三角形内角和教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《三角形内角和》教学设计

知识目标:

1.通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的和等于180°。

2.知道三角形两个角的度数,能求出第三个角的度数。

3.能应用三角形内角和的性质解决一些简单的问题。

能力目标:发展学生动手操作、观察比较和抽象概括的能力。

情感目标:体验数学活动的探索乐趣,体会研究数学问题的思想方法。

教具、学具准备:课件、学生准备直角三角形、锐角三角形和钝角三角形各一个,一副三角板。

教学过程:

一、创设情境,引出课题

同学们,上节课我们学习了三角形分类的知识,你们还记得今天我们还要继续研究三角形的新知识。

板书课题。看到课题你能提出什么问题?

预设:什么是三角形的内角?三角形有几个内角?

生:就是三角形内的三个角。每个三角形都有三个内角。

师:有两个三角形为了一件事正在争论,我们来帮帮他们。(播放课件)

师:同学们,请你们给评评理:是这样吗?

学生发表意见1

师:现在出现了两种不同的意见,有的同学认为大三角形的内角和大,还有部分同学认为两个三角形的内角和的度数都是一样的。那么到底谁说得对呢?这节课我们就一起来研究这个问题。

二、动手操作,探究问题

1、师拿出两个三角板,问:它们是什么三角形?

生:直角三角形。

吗?一会儿我出示三角形的时候,你们要快速的说出它的名称。师:请大家拿出自己的两个三角尺,在小组内说说每一个三角尺上三个角的度数,并求出这两个直角三角形的内角和。

师:其他三角形的内角和也是180°吗?

2、师:同学们能通过动手操作,想办法来验证自己的猜想吗?请同学们先独立思考想一想,再在小组内把你的想法与同伴进行交流,然后选用一种方法进行验证。

(1)、小组合作,讨论验证方法

(2)汇报验证方法、结果

谁愿意给大家介绍你们小组是用什么方法来验证的?结果怎样?生A:我们小组是用剪拼的方法,将三角形的三个角剪下来,拼成一个平角,得到三角形的内角和是180度。

师:上来展示给大家瞧一瞧。(投影仪)你们看这位同学多细心呀,为了方便、不混淆,在剪之前,他先给3个角标上了符号。

师:现在请同学们看屏幕,我们在电脑里把刚才剪拼的过程重播一遍。你们看成功了,3个角拼成了一个平角,刚才剪拼的是一个锐角三角形,那还有直角三角形、钝角三角形呢?请同学们进行剪拼,看是否能拼成一个平角。

生:不管什么三角形三个角都能拼成一个平角。

师:刚才这种剪拼的方法可以不用再一个角一个角来量,就能证明三角形的内角和是180°,你们觉得这种方法好不好?那我们把掌声送给刚才这个小组。

生B:我们小组是用撕的方法。我们是用手把3个角撕下来,然后再拼,结果也能拼成一个平角。(真会动脑筋,不用工具也行)生C:我们小组是用折的方法,同样得到三角形的内角和是180度。

师:请这位同学折来给大家看看。(投影仪展示)

生:3个角折成了一个平角。

师:真是个手巧的孩子。他刚才折的是一个锐角三角形,你们小组还有折其他三角形的吗?(汇报其它三角形折的情况)

锐角三角形、钝角三角形都折了几次?(3次)现在请同学们看屏幕,让我们来看看直角三角形折了几次?(课件展示:直角三角形折的过程)

师:折了几次?想想为什么直角三角形可以只折两次就能证明。

生;因为它是一个直角三角形,已经有了一个直角,另外2个锐角只要能拼成直角,三个角的和就是180°了。

师:说得真清楚。

3、师:老师让每个同学都准备了直角三角形、锐角三角形和钝角三角形三种不同的三角形,并量出了每个内角的度数,下面就请同学们在小组内每种各选一个求出它们的内角和,把结果填在表中:

汇报

问:你们发现了什么?

小结:通过测量我们发现每个三角形的三个内角和都在180度左右。

师:三角形的内角和就是180度,只是因为我们在测量时会出现一些误差,所以测量出的结果不是很准确。

4、师小结:刚才同学们用量、剪、拼、折等方法证明了无论是什么样的三角形内角和都是1800,(板书:是180°)现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是1800”。

5、师:(出示一个大三角形)它的内角和是多少度?

师:(出示一个很小的三角形)它的内角和是多少度?。

师:一块三角尺的内角和180°,两块同样的三角尺拼成的一个大三角形的内角和又是多少呢?

师:把大三角形平均分成两份。它的(指均分后的一个小三角形)内角和是多少度?(生有的答90°,有的180°。)

师:哪个对?为什么?

生:180°,因为它还是一个三角形。

师:每个小三角形的度数是180°,那么这样的两个小三角形拼成一个大三角形,内角和是多少度?

这时学生的答案又出现了180°和360°两种。师:究竟谁对呢?

学生个个脸上露出疑问,大家可以在小组内拼一拼,进行讨论经过一翻激烈的讨论探究后,学生开始举手回答。

生1:180°,因为两个三角形拼在一起,就变成了一个三角形了,每个三角形的内角和总是180°。

生2:我发现两个小三角形拼成一个大三角形,拼接在一起的两条边上的两个角没有了,就比原来两个三角形少180°,所以大三角形的内角和还是180°,不是360°。

师:表扬:你真聪明。演示:

师:三角形不论位置、大小、形状如何,它的内角和总是180°(一)解决问题:

下面,我们就根据三角形内角和的知识来解决一些相关的数学问题。(课件)

1、求三角形中一个未知角的度数。

2、判断

(1)一个三角形的三个内角度数是:80°、75°、24°。

(2)三角形越大,它的内角和就越大。()(3)一个三角形至少有两个角是锐角。()(4)钝角三角形的两个锐角和大于90°。

3、解决生活实际问题。

(1)爸爸给小红买了一个等腰三角形的风筝,它的一个底角是70°,它的顶角是多少度?

(2)交通警示牌“让”为等边三角形,求其中一个角的度数。

4、拓展练习。

利用三角形内角和是180°,求出下面四边形、六边形的内角和?(课件)

师:小组的同学讨论一下,看谁能找到最佳方法。

学生汇报,在图中画上虚线,教师课件演示。

请同学们自己在练习本上计算。

相关文档
最新文档