数学建模期中考试题目
数学建模试题(开放性)
2014-2015学年上学期《数学建模》期中考试试题要求:1.以2-3人为一小组选择5个题做;其中1——38题任选4个,规划问题必做;2.要求思路清晰,结果合理。
3.每个同学都主动积极参与。
4.第15周交。
**************************************************1.一个半球状雪堆,其体积融化的速率与半球面面积S成正比,比例系数k > 0。
设融化中雪堆始终保持半球状,初始半径为R且3小时中融化了总体积的7/8,问雪堆全部融化还需要多长时间?2.从致冰厂购买了一块立方体的冰块,在运输途中发现,第一小时大约融化了1/4(1)求冰块全部融化要多长时间(设气温不变)(2)如运输时间需要2.5小时,问:运输途中冰块大约会融化掉多少?3.一展开角为α的圆锥形漏斗内盛着高度为H的水,设漏斗底部的孔足够大(表面张力不计),试求漏斗中的水流光需要多少时间?4.容器甲的温度为60度,将其内的温度计移入容器乙内,设十分钟后温度计读数为70度,又过十分钟后温度计读数为76度,试求容器乙内的温度。
5.一块加过热的金属块初始时比室温高70度,20分钟测得它比室温高60度,问:(1)2小时后金属块比室温高多少?(2)多少时间后,金属块比室温高10度?6.设初始时容器里盛放着含净盐10千克的盐水100升,现对其以每分钟3升的速率注入清水,容器内装有搅拌器能将溶液迅时搅拌均匀,并同时以每分钟2升的速率放出盐水,求1小时后容器里的盐水中还含有多少净盐?7.某伞降兵跳伞时的总质量为100公斤(含武器装备),降落伞张开前的空气阻力为0.5v,该伞降兵的初始下落速度为0,经8秒钟后降落伞打开,降落伞打开后的空气阻力约为0.6试球给伞降兵下落的速度v(t),并求其下落的极限速度。
8. 1988年8月5日英国人Mike McCarthy创建了一项最低开伞的跳伞纪录,它从比萨斜塔上跳下,到离地179英尺时才打开降落伞,试求他落地时的速度。
数学建模期中考试题目
A题血管的三维重建断面可用于了解生物组织、器官等的形态。
例如,将样本染色后切成厚约1μm的切片,在显微镜下观察该横断面的组织形态结构。
如果用切片机连续不断地将样本切成数十、成百的平行切片,可依次逐片观察。
根据拍照并采样得到的平行切片数字图象,运用计算机可重建组织、器官等准确的三维形态。
假设某些血管可视为一类特殊的管道,该管道的表面是由球心沿着某一曲线(称为中轴线)的球滚动包络而成。
例如圆柱就是这样一种管道,其中轴线为直线,由半径固定的球滚动包络形成。
现有某管道的相继100张平行切片图象,记录了管道与切片的交。
图象文件名依次为0.bmp、1.bmp、…、 99.bmp,格式均为BMP,宽、高均为512个象素(pixel)。
为简化起见,假设:管道中轴线与每张切片有且只有一个交点;球半径固定;切片间距以及图象象素的尺寸均为1。
取坐标系的Z轴垂直于切片,第1张切片为平面Z=0,第100张切片为平面Z=99。
Z=z切片图象中象素的坐标依它们在文件中出现的前后次序为(-256,-256,z),(-256,-255,z),…(-256,255,z),(-255,-256,z),(-255,-255,z),…(-255,255,z),……( 255,-256,z),( 255,-255,z),…(255,255,z)。
试计算管道的中轴线与半径,给出具体的算法,并绘制中轴线在XY、YZ、ZX平面的投影图。
第2页是100张平行切片图象中的6张,全部图象请从网上()下载。
关于BMP图象格式可参考:1. 《Visual C++数字图象处理》第12页2.3.1节。
何斌等编著,人民邮电出版社,2001年4月。
2. /home/mxr/gfx/2d/BMP.txtB题露天矿生产的车辆安排钢铁工业是国家工业的基础之一,铁矿是钢铁工业的主要原料基地。
许多现代化铁矿是露天开采的,它的生产主要是由电动铲车(以下简称电铲)装车、电动轮自卸卡车(以下简称卡车)运输来完成。
数学建模试卷及参考答案
数学建模试卷及参考答案一、选择题1. 已知函数 $y = 2x^3 - 5x^2 + 3x - 7$,求导数函数 $y'$ 的值。
A) $6x^2 - 10x + 3$\B) $6x - 10x^2 + 3$\C) $6x - 10x + 3$\D) $6x^2 - 10x^2 + 3$答案:A2. 设矩形的长为 $x$,宽为 $y$,满足 $x^2 + y^2 = 25$。
当矩形的面积最大时,求矩形的长和宽。
A) 长为 4,宽为 3\B) 长为 5,宽为 3\C) 长为 4,宽为 2.5\D) 长为 5,宽为 2.5答案:A3. 一条直线过点 $A(1,2)$ 和点 $B(3,-1)$,与另一条直线 $2x + y - 4 = 0$ 平行。
求该直线的方程。
A) $2x - y + 3 = 0$\B) $2x - y - 3 = 0$\C) $-2x + y - 3 = 0$\D) $2x - y - 5 = 0$答案:B4. 已知函数 $y = e^x$,求 $y$ 的微分值。
A) $e^x$\B) $e^x + C$\C) $e^x - C$\D) $C \cdot e^x$答案:A5. 一辆汽车以每小时 60 公里的速度行驶,途中经过两座相距 60 公里的城市。
假设两座城市间有一辆以每小时90 公里的速度行驶的列车,两车同时出发。
求两辆车首次相遇的时间。
A) 0.5 小时\B) 1 小时\C) 1.5 小时\D) 2 小时答案:A二、填空题6. 已知函数 $f(x) = \sin(x)$,求函数 $g(x) = f^{\prime}(x)$。
答案:$g(x) = \cos(x)$7. 若直线 $3x + ky = 2$ 与直线 $2x - y = 3$ 相垂直,则 $k$ 的值为\_\_\_。
答案:$k = 6$8. 设抛物线 $y = ax^2 - 3x + 2$ 的顶点为 $(2,1)$,则 $a$ 的值为\_\_\_。
数学建模试卷及参考答案
数学建模 试卷及参考答案一.概念题(共3小题,每小题5分,本大题共15分)1、一般情况下,建立数学模型要经过哪些步骤?(5分)答:数学建模的一般步骤包括:模型准备、模型假设、模型构成、模型求解、模型分析、模型检验、模型应用。
2、学习数学建模应注意培养哪几个能力?(5分)答:观察力、联想力、洞察力、计算机应用能力。
3、人工神经网络方法有什么特点?(5分)答:(1)可处理非线性;(2)并行结构.;(3)具有学习和记忆能力;(4)对数据的可容性大;(5)神经网络可以用大规模集成电路来实现。
二、模型求证题(共2小题,每小题10分,本大题共20分)1、 某人早8:00从山下旅店出发,沿一条路径上山,下午5:00到达山顶并留宿.次日早8:00沿同一路径下山,下午5:00回到旅店.证明:这人必在2天中同一时刻经过路途中某一地点(15分) 证明:记出发时刻为t=a,到达目的时刻为t=b,从旅店到山顶的路程为s.设某人上山路径的运动方程为f(t), 下山运动方程为g(t),t 是一天内时刻变量,则f(t),g(t)在[a,b]是连续函数。
作辅助函数F(t)=f(t)-g(t),它也是连续的,则由f(a)=0,f(b)>0和g(a)>0,g(b)=0,可知F (a )<0, F(b)>0,由介值定理知存在t0属于(a,b)使F(t0)=0, 即f(t0)=g(t0) 。
2、三名商人各带一个随从乘船过河,一只小船只能容纳二人,由他们自己划行,随从们秘约,在河的任一岸,一旦随从的人数比商人多,就杀人越货,但是如何乘船渡河的大权掌握在商人们手中,商人们怎样才能安全渡河呢?(15分)解:模型构成记第k 次渡河前此岸的商人数为k x ,随从数为k y ,k=1,2,........,k x ,k y =0,1,2,3。
将二维向量k s =(k x ,k y )定义为状态。
安全渡河条件下的状态集合称为允许状态集合,记做S 。
数学模型期中考试
数学模型期中考试(2)
Exam Date:June3.Time:08:00am to09:40am.(100minutes)答题时请注意:
•计算题需要有完整的解题步骤,证明题需要严密的论证过程。
•没有出现在答题纸上的要点,视为答题人不知道或者没有能力阐述清楚。
•答题纸上不需要抄题目。
但是请标好答题序号。
•请大家严格遵守考试纪律。
祝大家考试顺利!
3.(概率模型)a.(20分)考虑一所两年制的学校,一年级生在下一年,70%会升到二年级,15%留在一年级,15%退学,二年级生在下一年,80%会毕业,10%留在二年级,10%退学。
用一个马氏链来描述此过程,写出转移概率矩阵。
新生最终毕业的比例是多少?一个新生预期毕业或者退学要花多少年?(毕业或者退学是一个事件,是需要算一个预期时间。
)
b.(10分)一个赌徒每轮游戏会有p∈(0,1)的概率赢一块钱,也会有q=1−p的概率输掉一块钱。
如果赌徒输光了钱,或者赌资达到N∈N块钱,则赌徒将停止赌博。
若赌徒在n轮游戏后的赌资为X n,建立一个马氏链模型,并写出转移概率矩阵。
如果一个赌徒开始有i块钱(0<i<N)那么,他的赌资(在输光前)达到了N块钱的概率是多少?如果N→∞会怎么样?
1。
2023全国数学建模题目
2023全国数学建模题目一、选择题(每题3分,共15分)下列哪个数不是质数?A. 2B. 3C. 9D. 13若一个圆的半径是5cm,则它的面积是多少平方厘米?A. 25πB. 50πC. 75πD. 100π下列哪个方程表示的是一条直线?A. y = x²B. y = 2x + 1C. y = 1/xD. xy = 1下列哪个数最接近√10?A. 2B. 3C. 4D. 5一个三角形的两边长分别为3和4,第三边的取值范围是多少?A. 1 < x < 7B. 2 < x < 8C. 3 < x < 9D. 4 < x < 10二、填空题(每题4分,共20分)绝对值等于5的数是_______。
已知|a - 3| + (b + 2)² = 0,则 a + b = _______。
已知一个正方体的棱长是6cm,则它的体积是_______ cm³。
方程2x - 3 = 5 的解是x = _______。
已知扇形的圆心角为120°,半径为3cm,则扇形的面积是_______ cm²。
三、计算题(每题10分,共30分)计算:√27 - | - 2| + (1/2)^(-1) - (π - 3)^0。
解方程组:{x + 2y = 5,3x - y = 8.}已知一个矩形的面积是48cm²,一边长为6cm,求另一边长。
四、应用题(每题15分,共30分)某商店购进一批苹果,进价为每千克5元,售价为每千克8元。
若商店想要获得至少300元的利润,则至少需要售出多少千克的苹果?一辆汽车从A地开往B地,前两小时行驶了120km,后三小时行驶了180km。
求这辆汽车的平均速度。
初中数学建模大赛试卷
一、选择题(每题5分,共20分)1. 下列哪项不是数学建模的基本步骤?A. 提出问题B. 收集数据C. 分析问题D. 解决问题2. 下列哪个公式是求解一元二次方程的公式?A. \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)B. \( y = mx + b \)C. \( z = \frac{a}{b} \)D. \( \sin(\theta) = \frac{opposite}{hypotenuse} \)3. 在下列函数中,哪个函数的图像是一条直线?A. \( f(x) = x^2 + 2x + 1 \)B. \( f(x) = 2x + 3 \)C. \( f(x) = \sqrt{x} \)D. \( f(x) = \log_2(x) \)4. 下列哪个单位是测量长度的国际单位?A. 米(m)B. 千克(kg)C. 秒(s)D. 安培(A)5. 在下列几何图形中,哪个图形是轴对称的?A. 正方形B. 长方形C. 三角形D. 圆形二、填空题(每题5分,共20分)6. 若一个长方体的长、宽、高分别为a、b、c,则其体积V可以表示为______。
7. 若一个圆的半径为r,则其周长C可以表示为______。
8. 若一个等差数列的首项为a1,公差为d,第n项为an,则an可以表示为______。
9. 若一个等比数列的首项为a1,公比为q,第n项为an,则an可以表示为______。
10. 若一个直角三角形的两条直角边分别为a和b,斜边为c,则根据勾股定理,c 可以表示为______。
三、解答题(每题15分,共45分)11. (15分)某学校计划组织一次校园运动会,共有50名学生报名参加。
已知参加100米短跑的学生有20人,参加200米中长跑的学生有15人,参加跳远的学生有10人。
请根据这些信息,建立一个数学模型来分析参加不同运动项目的学生人数之间的关系。
12. (15分)某商店销售一种新产品,已知每件产品的成本为100元,售价为150元。
数学建模考试试题及答案
数学建模及应用试题汇总1. 假如你站在崖顶且身上带着一只具有跑表功能的计算器, 你也会出于好奇心想用扔下一 块石头听回声的方法来估计山崖的高度,假定你能准确地测定时间,你又怎样来推算山 崖的高度呢,请你分析一下这一问题。
2. 建立理想单摆运动满足的微分方程,并得出理想单摆运动的周期公式。
3. 一根长度为 l 的金属杆被水平地夹在两端垂直的支架上,一端的温度恒为 T1, 另一端温 度恒为 T2, (T1、T2 为常数, T1> T2)。
金属杆横截面积为 A ,截面的边界长度为 B ,它 完全暴露在空气中,空气温度为 T3, (T3< , T3 为常数), 导热系数为α,试求金属杆 上的温度分布 T(x), (设金属杆的导热 2为λ)4. 甲乙两队进行一场抢答竞赛,竞赛规则规定:开始时每队各记 2 分,抢答题开始后,如 甲取胜则甲 加 1 分而乙减 1 分,反之则乙加 1 分甲减 1 分,(每题必需决出胜负 )。
规 则还规定,当其中一方的得分达 到 4 分时,竞赛结束。
现希望知道:(1)甲队获胜的概率有多大?(2)竞赛从开始到结束,平均转移的次数为多少?(3)甲获得 1 、2、3 分的平均次数是多少?5. 由于指派问题的特殊性, 又存在着由匈牙利数学家提出的更为简便的解法——匈牙利算 法。
当系数矩阵为下式,求解指派问题。
「16 15 19 22]C =L17 19 22 16 」6. 在遥远的地方有一位酋长,他想把三个女儿嫁出去。
假定三个女儿为 A 、B 、C , 三位求 婚者为 X 、Y 、Z 。
每位求婚者对 A 、B 、C 愿出的财礼数视其对她们的喜欢程度而定: A B C x 「 3 5 26]问酋长应如何嫁女,才能获得最多的财礼(从总体上讲,他的女婿最喜欢他的女儿。
7. 某工程按正常速度施工时,若无坏天气影响可确保在 30 天内按期完工。
但根据天气预 报, 15 天后天气肯定变坏。
数学建模期中作业
数学建模与数学实验期中作业11级数学与应用数学一班第七组成员:候桂英杨白囡李明香杨志雄输油管道的设计摘要“输油管的布置”数学建模的目的是设计最优化的路线,建立一条费用最省的输油管线路,但是不同于普遍的最短路径问题,该题需要考虑多种情况,例如,城区和郊区费用的不同,采用共用管线和非公用管线价格的不同等等。
我们基于最短路径模型,对于题目实际情况进行研究和分析,对三个问题都设计了合适的数学模型做出了相应的解答和处理。
问题一:此问只需考虑两个加油站和铁路之间位置的关系,根据位置的不同设计相应的模型,设计了一种改进的最短路径模型,因此只需一个未知变量便可以列出最短路径函数;在考虑到共用管线价格差异的情况下,则需要建立两个未知变量,带入已知常量,可以解出变量的值。
问题二:此问给出了两个加油站的具体位置,并且增加了城区和郊区的特殊情况,我们进一步改进数学模型,输油管在城区和郊区的铺设将不会是直线方式。
在郊区的路线依然可以采用问题一的改进最短路径模型,基于该模型,我们只需设计两个变量就可以列出最低费用函数,利用Lingo解出最小值,问题三:该问的解答方法和问题二类似,但是由于A管线、B管线、共用管线三者的价格均不一样,我们利用问题二中设计的数学模型,以铁路为横坐标,城郊交汇为纵坐标建立坐标轴,增加了一个变量,建立了最低费用函数,并且利用Lingo解出了最低费用和路径坐标。
关键字:最短路径、最小费用、数学模型油田计划在铁路线一侧建造两家炼油厂,同时在铁路线上增建一个车站,用来运送成品油。
由于这种模式具有一定的普遍性,考虑两个加油站和铁路之间位置的关系,根据位置的不同设计相应的模型,设计一种改进的最短路径模型,以此达到费用最少的目的。
1、针对两炼油厂到铁路线距离和两炼油厂间距离的各种不同情形,设计最优方案。
在方案设计时,若有共用管线,需要考虑共用管线费用与非共用管线费用相同或不同的情形。
2、目前需对一更为复杂的情形进行具体的设计。
2024--2025学年人教版九年级数学上册期中数学模考训练卷
安全管理质量标准化管理制度第一章总则第一条为加强企业安全管理,规范安全管理程序和标准,确保员工生命安全,财产安全和环境安全,制定本管理制度。
第二条本制度适用于本企业员工及相关服务供应商。
第三条本制度所称安全管理,指的是对企业内外环境、使用设施以及人员行为进行规范和控制,以实现安全目标和减少安全风险。
第四条本制度的主要任务是建立和完善企业安全管理体系,确保安全管理程序的合理性、有效性和可操作性。
第二章安全目标第五条企业的安全目标是:保障员工的生命安全和健康、保护企业财产安全、保护周围环境的安全。
第六条为实现上述目标,企业将从以下几个方面着手:(一)建立健全安全管理体系,明确各级管理责任。
(二)开展安全教育培训,提高员工的安全意识和技能。
(三)进行安全风险评估和预防措施的规划和实施,减少安全风险。
(四)加强安全设施和装备的管理和维护,确保其正常和安全运行。
(五)建立应急管理体系,做好安全事故应急处理工作。
(六)加强对供应商的安全管理,确保其符合相关安全要求。
第三章安全管理责任第七条企业的安全管理责任由企业管理层负责,具体责任人为安全管理部门和相关部门的负责人。
第八条具体的安全管理责任如下:(一)企业管理层负责对整个企业的安全管理工作进行监督和检查,确保安全管理措施的有效实施。
(二)安全管理部门负责制定和完善企业的安全管理制度和规程,组织开展安全培训和宣传工作,开展安全风险评估,进行事故调查和处理。
(三)相关部门负责制定和实施本部门的安全管理措施,确保本部门的安全工作符合企业的要求。
(四)员工应参与并遵守企业的安全管理制度和规程,积极参与安全培训活动,提高安全意识和技能。
第四章安全管理措施第九条企业应制定并实施一系列的安全管理措施,包括以下方面:(一)安全设施和装备的管理和维护:对企业内的安全设施和装备进行定期维护和检查,确保其正常和安全运行。
(二)安全培训和宣传:对新员工进行入职培训,定期组织安全培训和宣传活动,提高员工的安全意识和技能。
数学建模试卷及答案
《数学模型》试卷一、基本问题。
(本大题共2小题,每小题20分,共40分)1.在七项全能中对于跳高运动的记分点方法由下式给出:c b m a P )(-=其中m c b a ,348.1,0.75,84523.1===是跳的高度(按cm 计)。
求跳的高度为183cm 的记分点,并确定积分1000点需要跳的高度。
2.铁匠用直条铁做蹄铁,把直条铁弯成通常铁蹄的形状。
为求得铁条需要的长度,要测量蹄的宽度(W 英寸),并用下列形式的公式:b aW L +=求得需要的条长度(L 英寸)。
试用下列数据求的a 和b 的估计值。
并得出该公式的估计式。
宽W (英寸) 长L (英寸)6.50 12.005.75 13.50二、渔场捕捞问题。
(本大题共3小问,每小问20分。
满分共60分。
)三、在渔场中捕鱼,从长远利益而言,通常希望既使渔场中鱼量保持不变,又能达到最大的捕获量。
假设:(1)在无捕捞的情况下,鱼量的变化符合Logistic 模型:)1(Nx rx dt dx -=,其中:r 为固有增长率,N 是渔场资源条件下最大鱼量;(2)在捕捞的情况下,设单位时间的捕捞量与渔场中的鱼量成正比。
1.建立在有捕捞的情况下,渔场的产量模型;2.研究该模型鱼量的稳定性;3.找出该模型下适合的捕捞量。
《数学建模》考试卷(答案)一、1.解:把183,348.1,0.75,84523.1====m c b a 代入记分公式,得348.1)0.75183(84523.1)(-⨯=-=c b m a P =348.110884523.1⨯(=1016.5)由公式c b m a P )(-=,有c b m a P )(-=,解得公式:b a P m c +=1)( 把1000,348.1,0.75,84523.1====P c b a 代入上式,得b aP m c +=1)( 0.7594.5410.75)84523.11000(74184.0348.11+=+= (=106.7+75.0=181.7)2.解:把两组数据00.12,50.6==L W 和50.13,75.5==L W 分别代入公式 b aW L +=得方程组:⎩⎨⎧+=+=b a b a 75.55.135.60.12 解得:⎩⎨⎧=-=252b a 所以b a ,的估计值为:25,2^^=-=b a 。
数学建模与优化模型考核试卷
B.约束条件是非线性的
C.决策变量x和y之间是线性关系
D.决策变量x和y之间是非线性关系
5.以下哪个数学工具常用于求解优化问题?()
A. MATLAB
B. Excel
C. SPSS
D. Photoshop
6.在非线性规划模型中,若目标函数为“f(x, y) = x^2 + y^2”,则该模型属于以下哪种类型?()
标准答案
一、单项选择题
1. D
2. C
3. D
4. A
5. A
6. A
7. A
8. B
9. D
10. A
11. D
12. A
13. B
14. A
15. D
16. A
17. D
18. D
19. C
20. C
二、多选题
1. ABCD
2. ABCD
3. ABCD
4. ABC
5. ABC
6. ABC
7. AD
16.以下哪些情况下,非线性规划问题可能存在多个最优解?()
A.目标函数为凸函数
B.目标函数为凹函数
C.约束条件为凸集
D.约束条件为凹集
17.在数学建模中,以下哪些方法可以用于模型验证?()
A.残差分析
B.灵敏度分析
C.拟合优度检验
D.回归分析
18.以下哪些软件工具可以用于统计分析?()
A. MATLAB
A.模型建立
B.模型求解
C.模型分析
D.数据可视化
19.在数学建模过程中,以下哪个步骤是模型建立阶段的内容?()
A.提出问题
B.分析问题
C.求解模型
数学模型试题及答案解析
数学模型试题及答案解析一、单项选择题(每题3分,共30分)1. 以下哪个不是数学模型的特征?A. 抽象性B. 精确性C. 可验证性D. 复杂性答案:D2. 数学模型的建立通常不包括以下哪个步骤?A. 定义问题B. 收集数据C. 建立假设D. 验证结果答案:D3. 在数学建模中,以下哪个不是模型分析的方法?A. 定性分析B. 数值分析C. 图形分析D. 统计分析答案:D4. 数学模型的验证不包括以下哪项?A. 内部一致性检验B. 与已知结果比较C. 与实验数据比较D. 模型的优化答案:D5. 在数学建模中,以下哪个不是模型的类型?A. 确定性模型B. 随机模型C. 动态模型D. 静态模型答案:D6. 以下哪个是数学模型的典型应用领域?A. 经济学B. 物理学C. 生物学D. 所有以上答案:D7. 数学模型的建立过程中,以下哪个步骤是不必要的?A. 问题定义B. 假设建立C. 模型求解D. 模型展示答案:D8. 数学模型的分析中,以下哪个不是常用的工具?A. 微分方程B. 线性代数C. 概率论D. 量子力学答案:D9. 在数学建模中,以下哪个不是模型的评估标准?A. 准确性B. 可解释性C. 简洁性D. 复杂性答案:D10. 数学模型的建立过程中,以下哪个步骤是至关重要的?A. 问题定义B. 数据收集C. 模型求解D. 模型验证答案:A二、多项选择题(每题5分,共20分)11. 数学模型的建立过程中,以下哪些步骤是必要的?A. 问题定义B. 数据收集C. 模型求解D. 模型验证答案:ABCD12. 数学模型的类型包括以下哪些?A. 确定性模型B. 随机模型C. 动态模型D. 静态模型答案:ABCD13. 数学模型的分析方法包括以下哪些?A. 定性分析B. 数值分析C. 图形分析D. 统计分析答案:ABCD14. 数学模型的验证包括以下哪些?A. 内部一致性检验B. 与已知结果比较C. 与实验数据比较D. 模型的优化答案:ABC三、填空题(每题4分,共20分)15. 数学模型的建立通常包括定义问题、______、建立假设和模型求解四个步骤。
(10-11二A)《数学建模》期中考试题
2010 至 2011 学年第 二 学期 《数学建模》 课程期中考试(A 卷)
一、 题目: 工厂升级方案的优化模型 某公司所属的高新技术研究所开发了一种新的产品W200X ,该公司现有三个工厂,都生产普通的产品W100X 。
公司计划将现有工厂升级,升级后的工厂将能产生W100X 和W200X 两种产品;假设各工厂现有的工人数和预计需要的升级费用如下: 其中A1在此期间,工厂将停产。
该公司在过去的几个月进行了市场调研,W100X 现有的批发价为400元。
预测
件成本40元,需1.5小时工作量;W200X 的零件成本为64元,需1.75小时工作量;每个W100X 产品需要两个老芯片,每个W200X 产品需要两个新芯片,该公司提供芯片的生产方程为: 80310/⨯⨯≤老芯片数+新芯片数元月 公司老板要求: 两位副总裁分别提出了方案1,方案2,如下: 方案1:只让A1工厂升级,只生产新产品W200X ; 方案2:所有工厂都升级,可生产两种产品。
要求: (1)研究每一种方案,包括你自己的一个提案,总裁希望基于你的研究推出一个最好
的方案,他非常非货币损失和利益。
(2)问题陈述,方案的模型和分析,寻求最佳方案的方法,结果的分析。
(3)下个月第几个工厂升级,每种产品的产量和定价。
学号
:
姓名:
班级:
专业:
院(系)
:
答
案
不
得
超
过
装
订
线
要求及评分标准:
写出摘要(5%)、关键词(2%)、问题重述(5%)、问题分析(5%)、问题假设(5%)、符号约定(3%)、数学模型的建立及求解(60%)、模型的灵敏度分析(10%)、模型的评价与改进(5%)。
数学建模试题(带答案)大全
(14 分)
得分
四、(满分 10 分) 雨滴的速度 v 与空气密度 、粘滞系数 和重力加速度 g 有关,其中粘
滞系数的量纲[ ]= L1MT 1 1,用量纲分析方法给出速度 v 的表达式.
解:设 v , , , g 的关系为 f ( v , , , g ) =0.其量纲表达式为
[ v ]=LM0T-1,
学分 5 4 4
4
数据结构
3
5
应用统计
4
6
计算机模拟 3
7
计算机编程 2
8
预测理论
2
9
数学实验
3
所属类别 数学 数学 数学;运筹学
数学;计算机 数学;运筹学
计算机;运筹学 计算机 运筹学 运筹学;计算机
先修课要求
微积分;线性代 数 计算机编程 微积分;线性代 数 计算机编程
应用统计 微积分;线性代 数
由 U 0, U 0 可得到最优价格:
p1
p2
1
T
1
3T
p1 2b [a b(q0
)] 4
P2 2b [a b(q0 4 )]
前期销售量
T、(2 a
0
bp1
)dt
后期销售量
T
T /2 (a p2 )dt
总销售量
Q0
=
aT
bT 2
(
p1
p2 )
在销售量约束条件下 U 的最大值点为
~p1
a b
Q0 bT
T 8
,
P~2
a b
Q0 bT
T 8
7. (1)雨水淋遍全身, s 2(ab bc ac) 2*(1.5*0.5 0.5*0.2 1.5*0.2) 2.2m2
《数学建模与数学实验》期中测试题
《数学建模与数学实验》期中测试题1. 1.简述MATLAB程序四个窗口的主要作用(20分)。
1 命令窗口:(Command window)MATLAB的主要交互窗口。
用于输入MATLAB 命令、函数、数组、表达式等信息,并显示图形以外的所有计算结果。
数值计算结果均以短格式(short)显示。
2 工作空间窗口:(Workspace Window)用于储存各种变量和结果的空间,又称为内存浏览器,用于显示变量的名称、大小、字节数及数据类型,对变量进行观察、编辑、保存和删除。
3 命令历史窗口:(Command History)记录已运行过的所有的MATLAB命令历史,包括已输入和运行过的命令、函数、表达式等信息,可进行命令历史的查找、检查等工作,也可以在该窗口中进行命令复制与重运行,为用户下一次使用同一个命令提供方便。
4 当前目录浏览器:(Current Directory (folder))用于显示及设置当前工作目录,同时显示当前工作目录下的文件名、文件类型及目录的修改时间等信息。
2. 2.写出命令语句,建立分块矩阵1. 建立一个10 阶方阵,其第1:4 行、第1:4 列为单位矩阵;其第1:4行、第5:8 列为魔方矩阵;其第5:8 行、第1:4 列为全零矩阵;其第5:8 行、第5:8 列为[1 2 3 4]形成的对角矩阵;其第9:10 行、第1:4 列为随机矩阵;其第9:10 行、第5:8 列为矩阵全 1 矩阵;第9 列为等差数列1:3:30;第10 列是0 到 1 之间的10个等差数列。
(30分)解答:a=eye(4);b=magic(4);c=zeros(4);v=[1 2 3 4];d=diag(v,0);e=rand(2,4);f=ones(2,4);G=1:3:30;G=G';H=0.1:0.1:1;H=H';I=[a,b;c,d;e,f];J=[I,G,H]3.答案:绘制二维图形的一般步骤:1.数据准备。
(完整版)数学建模试卷(附答案)
2.设银行的年利率为0.2,则五年后的一百万元相当于现在的 万元.3.在夏季博览会上,商人预测每天冰淇淋销量N 将和下列因素有关: (1)参加展览会的人数n ;(2)气温T 超过10℃;(3)冰淇淋的售价由此建立的冰淇淋销量的比例模型应为 。
二、简答题:(25分)1、建立数学模型的基本方法有哪些?写出建模的一般步骤。
(5分)2、 写出优化模型的一般形式和线性规划模型的标准形式。
(10分) 三、(每小题15分,共60分)1、设某产品的供给函数)(p ϕ与需求函数)(p f 皆为线性函数: 9)(,43)(+-=+=kp p f p p ϕ其中p 为商品单价,试推导k 满足什么条件使市场稳定。
2、1968年,介壳虫偶然从澳大利亚传入美国,威胁着美国的柠檬生产。
随后,美国又从澳大利亚引入了介壳虫的天然捕食者——澳洲瓢虫。
后来,DDT 被普通使用来消灭害虫,柠檬园主想利用DDT 进一步杀死介壳虫。
谁料,DDT 同样杀死澳洲瓢虫。
结果,介壳虫增加起来,澳洲瓢虫反倒减少了。
试建立数学模型解释这个现象。
3.建立捕鱼问题的模型,并通过求解微分方程的办法给出最大的捕捞量数学建模 参考答案2.约40.18763.p T Kn N /)10(-=,(T ≥10℃),K 是比例常数 二、1、建立数学模型的基本方法:机理分析法,统计分析法,系统分析法2、优化模型的一般形式将一个优化问题用数学式子来描述,即求函数 ,在约束条件下的最大值或最小值,其中 为设计变量(决策变量), 为目标函数为可行域三、1、解:设Pn 表示t=n 时的市场价格,由供求平衡可知:)()(1n n p f p =-ϕ9431+-=+-n n kp p即: kp k p n n 531+-=- .,...,,,)(m i h i 210==x )(x f u =.,...,,),)(()(p i g g i i 2100=≥≤x x x)(x f Ω∈x Ω∈=x x f u )(max)min(or .,...,,,)(..m i h t s i 210 ==x .,...,,),)(()(p i g g i i 2100=≥≤x x经递推有:kk p kkk k p k p n nn nn n 5)3()3(5)53(31102⋅-+⋅-=++-⋅-=-=-∑Λ0p 表示初始时的市场价格:∞→时当n 若即市场稳定收敛则时,,30,13n p k 即k<<<-。
数学建模期中考试
数学建模期中作业论文Thesis of Mid-term examination of mathematical modeling学院: 理学院专业: 09信息与计算科学3班学号: 093209 姓名:赵旭学号: 0932097 姓名:焦雅学号: 0932098 姓名:李开所得税交纳点选址的数学模型试题:所得税交纳点选址所得税管理部门计划对某个城市的所得税交纳点网络进行重新设计。
下图是该城市主要区和主要道路的示意图。
区旁边的黑体数字表示该区居民数目,单位为千人。
在连区之间的弧上标出了它们之间的距离,单位为千米(斜体字)。
为覆盖整个城市,所得税管理部门决定在三个区设置纳税点。
请建立数学模型给出三个纳税点安排的最佳方案。
摘要所得税管理部门计划对某个城市的所得税交纳点网络进行重新设计。
如图所示,区旁边的黑体数字表示该区居民数目,单位为千人。
在连区之间的弧上标出了它们之间的距离,单位为千米(斜体字)。
为覆整个城市,所得税管理部门决定在三个区设置纳税点。
首先我们将问题参数化,建立数学模型。
然后利用穷举法计算出每个点到所指定的三个纳税点的距离,再利用弗洛依德算法得出距离矩阵,并结合math lab等程序(C语言、Lingo),得出其与人数加权后的距离矩阵。
最后得出在1,6,和11 设置纳税点为最佳。
1,2,5,7区的居民去1区的纳税点缴税,3,4,6,9 区的居民去6 区的纳税点缴税,8,10,11,12区的居民去11区的纳税点缴税。
我们的模型虽然简单,但合理、实用,可以被各领域针对自己的情况应用到工作计划中去,指导他们的实际工作。
模型的总体假设1.假设纳税点集中在每个区的中心;2.假设限定每个区的居民只能到一个纳税点缴税;3.假设三个纳税点之间无特定联系;4.不考虑“道路难度系数”(即实际路程、地面情况及障碍物等);5.不考虑路程与时间的关系(即选出的是人数和距离加权后最小的纳税点,而非时间最短);6.不考虑居民的迁入迁出,即假定该区居民数目稳定;7.不考虑居民的主观因素(如个人偏好,或者因最近纳税点人多而临时改变纳税点等);模型的建立与求解◆第一步:模型的建立根据假设一,每个纳税点集中在每个区的中心,可能的位置有12种,则三个纳税点的组合至多有312c=12*11*10/6=220个。
2023年数学建模大赛试题
高考数学试卷一、单选题1.下列函数中,既是偶函数又在区间(0),-∞上单调递增的是( )A .2(1)f x x =B .()21f x x =+C .()2f x x =D .()2x f x -=2.下列计算正确的是A.()22x y x y +=+B.()2222x y x xy y -=-- C.()()2111x x x +-=- D.()2211x x -=- 3.已知m 3=n 4,那么下列式子中一定成立的是( )A .4m =3nB .3m =4nC .m =4nD .mn =124.复数满足(12)3z i i -=-,则z 在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限5.已知角α的顶点与原点重合,始边与x 轴的非负半轴重合,终边在直线3y x =上,则sin 4πα⎛⎫+= ⎪⎝⎭( ) A.25255 D.56.设32x y +=,则函数327x y z =+的最小值是( )A.12B.6C.27D.307.已知函数()2,01ln ,0x x f x x x -⎧≤⎪=⎨>⎪⎩,()()g x f x x a =--.若()g x 有2个零点,则实数a 的取值范围是( )A.[)1,0-B.[)0,∞+C.[)1,-+∞D.[)1,+∞8.要得到函数2sin x y e =的图像,只需将函数cos2x y e =的图像( )A .向右平移4π个单位B .向右平移2π个单位C .向左平移4π个单位D .向左平移2π个单位9.2020年,一场突如其来的“肺炎”使得全国学生无法在春季正常开学,不得不在家“停课不停学”.为了解高三学生居家学习时长,从某校的调查问卷中,随机抽取n 个学生的调查问卷进行分析,得到学生可接受的学习时长频率分布直方图(如下图所示),已知学习时长在[9,11)的学生人数为25,则n 的值为( )A .40B .50C .80D .10010.某学校党支部评选了5份优秀学习报告心得体会(其中教师2份,学生3份),现从中随机抽选2份参展,则参展的优秀学习报告心得体会中,学生、教师各一份的概率是( )A .120B .35C .310D .91011.命题:00x ∃≤,20010x x -->的否定是( )A .0x ∀>,210x x --≤B .00x ∃>,20010x x -->C .00x ∃≤,20010x x --≤D .0x ∀≤,210x x --≤12.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =3,b =5,c =2acosA ,则cosA =( )A .13 B .24 C .33 D .63二、填空题13.25(0),()8(0).x x f x x x ⎧+≤⎪=⎨+>⎪⎩14.正方体的棱长扩大到原来的倍,其表面积扩大到原来的( )倍。
数学建模期中考试试题
数学建模期中考试试题淮阴工学学院数理学院数学建模与实验课程期中试题姓名班级学号成绩[考试内容]1、有1个不规则的钢管经过测量经过如下坐标点,该钢管的线密度与平面上点(x,y)关系为? (x,y)?7.85? 3英寸(x?y)g/cm。
查找钢管的质量。
(30分)x(cm)012345678y(cm)m-1.97-8.79-18.08-27.56-32.27-29.41-16.864+m其中m为你的学号后两位乘以0.1.M=0溶液:CLC;clear;formatshortm=17*0.1;x=0:1:9;-29.41,-16.86,4+m,45+m];a=多边形拟合(x,y,3);x=0:0.01:9;y=polyval (a,x);fori=1:900s=(7.85+3*sin(x(i)+y(i))*sqrt((x(i+1)-x(i))^2+(y(i+1)-y (i))^2);m=m+s;endm结果为m=885.7803质量为885.7803九45+my=[m,-1.97,-8.79,-18.08,-27.56,-32.27,i=i+1;2.只考虑人口的自然增长,不考虑人口的迁移和其它因素,xx市人口满足方程dn11?Nn26dt2525?十若每年迁入人口3m人,而每年约有m人被谋杀,其中m为你的学号后三位乘以10。
(1)目前xx市人口人数为m?102人,请你预测未来10年xx市人口人数量。
(20分)(2)并讨论长时间后,xx市的人口状况(20分)建立的模型:n=计算出人口n加上迁入人口减去谋杀人口1000000/(exp(log(443/57)-t/25)+1)与时间t之间的关系。
y=问题1的求解1.0e+05*m=1170;columns1through8symsn(t);1.17001.20441.27011.3371n=dsolve(diff( n)==n/25-n^2/(25*10^6),n(0)1.40551.47511.54621.6186==114000,'t')columns9through11y(1)=1 00*m;1.69241.76771.8444fori=1:10未来十年人口数量的预测:y(i+1)=subs(n,t,i)+2*i*m;120440,127010,133710,140550,147510,end154620,161860,169240,176770,184440y问题2的求解y(1)=y(1);x(1)=1;问题1的结论第-1-页共2页fori=1:500x(i+1)=i+1;y(i+1)=subs(n,t,i)+2*i*m;end绘图(x,y)2.5x10621.5问问题1的结论20.5001002021004005006003.(30分)在室温为M℃(M是学生号的最后一位数字)的房间里,发现了一具尸体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A题血管的三维重建
断面可用于了解生物组织、器官等的形态。
例如,将样本染色后切成厚约1μm的切片,在显微镜下观察该横断面的组织形态结构。
如果用切片机连续不断地将样本切成数十、成百的平行切片,可依次逐片观察。
根据拍照并采样得到的平行切片数字图象,运用计算机可重建组织、器官等准确的三维形态。
假设某些血管可视为一类特殊的管道,该管道的表面是由球心沿着某一曲线(称为中轴线)的球滚动包络而成。
例如圆柱就是这样一种管道,其中轴线为直线,由半径固定的球滚动包络形成。
现有某管道的相继100张平行切片图象,记录了管道与切片的交。
图象文件名依次为0.bmp、1.bmp、…、 99.bmp,格式均为BMP,宽、高均为512个象素(pixel)。
为简化起见,假设:管道中轴线与每张切片有且只有一个交点;球半径固定;切片间距以及图象象素的尺寸均为1。
取坐标系的Z轴垂直于切片,第1张切片为平面Z=0,第100张切片为平面Z=99。
Z=z切片图象中象素的坐标依它们在文件中出现的前后次序为
(-256,-256,z),(-256,-255,z),…(-256,255,z),
(-255,-256,z),(-255,-255,z),…(-255,255,z),
……
( 255,-256,z),( 255,-255,z),…(255,255,z)。
试计算管道的中轴线与半径,给出具体的算法,并绘制中轴线在XY、YZ、ZX平面的投影图。
第2页是100张平行切片图象中的6张,全部图象请从网上()下载。
关于BMP图象格式可参考:
1. 《Visual C++数字图象处理》第12页
2.
3.1节。
何斌等编著,人民邮电出版社,2001年4月。
2. /home/mxr/gfx/2d/BMP.txt
B题露天矿生产的车辆安排
钢铁工业是国家工业的基础之一,铁矿是钢铁工业的主要原料基地。
许多现代化铁矿是露天开采的,它的生产主要是由电动铲车(以下简称电铲)装车、电动轮自卸卡车(以下简称卡车)运输来完成。
提高这些大型设备的利用率是增加露天矿经济效益的首要任务。
露天矿里有若干个爆破生成的石料堆,每堆称为一个铲位,每个铲位已预先根据铁含量将石料分成矿石和岩石。
一般来说,平均铁含量不低于25%的为矿石,否则为岩石。
每个铲位的矿石、岩石数量,以及矿石的平均铁含量(称为品位)都是已知的。
每个铲位至多能安置一台电铲,电铲的平均装车时间为5分钟。
卸货地点(以下简称卸点)有卸矿石的矿石漏、2个铁路倒装场(以下简称倒装场)和卸岩石的岩石漏、岩场等,每个卸点都有各自的产量要求。
从保护国家资源的角度及矿山的经济效益考虑,应该尽量把矿石按矿石卸点需要的铁含量(假设要求都为29.5%±1%,称为品位限制)搭配起来送到卸点,搭配的量在一个班次(8小时)内满足品位限制即可。
从长远看,卸点可以移动,但一个班次内不变。
卡车的平均卸车时间为3分钟。
km。
卡车的耗油量很大,每个班次每台所用卡车载重量为154吨,平均时速28h
车消耗近1吨柴油。
发动机点火时需要消耗相当多的电瓶能量,故一个班次中只在开始工作时点火一次。
卡车在等待时所耗费的能量也是相当可观的,原则上在安排时不应发生卡车等待的情况。
电铲和卸点都不能同时为两辆及两辆以上卡车服务。
卡车每次都是满载运输。
每个铲位到每个卸点的道路都是专用的宽60m的双向车道,不会出现堵车现象,每段道路的里程都是已知的。
一个班次的生产计划应该包含以下内容:出动几台电铲,分别在哪些铲位上;出动几辆卡车,分别在哪些路线上各运输多少次(因为随机因素影响,装卸时间与运输时间都不精确,所以排时计划无效,只求出各条路线上的卡车数及安排即可)。
一个合格的计划要在卡车不等待条件下满足产量和质量(品位)要求,而一个好的计划还应该考虑下面两条原则之一:
1.总运量(吨公里)最小,同时出动最少的卡车,从而运输成本最小;
2.利用现有车辆运输,获得最大的产量(岩石产量优先;在产量相同的情况下,取总运量最小的解)。
请你就两条原则分别建立数学模型,并给出一个班次生产计划的快速算法。
针对下面的实例,给出具体的生产计划、相应的总运量及岩石和矿石产量。
某露天矿有铲位10个,卸点5个,现有铲车7台,卡车20辆。
各卸点一个班次的产量要求:矿石漏1.2万吨、倒装场Ⅰ1.3万吨、倒装场Ⅱ1.3万吨、岩石漏1.9万吨、岩场1.3万吨。
铲位和卸点位置的二维示意图如下,各铲位和各卸点之间的距离(公里)如下表:
电动铲车 电动轮自卸卡车
某露天矿左俯瞰图 某露天矿右俯瞰图。