武汉市九年级上10月月考试题
2024-2025学年九年级语文上学期10月第一次月考试卷附答案解析
2024-2025学年九年级语文上学期10月第一次月考试卷(满分120分,考试用时120分钟)测试范围:九年级上册第1-3单元一、基础知识综合。
(23分)1.(3分)阅读下面的文字,按要求作答。
近年来,中国传统文化受到越来越多的关注。
从国潮文化备受追捧到《只此青绿》红遍大江南北,从故宫文创热销全国到汉服风靡.海外,从对中华民族灿烂文明发自内心地chóng拜到精神深处的认同。
人们纷纷把目光转向中国传统文化,并自觉参与到传统文化的传播与创新中,推动全社会形成浓厚的文化自信氛.围。
这不仅意味着中国创新力量的jué起,还彰显着中国文化自信的觉醒。
(1)(1分)依次给语段中加点的字注音,全都正确....的一项是()A.mífēn B.mǐfēn C.mífèn D.mǐfèn(2)(2分)根据语境,写出下面词语中拼音所对应的汉字。
chóng()拜jué()起2.(3分)为了记录九年级精彩的学习生活,班长小文提议制作一本班级纪念册。
为便于向同学们解释清楚编写流程,请你根据下图,撰写一份解释流程的文字稿。
要求:语言简洁流畅,条理清楚,不超过80字。
3.(2分)同学们邀请班主任王老师为班级纪念册写一篇序言,下面是王老师写的序言中的一部分,但句子顺序被打乱了,请你选出排序最合理...的一项()①从古到今,多少名人心向未来,或记史或写诗,其事迹令人鼓舞。
②司马迁隐忍苟活,心怀泰山之志,铸就史家绝唱。
③误落尘网心向未来,毅然折身归隐田园;④我们也要拥有无尽的勇气,不被风浪所阻,去闯出一个灿烂的未来。
⑤遭受宫刑心向未来,忍辱谱史巨著终成;⑥陶渊明远离世俗,独享悠然采菊,终得无悔自由。
A.⑤②③⑥①④B.①⑤②③⑥④C.①③⑥⑤②④D.③⑥⑤②①④4.(8分)为了让大家更好地感受到文化传承的魅力,酷爱古诗文的小博以幻灯片的形式呈现了一些古诗文名句,请帮他补写。
湖北省武汉二中广雅2024-2025学年上学期九年级10月月考数学试题
湖北省武汉二中广雅2024-2025学年上学期九年级10月月考数学试题一、单选题1.一元二次方程2210x x -+=的二次项是2x ,则一次项和常数项分别是( ) A .2x 和1B .2x 和1-C .2x -和1-D .2x -和12.下列常用手机APP 的图标中,是中心对称图形的是( )A .B .C .D .3.关于函数y =-(x +2)2-1的图象叙述正确的是( ) A .开口向上B .顶点(2,-1)C .与y 轴交点为(0,-1)D .图象都在x 轴下方4.将抛物线22(1)2y x =-+-向下平移3个单位后的新抛物线解析式为( ) A .22(1)1y x =--+ B .22(1)5y x =-+- C .22(1)5y x =---D .22(1)1y x =-++5.如图,把ABC V 以点A 为中心逆时针旋转得到ADE V ,点B ,C 的对应点分别点D ,E ,且点E 在BC 的延长线上,连接BD ,则下列结论一定正确的是( )A .ACE ADE ∠=∠B .AB AE =C .CAE BAD∠=∠D .CE BD =6.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x ,那么x 满足的方程为( ) A .210(1)36.4x += B .21010(1)36.4x ++=C .10+10(1+x )+10(1+2x )=36.4D .21010(1)10(1)36.4x x ++++=7.已知点()13,A y -,()21,B y -,()32,C y 在函数22y x x b =--+的图象上,则1y 、2y 、3y 的大小关系为( ) A .132y y y <<B .312y y y <<C .321y y y <<D .213y y y <<8.某同学在用描点法画二次函数2y ax bx c =++的图象时,列出了下面的表格:由于粗心,他算错了其中一个y 值,则这个错误的数值是( ) A .12-B .10-C .1-D .29.已知函数2(2)(1)=-+++y a x a x b 的图像与坐标轴有两个公共点,且4a b =,则a 的值为( ) A .1-或2B .0或2C .14-、0或2D .1-、14-或210.已知二次函数()23100325y x a x =-+-+(a 为整数),当15x ≤(x 为整数)时,y 随x的增大而增大,则a 的最大值是( )A .3B .4C .5D .6二、填空题11.在平面直角坐标系中,点()3,2A -关于原点对称的点的坐标为.12.已知一元二次方程2310x x --=的两根分别为1x ,2x ,则1212x x x x +-⋅=.13.如图,将ABD △绕顶点B 顺时针旋转40︒得到CBE △,且点C 刚好落在线段AD 上,若32CBD ∠=︒,则E ∠的度数是.14.飞机着陆后滑行的距离y (单位:m )关于滑行时间t (单位:s )的函数解析式是23602y t t =-.在飞机着陆滑行中,滑行的最大距离是15.抛物线()20y ax bx c a =++≠的对称轴为1x =,经过点()3,n -,顶点为D ,下列四个结论:21a b +=①;240b ac ->②;③关于x 的一元二次方程2ax bx c n ++=的解是13x =-,25x =;④设抛物线交y 轴于点C ,不论a 为何值,直线CD 始终过定点()15,n -.其中一定正确的是(填写序号).16.如图,在矩形ABCD 中,4AB =,AD =点E 为矩形内一动点,且满足AE BE ⊥,P 在AD 边上,2AP DP =,连接EP ,将线段PE 绕着P 点逆时针旋转60︒得到PF ,连接DF ,则DF 的最小值为.三、解答题 17.解方程:(1)2410x x -=+(配方法); (2)2320x x +-=(公式法).18.如图,在Rt ABC △中,90C ∠=︒,3CB =,4CA =,将ABC V 绕点B 按逆时针方向旋转得DBM △,使点C 的对应点M 落在AB 边上,点A 的对应点为点D ,连接AD .求AD 的长.19.在一幅长9分米,宽5分米的矩形大熊猫画(如图①)的四周镶宽度相同的银色纸边,制成一幅矩形挂图(如图②).如果要使整个挂图的面积是77平方分米,求银色纸边的宽.20.抛物线243y x x =++的图像与x 轴交于A 、B 两点,点A 在B 左侧,与y 轴交于点C .(1)点C 坐标为,顶点坐标为; (2)不等式2430x x ++>的解集是;(3)当x 满足42x -<≤时,y 的取值范围是; (4)当y 满足03y <<时,x 的取值范围是.21.在如图所示的小正方形网格中,A ,B ,C ,M ,P ,Q 均为小正方形的顶点,仅用无刻度的直尺完成下列作图,作图过程用虚线表示,作图结果用实线表示:(1)图1中,作ABC V 关于点M 中心对称的三角形111A B C △;(2)图2中,F 是网格线上的一点,连接BF ,根据网格特点在图中标出BF 的中点D ,将线段AB 平移得到线段EF ,点A 的对应点为点F ;(3)图3中,()5,2A ,()6,5B ,()4,4P ,()1,5Q ,线段AB 绕着点G 旋转90︒可以得到线段PQ ,直接写出旋转中心G 的坐标G .22.为有效地应对高楼火灾,某消防中队进行消防技能比赛.如图1,在一个废弃高楼距地面15m 的点A 和19.2m 的点B 处,各设置了一个火源,消防员来到火源正前方,水枪喷出的水流看作抛物线的一部分.第一次灭火时站在水平地面的点C 处,水流从点C 射出恰好到达点A 处,且水流的最大高度为20m ,水流的最高点到高楼的水平距离为5m ,建立如图1所示的平面直角坐标系,水流的高度()m y 与出水点到高楼的水平距离()m x 之间满足二次函数关系.(1)求出消防员第一次灭火时水流所在抛物线的解析式;(2)待A 处火熄灭后,消防员前进3m 到点D (水流从点D 射出)处进行第二次灭火,若两次灭火时水流所在抛物线的形状完全相同,判断水流是否到达点B 处,并说明理由; (3)若消防员从点C 前进t 米到点T (水流从点T 射出)处,水流未达到最高点且恰好到达点A 处,直接写出的t 值,t =.(水流所在抛物线形状与第一次完全相同)23.在ABC V 中,AB AC =,90BAC ∠=︒,点D 在边BC 上,且BD CD >,将线段AD 绕着点A 顺时针旋转90︒,得到线段AE ,连接EB ;(1)如图1,求证:BE BD ⊥;(2)如图2,过点C 作CG AB ∥交ED 延长线于点G ,AB 与DE 交于点F ,探究线段FG 与AE 的数量关系;(3)如图3,连接CE ,点M N 、分别是CE 、BD 的中点,8AC =,6AD =,请直接写出AMN V 的面积.24.如图1,抛物线23y ax bx =+-与x 轴交于(1,0)A -、(3,0)B 两点,D 为抛物线的顶点.(1)求抛物线的解析式;(2)如图2,经过定点G 的直线2(0)y kx k k =-->交抛物线于E 、F 两点(点E 在点F 的左侧),若DFG V 的面积是DEG △面积的三倍,求k 的值:(3)如图3,直线PM 与抛物线有唯一公共点M ,直线PN 与抛物线有唯一公共点N ,且直线MN 过定点(1,2)-,则ABP S △的面积为定值,求出这个定值.。
湖北省武汉市硚口区2024-2025学年九年级10月月考语文试题
2024~2025学年度九年级10月质量检测语文试卷Ⅰ阅读(共55分)一、阅读下面的实用类文本,完成1~3题。
(10分)找回走失的“数字自我”①数字信息革命以来,人在网络空间逐渐有了新的对象化存在——数字自我。
数字自我的本质是数据体,来源于人的意识的数字化表达和实践活动的数字化痕迹。
随着信息技术的发展和网络活动的丰富,数字自我从“日益丰满”到“发育得太快”,出现了令人担忧的诸多畸形,这些负面情形加深了数字自我异化程度。
这不能不引起我们的重视和思考。
①数字自我“碾压”现实自我。
当前,网络“自媚”现象愈演愈烈,很多网民耗费大量精力财力“美化”数字自我,涌现出海量“蛇精脸”“网红妆”等与现实自我大相径庭的同质化数字自我。
有很多网瘾者在游戏中夸张奔放、英勇神武,但现实中却腼腆内向、懒惰消沉。
众多网民长期脱离现实生活,沉浸在网络活动中无法自拔,已产生“现实中的我远不及虚拟的‘我’”的想法,久而久之变得厌弃现实自我、逃离真实生活。
①虚假、多重数字自我遍布。
网民的身份和角色可以相对自由地塑造,且难以识别和追溯,滋生了众多身份不明且角色多重的数字自我。
很多人可以隐藏现实身份,制造多重数字角色,把网络空间中“肆意妄为”的惯性也延伸至现实生活中,逐渐模糊了现实和网络的界限。
由此,电信诈骗、网络欺诈、盗用冒用他人账号等行为屡禁不止,“被代言”“借身份”等现象屡见不鲜,还出现了假数字自我之间的“翻车事件”。
①数字自我的分裂和迷失。
在互联网时代,数字自我是人的重要组成部分,但很多人却使之分裂为自我的对立面。
很多网友在现实生活中能够保持理性的自我,但在网络空间中却易受裹挟而表现出“盲动主义”。
还有的人置身信息洪流产生自身认知能力和知识水平大幅提升的幻觉,或是因网络生活的便捷而出现“无所不能”的错觉。
更有甚者,为博眼球、吸流量,不惜自毁形象,制造出一些有失道德和体面的负面事件。
①数字自我异化,根源于人的网络实践活动异化。
随着网络应用、内容、终端的剧增,很多网络行为日益被平台和算法所引导,信息交换被无关信息所扰攘,社交活动更多被陌生人社交和人机互动所挤占,时间和精力愈加被网络游戏和视频直播所分散。
2024-2025学年九年级上学期10月月考语文试题和答案解析
2024年秋季九年级(初三)第一次质量监测语文试题一、积累与运用(每小题3分,共12分)1.下列加点字的注音完全正确的一项是()(3分)A.亘.古(gèn)倜傥.(tǎng)炽.热(zhì)怏.怏不乐(yàng)B.上溯.(sù)眼眶.(kuàng)缄.默(jiān)慷慨.激昂(kǎi)C.庇.护(bì)较量.(liàng)冠冕.(miǎn)拾.级而上(shí)D.驰骋.(chěng)蓦.然(mù)锃.亮(zèng)坦荡如砥.(dǐ)2.下列词语书写完全正确的一项是()(3分)A.仲裁文彩彰显人情世故B.敦实纯粹濒临一代天娇C.星辰贸然旁骛红妆素裹D.考订洋溢熏陶神采奕奕3.下列句子中,加点成语使用错误的一项是()(3分)A.上海某电梯集团的潘阿锁一头扎进电梯研发之中,对技术精益求精....,终于成长为真正的工匠。
B.任何工作的过程都是充满艰辛的,抵达目的所需要的,除了激情,还有任劳任怨....,默默耕耘。
C.庆祝“五四”的晚会上,两位同学模仿的小品让我们都忍俊不禁....地开怀大笑。
D.人工智能时代,新职业新岗位将如雨后春笋....,为更多的人搭建更多的人生出彩的舞台。
4.下列表述有误的一项是()(3分)A.《资治通鉴》由北宋司马光主持编纂,记载了从战国到五代共1362年间的史事,是我国古代纪传体通史的鸿篇巨制。
B.在我国古代文学作品中,“布衣”“汗青”“婵娟”,“青鸟”“簪缨”常用来代指平民、历史、月亮、信使、达官显贵。
C.春节,是中华民族的第一大节,承载着丰富的文化内涵和价值观念,由三大环节构成:辞别旧年、团年守岁、迎接新年。
D.“加冠”指已成年,古时男子二十岁举行加冠仪式,表示已经成人。
“黄发垂髫”中的“黄发”“垂髫”分别指代老人和小孩。
二、现代文阅读(共35分)(一)论述性文本阅读(每小题3分,共9分)阅读下面选文,完成下面小题。
2023-2024学年湖北省武汉市九年级上学期物理10月月考试题及答案
2023-2024学年湖北省武汉市九年级上学期物理10月月考试题及答案一、选择题(本题包括12小题,每小题只有1个正确选项。
每小题3分,共36分)1. 王亚平老师在空中课堂做实验时,将蓝色颜料注入水球后,水球变成色泽均匀的蓝色水球,如图所示的现象中不能用该实验原理解释的是( )A. 甲图中,冬天,人们常用搓手的方法使手变暖B. 乙图中,将两铅柱底面削平紧压在一起,下面吊一重物都不能把它们拉开C. 丙图中,抽掉玻璃板后,两个瓶子内的气体颜色变得均匀D. 丁图中,迅速向下压动活塞,硝化棉被点燃【答案】C 【解析】【详解】水球中注入颜料,水球变色,说明分子在不停地做无规则运动,属于扩散现象。
A .用搓手的方法使手变暖,是做功改变内能,A 不符合题意;B .将两铅柱底面削平,紧压在一起,吊重物都不能拉开,说明分子间有引力,B 不符合题意;C .抽掉玻璃板后,两个瓶子内气体颜色变得均匀,是分子运动形成的扩散现象,C 符合题意;D .迅速向下压活塞,压缩体积,通过做功的方式改变气体内能,故D 不符合题意。
故选C 。
2. 如图所示,在试管内装些水,用橡胶塞塞住管口,可观察到水蒸气冲开瓶塞。
下列说法正确的是( )的A. 塞子受到水蒸气的压力冲出去,水蒸气的内能增大B. 这个实验展示了蒸汽机的工作原理C. 水在加热过程中,水的内能不变D. 随着燃料不断燃烧,燃料的热值不断减小【答案】B【解析】【详解】A.塞子被水蒸气的压力冲出,水蒸气的内能转化为塞子的机械能,水蒸气的内能减小,故A错误;B.如图实验,水蒸气内能转化为塞子的机械能,是蒸汽机的工作原理,故B正确;C.对水加热过程中,水吸收热量,内能变大,故C错误;D.燃料不断燃烧,燃料的热值是燃料的特性,保持不变,故D错误。
故选B。
3. 小红同学用气球(由橡胶制成)与自己的头发摩擦几下,松手后,气球“粘”在头发上,其原因是( )A. 气球上的负电荷转移到头发上B. 头发上的正电荷转移到气球上C. 气球和头发带同种电荷而相互排斥D. 气球和头发带异种电荷而相互吸引【答案】D【解析】【详解】人们规定,用毛皮擦过的橡胶棒上所带的电荷叫负电荷,气球与头发摩擦后,摩擦过程中电子从毛皮转移到气球上,气球得到电子带负电,则头发失去电子的带正电;相互靠近时出现了气球“粘”在头发上的现象,是因为异种电荷互相吸引,故ABC不符合题意,故D符合题意。
湖北省武汉市 2024-2025学年九年级上学期10 月月考 英语试卷(含答案,无听力原文及音频 )
2024-2025 学年度上学期10 月月考九年级英语试卷(考试时间120分钟试卷满分120分)亲爱的同学:在你答题前,请认真阅读下面的注意事项。
1. 本卷共4页,7大题,满分120分。
考试用时120分钟。
2. 答题前,请将你的姓名、班级、学校填在试卷和答题卡相应的位置,并核对条码上的信息。
3. 答选择题时,选出每小题答案后,用28 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案。
答在”试卷”上无效。
4. 答非选择题时,答案用0. 5 毫米黑色笔迹签字笔写在答题卡上。
答在”试卷”上无效。
5·认真阅读答题卡上的注意事项。
预祝你取得优异成绩!第Ⅰ卷(选择题共80 分)第一部分听力部分一、听力测试(共三节,满分25分)第一节(共4 小题,每小题 1 分,满分4分)听下面四个问题。
每个问题后有三个答语、从题中所给的A、B、C 三个选项中选出最佳选项听完每个问题后,你都有五秒钟时间来作答和阅读下一小题。
每个问题仅读一遍。
1. A. I’m a boy. B. H-U-N-T. C. Tom.2. A. Very cute. B. I like it. C. Some sand, I guess.3. A. My parents. B. Next week. C. By bike.4. A. A cat. B. The red one. C. Very nice.第二节(共8小题,每小题1分,满分8分)听下面8段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听完每段对话后,你都有10秒钟的时间来作答有关小题和阅读下一小题。
仅读一遍。
5. How many days are they going to stay in Wuhan?A. 5.B. 6.C. 7.6. Who will go out for a walk in the park soon?A. The man.B. The woman.C. Both of7. What are the speakers mainly talking about?A. How to wash hair quickly.B. Saving water.C. The downtown8. What time is it now?A. 4: 15.B. 4: 45.C. 5: 15.9. Where is the woman going this weekend?A. To a concert.B. To a hospital.C. To a museum10. What can we learn from the conversation?A. The woman refused the man this morning.B. The woman can’t eat out with the man now.C. The man likes eating outside.11. Who will probably lock the door?A. The man.B. The woman.C. Mary.12. How does the man feel about the bus service?A. Dissatisfied.B. Great.C. So-so.第三节(共13 小题,每小题 1 分,满分13 分)听下面4段对话或独白。
湖北武汉黄陂区七校联盟2024年九年级上学期10月月考数学试题
2024年秋七校联盟九年级10月数学监测卷一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.1. 下列是一元二次方程的是( )A. 31x y +=B. 221x y −+C. 220x x −=D. 211x x += 2. 若关于x 的方程()27324mm x x −−−=−是一元二次方程,则同m 的值是( ) A. 3 B. 3−C. 3±D. 无法确定 3. 抛物线232y x =+的顶点坐标是( ) A. ()3,2 B. ()02, C. ()20, D. ()23,4. 方程223x x =的解为( )A. 0x =B. 32x =C. 32x =−D. 1230,2x x == 5. 对于一元二次方程22340x x −+=,则它根的情况为( )A. 没有实数根B. 两根之和是3C. 两根之积是2−D. 有两个不相等实数根6. 一元二次方程经21030x x −−=配方后可变变形( )A. 2(5)25x −=B. 2(5)25x +=C. 2(5)28x +=−D. 2(5)28x −= 7. 已知m 是方程210x x +−=的一个根,则代数式3222024m m ++的值是( )A. 2025B. 2024C. 2023D. 无法确定 8. 已知210x x −−=,计算2221121− −÷ +++x x x x x x 的值是( ) A 1 B. 1− C. 2 D. 2−9. 在解一元二次方程x 2+px +q =0时,小红看错了常数项q ,得到方程的两个根是﹣3,1.小明看错了一次项系数P ,得到方程的两个根是5,﹣4,则原来的方程是( )A. x 2+2x ﹣3=0B. x 2+2x ﹣20=0C. x 2﹣2x ﹣20=0D. x 2﹣2x ﹣3=010. 若m ,n 为方程2202310x x +−=的两根,则()()222024120241m m n n +−+−的值是( ). A. 1 B. 1− C. 4043−D. 4043 二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直的为.接填写在答题卡指定的位置.11. 当a =________时,函数21(1)3a y a x x +=−+−是二次函数.12. 如果抛物线2(1)3y a x =+−有最低点,那么a 的取值范围是___________.13. 方程240x x c +−=有两个相等的实数根,则c =___________.14. 若关于x 的一元二次方程240x x m −+=的两个实数根分别是x 1,x 2,且123x x =.则m 的值为___________.15. 已知()()22222340m n m n +++−=,则22m n +值为___________.16. 定义新运算“※”:对于实数m ,n ,p ,q ,有[][]m p q n mn pq =+,※,,其中等式右边是通常的加法和乘法运算,例如:[][]2345253422=×+×=,※,.若关于x 的方程[]21520x x k k +−= ,※,:有两个实数根,则k 的取值范围是______.三、解答题(共8小题,共72分)下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形.17. 解一元二次方程:(1)2210x x −+=(2)23410x x −+=18. 已知1x =−是一元二次方程22(1)10m x m x −++=的一个根.求m 的值,并写出此时的一元二次方程的一般形式.19. 已知代数式249x x −+,先用配方法说明,不论x 取何值,这个代数式的值总是正数;再求出当x 取何值时,这个代数式的值最小,最小值是多少?20. 已知方程2510x x −−=的两根为1x ,2x ,不解方程,求下列各式的值:(1)2212x x +;(2)1211x x +; 21. 已知关于x 的一元二次方程()()2320x x m −−−=(1)求证:无论m 为何实数,方程总有两个不相等的实数根;(2)若方程()()2320x x m −−−=两个实数根α、β满足2217αβ+=,求m 的值. 的的22. 云梦鱼面是湖北地区的汉族传统名吃之一,主产于湖北省云梦县,并因此而得名,1915年,云梦鱼面在巴拿马万国博览会参加特产比赛获优质银牌奖,产品畅销全国及国际市场.今年云梦县某鱼面厂在“农村淘宝网店”上销售云梦鱼面,每袋成本16元,该网店于今年3月销售出200袋,每袋售价30元,为了扩大销售,4月准备适当降价.据测算每袋鱼面每降价1元,销售量可增加20袋.(1)每袋鱼面降价5元时,4月共获利多少元?(2)当每袋鱼面降价多少元时,能尽可能让利于顾客,并且让厂家获利2860元?23. 如果关于x 的一元二次方程()200ax bx c a ++=≠有两个实数根,且其中一个根比另一个根大2,那么称这样的方程为“好根方程”.例如,一元二次方程220x x +=的两个根120,2x x ==−是,则方程是“好根方程”.(1)通过计算,判断方程2410x ++=是否是“好根方程”;(2)已知关于x 的方程210()x mx m m +−−=是常数是“好根方程”,求m 的值.24. 如图,在ABC 中,906cm 8cm B AB BC ∠=°==,,.(1)点P 从点A 开始沿AB 边向点B 以1cm/s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2cm/s 的速度移动,如果点P ,Q 分别从A ,B 同时出发,经过几秒钟后,PBQ 的面积为28cm(2)如果点P ,Q 分别从A ,B 同时出发,点P 在AB 边上沿A →B →A 的路线以1cm/s 的速度移动,点Q 在BC 边上沿B →C →B 的路线以2cm/s 的速度移动,且其中一点到达终点时,另一点随之停止移动,连接CP ,求经过几秒钟后,PCQ △的面积为28cm ?。
湖北省武汉市武昌区七校联考2023-2024学年九年级上学期10月月考数学试卷(含解析)
湖北省武汉市武昌区七校联考2023-2024学年九年级上学期月考数学试卷(10月份)(解析版)一、选择题(每小题3分,共30分)1.(3分)一元二次方程x2﹣2x=0的解是( )A.0B.0或﹣2C.﹣2D.0或22.(3分)下列方程中有两个相等实数根的是( )A.7x2﹣x﹣1=0B.9x2=4(3x﹣1)C.x2+7x+15=0D.2x2﹣x﹣2=03.(3分)点A(0,5),B(4,5)是抛物线y=ax2+bx+c上的两点,则该抛物线的顶点可能是( )A.(2,5)B.(2,4)C.(5,2)D.(4,2)4.(3分)抛物线y=(x+4)2﹣3可以由抛物线y=x2平移得到,则下列平移过程正确的是( )A.先向左平移4个单位,再向上平移3个单位B.先向左平移4个单位,再向下平移3个单位C.先向右平移4个单位,再向下平移3个单位D.先向右平移4个单位,再向上平移3个单位5.(3分)某树主干长出若干数目的支干,每个支干又长出同样数目小分支,主干、支干和小分支总数共91.若设主干长出x个支干则可列方程是( )A.(1+x)2=91B.1+x+x2=91C.(1+x)x=91D.1+x+2x=91 6.(3分)已知a是方程x2﹣2x﹣1=0的一个根,则代数式2a2﹣4a﹣1的值为( )A.1B.﹣2C.﹣2或1D.27.(3分)函数y=﹣x2+2x+3,当﹣2≤x≤2时,y的最大值为m,则m+n=( )A.3B.﹣1C.﹣2D.18.(3分)函数y=ax2﹣2x+1和y=ax+a(a是常数,且a≠0)在同一平面直角坐标系中的图象可能是( )A.B.C.D.9.(3分)二次函数y=x2+kx+2k﹣1与x轴交于A(x1,0)、B(x2,0)两点,且x12+x22=7,则k=( )A.5B.﹣1C.5或﹣1D.﹣5或110.(3分)如图,在△ABC中,∠BAC=120°,将BC绕点C顺时针旋转120°得到CD,则线段AD的长度的最小值是( )A.B.C.D.二、填空题(每小题3分,共18分)11.(3分)若方程x2﹣12x+5=0的两根为x1,x2,则x1+x2﹣x1x2的值为 .12.(3分)关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一根为0,则m = .13.(3分)一个n边形有20条对角线,则n= .14.(3分)已知抛物线与直线y2=2x+2交于A,B两点.若y1>y2,则x的取值范围为 .15.(3分)已知二次函数y=ax2+bx+c(a<0)的图象与x轴的一个交点坐标为(﹣1,0),对称轴为直线x=1①若点(﹣3,y1),(2,y2),(4,y3)均在该二次函数图象上,则y1<y3<y2;②c=﹣9a﹣3b;③若m为任意实数,则am2+bm+c≤﹣3a;④方程ax2+bx+c+1=0的两实数根为x1,x2且x1<x2,则x1<﹣1,x2>3.正确结论为 .16.(3分)已知点A(x1,y1)在直线y=3x+19上,点B(x2,y2),C(x3,y3)在抛物线y =x2+4x﹣1上,若y1=y2=y3且x1<x2<x3,S=x1+x2+x3,则s的取值范围是 .三、解答题(共72分)17.(8分)解一元二次方程.(1)x2﹣2x﹣1=0;(2)x(x+4)=2x+8.18.(8分)已知平行四边形ABCD的两边AB、AD的长是关于x的方程的两个实数根.(1)当m为何值时,四边形ABCD是菱形?(2)若,求m的值.19.(8分)已知关于x的一元二次方程x2﹣(k+2)x+2k=0.(1)求证:无论k为何值,此方程总有一个根是定值;(2)若直角三角形的一边为3,另两边恰好是这个方程的两根,求k的值.20.(8分)物理实验课小明做一个实验:在一条笔直的滑道上有一个黑小球以一定的速度在A处开始向前滚动,并且均匀减速,测量黑球减速后的滚动速度v t(单位:cm/s)随滚动时间t(单位:s)变化的数据,整理得下表.运动时间ts01234运动速度vcm/s109.598.58(1)小明探究发现,黑球的滚动速度v t与滚动时间t之间成一次函数关系,直接写出v t 关于t的函数解析式(不要求写出自变量的取值范围) .(2)求出滚动的距离s关于滚动的时间t的函数解析式,并求出黑球滚动的最远距离.[提示:本题中,距离s=平均速度,=(v0+v t),其中v0是开始时的速度,v t是t秒时的速度]21.(8分)如图是由小正方形组成的网格,每个小正方形的顶点叫做格点,图中A、B、C 都在格点上,画图过程用虚线表示.(1)在图1中,画出格点C,使∠ABC=45°.(2)在图2中,在AC上画点E,使∠AEB=∠ABC.(3)在图3中,点D是AB上一点,在AB的下方画∠ADF=45°.22.(10分)某酒店客房部有20套房间供游客居住,当每套房间的定价为每天120元时,房间可以住满.当每套房间每天的定价提高的幅度达10元及以上但不超过50元时,就会有一套房间空闲;当每套房间每天的定价提高幅度达50元以上时,就会有两套房间空闲.对有游客入住的房间,客房部需对每套房间每天支出20元的费用.设每套房间每天的定价增加x元(x为10的整数倍)(套).求:(1)当x=20元时,y= 套;当x=60元时,y= 套;(2)求该某酒店每天的利润总额w(元)关于x(元)的函数关系式;(3)已知该某酒店每天至少有14套房间有游客居住,要使该某酒店每天的利润总额w (元)最大23.(10分)如图,菱形ABCD,∠ABC=120°.(1)若AB=6,则菱形ABCD的面积为 ;(2)点E、F分别为菱形ABCD边DC、AB上一个动点,连AE、DF,且AE、DF交于点P,E、F在运动过程中,三角形ADP的面积与四边形GBFP的面积相等.①如图2,求证:AG=DF;②如图3,O为AD的中点,连接OP、BP24.(12分)抛物线y=﹣x2+bx+c(b,c为常数,b>0)经过点A(﹣1,0).(1)当b=2时,①求抛物线的顶点坐标;②如图1,抛物线y=﹣x2+2x+3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,若点E的坐标为(1,0),∠POC+∠OCE=45°(2)如图2.点M(t,0)是x轴正半轴上的动点,点在抛物线上,当时,直接写出抛物线解析式.参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)一元二次方程x2﹣2x=0的解是( )A.0B.0或﹣2C.﹣2D.0或2【分析】利用因式分解法求解即可.【解答】解:∵x2﹣2x=4,∴x(x﹣2)=0,则x=3或x﹣2=0,解得x6=0,x2=7,故选:D.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.2.(3分)下列方程中有两个相等实数根的是( )A.7x2﹣x﹣1=0B.9x2=4(3x﹣1)C.x2+7x+15=0D.2x2﹣x﹣2=0【分析】判断上述方程的根的情况,只要看根的判别式Δ=b2﹣4ac的值的符号就可以了.有两个相等实数根的一元二次方程即判别式的值等于0的方程.【解答】解:A:Δ=12+7>0,故错误;B:Δ=b2﹣3ac=(﹣12)2﹣4×7×4=0,正确;C:Δ=22﹣4×15<3,故错误;D:Δ=()2+2×2×2>6,故错误.根据Δ=0⇔方程有两个相等的实数根得B是正确的.故选:B.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.3.(3分)点A(0,5),B(4,5)是抛物线y=ax2+bx+c上的两点,则该抛物线的顶点可能是( )A.(2,5)B.(2,4)C.(5,2)D.(4,2)【分析】根据抛物线的对称性可知,已知两点关于对称轴对称,然后列式求出抛物线的对称轴即可.【解答】解:∵点A(0,5),6)的纵坐标相等,∴点A(0,5),5)关于对称轴对称,∴对称轴为直线x==2,即直线x=2,∵抛物线的顶点在对称轴上,∴顶点的纵坐标不等于2.故选:B.【点评】本题考查了二次函数的性质,二次函数图象上点的坐标特征,根据已知点的纵坐标相等得到关于对称轴对称是解题的关键.4.(3分)抛物线y=(x+4)2﹣3可以由抛物线y=x2平移得到,则下列平移过程正确的是( )A.先向左平移4个单位,再向上平移3个单位B.先向左平移4个单位,再向下平移3个单位C.先向右平移4个单位,再向下平移3个单位D.先向右平移4个单位,再向上平移3个单位【分析】直接根据函数图象平移的法则进行解答即可.【解答】解:由“左加右减”的原则可知,抛物线y=x2向左平移4个单位可得到抛物线y=(x+2)2,由“上加下减”的原则可知,抛物线y=(x+4)4向下平移3个单位可得到抛物线y=(x+4)5﹣3,故选:B.【点评】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.5.(3分)某树主干长出若干数目的支干,每个支干又长出同样数目小分支,主干、支干和小分支总数共91.若设主干长出x个支干则可列方程是( )A.(1+x)2=91B.1+x+x2=91C.(1+x)x=91D.1+x+2x=91【分析】根据题意,若设主干长出x个支干,则根据主干、支干和小分支总数共91,列出方程即可.【解答】解:设主干长出x个支干,则x个支干长出x2个小分支,根据题意,得1+x+x8=91,故选:B.【点评】本题考查了由实际问题抽象出一元二次方程,理解题意列出一元二次方程是解题的关键.6.(3分)已知a是方程x2﹣2x﹣1=0的一个根,则代数式2a2﹣4a﹣1的值为( )A.1B.﹣2C.﹣2或1D.2【分析】根据一元二次方程的解的定义,把x=a代入方程求出a2﹣2a的值,然后整体代入代数式进行计算即可得解.【解答】解:∵a是方程x2﹣2x﹣3=0的一个根,∴a2﹣6a﹣1=0,整理得,a3﹣2a=1,∴8a2﹣4a﹣3=2(a2﹣5a)﹣1=2×3﹣1=1.故选:A.【点评】本题考查了一元二次方程的解,利用整体思想求出a2﹣2a的值,然后整体代入是解题的关键.7.(3分)函数y=﹣x2+2x+3,当﹣2≤x≤2时,y的最大值为m,则m+n=( )A.3B.﹣1C.﹣2D.1【分析】依据题意,将抛物线化成顶点式,再由抛物线的增减性可以判断得解.【解答】解:由题意,y=﹣x2+2x+2=﹣(x﹣1)2+6,∴对称轴x=1.∵抛物线开口向下,1﹣(﹣7)=3,又当﹣2≤x≤6时∴当x=﹣2时,y取最小值为﹣5;当x=6时,y最大值为4.∴m=4,n=﹣4.∴m+n=4﹣5=﹣7.故选:B.【点评】本题主要考查了二次函数的性质及二次函数的最值,解题时要熟练掌握并理解是关键.8.(3分)函数y=ax2﹣2x+1和y=ax+a(a是常数,且a≠0)在同一平面直角坐标系中的图象可能是( )A.B.C.D.【分析】可先根据一次函数的图象判断a的符号,再判断二次函数图象与实际是否相符,判断正误.【解答】解:A、由一次函数y=ax+a的图象可得:a<02﹣7x+1的图象应该开口向下,故选项错误;B、由一次函数y=ax+a的图象可得:a<08﹣2x+1的图象应该开口向下,故选项错误;C、由一次函数y=ax+a的图象可得:a>72﹣2x+2的图象应该开口向上,对称轴x=﹣,故选项正确;D、由一次函数y=ax+a的图象可得:a<62﹣2x+7的对称轴x=﹣<2.故选:C.【点评】应该熟记一次函数y=ax+a在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.9.(3分)二次函数y=x2+kx+2k﹣1与x轴交于A(x1,0)、B(x2,0)两点,且x12+x22=7,则k=( )A.5B.﹣1C.5或﹣1D.﹣5或1【分析】利用根与系数的关系和代收式变形处理得到x12+x22=(x1+x2)2﹣2x1•x2=k2﹣2(2k﹣1)=7,由此求得k的值,注意Δ>0.【解答】解:依题意得:x1+x2=﹣k,x4•x2=2k﹣4,∴x12+x52=(x1+x5)2﹣2x5•x2=k2﹣8(2k﹣1)=2,整理,得k2﹣4k﹣4=0,解得k1=﹣7,k2=5.又△=k5﹣4(2k﹣6)>0,∴k=﹣1.故选:B.【点评】本题考查了二次函数图象与系数的关系,抛物线于x轴的交点.解题时需要注意k的取值范围.10.(3分)如图,在△ABC中,∠BAC=120°,将BC绕点C顺时针旋转120°得到CD,则线段AD的长度的最小值是( )A.B.C.D.【分析】在AC的上方作∠ACM=120°,且使CM=CA,连接AM,DM.设AB=x,则AC=4﹣x=CM,根据ASA证明△BAC≌△DMC得出DM=BA=x,∠CMD=∠BAC=120°,得出∠AMD=90°,即可推出结论.【解答】解:如图,在AC的上方作∠ACM=120°,连接AM.设AB=x,则AC=4﹣x=CM,∴,∵将BC绕点C顺时针旋转120°得到CD,∴∠BCA+∠ACD=120,又∵∠ACD+∠DCM=∠ACM=120°,∴∠ACB=∠DCM,∴△BAC≌△DMC(ASA),∴DM=BA=x,∠CMD=∠BAC=120°.∴∠AMD=90°,∴AD2=AM7+DM2=3(2﹣x)2+x2=7(x﹣3)2+12≥12,∵2<x<4,∴AD的最小值为.故选:C.【点评】本题考查了旋转的性质,全等三角形的判定与性质,正确作出辅助线是解题的关键.二、填空题(每小题3分,共18分)11.(3分)若方程x2﹣12x+5=0的两根为x1,x2,则x1+x2﹣x1x2的值为 7 .【分析】先利用根与系数的关系得x1+x2=12,x1x2=5,然后利用整体代入的方法计算x1+x2﹣x1x2的值.【解答】解:根据根与系数的关系得x1+x2=12,x3x2=5,所以x4+x2﹣x1x8=12﹣5=7.故答案为:7.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.12.(3分)关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一根为0,则m= ﹣1 .【分析】根据一元二次方程的解的定义,将x=0代入原方程,列出关于m的方程,通过解关于m的方程即可求得m的值.【解答】解:∵关于x的一元二次方程(m﹣1)x2+x+m8﹣1=0有一根为2,∴x=0满足关于x的一元二次方程(m﹣1)x5+x+m2﹣1=3,且m﹣1≠0,∴m4﹣1=0,即(m﹣7)(m+1)=0且m﹣2≠0,∴m+1=6,解得,m=﹣1;故答案为:﹣1.【点评】本题考查了一元二次方程的解.注意一元二次方程的二次项系数不为零.13.(3分)一个n边形有20条对角线,则n= 8 .【分析】利用多边形的对角线公式列得方程,解方程即可.【解答】解:由题意可得=20,解得:n=8或n=﹣5(舍去),即n=8,故答案为:7.【点评】本题考查多边形的对角线及解一元二次方程,结合已知条件列得正确的方程是解题的关键.14.(3分)已知抛物线与直线y2=2x+2交于A,B两点.若y1>y2,则x的取值范围为 ﹣3<x<1 .【分析】联立两个函数表达式求出A,B两点的坐标,观察函数的图象即可求解.【解答】解:联立两个函数表达式得,解得或,故点A、B的坐标分别为(﹣3、(7,函数的图象如下:由函数的图象知,y1>y2时x的取值范围为﹣4<x<1,故答案为:﹣3<x<7.【点评】本题考查二次函数与不等式(组),二次函数和一次函数的图象及性质;熟练掌握一次函数和二次函数的图象及性质,数形结合解题是关键.15.(3分)已知二次函数y=ax2+bx+c(a<0)的图象与x轴的一个交点坐标为(﹣1,0),对称轴为直线x=1①若点(﹣3,y1),(2,y2),(4,y3)均在该二次函数图象上,则y1<y3<y2;②c=﹣9a﹣3b;③若m为任意实数,则am2+bm+c≤﹣3a;④方程ax2+bx+c+1=0的两实数根为x1,x2且x1<x2,则x1<﹣1,x2>3.正确结论为 ①②④ .【分析】由抛物线经过(﹣10)可判断①,由各点到抛物线对称轴的距离大小可判断从而判断②,由x=1时y取最大值可判断③,由抛物线的对称性可得抛物线与x轴交点坐标,从而判断④.【解答】解:∵a<0,∴抛物线开口向下,∵点(﹣3,y4),y2),y3)均在该二次函数图象上,y2)到对称轴的距离最大,点(2,y2)到对称轴的距离最小,∴y2<y3<y2,①正确;∵图象与x轴的一个交点坐标为(﹣4,0),∴图象与x轴的另一个交点坐标为(3,5),∴9a+3b+c=4,∴c=﹣9a﹣3b,②正确;∵﹣=1,∴b=﹣2a,∵a﹣b+c=8,∴c=b﹣a=﹣3a,∵抛物线的最大值为a+b+c,∴m为任意实数,则am2+bm+c≤a+b+c,∴am8+bm+c≤﹣4a,∵a<0,∴﹣6a>﹣3a,③错误;∵方程ax2+bx+c+3=0的两实数根为x1,x3,∴抛物线与直线y=﹣1的交点的横坐标为:x1,x2,由抛物线对称性可得抛物线与x轴另一交点坐标为(3.0),∴抛物线与x轴交点坐标为(﹣8,0),0),∵抛物线开口向下,x3<x2,∴x1<﹣7,x2>3,④正确.故答案为:①②④.【点评】本题考查二次函数图象与系数的关系,解题关键是掌握二次函数与方程及不等式的关系.16.(3分)已知点A(x1,y1)在直线y=3x+19上,点B(x2,y2),C(x3,y3)在抛物线y =x2+4x﹣1上,若y1=y2=y3且x1<x2<x3,S=x1+x2+x3,则s的取值范围是 ﹣12<s <﹣9 .【分析】由y2=y3可知B,C两点关于抛物线的对称轴对称,进而得出x2+x3=﹣4,再求出x1的取值范围即可解决问题.【解答】解:由题知,因为y2=y3,所以B,C两点关于抛物线的对称轴对称,则x8+x3=﹣4.将直线解析式和抛物线解析式联立方程组得,,解得或.因为y1=y2=y7且x1<x2<x2,所以点A只能在点N的左下方,又抛物线的顶点坐标是(﹣2,﹣5),将y=﹣3代入y=3x+19得,x=﹣8,所以﹣6<x1<﹣5.所以﹣12<x4+x2+x3<﹣7,即﹣12<s<﹣9.故答案为:﹣12<s<﹣9.【点评】本题考查二次函数图象上点的坐标特征,能够根据对称性求出x2+x3=﹣4是解题的关键.三、解答题(共72分)17.(8分)解一元二次方程.(1)x2﹣2x﹣1=0;(2)x(x+4)=2x+8.【分析】(1)利用配方法求解可得;(2)利用因式分解法求解可得.【解答】解:(1)∵x2﹣2x=7,∴x2﹣2x+6=1+1,即(x﹣4)2=2,则x﹣8=,∴x1=4+,x2=5﹣;(2)∵x(x+4)﹣4(x+4)=0,∴(x+7)(x﹣2)=0,则x+5=0或x﹣2=2,解得x1=﹣4,x8=2.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.18.(8分)已知平行四边形ABCD的两边AB、AD的长是关于x的方程的两个实数根.(1)当m为何值时,四边形ABCD是菱形?(2)若,求m的值.【分析】(1)由邻边相等的平行四边形为菱形,得出根的判别式等于0,求出m的值即可;(2)根据根与系数的关系结合题意列出一元二次方程,解之取满足题意的值即可.【解答】解:(1)∵四边形ABCD为平行四边形,∴当AB=AD时,平行四边形ABCD是菱形,∵AB、AD的长是关于x的方程,∴Δ=(﹣m)6﹣4×1×(﹣)=2即m2﹣2m+2=0,解得:m1=m2=1,∴当m=1时,四边形ABCD为菱形;(2)∵AB、AD的长是关于x的方程,∴AB+AD=m,AB•AD=﹣,∵(AB﹣3)(AD﹣6)=m2,∴AB•AD﹣5(AB+AD)+9=m7,即﹣﹣3m+9=m2,整理得:m2+8m﹣7=0,解得:m4=﹣,m7=1,∵AB+AD=m>0,∴m=﹣不合题意,∴m的值为1.【点评】本题考查了一元二次方程的应用、菱形的判定、平行四边形的性质等知识,熟练掌握菱形的判定和根的判别式是解题的关键.19.(8分)已知关于x的一元二次方程x2﹣(k+2)x+2k=0.(1)求证:无论k为何值,此方程总有一个根是定值;(2)若直角三角形的一边为3,另两边恰好是这个方程的两根,求k的值.【分析】(1)对式子进行分解,从而可得到两个因式的积为0,从而可求解;(2)由根与系数的关系可得x1+x2=k+2,则分类进行讨论,从而可求解.【解答】(1)证明:∵x2﹣(k+2)x+8k=0,∴(x﹣2)(x﹣k)=5,∴无论k为何值,此方程总有一个根是x=2.(2)解:令方程的两根为:x1,x7,则有:x1+x2=k+7,若斜边为3,可令另两直角边分别为2和k.∴32+k2=22,k2=7,∵k>0.∴;若直角边为4,则令斜边为k.∴22+42=k2,∵k>7.∴,综上所述:或k=.【点评】本题主要考查根与系数的关系,解答的关键是熟记根与系数的关系并灵活运用.20.(8分)物理实验课小明做一个实验:在一条笔直的滑道上有一个黑小球以一定的速度在A处开始向前滚动,并且均匀减速,测量黑球减速后的滚动速度v t(单位:cm/s)随滚动时间t(单位:s)变化的数据,整理得下表.运动时间ts01234运动速度vcm/s109.598.58(1)小明探究发现,黑球的滚动速度v t与滚动时间t之间成一次函数关系,直接写出v t 关于t的函数解析式(不要求写出自变量的取值范围) v t=﹣t+10 .(2)求出滚动的距离s关于滚动的时间t的函数解析式,并求出黑球滚动的最远距离.[提示:本题中,距离s=平均速度,=(v0+v t),其中v0是开始时的速度,v t是t秒时的速度]【分析】(1)设v t关于t的函数解析式为v t=at+b,由表中数据得出二元一次方程组,求出a、b的值即可;(2)先求出=(v0+v t)=﹣t+10,再求出s=•t求出s=﹣t2+10t=﹣(t﹣20)2+100,然后由二次函数的性质即可得出答案.【解答】解:(1)设v t关于t的函数解析式为:v t=at+b,由题意得:,解得:,∴v t关于t的函数解析式为:v t=﹣t+10,故答案为:v t=﹣t+10;(2)∵=(v3+v t)=(10﹣t+10,∴s=•t=(﹣t2+10t=﹣(t﹣20)2+100,当t=20时,s有最大值为100,答:滚动的距离s关于滚动的时间t的函数解析式为s=﹣t2+10t,黑球滚动的最远距离为100cm.【点评】本题考查了二元一次方程组的应用、一次函数的应用、二次函数的应用等知识,找准等量关系,正确列出二元一次方程组是解题的关键.21.(8分)如图是由小正方形组成的网格,每个小正方形的顶点叫做格点,图中A、B、C 都在格点上,画图过程用虚线表示.(1)在图1中,画出格点C,使∠ABC=45°.(2)在图2中,在AC上画点E,使∠AEB=∠ABC.(3)在图3中,点D是AB上一点,在AB的下方画∠ADF=45°.【分析】(1)关注等腰直角三角形ABC即可;(2)构造等腰直角三角形ABJ,BJ交AC一点E,点E即为所求;(3)构造等腰直角三角形ABK,取格点P,Q,连接PQ交BK于点T,可得BK的中点T,连接AT,连接DK交AT于点O,连接BO,延长BO交AK一点F,连接DF,∠ADF 即为所求(由SSS证明△AOK≌△AOB,再根据ASA证明△FOK≌△DOB,推出FK=BD,AF=AD,可得∠ADF=45°).【解答】解:(1)如图1中,点C即为所求;(2)如图2中,点E即为所求;(3)如图5中,∠ADF即为所求.【点评】本题考查作图﹣应用与设计作图,等腰直角三角形的判定和性质等知识,解题的关键是理解题意,学会利用数形结合的思想解决问题.22.(10分)某酒店客房部有20套房间供游客居住,当每套房间的定价为每天120元时,房间可以住满.当每套房间每天的定价提高的幅度达10元及以上但不超过50元时,就会有一套房间空闲;当每套房间每天的定价提高幅度达50元以上时,就会有两套房间空闲.对有游客入住的房间,客房部需对每套房间每天支出20元的费用.设每套房间每天的定价增加x元(x为10的整数倍)(套).求:(1)当x=20元时,y= 18 套;当x=60元时,y= 8 套;(2)求该某酒店每天的利润总额w(元)关于x(元)的函数关系式;(3)已知该某酒店每天至少有14套房间有游客居住,要使该某酒店每天的利润总额w (元)最大【分析】(1)当每套房间每天的定价提高的幅度达10元及以上但不超过50元时,每增加10元,就会有一套房间空闲,则y=20﹣;当每套房间每天的定价提高幅度达50元以上时,每增加10元,就会有两套房间空闲,则y=20﹣x根据题意分别代即可;(2)分两种情况:当10≤x≤50时,得W=﹣x2+10x+2000,当50<x<125时,W=﹣x2+5x+2500;(3)分两种情况:当10≤x≤50时,得W=﹣x2+10x+2000,当50<x<125时,W=﹣x2+5x+2500,分别将两种情况下的函数配方为顶点式,结合x的取值范围以及函数的增减性找到合乎条件的利润最大值.【解答】解:(1)根据题意可知:当10≤x≤50时,y=20﹣,则x=20时,y=20﹣;当50<x<125时,y=20﹣x,则x=60时,y=20﹣,故答案为:18;8;(2)根据x为10的整数倍,当10≤x≤50时,且x为10的整数倍,W=(120﹣20+x)(20﹣)=﹣x3+10x+2000,当50<x<125时,且x为10的整数倍,(x为10的整数倍);(3)①当10≤x≤50且x为10的整数倍时,,∵a<0,对称轴为直线x=50,∴抛物线在对称轴的左侧w随x的增大而增大,∴当x=50时,w有最大值,此时定价为170元;②当50<x<125且x为10的整数倍时,∵y≥14,即≥14,∴x≤55,此种情况没有符合条件的x存在,综上所述:当每套房价定为170元时,酒店每天的利润总额最大.【点评】本题考查二次函数与一次函数的综合应用,理解题意,搞清楚数量关系是解决问题的关键,属于中考压轴题.23.(10分)如图,菱形ABCD,∠ABC=120°.(1)若AB=6,则菱形ABCD的面积为 18 ;(2)点E、F分别为菱形ABCD边DC、AB上一个动点,连AE、DF,且AE、DF交于点P,E、F在运动过程中,三角形ADP的面积与四边形GBFP的面积相等.①如图2,求证:AG=DF;②如图3,O为AD的中点,连接OP、BP【分析】(1)过D作DE⊥AB于E,则∠A=60°,∠ADE=30°,AE=AD=1,在Rt △ADE中,由勾股定理求DE的值,根据S菱形ABCD=AB×DE,计算求解即可;(2)①作FQ⊥AD于Q,GH⊥AB于H.证明△QAF≌△HBG(AAS),由全等三角形的性质得出FA=GB,证明△DAF≌△ABG(SAS),由全等三角形的性质得出AG=DF;②证出∠APD=120°,作∠PAM=60°交DF于M.证明△PAM为正三角形,得出∠AMP=60°,PM=PA,证明△DAP≌△BAM(SAS),由全等三角形的性质得出DP=MB,∠APD=∠AMB=120°,延长PO至N.使ON=OP,证明△PAN≌△PMB(SAS),由全等三角形的性质得出结论.【解答】(1)解:如图,过D作DE⊥AB于E,由菱形的性质可得,∠A=60°,∴∠ADE=30°,∴AE=AD=2,在Rt△ADE中,由勾股定理得DE==,∴S菱形ABCD=AB×DE=6×=18,故答案为:18;(2)①证明:作FQ⊥AD于Q,GH⊥AB于H.∵菱形ABCD,∠ABC=120°,∴AD=AB=DB.∠DAB=∠ABD=∠ADB=60°,∵三角形ADP的面积与四边形GBFP的面积相等,∴S△ADF=S△BAG,∵AB=AD,∴GH=FQ,∴△QAF≌△HBG(AAS),∴FA=GB,∴△DAF≌△ABG(SAS),∴AG=DF;②证明:∵△DAF≌△ABG,∴∠ADF=∠BAP,∴∠APF=∠ADP+∠DAP=∠DAP+∠PAB=60°,∴∠APD=120°,作∠PAM=60°交DF于M.∴△PAM为正三角形,∴∠AMP=60°,PM=PA,∴△DAP≌△BAM(SAS),∴DP=MB,∠APD=∠AMB=120°,∴∠PMB=60°,延长PO至N.使ON=OP,∵OA=OD.∴四边形NAPD是平行四边形∴DP=AN=BM,∠NAP=60°=∠BMP,∴△PAN≌△PMB(SAS),∴PB=PN=2OP.【点评】本题是四边形综合题,考查了菱形的性质,直角三角形的性质,全等三角形的判定与性质,勾股定理,等边三角形的判定与性质,熟练掌握菱形的性质是解题的关键.24.(12分)抛物线y=﹣x2+bx+c(b,c为常数,b>0)经过点A(﹣1,0).(1)当b=2时,①求抛物线的顶点坐标;②如图1,抛物线y=﹣x2+2x+3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,若点E的坐标为(1,0),∠POC+∠OCE=45°(2)如图2.点M(t,0)是x轴正半轴上的动点,点在抛物线上,当时,直接写出抛物线解析式.【分析】(1)①当b=2 时,y=﹣x2+2x+c,把A(﹣1,0)代入可c=3,抛物线解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,即得抛物线的顶点坐标为(1,4);②过点C作CF∥OP,过点E作EF⊥CE,交CF于点F,过点F作FH⊥x轴于点H,证明△COE≌△EHF(AAS),可得FH=OE=1,EH=CO=3,F(﹣2.﹣1),即知直线CF的解析式为y=2x+3,直线OP的解析式为y=2x,联立可得P(,2);(2)过点A(﹣1,0)作直线l:y=﹣x﹣1,过点M作MH⊥直线l于点H,过点Q作QN⊥直线l于N,交x轴于点T,过Q作QG∥直线l交x轴于G,过A作AK⊥QG于K,可得AM=MH,AM+2QM=×MH+2QM=2(MH+QM),而+2QM的最小值为,有2QN=,QN=,即Q到直线l的距离为,得AG=AK=,G(,0),故直线QG解析式为y=﹣x+,把A(﹣1,0)代入y=﹣x2+bx+c可得y=﹣x2+bx+b+1,把代入y=﹣x2+bx+b+1可得Q(b+,b+),把Q(b+,b+)代入y=﹣x+得b=4,从而抛物线解析式为y=﹣x2+4x+5.【解答】解:(1)①当b=2 时,y=﹣x2+6x+c,把A(﹣1,0)代入y=﹣x8+2x+c得:0=﹣(﹣3)2+2×(﹣5)+c,解得c=3,∴抛物线解析式为y=﹣x2+2x+3=﹣(x﹣1)8+4,∴抛物线的顶点坐标为(1,6);②过点C作CF∥OP,过点E作EF⊥CE,过点F作FH⊥x轴于点H∴∠POC=∠FCO,∵∠POC+∠OCE=45°,∴∠FCO+∠OCE=45°,即∠FCE=45°,∴△FCE为等腰直角三角形,∴CE=EF,∵∠CEO=90°﹣∠HEF=∠HFE,∠COE=∠FHE=90°,∴△COE≌△EHF(AAS),在y=﹣x2+2x+8中,令x=0得y=3,∴C(6,3),∵E(1,2),∴FH=OE=1,EH=CO=3,∴F(﹣6.﹣1),由C(0,4),﹣1)可得直线CF的解析式为y=2x+3,∵CF∥OP,∴直线OP的解析式为y=2x,联立,解得或,∵点P为第一象限内抛物线上的一点,∴P(,2);(2)过点A(﹣6,0)作直线l:y=﹣x﹣1,过点Q作QN⊥直线l于N,过Q作QG∥直线l交x轴于G,如图:∵直线l为y=﹣x﹣2,MH⊥直线l,∴△AMH是等腰直角三角形,∴AM=MH,∴AM+8QM=×,由垂线段最短可得,MH+QM最小值为QN的长度,∵+2QM的最小值为,∴2QN=,∴QN=,即Q到直线l的距离为,∵QG∥直线l,∴AK=QN=,∵∠KAG=∠KAH﹣∠MAH=45°,∴△KAG是等腰直角三角形,∴AG=AK=,∴OG=AG﹣OA=,∴G(,0),设直线QG解析式为y=﹣x+m,把G(,0)代入得:0=﹣,解得m=,∴直线QG解析式为y=﹣x+,把A(﹣6,0)代入y=﹣x2+bx+c得:﹣3﹣b+c=0,∴c=b+1,∴y=﹣x2+bx+b+1,把代入y=﹣x2+bx+b+1得:y Q=﹣(b+)2+b(b+)+b+1=,∴Q(b+,b+),把Q(b+,b+得:b+=﹣(b+,解得b=2,∴c=b+1=5,∴抛物线解析式为y=﹣x8+4x+5.【点评】本题考查二次函数综合应用,涉及待定系数法,等腰直角三角形性质及应用,全等三角形判定与性质等知识,解题的关键是作辅助线,构造直角三角形解决问题.。
2023-2024学年湖北省武汉市江夏区光谷实验中学九年级(上)月考数学试卷(10月份)+答案解析
2023-2024学年湖北省武汉市江夏区光谷实验中学九年级(上)月考数学试卷(10月份)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列图形中,属于中心对称图形的是()A. B. C. D.2.用配方法解一元二次方程配方后得到的方程是()A. B. C. D.3.下列关于x的方程中一定没有实数根的是()A. B. C. D.4.若是二次函数,则a的值是()A. B. C.2 D.不能确定5.将抛物线先向上平移3个单位长度,再向右平移1个单位长度,所得抛物线的解析式为()A. B.C. D.6.已知点、、都在函数的图象上,则,,的大小关系为()A. B. C. D.7.在同一平面直角坐标系中,直线是常数且与抛物线的图象可能是()A. B.C. D.8.如图,在中,,,,将绕点C按逆时针方向旋转得到,此时点恰好在AB边上,连接,则的长为()A.8B.C.D.69.已知,若关于x的方程的解为,,关于x的方程的解为,,则下列结论正确的是()A. B.C. D.10.如图,直角中,,,,点E是边AC上一点,将BE绕点B顺时针旋转到点F,则CF长的最小值是()A.B.C.D.3二、填空题:本题共6小题,每小题3分,共18分。
11.点关于原点的对称点为N,则点N的坐标为______.12.秋天到了,人容易着凉,某班有一同学患了流感,经过两轮传染后共有49名学生患了流感,假设每轮传染中平均一个人传染的人数为x人,则列方程为______.13.如图,一名学生推铅球,铅球行进高度单位:与水平距离单位:之间的关系是,则铅球推出的距离______14.如图,与均是等边三角形,若,则的度数是______.15.已知二次函数的图象如图所示,有下列5个结论:①;②;③;④;⑤的实数,其中正确结论的序号有______.16.如图,在中,,,将绕点A逆时针旋转得到,则的长为______.三、解答题:本题共8小题,共72分。
2023-2024学年湖北省武汉市第三寄宿中学九年级(上)(10月份)月考化学试卷(含解析)
2023-2024学年湖北省武汉市第三寄宿中学九年级(上)月考化学试卷(10月份)一、选择题(每题3分,共54分)1.(3分)中华文明历史悠久。
《天工开物》记载的下列工艺过程中,主要发生了化学变化的是( )A.甘蔗榨汁B.棉纱织布C.白土烧瓷D.楠木造船2.(3分)下列关于氢气性质的描述,属于化学性质的是( )A.密度比空气小B.难溶于水C.无色无味D.具有可燃性3.(3分)下列实验操作正确的是( )A.B.C.D.4.(3分)科学家对人类文明和社会可持续发展作出了重要贡献。
下列选项正确的是( )A.拉瓦锡编制了元素周期表B.门捷列夫提出了近代原子学说C.道尔顿确定了空气的组成D.张青莲参与了某些相对原子质量的测定5.(3分)有一位同学暑假去西藏发生了严重的高原反应,医生让他吸入了一种气体后,症状得到缓解。
此气体可能是( )A.氧气B.氮气C.稀有气体D.二氧化碳6.(3分)下列对实验现象的描述正确的是( )A.硫在氧气中燃烧发出淡蓝色火焰B.红磷在空气中燃烧产生大量白雾C.木炭在空气中充分燃烧生成黑色固体D.铁丝在氧气中燃烧时,火星四射,生成黑色固体7.(3分)下列物质属于纯净物的是( )A.空气B.石油C.氧气D.矿泉水8.(3分)如图实验操作正确的是( )A.组装仪器B.检查气密性C.加热固体D.氧气验满9.(3分)对下列教材图片认识错误的是( )A.分子原子是真实存在的B.苯分子间有间隔C.品红扩散是分子运动的结果D.只有通过现代科学仪器才能使硅原子运动10.(3分)如图为某元素原子的结构示意图。
下列有关叙述不正确的是( )A.该原子的结构示意图中x=1B.该元素属于活泼的非金属元素C.该元素的原子在化学反应中容易失去电子D.该元素形成的单质容易与氧气反应11.(3分)人体中含量最多的元素是( )A.O B.Ca C.Na D.H12.(3分)某同学做“对人体呼入的空气和呼出的气体的探究“实验时,分别收集两瓶空气样品和两瓶人体呼出的气体,进行如图的两个实验探究。
湖北省武汉市粮道街中学2024-2025学年上学期10月九年级数学月考试题
湖北省武汉市粮道街中学2024-2025学年上学期10月九年级数学月考试题一、单选题1.将一元二次方程2312x x +=化成一般形式后,二次项系数和一次项系数分别是( ) A .3,1B .3,1-C .3,2D .3,2-2.解一元二次方程2640x x -+=,配方后正确的是( ) A .()235x +=B .()235x +=-C .()235x -=D .()235x -=-3.一元二次方程22310x x +-=的根的情况为( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .只有一个实数根D .没有实数根4.二次函数()2213y x =++图象的顶点坐标是( ) A .()1,3B .()1,3-C .()3,1D .()3,1-5.把抛物线()2221y x =-+先向左平移3个单位,再向下平移1个单位得到的图象解析式是( )A .()221y x =+ B .()2212y x =++ C .()225y x =-D .()2252y x =-+6.九年级某班在元旦假期之际,每个同学都向全班其他同学各送一张写有祝福的卡片,全班共送了1806张卡片,设全班有x 名学生,根据题意列出方程为( )A .()1118062x x +=B .()1118062x x -=C .()11806x x +=D .()11806x x -=7.已知a ,b 是一元二次方程22310x x +-=的两个实数根,则代数式12ab b a++的值等于( )A .32-B .12-C .12D .328.已知关于x 的二次函数2y ax bx c =++自变量x 的部分取值和对应的函数值y 如下表:下列说法中正确的是( ) A .函数图象开口向上 B .顶点坐标是()0,5C .函数图象与x 轴的交点坐标是()1,0,()5,0-D .当3x >-时,y 随x 的增大而减小9.已知抛物线221y ax ax =-+上三点,()12,A y ,()21,B y -,()3,C c y ,且231y y y <<,则c 的取值范围是( )A .1x <-或3x >B .10x -<<或23x <<C .10x -<<或3x >D .1x <-或23x <<10.已知函数227y x ax =-+,当3x ≤时,y 随x 的增大而减小,且抛物线上有两点()11,A x y 、()22,B x y ,112x a ≤≤+,212x a ≤≤+,1y 、2y 总满足129y y -≤,则实数a 的取值范围是( )A .34a ≤≤B .35a ≤≤C .4a ≥D .5a ≥二、填空题11.如果2x =是方程220x bx --=的一个根,则b 为. 12.二次函数2245y x x =++的最小值是.13.有一座拱桥的截面图是抛物线形状,在正常水位时,桥下水面AB 宽20米,拱桥的最高点O 距离水面AB 为3米,如图建立直角坐标平面xOy ,那么此抛物线的表达式为.14.二次函数221y x kx =-+-与x 轴只有一个交点,则k =.15.已如抛物线2y ax bx c =++(a 、b 、c 是常数),其图象经过点()3,0A ,坐标原点为O .若抛物线与x 轴交于点B (且不与A 重合),交y 轴于点C 且2OB OC =,则a =.16.抛物线2y ax bx c =++(0a <,a 、b 、c 为常数)的部分图象如图所示,对称轴是直线1x =-,且与x 轴的一个交点在点()3,0-和()2,0-之间.则下列结论:①0a b c ++<;②30a c +<;③一元二次方程()2330ax b c x +-=的两根为1x 、2x ,则123x x -<;④对于任意实数m ,不等式()()2110a m m b -++<恒成立.则上述说法正确的是.(填序号)三、解答题17.(1)解方程:2441x x -=-; (2)解方程:2560x x --=.18.某扶贫单位为了提高贫困户的经济收入,购买了39m 的铁栅栏,准备用这些铁栅栏为贫困户靠墙(墙长15m )围建一个中间带有铁栅栏的矩形养鸡场(如图所示).(1)若要建的矩形养鸡场面积为2120m ,求鸡场的长AB 和宽BC ;(2)该扶贫单位想要建一个2130m 的矩形养鸡场,这一想法能实现吗?请说明理由.19.如图是函数2y ax bx c =++的部分图象,抛物线与y 轴交于点200,9⎛⎫ ⎪⎝⎭,与x 轴交于点()5,0,对称轴为直线2x =.(1)c =________;(2)当x 满足________时,y 的值随x 值的增大而减小; (3)当x 满足10x -<<时,y 的取值范围是________; (4)当y 满足0y ≤时,x 的取值范围是________.20.已知关于x 的一元二次方程()222320x a x a a -+++=.(1)求证:该方程总有两个实数根;(2)若抛物线()22232y x a x a a =-+++与x 轴两交点间的距离为2,求抛物的解析式.21.如图是由单位长度为1的小正方形组成的78⨯网格,每个小正方形的顶点叫做格点,A 、B 、C 、D 、E 点都在格点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示,画图结果用实线表示,按步骤完成下列问题.(1)在图1中,将点E 绕点A 顺时针旋转90︒得到点G ,作出线段AG ;(2)在图1中,M 、N 均在格点,MN 与AE 相交于F 点,在(1)的条件下中作出点F 的对应点H ;(3)在图2中,P 是线段AE 上任意一点,作出平行四边形APBQ ; (4)在图2中,在线段AC 上作出一点T ,使得ATP ETC ∠=∠.22.我市某工艺厂设计了一款成本为20元/件的工艺品投放市场进行试销.经过调查,得到如表数据:(1)上表中x 、y 的各组对应值满足一次函数关系,请求出y 与x 的函数关系式; (2)物价部门规定,该工艺品销售单价最高不能超过45元/件:①销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少? ②该工艺厂积极投入到慈善事业,它将该工艺品每件销售利润中抽取2元捐赠给我市的公共卫生事业,并且捐款后每天的利润不低于7600元,则工艺厂每天从这件工艺品的利润中最多可捐出多少元?23.ABC V 为等边三角形,AB =8,AD ⊥BC 于点D ,E 为线段AD 上一点,AE =AE 为边在直线AD 右侧构造等边三角形AEF ,连接CE ,N 为CE 的中点.(1)如图1,EF 与AC 交于点G ,连接NG ,BE ,直接写出NG 与BE 的数量关系; (2)如图2,将AEF △绕点A 逆时针旋转,旋转角为α,M 为线段EF 的中点,连接DN ,MN .当30120α︒<<︒时,猜想∠DNM 的大小是否为定值,如果是定值,请写出∠DNM 的度数并证明,如果不是,请说明理由;(3)连接BN ,在AEF △绕点A 逆时针旋转过程中,请直接写出线段BN 的最大值. 24.如图,抛物线23y ax bx =+-交x 轴于A ,B 两点(A 在B 的左边)与y 轴交于点C .(1)如图1,已知OB OC =,且点A 的坐标为()10-,①求抛物线的解析式;②P 为第四象限抛物线上一点,BQ CP ∥交y 轴于点Q ,求CP Q ∆面积的最大值及此时点P 的坐标.(2)如图2,F 为y 轴正半轴上一点,过点F 作DE BC ∥交抛物线于D ,E 两点(D 在E 的左边),直线AD ,AE 分别交y 轴于N ,M 两点,求ON OM -的值.。
湖北省武汉市江汉区 2024-2025学年九年级上学期月考数学试题答案
四校十月质量监测参考答案及评分细则一:选择题1 B.2 C.3 D.4 B.5 D.6 C.7 B.8 A.9 B. 10 D.二:填空题11.y=(x﹣1)2+2. 12.20%.13.a<1且a≠0..14.8.15.-2≤x≤8 16.16.三:解答题17:解(1)m2﹣2m﹣5=0,m2﹣2m=5,m2﹣2m+1=5+1,(m﹣1)2=6,·········2′,解得:,.··········4′(2)2m2+4m=m+2,2m(m+2)=m+2,2m(m+2)﹣(m+2)=0,(m+2)(2m﹣1)=0,·········2′m+2=0或2m﹣1=0,解得:m1=﹣2,;···········4′18解:解:(1)∵抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,∴方程x2+bx+c=0的两根为x=﹣1或x=3,∴﹣1+3=﹣b,﹣1×3=c,∴b=﹣2,c=﹣3,∴二次函数解析式是y=x2﹣2x﹣3.··········4′(2)∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的对称轴x=1,··········6′顶点坐标(1,﹣4).············8′19.(1)证明:∵△AEF是由△ABC绕点A按逆时针方向旋转得到的,∴AB=AE,AC=AF,∠BAC=∠EAF=45°,∴∠BAE=∠CAF=45°+∠CAE,∵AB=AC,∴AE=AF,在△ABE和△ACF中,,∴△ABE≌△ACF(SAS),∴BE=CF.······4′(2)解:由(1)得△ABE≌△ACF,∴∠ABE=∠ACF,∴∠BDC=∠AOE﹣∠ACF=∠AOE﹣∠ABE=∠BAC=45°,∴∠BDC的度数是45°.·······8′20.解:(1)如图所示:线段CD即为所求;········2′(2)如图所示:∠BCE即为所求;········5′(作出BD中点G即可)(3)连接(5,0),(0,5),可得与OA的交点F,点F即为所求,如图所示:·······8′(另:利用平行四边形对称性连交AC也可)21.(1)证明:由题意知,Δ=a2﹣4(a﹣2)=a2﹣4a+8=(a﹣2)2+4>0,∴不论a取任意实数,该方程都有两个不相等的实数根;·········3′(2)解:由题意知,x1+x2=﹣a,x1•x2=a﹣2,∵,∴,∴,即a2﹣2(a﹣2)=(a﹣2)2,解得,a=0,∴a的值为0.·············8′22:解:(1)∵y与x之间满足一次函数关系,∴设其解析式为y=kx+b(k≠0),将(25,35),(30,30)代入,得,解得:,∴y与x之间的函数关系式为y=﹣x+60;·············3′(2)∵销售A产品的成本q(单位:元)与销售件数y(单位:件)成正比例,∴设其解析式为q=my(m≠0),将(35,210)代入,得210=35m,解得m=6,·············4′∴q=6y=6(﹣x+60)=﹣6x+360,∴w=xy﹣q=x(﹣x+60)﹣(﹣6x+360)=﹣x2+66x﹣360=﹣(x﹣33)2+729,∴当x=33时,w最大,最大值为729.∴当销售价格x为33元时,w最大,最大值是729元;·············7′(3)由题意得:w=xy﹣q﹣ay=﹣x2+66x﹣360﹣a(﹣x+60)=﹣x2+(66+a)x﹣360﹣60a,把x=40,w=600代入得a=4.答:a的值是4.·······10′23.解:(1)如图1所示:∵AB=AD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,∵∠ADC=∠B=90°,∴∠FDG=180°,点F、D、G共线,∴∠DAG=∠BAE,AE=AG,∴∠F AG=∠F AD+∠GAD=∠F AD+∠BAE=90°﹣45°=45°=∠EAF,即∠EAF=∠F AG.在△EAF和△GAF中,,∴△AFG≌△AFE.∴EF=FG.∴EF=DF+DG=DF+BE,即EF=BE+DF.·············3′(2)DF=EF+BE.理由:如图2所示.∵AB=AD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,∵∠ADC=∠ABE=90°,∴点C、D、G在一条直线上.∴EB=DG,AE=AG,∠EAB=∠GAD.又∵∠BAG+∠GAD=90°,∴∠EAG=∠BAD=90°.∵∠EAF=45°,∴∠F AG=∠EAG﹣∠EAF=90°﹣45°=45°.∴∠EAF=∠GAF.在△EAF和△GAF中,,∴△EAF≌△GAF.∴EF=FG.∵FD=FG+DG,∴DF=EF+BE.·············7′(3)把△ACE旋转到ABF的位置,连接DF,则∠F AB=∠CAE.∵∠BAC=90°,∠DAE=45°,∴∠BAD +∠CAE =45°,又∵∠F AB =∠CAE ,∴∠F AD =∠DAE =45°,则在△ADF 和△ADE 中,,∴△ADF ≌△ADE .∴DF =DE ,∠C =∠ABF =45°.∴∠BDF =90°. ∴△BDF 是直角三角形.∴BD 2+BF 2=DF 2.∴BD 2+CE 2=DE 2.∴DE ==. 故答案为:. ·········10′24.解:(1)将点(3,0)B ,(0,3)C 代入得:0933b c c =−++ = ,解得:23b c = =, ∴抛物线的解析式为:223y x x =−++;·············2′(2)连接OP ,设2(,23)P m m m −++,则: BCP OCP OBP BOC S S S S ∆∆∆∆=+−211133(23)33222m m m =××+××−++−×× 23327()228m =−−+ 302−<, ∴当32x =时,278S =最大, 此时,315(,)24P .·············4′ 由(1)可知:抛物线的对称轴为直线12b x a=−= 连接AP 交抛物线对称轴于点Q ,设直线AP 为:y kx b =+,代入点A 、P 坐标得:015342k b k b =−+ =+ , 解得:3232k b = = , ∴直线AP 为:3322y x =+, PQ QB PQ QA AP +=+ ∴当A 、P 、Q 三点共线时,PQ QB +的值最小 将1x =代入3322y x =+得:3y =, (1,3)Q ∴·············7′ (3)过点N 作NH MC ⊥于H ,连接NA , 2223(1)4y x x x =−++=−−+ , ∴顶点(1,4)M ,对称轴直线为1x =,(3,0)B , (1,0)A ∴−,(0,3)C ,设直线MC 的解析式为:3y mx =+,代入(1,4)M 得, 43m =+,1m ∴=,∴直线MC 的解析式为:3y x =+, 45CMN ∴∠=°,∴MN =,当NH AN =时,MN =, 设(1,)N n ,则4MN n =−,AN =∴4n −=,∴解得:4n =−± ∴存在点N满足要求,点(1,4N −+或(1,4−−.·············12′。
湖北省武汉市武汉经开外国语学校2024-2025学年上学期10月九年级数学月考试题
湖北省武汉市武汉经开外国语学校2024-2025学年上学期10月九年级数学月考试题一、单选题1.将一元二次方程2351x x =-化成一般式后,二次项系数和一次项系数分别为( ) A .3,5B .3,1C .23x ,5x -D .3,5-2.下列美术字中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .3.用配方法解一元二次方程220x x +=,下列配方正确的是( ) A .2(1)0x +=B .2(1)0x -=C .2(1)1x +=D .2(1)1x +=-4.抛物线y=(x+2)2﹣3可以由抛物线y=x 2平移得到,则下列平移过程正确的是( ) A .先向左平移2个单位,再向上平移3个单位 B .先向左平移2个单位,再向下平移3个单位C .先向右平移2个单位,再向下平移3个单位D .先向右平移2个单位,再向上平移3个单位5.已知方程2520x x -+=的两个根分别为1x 、2x ,则1212x x x x +-的值为( ) A .74B .94C .7D .36.如图,在ABC V 中,30A ∠=︒,将ABC V 绕着点B 逆时针旋转得到EBD △. 点C 的对应点为点D ,恰好落在AC 上,BD 平分ABC ∠,则EBA ∠=( )A .30︒B .35︒C .45︒D .40︒7.如图所示,某小区规划在一个长16m ,宽9m 的矩形场地ABCD 上,修建同样宽的小路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草.如果使草坪部分的总面积为2112m ,设小路的宽为x m ,那么x 满足的方程是( )A .217160x x -+=B .217160x x --=C .2225160x x -+=D .225320x x -+=8.已知抛物线24y x bx =-++经过(2,)n -和(4, )n 两点,则n 的值为( ) A .﹣2B .﹣4C .2D .49.若x 1,x 2(x 1<x 2)是方程(x-a )(x-b )=1(a <b )的两个根,则实数x 1,x 2,a ,b 的大小关系为( ) A .x 1<x 2<a <b B .x 1<a <x 2<b C .x 1<a <b <x 2D .a <x 1<b <x 210.函数y =|ax 2+bx |(a <0)的图象如图所示,下列说法正确的是( )A .方程|ax 2+bx |=k 有四个不等的实数根B .a +b >1C .2a +b >0D .5a +3b <1二、填空题11.在平面直角坐标系中,点(1,2)-关于原点对称的点的坐标是. 12.二次函数23(2)1y x =-+的图像的顶点坐标是.13.已知点()12,A y ,()20,B y ,()33,C y -在二次函数22y x x c =++的图像上,则1y ,2y ,3y 的大小关系为.14.教练对小明推铅球的录像进行技术分析,建立平面直角坐标系(如图),发现铅球与地面的高度()m y 和运动员出手点的水平距离()m x 之间的函数关系为2142105y x x =-++,由此可知铅球的落地点与运动员出手点的水平距离是m .15.如图,抛物线()2<0y ax bx c a =++与x 轴交于点()1,0A -,()3,0B ,交y 轴的正半轴于点C ,对称轴交抛物线于点D ,交x 轴于点E ,则下列结论:①20b c +>;②2a b am bm +>+(m 为任意实数);③()()()()2222221122a k b k a k b k +++>+++;④一元二次方程202m ax b x c m ⎛⎫+++-= ⎪⎝⎭有两个不相等的实数根,其中正确的结论有.16.在平面直角坐标系中,点()6,0A ,P 是平面内的一动点,将点A 绕点P 逆时针旋转90︒到点B 时,点B 恰好在落在直线2y x =,PA 的最小值为.三、解答题17.解一元二次方程. (1)2210x x --=; (2)8()42x x x +=+.18.关于 x 的方程 x 2﹣2(k ﹣1)x +k 2=0 有两个实数根 x 1,x 2. (1)求 k 的取值范围;(2)请问是否存在实数 k ,使得 x 1+x 2=1﹣x 1x 2 成立?若存在,求出 k 的值;若不存在, 说明理由.19.如图,利用函数y =x 2﹣4x +3的图象,直接回答:(1)方程x 2﹣4x +3=0的解是 ;(2)当x 满足 时,y 随x 的增大而增大; (3)当x 满足 时,函数值大于0; (4)当0<x <5时,y 的取值范围是 .20.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:如调整价格,每降价1元,每星期可多卖出30件.已知商品的进价为每件40元.设每件商品降价x 元,每星期的利润为y 元.(1)用含x 的代数式表示下列各量. ①每件商品的利润为________元; ②每星期卖出商品的件数为________件; ③y 关于x 的函数关系式是________.(2)如何定价才能使每星期的利润最大,其最大值是多少.21.如图是由小正方形组成的网格,每个小正方形的顶点叫做格点.A ,B ,C ,D 都是格点,N 在AB 上,仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示(每个任务限3条线).(1)在图1中,先以AB AC ,为邻边作平行四边形ABDC ,再在CD 上画点H ,使得BN CH =; (2)在图2中,CD AB ,交于点P ,在AC 上画点Q ,使得45APQ ∠=︒;(3)在图3中,点D 绕A 点逆时针2DAC ∠,画出点D 的对应点1D . 22.嘉嘉在一块平整场地玩弹力球,并以此情境编制一道数学题:如图,在平面直角坐标系xOy 中,一个单位长度为1m ,嘉嘉从点A 处将弹力球(看成点)扔向地面,在地面上的点B 处弹起后其运动路线为抛物线1C ,抛物线1C 在点C 处达到最高,之后落在地面上的点D 处,已知0.5m =OB ,点C 坐标为()2.5,4.(1)求抛物线1C 的表达式及点D 坐标;(2)弹力球在点D 处再次弹起,其运动路线为抛物线2C ,抛物线2C 与1C 的形状一致且在E 处最高,点E 与点O 的水平距离为6m , ①求抛物线1C 与2C 最高点的高度差;②有一竖直放置的隔板MN 高0.29m ,且7.6m ON =,若弹力球沿2C 下落过程中要落在隔板MN 上(含端点),其他条件都不变的情况下,需要将起弹点B 右移n 米,直接写出n 的取值范围.23.(1)如图1,在ABC V 和ADE V 中,DAE BAC ∠=∠,AD AE =,AB AC =.求证:ABD ACE ≌△△;(2)如图2,在ABC V 和ADE V 中,120DAE BAC ∠=∠=︒,AD AE =,AB AC =,90ADB ∠=︒,AD AB <,点E 在ABC V 内,延长DE 交BC 于点F ,求证:F 点为线段CB 的中点;(3)如图3,在ABC V 中,AB AC =,120CAB ∠=︒点P 为ABC V 外一点且60APC ∠=︒,4AP =,PB ABPC 的面积.24.已知抛物线214y x bx c =++的顶点 0,1 .(1)该抛物线的解析式为___________;(2)如图1,直线y kx kt =+交x 轴于A ,交抛物线于B 、C ,BE x ⊥轴于E ,CF x ⊥轴于F ,试比较AE AF ⋅与2t 的大小关系;(3)如图2所示,平移抛物线使其顶点在原点O 处,过y 轴正半轴F 点的直线与抛物线相交于C 、D 两点(直线CD 不平行x 轴),分别过C 、D 向直线1y =-轴作垂线,垂足分别为M 、N ,连接FM 、FN .记CMF V 的面积为1S ,MNF V 的面积为2S ,DNF △的面积为3S ,若22134S S S =⋅,求F 点的坐标.。
湖北省武汉市武昌区武汉大学附属外语学校2024-2025学年九年级上学期10月月数学考试
武汉市武昌区武大外校2024-2025学年第一学期九年级10月月考数学试卷一、选择题(3分x10-30分)1.方程2x 2+1=6x 化成一般形式后,若二次项系数为2,则一次项系数为( ). A.-6 B.6 C.-1 D. 12.若方程(m-1)x 2+x-2=0是关于x 的一元二次方陧,则m 的取值范围是( ). A. m>1 B. m ≥1 C. m=1 D.,m ≠13.用配方法解方程x 2-10x+24=0,变形后结果正确的是( ). A.(x-5)2=1 B.(x-5)2=25 C.(x-10)2=1 D.(x+10)2=494.将抛物线y=3x 2向右平移2个单位,再向上平移1个单位,得到新抛物线的顶点坐标为( )A. (-2,-1)B. (2,-1)C. (-2,1)D. (2,1)5.某校去年对实验器材的投资为2万元,预计今明两年的投资总额为8万元.若设该校今明两年在实验器材投资的年平均增长率是x,则所列方程正确的是( A. 2(1+x)2=8 B. 2(1+x)+2(1+x)2=8 B. 2(1+x/%)2=8 C. 2(1+x/%)+2(1+x/%)2=86.二次函数y=-x 2+2x+3,当-1≤x ≤2时,y 的最大值为m,最小值为n,则m+n=( ) A.3 B.4 C.7 D. 17.菱形ABCD 的一条对角线长为5,边AB 的长是方程x 2-5x+6=0的一个根,则菱形ABCD 的周长为( )A.8B. 11C. 12D.12或88.若二次函数y=a 2-6ax+c (a<0)的图象过A(2,y 1)、B(a,y 2)、(3+√2,y 3)三点,则y 1、y 2、y 3大小关系为( )A.y 2<y 3 <y 1B. y 2 <y 1 <y 3C.y 3 <y 1<y 2D.y 1 <y 2<y 39.小明和小红一起做作业,在解一道一元二次方程时,小明在化简过程中写错了常数项,得到两个根分别是2和5;小红在化简过程中写错了一次项系数,得到两个根分别是2和6.则此方程正确的解为( )A.x 1=x 2=2B.x 1=5,x 2=6C.x 1=3,x 2=4D.此方程无解 10.如图,抛物线y=ー√3x 2+√3x+2√3与x 轴正半轴交于点A,与y 轴交于点B,将第一象限的抛物线沿AB 翻折,翻折后的抛物线与y 轴交于点C,则点C 的坐标为( ) A. (0,√3) B. (0,8√39) C. (0,4√33) D.(0,10√39) 二、填空题(3分x6=18分)11.一元二次方程x 2+2x-3=0的判别式的值为______________. 12.二次函数y=x 2-8x+16的顶点坐标为_____________.13.学校组织篮球赛,参赛的每两队之间都要比赛一场.赛程计划安排4天,每天安排9场比赛,问共有多少个队参赛?设共有x 个队参赛,根据题意可列出方程并化为一般式为_____________.14.如图1是我国著名建筑“东方之门”,它通过简单的几何曲线处理,将传统文化与现代建筑融为一体,最大程度地传承了中国的历史文化.“门”的内侧曲线呈抛物线形,如图2,已知其底部宽度AB为80米,高度为200米,则离地面128米处的水平宽度(即CD的长)为__________米.15.“黄金分割”给人以美感,它在建筑、艺术等领域有着广泛的应用.如图1,点C把线段AB分成AC,BC两部分,如果BC:A C = A C :A B= k ,那么称点C是线段AB的黄金分割点,k的值为黄金分割数.在顶角为36°的等腰三角形中,底与腰的比值为黄金分割数,所以我们常称这类三角形为“黄金三角形”.如图2,ΔDEF,ΔEFG,ΔGKF均为“黄金三角形”,若 D E = 1,则KF的长是16.抛物线y = a x2+ b x + c( a ,.b,,c是常数,a < 0 )经过A ( - 2 ,0),B ( m ,0),且2 < m < 3,顶点为D点,下列结论:①a b c < 0;②9 a + 6 b + c < 0 ;x + c的解集为- 2 < x < 0;③不等式- a x2 + b x + c >c2④连接DA,DB,若4 5°≤∠ D A B ≤6 0°,则4 a + 4 ≤ c≤4 a + 4 √3.其中正确的结论是________________.三、解答题(共8小题,共72分)17.(本小题满分8分)解下列方程:(1)(1)x2 + 2 x - 8 = 0 ;(2)2 x2 - 2 x - 3 = 0 .18.(本小题满分8分)如图,已知二次函数图象的顶点为(1,-4),且过(-1 0).(1)求这个二次函数的解析式;(2)观察图象,当- 3 < y≤ 0时,x的取值范围为__________(直接写出答案).19.(本小题满分8分)如图,小明要设计一个宽20cm,长30cm的图案,其中有两横两竖的彩条,横彩条与竖彩条的宽度比为2:3.(1)若设一条横彩条宽度为2xcm,则一条竖彩条的宽度为_____cm,彩条所占面积为__________c㎡;(用含x的式子表示,化简后按x的降幂排列)(2)如果彩条所占面积为216c㎡,小明应如何设计彩条的宽度?20.(本小题满分8分,如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点,抛物线C1过格点A,B,C,.D,其中O(0,0),D ( 1 , 0 ) .(1)建立平面直角坐标系,直接写出C1的解析式____________;(2)用无刻度的直尺在OB上画一点E,使∠ A E B = ∠C E O ;(保留作图的痕迹,不要求说明理由)(3)将抛物线C1平移至C2,使A与B对应,直接写出C2的解析式____________. 21.(本小题满分8分)已知关于x的方程x2 - ( 2 k - 3 ) x + k2 + 3 = 0有实数根x1,x2.(1)求k的取值范围;(2)已知点A ( x1 ,0 ) 、B ( x2,0 ),若O A + O B = O A×O B - 1,求k的值;(3)若m =x12 + 3x1 + 2 k x2则m的最小值为________(直接写出答案), 22.(本小题满分10分)如图,一小球从斜坡O 点以一定的方向弹出,球的飞行路线可以用二次函数y 1 = a x 2 + b x ( a <0)刻画,斜坡可以用一次函数y 2= 13 x 刻画,小球飞行的水平距离x (米)与小球飞行的高度y 1(米)变化规律如下表:(1)①直接写出a ,b 的值: a =_______,b =________;②小球在斜坡上的落点是A ,求点A 的坐标.(2)小球飞行高度y 1(米)与飞行时间t (秒)满足关系y 1 = - 5 t 2 + v t . ①小球飞行的最大高度为______米; ②求v 的值.23.(本小题满分10分) 经典再现图1是我们熟悉的“赵爽弦图”,此图可用“出入相补法”证明勾股定理.即图1是四个全等的直角三角形围成大正方形ABCD 和小正方形EFGH ,设AE=a ,BE=b ,AB=c.(1)请结合图1证明勾股定理:a 2+b 2=c 2; 经典延伸将图1经过拉伸可得到图2,图2或以看成两组全等的三角形围成四边形ABCD 和四边形EFGH ,若四边形ABCD 为平行四边形,四边形EFGH 为菱形,且∠EFG=60°,EF=2,AE=m ,BH=n.(2)当m=2n ,平行四边形ABCD 的面积为16√3时,求n 的值; (3)当m+n=8时,直接写出平行四边形ABCD 面积的最大值.24.如图,抛物线y = a x 2-6 a x + 8 a 与x 轴交于点A ,B 两点(A 在B 的左侧),与y 轴正半轴交于点C ,.x 0 3 6 9 ⋯y 0 9 m 9 ⋯(1)当OC=4AO时:①直接写出该抛物线的解析式__________________;②设D点是抛物线上一点,连接DB,DC,当ΔDBC的面积等于6时,求D点的横坐标;(2)若点P(1,t)为抛物线上一点,过(5,6)作一直线与抛物线交于M,N 两点,连PM,PN,设直线PM的解析式为:y=k1x+b1,直线PN的解析式为:y=k2x+b2,求 k1k2的最小值.备用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016---2017学年度上学期九年级十月月考试题英语试卷第Ⅰ卷(选择题,共85分)第一部分听力部分一、听力测试(共三节)第一节(共4小题, 每小题1分, 满分4分)听下面4个问题。
每个问题后有三个答语,从题中所给的A、B、C三个选项中选出最佳选项。
听完每个问题后,你都有5秒钟的时间来做答和阅读下一小题。
每个问题仅读一遍。
1. A. She is nice. B. She is Kate. C. She is a nurse. .2. A. He’s funny. B. He’s from England. C. He’s in the room.3. A. V ery shy. B. At 8:10 a.m. C. Chinese.4. A. A dog. B. It’s hers. C. It’s cute.第二节(共8小题, 每小题1分, 满分8分)听下面8段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听完每段对话后, 你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
5. How is the man?A. He’s fine.B. He’s young.C. He’s tall. .6.What's the weather like today in the woman's opinion?A. Hot.B. Cool.C. Co1d.7. Why isn't Dale here?A. He is ill.B. He is preparing for the sports meeting.C. He had a traffic accident.8. Who is the girl ?A. The boy's teacher.B. The boy's classmate.C. The boy's sister.9. What anima1 does the woman like best ?A. Monkeys.B. Tigers.C. Pandas.10. What time is it now?A. Seven o'clock.B. Eight o'clock.C. Nine o'c1ock.11. How does Mike learn Chinese?A. By 1istening to the tape.B. By listening to the radio.C. By reading a lot.12. What does the woman mean?A. The man drove long.B. The man broke the traffic rule.C. The man didn’t give her a ride.第三节(共13小题, 每小题1分, 满分13分)听下面4段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间,每段对话或独白读两遍。
听下面一段对话,回答13至14两个小题。
13. When will the talk be given ?A. Today B . Next week . C. Next month14. Gina has learned computer for more than ______ .A. one yearB. two years .C. three years听下面一段对话,回答15至17三个小题。
15.What does the man want to buy ?A. TrousersB. Socks .C. Shoes .16.What color does the man like best ?A. WhiteB. Black .C. Blue .17.How much does the man spend ?A. $50.B.$15.C.$11 .听下面一段对话,回答18至21四个小题。
18. What are they talking about?A. How to go to school.B. How to protect the environment.C. How to recycle waste paper.19. How many ways did they talk about?A. Four.B. Two.C. Three.20. Which of the following is the last way?A. Saving money.B. Riding a hike.C. Using paper or cloth bags instead of plastic ones.21.Who does most of the shopping in the girl’s family ?A. The girlB. The girl’s grandparentsC. The girl’s parents听下面一段独白,回答22至25四个小题。
22. What was Li Hong like before?A. Shy.B. Serious.C. Careless.23. What was she afraid to do in the English classes?A. Recite texts.B. Answer questions.C. Write compositions.24. How did she learn English in her free time?A. By reading English stories.B. By listening to English songs.C. By going to the English corner.25. What does she hope to do?A. To teach English.B. To study abroad.C. To travel abroad.第二部分笔试部分二、选择填空:(本题共15小题,每小题1分,满分15分)26. – Annie, your English is excellent, _________ do you study English so well?– I often study English __________ reading English every morning.A. How; byB. What; byC. How; withD. What; with27. –_______you talk to, you should try_______ polite to them.A. Whenever; to beB. Whoever; to beC. Whenever; beingD. Whoever; being28.He was afraid to _______ in the river _______ it was very cold.A. swim; because ofB. swimming; because ofC. swims; becauseD. swim; because29—Bill, it seems that you have ______ several pounds during the Spring Festival. —Yes, I ate too much every day.A. laid outB. put onC. cut outD. turned on30.—It’s World Sleep Day today. Let’s talk something about sleep.—______. Many people have a sleep problem now.A. No problemB. Have a good nightC. Sounds like funD. Sorry to hear that31.—I want to listen to a new song. Could you give me some advice?—I ______ Superhero by Deng Chao. It sounds relaxing.A. guessB. suggestC. promiseD. expect32. – The teacher is very kind and he always _________ his students.– _________ lucky the students are!A. takes care; HowB. takes care; WhatC. cares about; HowD. cares about; What33—______, where is the new Taiyuan Railway Station?—I’m sorry. I am a stranger here.A. HelloB. No problemC. Come onD. Pardon me34. – Mr. Smith, ,I have trouble _________ the text.– Remember_________ it three times at least.A. understanding; to readB. understanding; readingC. to understand; to readD. to understand; reading35. –How did you know he was very sad?– From the ___________on his face.A. lookingB. appearanceC. expressionD. attitude36. – What do you think of Victor?– Pretty good, though he is still ________to the job.A. sorryB. strangeC. surprisedD. similar37. – What do you know about Halloween?–It’s ______ popular festival in North America and it’s ______ October 31st.A. a; inB. an; inC. the; onD. a; on38. ________great fun we had in ZhongShan Park last Sunday!A. HowB. WhatC. What aD. How a39. Good learners often _________what they need to learn _________something interesting.A. depend; onB. connect; withC. ask; forD. increase; by40 – What did the teacher say just now?– He asked the students __________.A. what would they do with the computer.B. how often they go to moviesC. if they were interested in chatting onlineD. when was Albert Einstein born三、完型填空:(共15小题,每小题1分,满分15分)阅读下面短文,掌握其大意,然后从41--55各题所给的A、B、C、D四个选项中,选出一个最佳答案。