时,线段AB与EF的“中距离”为 3.5 ;②当线段AB与EF的“中距离”恰好等于线段AB的长度时,求t的值.试题分析:(1)①先由点A和AB的长求得点B表示的数,然后求得AB的中点所表示的数,再求得CH的中点所表示的数,即可得到线段AB与CH的“中距离”;②先由①得到AB的中点所表示的数,然后设点E表示的数为x,则点F表示的数为x+6,进而求得EF的中点的所表示的数,最后由线段AB与EF的“中距离”为2列出方程求得x的值;(2)①先用含有t的式子分别表示点A、点B、点E、点F所表示的数,然后得到t=2.5时点A、B、E、F所表是的数,进而求得线段AB与EF的“中距离”;②分情况讨论,分为点E向数轴正方向和向数轴负方向运动两种情况讨论,然后根据条件列出方程求得t的值.答案详解:解:(1)①∵AB=2(点A在点B的左侧),点A表示1,∴点B表示3,∴线段AB的中点表示2,∵点C表示﹣2,点H表示4,∴线段CH的中点表示1,∴线段AB与CH的“中距离”为2﹣1=1,所以答案是:1.②由①得,线段AB的中点表示2,设点E表示x,则点F表示x+6,∴线段EF的中点表示x+3,∵线段AB与EF的“中距离”为2,∴|x+3﹣2|=2,解得:x=1或x=﹣3,∴点E表示的数是1或﹣3,所以答案是:1或﹣3.(2)由题意得,点A表示的数为1+t,点B表示的数为3+t,当点E向数轴正方向运动时,点E表示的数为2t,点F表示的数为2t+6,当点E与点B重合时,3+t=2t,解得:t=3,∴当点E向数轴负方向运动时,点E表示的数为6﹣2(t﹣3)=12﹣2t,点F表示的数为12﹣2(t﹣3)=18﹣2t,①当t=2.5时,点E向数轴正方形运动,点A表示的数为3.5,点B表示的数为5.5,点E表示的数为5,点F表示的数为11,∴线段AB的中点表示的数为4.5,线段EF的中点表示的数为8,∴线段AB与EF的“中距离”为8﹣4.5=3.5;所以答案是:3.5.②当点E向数轴正方向运动,即0<t≤3时,线段AB的中点表示的数为2+t,线段EF的中点表示的数为2t+3,∵线段AB与EF的“中距离”恰好等于线段AB的长度,∴|2t+3﹣(2+t)|=2,解得:t=1或t=﹣3(舍);当点E向数轴负方向运动,即t>3时,线段AB的中点表示的数为2+t,线段EF的中点表示的数为15﹣2t,∵线段AB与EF的“中距离”恰好等于线段AB的长度,∴|15﹣2t﹣(2+t)|=2,解得:t =113或t =5,∴当线段AB 与EF 的“中距离”恰好等于线段AB 的长度时,t 的值为1或113或5.6.我们将数轴上点P 表示的数记为x P .对于数轴上不同的三个点M ,N ,T ,若有x N ﹣x T =k (x M ﹣x T ),其中k 为有理数,则称点N 是点M 关于点T 的“k 星点”.已知在数轴上,原点为O ,点A ,点B 表示的数分别为x A =﹣2,x B =3.(1)若点B 是点A 关于原点O 的“k 星点”,则k = −32 ;若点C 是点A 关于点B 的“2星点”,则x C = ﹣7 ;(2)若线段AB 在数轴上沿正方向运动,每秒运动1个单位长度,取线段AB 的中点D .是否存在某一时刻,使得点D 是点A 关于点O 的“﹣2星点”?若存在,求出线段AB 的运动时间;若不存在,请说明理由;(3)点Q 在数轴上运动(点Q 不与A ,B 两点重合),作点A 关于点Q 的“3星点”,记为A ',作点B 关于点Q 的“3星点”,记为B '.当点Q 运动时,QA '+QB '是否存在最小值?若存在,求出最小值及相应点Q 的位置;若不存在,请说明理由.试题分析:(1)由“k 星点”的定义列出方程可求解;(2)设点表示的数为a ,点B 表示的数a +5,则线段AB 的中点D 表示的数为2a 52,由“k 星点”的定义列出方程可求解;(3)先求出A ',B '表示的数,可求QA '+QB '=|﹣6﹣3y |+|9﹣3y |,由绝对值的性质可求解. 答案详解:解:(1)∵点B 是点A 关于原点O 的“k 星点”,∴3﹣0=k (﹣2﹣0),解得:k =−32,∵点C 是点A 关于点B 的“2星点”,∴x C ﹣3=2×(﹣2﹣3),∴x C =﹣7,所以答案是:−32,﹣7;(2)设点表示的数为a ,点B 表示的数a +5,则线段AB 的中点D 表示的数为2a 52,∵点D 是点A 关于点O 的“﹣2星点”,∴2a 52−0=﹣2×(a ﹣0),∴a =−56,∴t =−61=76,∴当t =76,使得点D 是点A 关于点O 的“﹣2星点”;(3)当点Q 在线段AB (点Q 不与A ,B 两点重合)上时,QA '+QB '存在最小值,理由如下:设点Q 表示的数为y ,∵点A '是点A 关于点Q 的“3星点”,∴点A '表示的数为﹣6﹣2y ,∵点B '是点B 关于点Q 的“3星点”,∴点B '表示的数是9﹣2y ,∴QA '+QB '=|﹣6﹣2y ﹣y |+|9﹣2y ﹣y |=|﹣6﹣3y |+|9﹣3y |,当y <﹣2时,QA '+QB '=3﹣6y >15,当﹣2<y <3时,QA '+QB '=15,当y >3时,QA '+QB '=6y ﹣3>15,∴当点Q 在线段AB (点Q 不与A ,B 两点重合)上时,QA '+QB '存在最小值,最小值为15.7.【阅读理解】射线OC 是∠AOB 内部的一条射线,若∠COA =12∠BOC ,则我们称射线OC 是射线OA 的伴随线.例如,如图1,∠AOB =60°,∠AOC =∠COD =∠BOD =20°,则∠AOC =12∠BOC ,称射线OC 是射线OA 的伴随线;同时,由于∠BOD =12∠AOD ,称射线OD 是射线OB 的伴随线.【知识运用】(1)如图2,∠AOB=120°,射线OM是射线OA的伴随线,则∠AOM= 40 °,若∠AOB的度数是α,射线ON是射线OB的伴随线,射线OC是∠AOB的平分线,则∠NOC的度数是 α6 .(用含α的代数式表示)(2)如图3,如∠AOB=180°,射线OC与射线OA重合,并绕点O以每秒3°的速度逆时针旋转,射线OD与射线OB重合,并绕点O以每秒5°的速度顺时针旋转,当射线OD与射线OA重合时,运动停止.①是否存在某个时刻t(秒),使得∠COD的度数是20°,若存在,求出t的值,若不存在,请说明理由.②当t为多少秒时,射线OC、OD、OA中恰好有一条射线是其余两条射线的伴随线.试题分析:(1)根据伴随线定义即可求解;(2)①利用分类讨论思想,分相遇之前和之后进行列式计算即可;②利用分类讨论思想,分相遇之前和之后四个图形进行计算即可.答案详解:解:(1)40°,α6;(2)射线OD与OA重合时,t=1805=36(秒)①当∠COD的度数是20°时,有两种可能:若在相遇之前,则180﹣5t﹣3t=20,∴t=20;若在相遇之后,则5t+3t﹣180=20,∴t=25;所以,综上所述,当t=20秒或25秒时,∠COD的度数是20°.②相遇之前:(i)如图1,OC是OA的伴随线时,则∠AOC=12∠COD即3t=12(180﹣5t﹣3t)∴t=90 7(ii)如图2,OC是OD的伴随线时,则∠COD=12∠AOC即180﹣5t﹣3t=12×3t∴t=360 19相遇之后:(iii)如图3,OD是OC的伴随线时,则∠COD=12∠AOD即5t+3t﹣180=12(180﹣5t)∴t=180 7(iv)如图4,OD是OA的伴随线时,则∠AOD=12∠COD即180﹣5t=12(3t+5t﹣180)∴t=30所以,综上所述,当t=907,36019,1807,30时,OC、OD、OA中恰好有一条射线是其余两条射线的伴随线.8.如图1,对于线段AB和∠A′OB′,点C是线段AB上的任意一点,射线OC′在∠A′OB′内部,如果ACAB=∠A′OC′∠A′OB′,则称线段AC是∠A′OC′的伴随线段,∠A′OC′是线段AC的伴随角.例如:AB=10,∠A′OB′=100°,若AC=3,则线段AC的伴随角∠A′OC′=30°.(1)当AB=8,∠A′OB′=130°时,若∠A′OC′=65,试求∠A′OC′的伴随线段AC的长.(2)如图2,对于线段AB和∠A′OB′,AB=6,∠A′OB′=120°.若点C是线段AB上任一点,E,F分别是线段AC,BC的中点,∠A′OE′,∠A′OC′,∠A′OF′分别是线段AE,AC,AF的伴随角,则在点C从A运动到B的过程中(不与A,B重合),∠E′OF′的大小是否会发生变化?如果会,请说明理由;如果不会,请求出∠E′OF′的大小.(3)如图3,已知∠AOC是任意锐角,点M,N分别是射线OA,OC上的任意一点,连接MN,∠AOC的平分线OD与线段MN相交于点Q.对于线段MN和∠AOC,线段MP是∠AOD的伴随线段,点P和点Q能否重合?如果能,请举例并用数学工具作图,再通过测量加以说明;如果不能,请说明理由.试题分析:(1)根据伴随角和伴随线段的定义定义列出等式即可求解;(2)由中点的定义可得EF=12AB,再利用伴随角和伴随线段的定义列出等式,可得出结论;(3)由伴随角和伴随线段的定义可得,点P和点Q重合时,是MN的中点,画出图形,测量即可.答案详解:解:(1)由伴随角和伴随线段的定义可知,ACAB =∠A′OC′∠A′OB′,∴AC8=65°130°=12,∴AC=4.(2)不会,∠E′OF′=60°.理由如下:∵点E,F分别是线段AC,BC的中点,∴EC=12AC,CF=12BC,∴EF=12AB=3.∵∠A′OE′,∠A′OC′,∠A′OF′分别是线段AE,AC,AF的伴随角,∴AEAB=∠A′OE′∠A′OB′,ACAB=∠A′OC′∠A′OB′,AFAB=∠A′OF′∠A′OB′,∵EF=AF﹣AE,∴EFAB=AFAB−AEAB=∠A′OF′∠A′OB′−∠A′OE′∠A′OB′=∠E′OF′∠A′OB′=12,∵∠A′OB′=120°,∴∠E′OF′=60°.(3)能,理由如下:∵OD是∠AOC的平分线,∴∠AOD=12∠AOC,∵线段MP是∠AOD的伴随线段,∴MPMN=∠AOD∠AOC=12.即点P是MN的中点.若点P和点Q重合,则点Q为MN的中点.根据题意画出图形如下所示:测量得出当点P和点Q重合时,NP=MQ=1.25cm.二.数形结合之数轴与方程(经典题型)9.我们知道数轴上两点间的距离等于这两点所表示数的差的绝对值,例如:点A,B在数轴上分别对应的数为a,b,则A,B两点间的距离表示为AB=|a﹣b|.根据以上知识解决问题:(1)如图1所示,在数轴上点E,F表示的数分别为﹣5,3,则EF= 8 ;(2)①如图2所示,点P表示数x,点M表示数﹣2,点N表示数2x+14,且MN=2PM,求:点P和点N表示的数.②在上述①的条件下,数轴上是否存在点Q.使PQ+QN=52QM?若存在,请直接写出点Q所表示的数;若不存在,请说明理由.试题分析:(1)由点E ,F 表示的数分别为﹣5,3,可得EF =|﹣5﹣3|=8;(2)①由点P 表示数x ,点M 表示数﹣2,点N 表示数2x +14,得MN =2x +16,PM =﹣2﹣x ,即得2x +16=2(﹣2﹣x ),可解得P 表示的数是﹣5,N 表示的数是4;②设Q 表示的数是m ,分四种情况:当Q 在P 左侧时,(﹣5﹣m )+(4﹣m )=52(﹣2﹣m ),解得m =﹣8,当Q 在P 、M 之间,(m +5)+(4﹣m )=52(﹣2﹣m ),解得m =−285(不合题意,舍去),当Q 在M 、N 之间,(m +5)+(4﹣m )=52(m +2),解得m =85,当Q 在N 右侧,(m +5)+(m ﹣4)=52(m +2),解得m =﹣8(不合题意,舍去).答案详解:解:(1)∵点E ,F 表示的数分别为﹣5,3,∴EF =|﹣5﹣3|=8,所以答案是:8;(2)①∵点P 表示数x ,点M 表示数﹣2,点N 表示数2x +14,∴MN =(2x +14)﹣(﹣2)=2x +16,PM =﹣2﹣x ,∵MN =2PM ,∴2x +16=2(﹣2﹣x ),解得x =﹣5,∴2x +14=2×(﹣5)+14=4,答:P 表示的数是﹣5,N 表示的数是4;②设Q 表示的数是m ,当Q 在P 左侧时,PQ =﹣5﹣m ,QN =4﹣m ,QM =﹣2﹣m ,∵PQ +QN =52QM ,∴(﹣5﹣m )+(4﹣m )=52(﹣2﹣m ),解得m =﹣8,当Q 在P 、M 之间,PQ =m +5,QN =4﹣m ,QM =﹣2﹣m ,∵PQ +QN =52QM ,∴(m +5)+(4﹣m )=52(﹣2﹣m ),解得m =−285(不合题意,舍去),当Q在M、N之间,PQ=m+5,QN=4﹣m,QM=m+2,∵PQ+QN=52 QM,∴(m+5)+(4﹣m)=52(m+2),解得m=8 5,当Q在N右侧,PQ=m+5,QN=m﹣4,QM=m+2,∵PQ+QN=52 QM,∴(m+5)+(m﹣4)=52(m+2),解得m=﹣8(不合题意,舍去),综上所述,Q表示的数是﹣8或8 5.10.如图,数轴上A,B两点对应的数分别是﹣20和10,P,Q两点同时从原点出发,P以每秒2个单位长度的速度沿数轴向左匀速运动,Q以每秒5个单位长度的速度沿数轴向右匀速运动,当点Q到达点B后立即返回,以相同的速度沿数轴向左运动.点P到达点A时,P,Q两点同时停止运动.设运动时间为t秒.(1)当t=1时,线段PQ= 7 ;(2)当PQ=5时,求t的值;(3)在P,Q两点运动的过程中,若点A,点P,点Q三点中的一个点是另外两个点为端点的线段的中点,直接写出t的值.试题分析:(1)根据数轴上两点间距离公式可得;(2)分两种情况:当0≤t≤2或2<t≤10时,分别列出方程可得答案;(3)分两种情况:当0≤t≤2或2<t≤10时,再根据线段中点的定义可得答案.答案详解:解:(1)t=1时,点P表示的数是﹣2,点Q表示的数是5,∴PQ=5﹣(﹣2)=7,所以答案是:7;(2)当0≤t≤2时,点P表示的数是﹣2t,点Q表示的数是5t,则5t ﹣(﹣2t )=5,解得t =57;当2<t ≤10时,点P 表示的数是﹣2t ,点Q 表示的数是10﹣(5t ﹣10)=20﹣5t ,则|(20﹣5t )﹣(﹣2t )|=5,解得t =5或253;所以当PQ =5时,t 的值是57或5或253;(3)当0≤t ≤2时,点P 表示的数是﹣2t ,点Q 表示的数是5t ,点A 表示的数是﹣20,若点P 是线段AQ 的中点,则PA =PQ ,﹣2t +20=5t +2t ,解得t =209>2,故不存在此情况;当2<t ≤10时,点P 表示的数是﹣2t ,点Q 表示的数是10﹣(5t ﹣10)=20﹣5t ,点A 表示的数是﹣20,若点P 是线段AQ 的中点,则PA =PQ ,﹣2t +20=20﹣5t +2t ,解得t =0,故不存在此情况;若点Q 是线段AP 的中点,则QA =PQ ,20﹣5t +20=﹣2t ﹣20+5t ,解得t =7.5.当A 是PQ 的中点时,2t ﹣20=30﹣5(t ﹣2),t =607,综上,t 的值是7.5或607.11.规定:A ,B ,C 是数轴上的三个点,当CA =3CB 时我们称C 为[A ,B ]的“三倍距点”,当CB =3CA 时,我们称C 为[B ,A ]的“三倍距点”.点A 所表示的数为a ,点B 所表示的数为b 且a ,b 满足(a +3)2+|b ﹣5|=0.(1)a = ﹣3 ,b = 5 ;(2)若点C 在线段AB 上,且为[A ,B ]的“三倍距点”,则点C 所表示的数为 3 ;(3)点M 从点A 出发,同时点N 从点B 出发,沿数轴分别以每秒3个单位长度和每秒1个单位长度的速度向右运动,设运动时间为t 秒.当点B 为M ,N 两点的“三倍距点”时,求t 的值.试题分析:(1)根据非负性的性质.即可求得a ,b 的值;(2)根据“三倍距点”的定义即可求解;(3)分点B为[M,N]的“三倍距点”和点B为[N,M]的“三倍距点”两种情况讨论即可.答案详解:解:(1)∵(a+3)2+|b﹣5|=0,∴a+3=0,b﹣5=0,∴a=﹣3,b=5,所以答案是:﹣3;5;(2)∵点A所表示的数为﹣3,点B所表示的数为5,∴AB=5﹣(﹣3)=8,∵点C为[A,B]的“三倍距点”,点C在线段AB上,∴CA=3CB,CA+CB=AB=8,∴CB=2,∴点C所表示的数为5﹣2=3,所以答案是:3;(3)根据题意可知:点M所表示的数为3t﹣3,点N所表示的数为t+5,∴BM=|5﹣(3t﹣3)|=|8﹣3t|,BN=|t+5﹣5|=t,(t>0),当点B为[M,N]的“三倍距点”时,即BM=3BN,∴|8﹣3t|=3t,∴8﹣3t=3t或8﹣3t=﹣3t,解8﹣3t=3t,得:t=4 3,而方程8﹣3t=﹣3t,无解,当点B为[N,M]的“三倍距点”时,即3BM=BN,∴3|8﹣3t|=t,∴24﹣9t=t或24﹣9t=﹣t,解得:t=125或t=3,综上所述,当t=125或t=3或t=43时,点B为M,N的“三倍距点”.12.已知,C,D为线段AB上两点,C在D的左边,AB=a,CD=b,且a,b满足(a﹣120)2+|4b ﹣a|=0.(1)a = 120 ,b = 30 ;(2)如图1,若M 是线段AD 的中点,N 是线段BC 的中点,求线段MN 的长;(3)线段CD 在线段AB 上从端点D 与点B 重合的位置出发,以3cm /s 的速度沿射线BA 的方向运动,同时点P 以相同速度从点A 出发沿射线AB 的方向运动,当点P 与点D 相遇时,点P 原路返回且速度加倍,线段CD 的运动状态不变,直到点C 到达点A 时线段CD 和点P 同时停止运动,设运动时间为ts ,在此运动过程中,当t 为多少s 时线段PC =10cm ?试题分析:(1)由绝对值及偶次方的非负性可求出a ,b 的值;(2)由中点的定义得AM =12AD =12(AC +CD )=12(AC +30)=12AC +15)、CN =12BC =12(AB ﹣AC )=12(120﹣AC )=60−12AC ,由MN =CN ﹣CM 即可求解;(3)分两种情况:①点P 与点D 相遇前,②点P 与点D 相遇后,每种情况再分点P 在点C 左边,点P 在点C 右边解答即可.答案详解:解:(1)∵a ,b 满足(a ﹣120)2+|4b ﹣a |=0,∴a ﹣120=0,4b ﹣a =0,∴a =120,b =30.所以答案是:120;30;(2)∵M 是线段AD 的中点,N 是线段BC 的中点,∴AM =12AD =12(AC +CD )=12(AC +30)=12AC +15,CN =12BC =12(AB ﹣AC )=12(120﹣AC )=60−12AC ,∴CM =AM ﹣AC =12AC +15﹣AC =15−12AC ,∴MN =CN ﹣CM )=60−12AC ﹣(15−12AC )=﹣60−12AC ﹣15+12AC =45(cm );(3)由题意得:点P 与点D 相遇的时间为120÷(3+3)=20(s ),点C 到达点A 的时间为(120﹣30)÷3=30(s ),①点P 与点D 相遇前,即t <20时,Ⅰ点P 在点C 左边,线段PC =10cm ,∴PD =PC +CD =10+30=40(cm ),由题意得:(3+3)t =120﹣40,解得:t =403,Ⅱ点P 在点C 右边,线段PC =10cm ,∴PD =CD ﹣PC =30﹣10=20(cm ),由题意得:(3+3)t =120﹣20,解得:t =503,②点P 与点D 相遇后,即20≤t ≤30时,Ⅰ点P 在点C 左边,线段PC =10cm ,∴PD =PC +CD =10+30=40(cm ),由题意得:(3×2﹣3)(t ﹣20)=40,解得:t =1003>30(不合题意,舍去),Ⅱ点P 在点C 右边,线段PC =10cm ,∴PD =CD ﹣PC =30﹣10=20(cm ),由题意得:(3×2﹣3)(t ﹣20)=20,解得:t =803,综上,当t 为403s 或503s 或803s 时线段PC =10cm .13.如图,在数轴上点A 表示的数是a ,点B 表示的数是b ,数轴上有一点C ,且AC =2CB ,a 、b 满足|a +4|+(b ﹣11)2=0.(1)a = ﹣4 ,b = 11 ;(2)求点C 表示的数;(3)点P 从点A 出发,以每秒4个单位长度的速度沿数轴向右运动,同时点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左运动,若AP +BQ =2PQ ,求t 的值.试题分析:(1)根据非负数的性质列方程,分别求出a 、b 的值即可;(2)设点C 表示的数为x ,分三种情况进行讨论,一是点C 在点A 与点B 之间,二是点C 在点B 的右侧,三是点C 在点A 的左侧,对符合题意的情况列方程求出x 的值,对不符合题意的情况直接舍去即可;(3)先根据题意得AP =4t ,BQ =3t ,则点P 表示的数是﹣4+4t ,点Q 表示的数是11﹣3t ,再按点P 在点Q 左侧和点P 在点Q 右侧分别列方程求出t 的值即可.答案详解:解:(1)∵|a +4|≥0,(b ﹣11)2≥0,且|a +4|+(b ﹣11)2=0,∴|a +4|=0,(b ﹣11)2=0,∴a =﹣4,b =11,所以答案是:﹣4,11.(2)设点C 表示的数为x ,若点C 在A 、B 两点之间,则x +4=2(11﹣x ),解得x =6;若点C 在点B 的右侧,则x +4=2(x ﹣11),解得x =26;若点C 在点A 的左侧,则CA <CB ,∴不存在CA =2CB 的情况,综上所述,点C 表示的数是6或26.(3)由题意可知,AP =4t ,BQ =3t ,∴点P 表示的数是﹣4+4t ,点Q 表示的数是11﹣3t ,当点P 在点Q 左侧时,则4t +3t =2[11﹣3t ﹣(﹣4+4t )],解得t =107;当点P 在点Q 右侧时,则4t +3t =2[﹣4+4t ﹣(11﹣3t )],解得t =307,综上所述,t 的值为107或307.三.数形结合之角的动边与方程(超难题型)14.如图,∠AOD =130°,∠BOC :∠COD =1:2,∠AOB 是∠COD 补角的13.(1)∠COD = 60° ;(2)平面内射线OM 满足∠AOM =2∠DOM ,求∠AOM 的大小;(3)将∠COD 固定,并将射线OA ,OB 同时以2°/s 的速度顺时针旋转,到OA 与OD 重合时停止.在旋转过程中,若射线OP 为∠AOB 的平分线,OQ 为∠COD 的平分线,当∠POQ +∠AOD =50°时,求旋转时间t (秒)的取值范围.试题分析:(1)设∠BOC =α,则∠COD =2α,由此可表达∠AOB 的度数,最后根据角度的和差计算建立方程,求解即可;(2)需要分两种情况,一种是射线OM 在∠AOD 的内部,一种是射线OM 在∠AOD 的外部,根据角度的和差关系建立方程,求解即可;(3)本题需要分类讨论,当射线OB 与射线OQ 重合前,射线OP 与射线OQ 重合前,射线OA 与射线OP 重合前,射线OP 与射线OD 重合后,由此得出t 的取值范围分别是0≤t ≤40,40<t ≤45,45<t ≤50,50<t ≤55,55<t ≤65.画出图形分别表示∠AOD 和∠POQ ,建立方程求出t 的值.答案详解:解:(1)设∠BOC =α,则∠COD =2α,∵∠AOB 是∠COD 补角的13,∴∠AOB =13(180°﹣2α)=60°−23α,∵∠AOB +∠BOC +∠COD =∠AOD ,即60°−23α+α+2α=130°,解得α=30°,∴∠COD =2α=60°;所以答案是:60°;(2)由于射线OM 的位置不确定,所以需要分两种情况:①射线OM 在∠AOD 的内部,如图1:∵∠AOM =2∠DOM ,∠AOD =130°,∴∠AOM +∠DOM =∠AOD ,即3∠DOM =130°,∴∠DOM =(1303)°,∴∠AOM =2∠DOM =(2603)°;②射线OM 在∠AOD 的外部,如图2:∵∠AOM =2∠DOM ,∠AOD =130°,∴∠AOM +∠DOM =360°﹣∠AOD ,即3∠DOM =360°﹣130°,∴∠DOM =(2303)°,∴∠AOM =2∠DOM =(4603)°;综上,∠AOM 的度数为:(2603)°或(4603)°;(3)由(1)知,∠AOB =40°,∠BOC =30°,∠COD =60°;∵射线OP 为∠AOB 的平分线,OQ 为∠COD 的平分线,∴∠AOP =∠BOP =20°,∠COQ =∠COQ =30°,当射线OA ,OB 同时以2°/s 的速度顺时针旋转时,∠AOD =130°﹣2°t ,当射线OB 与射线OQ 重合前,即0≤t ≤30,如图3,此时∠POQ =∠AOD ﹣∠AOP ﹣∠DOQ =130°﹣2°t ﹣20°﹣30°=80°﹣2°t ,∴∠POQ +∠AOD =80°﹣2°t +130°﹣2°t =210°﹣2°t ,不是50°,不符合题意;射线OB 与射线OQ 重合后,射线OP 与射线OQ 重合前,即30<t ≤40时,如图4,此时∠BOD =90°﹣2°t ,∴∠BOQ =∠DOQ ﹣∠BOD =30°﹣(90°﹣2°t )=2°t ﹣60°,∴∠POQ =∠BOP ﹣∠BOQ =20°﹣(2°t ﹣60°)=80°﹣2°t ;此时∠POQ+∠AOD=80°﹣2°t+130°﹣2°t+=210°﹣4°t,不是50°,不符合题意;射线OP与射线OQ重合后,射线OB与射线OD重合前,即40<t≤45时,如图5,此时∠BOD=90°﹣2°t,∴∠BOQ=∠DOQ﹣∠BOD=30°﹣(90°﹣2°t)=2°t﹣60°,∴∠POQ=∠BOQ﹣∠BOP=2°t﹣60°﹣20°=2°t﹣80°;此时∠POQ+∠AOD=2°t﹣80°+130°﹣2°t=50°,符合题意;射线OB与射线OD重合后,射线OA与射线OQ重合前,即45<t≤50时,如图6,此时∠BOD=2°t﹣90°,∴∠BOQ=∠DOQ+∠BOD=30°+(2°t﹣90°)=2°t﹣60°,∴∠POQ=∠BOQ﹣∠BOP=2°t﹣60°﹣20°=2°t﹣80°;此时∠POQ+∠AOD=2°t﹣80°+130°﹣2°t=50°,符合题意;射线OA与射线OQ重合后,射线OP与射线OD重合前,即50<t≤55,如图7,此时∠BOD=2°t﹣90°,∴∠BOQ=∠DOQ+∠BOD=30°+(2°t﹣90°)=2°t﹣60°,∴∠POQ=∠BOQ﹣∠BOP=2°t﹣60°﹣20°=2°t﹣80°;此时∠POQ+∠AOD=2°t﹣80°+130°﹣2°t=50°,符合题意;射线OP与射线OD重合后,射线OA与射线OD重合前,即55<t≤65时,如图8,此时∠BOD=2°t﹣90°,∴∠BOQ=∠DOQ+∠BOD=30°+(2°t﹣90°)=2°t﹣60°,∴∠POQ=∠BOQ﹣∠BOP=2°t﹣60°﹣20°=2°t﹣80°;此时∠POQ+∠AOD=2°t﹣80°+130°﹣2°t=50°,符合题意;综上可知,当∠POQ+∠AOD=50°时,旋转时间t(秒)的取值范围为40≤t≤65.15.如图①,已知∠AOB=100°,∠BOC=60°,OC在∠AOB外部,OM、ON分别是∠AOC、∠BOC的平分线.(1)求∠MON的度数.(2)如果∠AOB=α,∠BOC=β,其它条件不变,请直接写出∠MON的值(用含α,β式子表示).(3)其实线段的计算与角的计算存在着紧密的联系.如图②,已知线段AB=a,延长线段AB 到C,使BC=m,点M、N分别为线段AC、BC的中点,求线段MN的长(用含a,m的式子表示).试题分析:(1)由已知条件求∠AOC的度数,再利用角平分线的定义可求解∠BOM,∠BON的度数,结合∠MON=∠BOM+∠BON可求解;(2)由已知条件求∠AOC的度数,再利用角平分线的定义可求解∠BOM,∠BON的度数,结合∠MON=∠BOM+∠BON可求解;(3)由已知条件求AC的长,再利用中点的定义可求解BM,BN的度数,结合MN=BM+BN可求解;答案详解:解:(1)∵∠AOB =100°,∠BOC =60°,∴∠AOC =∠AOB +∠BOC =100°+60°=160°,∵OM 平分∠AOC ,∴∠MOC =∠MOA =12∠AOC =80°,∴∠BOM =∠AOB ﹣∠AOM =100°﹣80°=20°,∵ON 平分∠BOC ,∴∠BON =∠CON =30°,∴∠MON =∠BOM +∠BON =20°+30°=50°;(2)∵∠AOB =α,∠BOC =β,∴∠AOC =∠AOB +∠BOC =α+β,∵OM 平分∠AOC ,∴∠MOC =∠MOA =12∠AOC =12(α+β),∴∠BOM =∠AOB ﹣∠AOM =α−12(α+β)=12α−12β,∵ON 平分∠BOC ,∴∠BON =∠CON =12β,∴∠MON =∠BOM +∠BON =12α−12β+12β=12α,故∠MON =α2;(3)∵AB =a ,BC =m ,∴AC =AB +BC =a +m ,∵M 是AC 中点,∴MC =12AC =a m 2,∵N 是BC 中点,∴NC =12BC =m 2,∴MN =MC ﹣NC =a m 2−m 2=a 2.16.如图,∠AOB =90°,∠COD =60°.(1)若OC 平分∠AOD ,求∠BOC 的度数;(2)若∠BOC=114∠AOD,求∠AOD的度数;(3)若同一平面内三条射线OT、OM、ON有公共端点O,且满足∠MOT=12∠NOT或者∠NOT=12∠MOT,我们称OT是OM和ON的“和谐线”.若射线OP从射线OB的位置开始,绕点O按逆时针方向以每秒12°的速度旋转,同时射线OQ从射线OA的位置开始,绕点O按顺时针方向以每秒9°的速度旋转,射线OP旋转的时间为t(单位:秒),且0<t<15,求当射线OP为两条射线OA和OQ的“和谐线”时t的值.试题分析:(1)利用角平分线的定义解答即可;(2)设∠AOD=x,利用角的和差列出关于x的方程,解方程即可求得结论;(3)利用分类讨论的思想方法,根据题意画出图形,用含t的代数式表示出∠AOP和∠QOP的度数,依据“和谐线”的定义列出方程,解方程即可求得结论.答案详解:解:(1)OC平分∠AOD,∴∠COD=∠AOC=12∠AOD.∵∠COD=60°,∴∠AOD=2∠COD=120°;(2)设∠AOD=x,则∠BOC=114x.∵∠AOD=∠AOB+∠BOD,∠BOD=∠COD﹣∠BOC,∴∠AOD=∠AOB+∠COD﹣∠BOC,∵∠AOB=90°,∠COD=60°,∴∠AOD=150°﹣∠BOC.∴x=150−114x.解得:x=140°.∴∠AOD的度数为140°.(3)当射线OP与射线OQ未相遇之前,如图,由题意得:∠AOQ=9t,∠BOP=12t.∴∠AOP=90°﹣∠BOP=90°﹣12t,∠QOP=90°﹣∠AOQ﹣∠BOP=90°﹣21t.∵射线OP为两条射线OA和OQ的“和谐线”,∴∠QOP=12∠AOP.∴90°﹣21t=12(90°﹣12t).解得:t=3.当射线OP与射线OQ相遇后且均在∠AOB内部时,如图,由题意得:∠AOQ=9t,∠BOP=12t.∴∠AOP=90°﹣∠BOP=90°﹣12t,∠QOP=∠BOP﹣∠BOQ=∠BOP﹣(90°﹣∠AOQ)=21t﹣90°.∵射线OP为两条射线OA和OQ的“和谐线”,∴∠QOP=12∠AOP或∠AOP=12∠QOP.∴21t﹣90°=12(90°﹣12t)或90°﹣12t=12(21t﹣90).解得:t=5或t=6.当射线OP在∠AOB的外部,射线OQ在∠AOB的内部时,如图,。

2009年全国高考数学陕西卷理科18题的另解与解析

2009年全国高考数学陕西卷理科18题的另解与解析

别解·解析·启示——谈2009年全国高考数学陕西卷理科18题、文科19题(陕西省西安市田家炳中学 710500)内容提要:本文通过对2009年全国高考数学(陕西卷)理科18题、文科19题的研究,既有通性通法,又有优美解法,揭示了证明线线垂直、求二面角的各种方法,均适用此题;明确了新课改高考学习、复习的方向。

关键词:2009 高考陕西理科 18题文科19题别解解析启示2009年全国高考数学陕西卷理科18题、文科19题为同一题;如图,直三棱柱ABC-A1B1C1中, AB=1,AC= AA1= 3,∠ABC=600。

(Ⅰ)证明:AB⊥A1C;(Ⅱ)求二面角A-A1C-B的大小。

解答为评析方便,先引述陕西省招生委员会办公室提供的参考答案:解答一:(I)证:∵三棱柱ABC-A1B1C1为直三棱柱∴AB⊥AA1在△ABC中,AB=1,AC = 3,∠ABC = 60°由正弦定理得∠ACB = 30°∴∠BAC = 90°即 AB⊥AC∴AB⊥平面ACC1A1又A1C 平面AC C1A1∴AB⊥A1C(II) 解:如图,作AD⊥A1C 交A1C 于点D,连结BD由三垂线定理BD ⊥A 1C ∴∠ ADB 为二面角A-A 1C-B 的平面角 在Rt △A 1AC 中AD=C A AC AA 11∙= 633⨯= 26 在Rt △BAD 中,tanADB=AD AB = 36∴∠ADB =arc tan36 即二面角A-A 1C-B 的大小为arc tan36 解答二(I )证 ∵ 三棱柱ABC-A 1B 1C 1为直三棱柱 ∴AA 1⊥AB AA 1⊥AC在△ABC 中,AB=1,AC = 3,∠ABC = 60°由正弦定理得∠ACB = 30°∴∠BAC = 90° , 即 AB ⊥AC 如图,建立空间直角坐标系, 则 A (0,0,0), B (1,0,0),C (0,3,0),A 1(0,0,3), ∴=(1,0,0),C A 1=(0,3,-3), ∵C A AB 1∙=1×0+0×3+0×(-3)=0,∴ AB ⊥A 1CABCA 1B 1C 1D(II )解 如图,可取==(1,0,0)为平面AA 1C 的法向量,设平面A 1BC 的法向量为n =( l ,m,n),则∙ =0,∙A 1 =0,又 =(-1,3,0),∴{03033=+-=-m l n m , ∴l = 3m,n = m.不妨取m =1,则 =(3,1,1)Cos<m , n >=→→→→∙∙nm nm =()222222001113010113++∙++⨯+⨯+⨯=515∴二面角A-A 1C-B 的大小为arc COS515另解再给出其它证法(I )另证:∵三棱柱ABC-A 1B 1C 1为直三棱柱∴AA 1⊥平面ABC ∴AC 是A 1C 在平面ABC 内的射影在△ABC 中,AB=1,AC = 3,∠ABC = 60°由正弦定理得∠ACB = 30° ∴∠BAC = 90° 即 AB ⊥AC 由三垂线定理知 AB ⊥A 1C(II )另解1(定义法) 在Rt △A 1AC 中,∵AC =AA 1=3∴取A 1C 的中点D ,连结AD ,则AD ⊥A 1C 且 AD =26在Rt △ABC 中AB = 1 , AC=3 , ∠BAC = 90°∴BC = 2同理, 在Rt △A 1AB 中 A 1B = 2 ∴△A 1BC 为等腰三角形∴BD ⊥A 1C 且BD = 22262⎪⎪⎭⎫ ⎝⎛- = 210 ∴∠ ADB 为二面角A-A 1C-B 的平面角 在△ABD 中 AD =26, BD=210, AB =1 由余弦定理COS ADB= BD AD AB BD AD ∙∙-+2222 = 210262121026222∙∙-⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛ =515∴二面角A-A 1C-B 的大小为arc COS515另解2(射影法) 由(I )知AB ⊥平面ACA 1 ∴△A 1 AC 是△A 1BC 在平面A 1 AC 上的射影 在△A 1BC 中∵A 1 C = 6 A 1 B = BC =2ABCA 1B 1C 1D∴S △A1BC =216 ×22262⎪⎪⎭⎫ ⎝⎛- = 215又△A 1AC =213×3 = 23设二面角A-A 1C-B 为θ ,则S △A1AC = S △A1BC COS θ∴23 = 215cos θ 即cos θ=515 ∴二面角A-A 1C-B 的大小为arc cos515另解3(垂面法) 由(I )知AB ⊥A 1C 设过AB 垂直于A 1C 的平面交A 1C 于D ,则平面A 1AC ∩平面ABD=AD, 平面A 1BC ∩平面ABD=BD AD ⊥A 1C BD ⊥A 1C ∴∠ADB 为二面角A-A 1C-B 的平面角 在Rt △A 1AC 中 ∵AA 1= AC= 3 AD ⊥A 1C ∴D 为A 1C 的中点 且AD=26(下同另解1) 评析粗看此题似曾相识。

2009年全国高考数学试题——全国卷1(理科)含答案

2009年全国高考数学试题——全国卷1(理科)含答案

2009年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第错误!未找到引用源。

卷(选择题)和第错误!未找到引用源。

卷(非选择题)两部分.第错误!未找到引用源。

卷1至2页,第错误!未找到引用源。

卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意: 1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目. 2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效..........3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式: 如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)kkn kn n P k C P P k n -=-= ,,,一、选择题(1)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A B ,则集合[u (A B )中的元素共有 (A )3个 (B )4个 (C )5个 (D )6个 (2)已知1iZ +=2+I,则复数z=(A )-1+3i (B)1-3i (C)3+I (D)3-i (3) 不等式11X X +-<1的解集为(A ){x }{}011x x x 〈〈〉 (B){}01x x 〈〈 (C ){}10x x -〈〈 (D){}0x x 〈(4)设双曲线22221x y ab-=(a >0,b >0)的渐近线与抛物线y=x 2+1相切,则该双曲线的离心率等于(A (B )2 (C (D(5) 甲组有5名同学,3名女同学;乙组有6名男同学、2名女同学。

2009年湖北省高考数学试题答案(理数)

2009年湖北省高考数学试题答案(理数)

09年普通高等学校全国统一考试(湖北卷)数学(理工农医类)本试卷共4页,满分150分,考试时间120分钟。

一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是满足题目要求的。

1、已知是两个向量集合,则P Q =A .{〔1,1〕} B. {〔-1,1〕} C. {〔1,0〕} D. {〔0,1〕}2.设a 为非零实数,函数的反函数是A 、B 、C 、D 、3、投掷两颗骰子,得到其向上的点数分别为m 和n,则复数(m+ni )(n-mi)为实数的概率为 A 、13 B 、14 C 、16D 、1124.函数cos(2)26y x π=+-的图象F 按向量a 平移到'F ,'F 的函数解析式为(),y f x =当2.2D 为奇函数时,向量a 可以等于.(,2)6A π-- .(,2)6B π-.(,2)6C π- .(,2)6D π5.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到一个班,则不同分法的种数为.18A .24B .30C .36D6.设222212012122)...2nn nn n x a a x a x a xa x--+=+++++(,则2024213521li m [(...)(n n n a a a a a a a a-→∞++++-++++=.1A-.0B.1C2 .2 D7.已知双曲线22122x y-=的准线过椭圆22214x yb+=的焦点,则直线2y kx=+与椭圆至多有一个交点的充要条件是A.11,22K⎡⎤∈-⎢⎥⎣⎦B.11,,22K⎛⎤⎡⎫∈-∞-+∞⎪⎥⎢⎝⎦⎣⎭C. 22,22K⎡⎤∈-⎢⎥⎣⎦D.22,,22K⎛⎤⎡⎫∈-∞-+∞⎪⎥⎢⎪⎝⎦⎣⎭8.在“家电下乡”活动中,某厂要将100台洗衣机运往邻近的乡镇,现有4辆甲型货车和8辆乙型货车可供使用。

每辆甲型货车运输费用400元,可装洗衣机20台;每辆乙型货车运输费用300元,可装洗衣机10台。

九年级数学上学期期末专题09 巧用隐圆,妙解压轴

九年级数学上学期期末专题09 巧用隐圆,妙解压轴

专题09巧用隐圆妙解压轴实例讲解:(包含以上多种模型)已知在正方形ABCD中,∠MAN =45°,连接BD与AM,AN 分别交于E、F两点。

从图中找出3组四点共圆及一组5点共圆。

详解: 由题意可得:∠BDF=∠FHE=45°⇒点A,M,F,D四点共圆。

⇒∠AMF=90°∠HFM=45°同理,可得点A,B,E,N四点共圆。

∠ANE=90°,∠NEH=45°∠NEH=∠HFM⇒点M,E,F,N四点共圆。

∠FME=∠ECF=∠FME=90°⇒点N,F,C,E,M五点共圆。

图如右:一.隐圆之定点定长FEMB CDAOHNMEB CDFOHNME CDFAOHNMEB CD1.如图,正方形ABCD ,边长为4,点P 和点Q 在正方形的边上运动,且PQ =4,若点P 从点B 出发沿B →C →D →A 的路线向点A 运动,到点A 停止运动;点Q 从点A 出发,沿A →B →C →D 的路线向点D 运动,到达点D 停止运动.它们同时出发,且运动速度相同,则在运动过程中PQ 的中点O 所经过的路径长为 .2.已知:如图,在正方形ABCD 中,E 、F 分别是AD 、CD 的中点. (1)线段AF 与BE 有何关系.说明理由;(2)延长AF 、BC 交于点H ,则B 、D 、G 、H 这四个点是否在同一个圆上.说明理由.二.隐圆之定弦定角3.在△ABC 中,AB =4,∠C =45°,则√2AC +BC 的最大值为 .4.如图,在矩形ABCD 中,AD =5,AB =3√3,点E 在AB 上,AE EB=12,在矩形内找一点P ,使得∠BPE =60°,则线段PD 的最小值为( )A .2√7−2B .2√13−4C .4D .2√35.问题提出(1)如图①,已知△ABC为边长为2的等边三角形,则△ABC的面积为;问题探究(2)如图②,在△ABC中,已知∠BAC=120°,BC=6√3,求△ABC的最大面积;问题解决(3)如图③,某校学生礼堂的平面示意为矩形ABCD,其宽AB=20米,长BC=24米,为了能够监控到礼堂内部情况,现需要在礼堂最尾端墙面CD上安装一台摄像头M进行观测,并且要求能观测到礼堂前端墙面AB区域,同时为了观测效果达到最佳,还需要从点M出发的观测角∠AMB=45°,请你通过所学知识进行分析,在墙面CD区域上是否存在点M满足要求?若存在,求出MC的长度;若不存在,请说明理由.三.隐圆之直角动点6.如图,在矩形ABCD中,AB=8,BC=5,P是矩形内部一动点,且满足∠P AB=∠PBC,则线段CP的最小值是.7.如图,等边△ABC的边长为6,D为BC边上的中点,P为直线BC上方的一个动点,且满足∠P AD=∠PDB,则线段CP长的最大值为.8.如图,在矩形ABCD中,AB=8,BC=6,点P在矩形的内部,连接P A,PB,PC,若∠PBC=∠P AB,则PC的最小值是()A.6B.√73−3C.2√13−4D.4√13−4四.隐圆之对角互补。

09中考数学分类整理教师版(十二)

09中考数学分类整理教师版(十二)

2009年中考试题分类整理(十二)——操作实验1.(09北京22)阅读下列材料:小明遇到一个问题:5个同样大小的正方形纸片排列形式如图1所示,将它们分割后拼接成一个新的正方形.他的做法是:按图2所示的方法分割后,将三角形纸片①绕AB的中点O旋转至三角形纸片②处,依此方法继续操作,即可拼接成一个新的正方形DEFG.请你参考小明的做法解决下列问题:(1)现有5个形状、大小相同的矩形纸片,排列形式如图3所示.请将其分割后拼接成一个平行四边形.要求:在图3中画出并指明拼接成的平行四边形(画出一个符合条件的平行四边形即可);(2)如图4,在面积为2的平行四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA 的中点,分别连结AF、BG、CH、DE得到一个新的平行四边形MNPQ请在图4中探究平行四边形MNPQ面积的大小(画图并直接写出结果).2.(08北京22)已知等边三角形纸片ABC 的边长为8,D 为AB 边上的点,过点D 作DG BC ∥交AC 于点G .DE BC ⊥于点E ,过点G 作GF BC ⊥于点F ,把三角形纸片ABC 分别沿DG DE GF ,,按图1所示方式折叠,点A B C ,,分别落在点A ',B ',C '处.若点A ',B ',C '在矩形DEFG 内或其边上,且互不重合,此时我们称A B C '''△(即图中阴影部分)为“重叠三角形”.(1)若把三角形纸片ABC 放在等边三角形网格中(图中每个小三角形都是边长为1的等边三角形),点A B C D ,,,恰好落在网格图中的格点上.如图2所示,请直接写出此时重叠三角形A B C '''的面积;(2)实验探究:设AD 的长为m ,若重叠三角形A B C '''存在.试用含m 的代数式表示重叠三角形A B C '''的面积,并写出m 的取值范围(直接写出结果,备用图供实验,探究使用).解:(1)重叠三角形A B C '''的面积为 ;A G CF E BDA '图1AGF B 'C ' E BDA '图2A C B备用图ACB备用图(2)用含m 的代数式表示重叠三角形A B C '''的面积为 ;m 的取值范围为 .3.(06北京22)请阅读下列材料:问题:现有5个边长为1的正方形,排列形式如图1,请把它们分割后拼接成一个新的正方形.要求:画出分割线并在正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.小东同学的做法是:设新正方形的边长为x(x >0).依题意,割补前后图形的面积相等,有52=x ,解得5=x .由此可知新正方形的边长等于两个小正方形组成的矩形对角线的长.于是,画出如图2所示的分割线,拼出如图3所示的新正方形. 请你参考小东同学的做法,解决如下问题:现有10个边长为1的正方形,排列形式如图4,请把它们分割后拼接成一个新的正方形.要求:在图4中画出分割线,并在图5的正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.说明:直接画出图形,不要求写分析过程.ABC4.(09福建24)在学习“轴对称现象”内容时,王老师让同学们寻找身边的轴对称图形,小明有一副三角尺和一个量角器(如图所示).(1)小明的这三件文具中,可以看做是轴对称图形的是 (填字母代号); (2)请用这三个图形中的两个..拼成一个轴对称图案,在答题卡的指定位置画出草图(只须画出一种);(3)小红也有同样的一副三角尺和一个量角器.若他们分别从自己这三件文具中随机取出一件,则可以拼成一个轴对称图案的概率是多少?(请画树状图或列表计算)5.(09广西柳州21)如图6,正方形网格中,△ABC为格点三角形(顶点都是格点),将△ABC绕点A按逆时针方向旋转90°得到11AB C △.(1)在正方形网格中,作出11AB C △;(不要求写作法)(2)设网格小正方形的边长为1cm ,用阴影表示出旋转过程中线段BC 所扫过的图形,然后求出它的面积.(结果保留π)C图66.(09黑龙江哈尔滨25)图(a)、图(b)、图(c)是三张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.请在图(a)、图(b)、图(c)中,分别画出符合要求的图形,所画图形各顶点必须与方格纸中的小正方形顶点重合.7.(09浙江宁波21)(1)如图1,把等边三角形的各边三等分,分别以居中那条线段为一边向外作等边三角形,并去掉居中的那条线段,得到一个六角星,则这个六角星的边数是的网格中有一个正方形,把正方形的各边三等分,分别以居中那条线(2)如图2 ,在55段为一边向外作正方形,去掉居中的那条线段,请把得到的图画在图3中,并写出这个图形的边数(3)现有一个正五边形,把正五边形的各边三等分,分别以居中的那条线段为边向外作正五边形,并去掉居中的那条线段,得到的图的边数是多少?8.(09浙江义乌19)(1)如图1,正方形网格中有一个平行四边形,请在图1中画一条直线把平行四边形分成面积相等的两部分;(2)把图2中的平行四边形分割成四个全等的四边形(要求在图2中画出分割线),并把所得的四个全等的四边形在图3中拼成一个轴对称图形或中心对称图形,使所得图形与原图形不全等且各个顶点都落在格点上。

2009年福建高考数学(理科卷)

2009年福建高考数学(理科卷)

出I )检 验 即 可.熟 悉 二 次 函 数 的 厂 ,
性 质 . 据 二 次 函 数 的 对 称 性 , 们 根 我
知 道 所 求 方 程 的 根 应 是 关 于 直 线

试 确定 t 的最小 值 , 并证 明你 的结论 ; ( ) 存 在 点 Q( J( ) , ≤n i若 i n n) <
导数 值 联 系起 来 : 对含 参 方 程 的处 理
方法 不熟 悉.
m, 使得线段 与曲线厂 ) ( 有异于P Q ,
的公共 点 ,请 直 接 写 出m的取 值范 围
对称的. 证明如下, 因为函数 )
对称 , r: ()  ̄ f = fv t
应对 策 略 :熟 知 导 数 的 几何 意 义. 可导 函数 图 象在 某点 的切 线斜 率
_
2 0 年福 建 高考理 科试题 设计 新颖 , 旧题 、 09 无 怪题 注 重考查 通性通 法 , 化特 : 淡 殊 技巧 立足 于基 础 知识 、 基本 技能 和基 本思 想 方法 , 突出 考查 数学 能 力和数 学 素养 .本套 试题 较 为全面 地考 查 了高 中数 学 的主干 知识 , 分 关注 同学 们在 学 充 习数学和应 用数 学解决 问题 的过程 中必 须掌 握的核心 观念 、重 要思想 和 常用技 能 下面 笔者对部 分试题 作重点分 析 .
Z a 口
第2题 已知函 ()÷ + o =

a Zb , 一 )Q x+ x 且厂 ( 1=
(I) 用 含a 试 的代 数 式 表示 b 并 ,
求 ) 单 调 区 间. 的
C 12 3 4 .{ , , , } D 14 1 ,4 .{ , ,6 6 } 失 分 原 因 : 题 是 选 择 题 的 最 后 本

09IMC五年级复赛试题详解

09IMC五年级复赛试题详解

2009年第五届“IMC 国际数学竞赛”(中国赛区复赛)小学五年级试题考试时间:90分钟,卷面总分:120分一、选择题(每小题5分,共50分) 1. 下列数中,( )与49266722980⨯最接近;A .1B .10C .100D .1000 答案:(D )考点:分数的放缩,比较;解:分子四位数乘以三位数,且首位进位,积为3000000附近,所以,与此分数最接近的为1000,选D 。

2. If a ,b and c are integers ,and a =5b =11c ,which of the fololwing is not necessarily an integer?A . 5aB . 11aC . a bD . b a 答案:(D )考点:约数与倍数;译文:如果a 、b 、c 均为整数,那么下列的数不是整数的为哪个? 解:5a b =为整数;11a c =为整数;5a b =为整数;15b a =不是整数。

故选D 。

3. 数列1,11,111,111,⋯,中前10个数的和的十位数字是_______; A .2 B .0 C .3 D .9 答案:(B )考点:数位问题;解:求十位上的数字,需要考虑个位的进位情况,个位共有10个1,写0进1,十位上共有9个1,加上进位1,十位上写0进1。

所以十位上的数字为0。

4. k 进制换算成十进制的方法:例如一个四位数的k 进制k a b c d 化成十进制应为32k abcd a k b k c k d =⨯+⨯+⨯+,如八进制的四位数1234换算成十进制应为32812341828384668=⨯+⨯+⨯+=。

如二进制的四位数1101换成十进制应为_______;A .12B .13C .15D .30答案:(B )考点:数的进制;解:3221101121202113=⨯+⨯+⨯+=。

5. In the Fig. The diagram shows a rectangle of length 4cm and breadth 3cm.E is the midpoint of AB and F isthe midpoint of CD. Then the area of the shaded part is _______cm? A .2 B .3 C .6 D . none of the above 答案:(B )考点:面积问题;译文:如图,一个长为4cm ,宽为3cm 的长方形,其中E 是AB 的中点,F 是CD的中点,那么阴影部分的面积为_______cm ;解法一:可以特殊化,G 移动到点B 的位置,这样可以得到阴影部分的面积为长方形面积的14,即14334⨯⨯=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

09数学试题
共14页 第2页
桂东县濂溪实验学校2009年招生面试数学试题
( 时量:90分钟 总分:120分 )
一、填空题:(每题2分,共30分) 1、
2009年,对于桂东一中来说又是个丰收年,在高考和中考中都取得了优异的成绩。

已知高考上线率为96.83%,参考人数为
851,则有( )人上线;中考155人考
取县一中计内生,考取县一中计内生比例为97.48%,则有( )人参考。

(答案
取整数)
2、3个人排成一排照相,共有( )种不同排法。

3、 把4
11:812化成最简整数比是( )。

4、把一个正方形上下对折,再左右对折,得到
的图形的面积是原正方形面积的)
) ((。

5、半袋水泥重25千克,这一袋水泥重( )吨。

6、把0.763737……精确到十分位是( ),
共14页第3页
13、12的约数有(),选出其中4个约数将它们组成比例是()。

14、右图中共有()个三角形。

15、王老师在黑板上写了15个自然数,让同学们计算平均数,并指出平均数是一个循环小数,要保留两位小数。

结果有一位学生得出的答案是12.46,王老师笑了笑,说: 这个答案的最后一位数字错了,其他数字都对,正确的答案是()。

二、判断题(对的在括号内打“√”,错的打“×”)(共6分)
16、2002年不是闰年。

()
17、两个面积相等的三角形一定能拼出一个平行四边形。

()

共14页第4页
共14页 第5页
18、整数的倒数比它本身小。

( )
19、
比例尺一定,图上距离和实际距离成正比。

( )
20、一种商品的价格先上浮动20%,又向下浮动20%,结果恢复了原价。

( ) 21、抛10次硬币,前9次正面朝上有5次,则第10次一定是反面朝上。

( )
三、选择题
(将正确答案的序号填入表格内)(共14分)
22、表示数量的增减变化情况,应选择
A





图 B .折线统计图 C .扇形统计图
位号 题号 22 23 24 25 26 27 28 答案
23、在除法算式a÷b=c……n (b≠0),那么
A. b>n
B. b>c
C. n<c
24、钟面上,时针的转速与分针的转速之比是
A. 1︰60 B.1︰12 C.12︰1
25、某超市有甲、乙、丙三种餐巾纸,甲种纸
1元钱3包,乙种纸2元钱5包,丙种纸3
元钱8包。

那么哪种纸每包的价钱最贵。

A.甲种 B.乙种
C.丙种
26、天气预报“明天下雨的概率是90%”,下面
哪一个判断是正确的?
A.明天肯定下雨 B.明天有90%的地
方下雨 C.明天有90%的可能性下雨
27、用同样长的铁丝分别围成长方形、正方形
和圆,其中面积最大的是
A. 圆
B. 正方形
共14页第6页
共14页 第7页
C. 长方形
28、一个人登山,上山时的速度为a 千米/小时,下山时速度为b 千米/小时,则该人的平均速度
为多少千米/小时
A. 2b a +
B. b
a 1
1+ C. b
a a
b +2
四、计算或解方程(每题5分,共25分)
29、
5.76×101
1+57.6×0.89 30、 ( 2
1+
31)×109
÷3
31、2009-20091-20092-20093-……-2009
2009
32、 531%50=-x x 33、 75
2
.125=x
五、应用题(列算式或方程均可,共10分)
34、甲、乙两种商品,成本共2200元。

甲商品按20%的利润定价,乙商品按15%的利润定价,后来都打九折出售,结果还获利131元。

问甲商品的成本是多少元?
35、小明在7点与8点之间解了一道题,开始时分针与时针正好成一条直线,解完题时两针
共14页第8页
正好重合,小明解题的起始时间各是什么时刻?小明解题共用了多少分钟?
六、综合题:(共35分)
36、(6分)在下面的式子中填上适当的运算符号“+、-、×、÷”和“()”使等式成立。

⑴: 5 5 5 5 5 = 24 ⑵:
5 5 5 5 5 = 24
37、根据对称轴画出另一半(6分)
共14页第9页
38、(6分)有A、B、C、D、E、F六名好朋友测量身高。

测量结果是:B说他比A高11厘米;C说他比D高1厘米;E说他比B高2厘米;F 说他比B矮7厘米,比D矮2厘米;A说最矮的身高是145厘米;根据上述条件,推出每个人的身高是多少?
共14页第10页
39、(6分)某市为鼓励居民用电,对用电的收费标准作如下规定:每月用电量在200度(含200度)以内的,每度电收费0.457元;每月用电量超过200度的,超过部分每度优
惠0.10元。

小强6月30日电表显示为 ,7月31日电表显示
0 7 1 8 5 1 0 9 4 5
为。

问:小强家七月份应交电费多少元(结果保留两位小数)。

40、(6分)如图所示正方形与一个等腰三角形,
E
放在同一直线上。

现在正方形以每秒2厘米的
A D
速度,向右沿直线运动。

求运动整秒数时(9~14秒)正方形与三角形重叠部分的面积是多少?
41、(5分)请你利用数学中学过的一些基本图形,为濂溪实验学校设计一个校徽或班徽,并简要说明理由。

相关文档
最新文档