七年级数学人教版第四章_几何图形初步_第一节
人教版七年级数学上册第四章几何图形初步4.1立体图形与平面图形优秀教学案例
1.教师将学生Байду номын сангаас成若干小组,每组选择一个立体图形进行研究,共同探讨图形的特征。
2.每个小组通过讨论、操作等方法,分析所选图形的性质,并制作PPT进行展示。
3.各小组分享研究成果,其他小组对其进行评价和提问,形成互动的学习氛围。
在小组合作环节中,我们注重培养学生的团队合作能力和沟通能力。教师将学生分成若干小组,每组选择一个立体图形进行研究。通过讨论、操作等方法,每个小组分析所选图形的性质,并制作PPT进行展示。在分享研究成果的过程中,其他小组对其进行评价和提问,形成互动的学习氛围。这样的教学策略能够激发学生的学习兴趣,提高他们的团队合作能力和沟通能力。
人教版七年级数学上册第四章几何图形初步4.1立体图形与平面图形优秀教学案例
一、案例背景
本案例背景基于人教版七年级数学上册第四章几何图形初步4.1立体图形与平面图形。在教学过程中,我作为特级教师,深入研究教材,充分了解学生的认知水平和学习需求。本节课的主要内容是让学生初步认识立体图形和平面图形,培养学生对图形的空间想象能力和直观表达能力。
(三)学生小组讨论
1.教师将学生分成若干小组,每组选择一个立体图形进行研究,共同探讨图形的特征。
2.每个小组通过讨论、操作等方法,分析所选图形的性质,并制作PPT进行展示。
3.各小组分享研究成果,其他小组对其进行评价和提问,形成互动的学习氛围。
在学生小组讨论环节中,我们注重培养学生的团队合作能力和沟通能力。教师将学生分成若干小组,每组选择一个立体图形进行研究。通过讨论、操作等方法,每个小组分析所选图形的性质,并制作PPT进行展示。在分享研究成果的过程中,其他小组对其进行评价和提问,形成互动的学习氛围。这样的教学策略能够激发学生的学习兴趣,提高他们的团队合作能力和沟通能力。
人教版数学七年级(上册)第四章几何图形初步:(教案)
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“几何图形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
-空间观念的培养:学生空间想象力不足,对几何图形的空间位置关系理解困难。
举例:在讲解几何证明时,教师可以通过举例说明,让学生理解如何运用已知性质定理进行推理。同时,针对面积计算的难点,教师可以设计一些实际问题,引导学生运用所学方法解决问题,提高学生解决问题的能力。
四、教学流程
(一)导入新课(用时5分钟)
最后,我觉得自己在教学难点和重点的把握上还有待提高。在今后的教学中,我要更加注重对学生难点的突破,通过丰富多样的教学手段和策略,帮助学生克服学习困难,提高他们的几何素养。同时,也要关注学生的反馈,不断调整教学节奏,确保每个学生都能跟上课程进度,真正实现因材施教。
举例:在讲解点、线、面时,教师要强调它们是构成几何图形的基础元素,并通过实际操作让学生理解它们之间的关系。
2.教学难点
-理解几何图形的抽象概念:学生对几何图形的理解往往停留在具体形象明的逻辑推理过程掌握不足,难以运用性质定理进行证明。
-面积计算方法的应用:学生在解决实际问题时,难以灵活运用所学面积计算方法。
人教版数学七年级(上册)第四章几何图形初步:(教案)
一、教学内容
人教版数学七年级(上册)第四章几何图形初步:
4.1点、线、面
4.1.1了解点的概念,掌握点的基本性质
4.1.2学习直线、射线、线段的定义及表示方法
人教版数学七年级上册第四章 几何图形初步
第四章几何图形初步4.1几何图形4.1.1立体图形与平面图形第1课时认识几何图形1.通过观察生活中的大量图片或实物,体验、感受、认识以生活中的事物为原型的几何图形,认识一些简单几何体(长方体、正方体、棱柱、棱锥、圆柱、圆锥、球等)的基本特性,能识别这些几何体.2.知道什么是立体图形和平面图形,能够认识立体图形和平面图形.阅读教材P114~116,思考下列问题.1.几何图形包括平面图形和立体图形.2.立体图形可以分成哪几类?知识探究1.有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,这样的几何图形叫做平面图形.2.有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,这样的几何图形叫做立体图形.自学反馈完成教材P115~116的两个思考题.活动1小组讨论例1生活中还有哪些物体的形状类似于这些立体图形呢?小组讨论后回答.例2常见立体图形的归类,小组讨论归纳.活动2跟踪训练1.教材P121习题4.1第1、2、3题.2.教材P122习题4.1第8题.3.(1)收集一些常见的几何体的实物;(2)设计一张由简单的平面图形(如圆、三角形、直线等)组合成的优美图案,并写上一两句贴切、诙谐的解说词.活动3课堂小结1.常见的立体图形有哪些?常见的平面图形有哪些?2.生活中很多图案都由简单的几何图形构成,我们也有能力设计美观、有意义的图案.第2课时展开、折叠与从不同方向观察立体图形1.能够识别常见立体图形从不同方向看到的图形并能够正确的画出它们.2.能够识别常见立体图形的平面展开图.阅读教材P117~118,思考下列问题.1.从三个方向看立体图形包括哪三种?2.什么是立体图形的展开图?知识探究1.从三个方向看立体图形:从正面看,从左面看,从上面看.2.将立体图形的表面适当剪开,展开成平面图形,这样的平面图形为立体图形的展开图.自学反馈教材P118练习第1、2题.活动1小组讨论例1教材P117图4.1-7,从正面、左面、上面观察得到的平面图形你能画出来吗?适当变动正方体的摆放位置,你还能解决吗?小组合作学习,你摆我动手,画一画,并进行展示.例2教材P118探究,小组合作学习.活动2跟踪训练教材P121~122习题4.1第4、6、7题.活动3课堂小结1.立体图形从三个方向看到的图形.2.学会了简单几何体(如棱柱、正方体等)的平面展开图,知道按不同的方式展开会得到不同的展开图.3.学会了动手实践,与同学合作.4.不是所有立体图形都有平面展开图.。
教学案例——人教版七年级数学上册第四章几何图形初步第一节几何图形
教学案例——人教版七年级数学上册第四章几何图形初步第一节几何图形《多姿多彩——几何图形》教案设计【教材分析】多姿多彩的图形中的几何图形,是人教版教材《数学》七年级上册第四章第一节的第一课时。
所含内容在小学阶段学生已有了感性认识,本课时以现实背景为素材,让学生亲自经历将实际问题抽象成数学模型的过程,能由实物形状想像出几何图形,由几何图形想像出实物形状,进一步丰富学生对空间图形的认识和感受。
本节课的知识是进一步学习平面几何以及立体几何的基础,具有承上启下的作用。
本节课是学习空间与图形的第一课时需要在情感上激发学生兴趣,培养学生学习数学的热情。
【教学目标】知识与技能:通过观察生活中的大量图片或实物,能从现实物体中抽象得出几何图形,正确区分立体图形与平面图形;能认识一些简单几何体,能用语言描述它们的基本特性,并能对它们进行简单的分类;能把一些立体图形的问题,转化为平面图形进行研究和处理,探索平面图形与立体图形之间的关系.过程与方法:经历探索平面图形与立体图形之间的关系,发展空间观念,能由实物形状想像出几何图形,由几何图形想像出实物形状,进一步丰富学生对几何图形的感性认识;培养动手操作能力,培养观察、抽象、归纳、概括、判断等思维能力以及分类的数学思想。
情感态度与价值观:经历从现实世界中抽象出几何图形的过程,感受图形世界的丰富多彩;激发对学习空间与图形的兴趣;通过与其他同学交流、活动,初步形成积极参与数学活动,主动与他人合作交流的意识。
【教学重点】简单几何体的识别与分类。
【教学难点】从具体实物中抽象出几何图形及常见几何体的分类。
【教学关键】从现实情境出发,通过动手操作进行实验,结合小组交流学习是关键。
【教学方法】情境教学、实践探究、多媒体演示相结合。
【教学资源】多媒体辅助教学;圆柱、圆锥、正方体、长方体、棱柱、棱锥等简单几何体的实物和模型;三角形、正方形、长方形、正六边形纸片;牙签、胶泥等。
【教学过程】(一)创设情景,设疑导入师:同学们,我们的世界是五彩缤纷、绚丽多彩的。
人教版初中七年级数学上册第四单元《几何图形初步》知识点复习(含答案解析)(1)
一、选择题1.如图所示,OA 是北偏东30°方向的一条射线,若∠AOB =90°,则OB 的方位角是( )A .北偏西30°B .北偏西60°C .北偏东30°D .北偏东60°2.已知线段AB 、CD ,<AB CD ,如果将AB 移动到CD 的位置,使点A 与点C 重合,AB 与CD 叠合,这时点B 的位置必定是( ) A .点B 在线段CD 上(C 、D 之间) B .点B 与点D 重合C .点B 在线段CD 的延长线上 D .点B 在线段DC 的延长线上3.将一张圆形纸片对折后再对折,得到下图,然后沿着图中的虚线剪开,得到两部分,其中一部分展开的平面图形是( )A .AB .BC .CD .D4.下列说法错误的是( )A .若直棱柱的底面边长都相等,则它的各个侧面面积相等B .n 棱柱有n 个面,n 个顶点C .长方体,正方体都是四棱柱D .三棱柱的底面是三角形5.点 A 、B 、C 在同一条数轴上,其中点 A 、B 表示的数分别为﹣3、1,若 BC =2,则 AC 等于( ) A .3B .2C .3 或 5D .2 或 66.如图,点O 在直线AB 上,射线OC ,OD 在直线AB 的同侧,∠AOD =40°,∠BOC =50°,OM ,ON 分别平分∠BOC 和∠AOD ,则∠MON 的度数为( )A .135°B .140°C .152°D .45°7.如图,90AOB ∠=︒,AOC ∠为AOB ∠外的一个锐角,且40AOC ∠=︒,射线OM 平分BOC ∠,ON 平分AOC ∠,则MON ∠的度数为( ).A .45︒B .65︒C .50︒D .25︒8.α∠与β∠的度数分别是219m -和77m -,且α∠与β∠都是γ∠的补角,那么α∠与β∠的关系是( ). A .不互余且不相等 B .不互余但相等 C .互为余角但不相等D .互为余角且相等 9.下列说法正确的是( ) A .射线PA 和射线AP 是同一条射线 B .射线OA 的长度是3cm C .直线,AB CD 相交于点 P D .两点确定一条直线 10.若∠A=20°18′,∠B=20°15″,∠C=20.25°,则有( )A .∠A >∠B >∠CB .∠B >∠A >∠CC .∠A >∠C >∠BD .∠C >∠A >∠B11.对于线段的中点,有以下几种说法:①若AM=MB ,则M 是AB 的中点;②若AM=MB=12AB ,则M 是AB 的中点;③若AM=12AB ,则M 是AB 的中点;④若A ,M ,B 在一条直线上,且AM=MB ,则M 是AB 的中点.其中正确的是( ) A .①④ B .②④ C .①②④ D .①②③④12.已知线段AB =6cm ,反向延长线段AB 到C ,使BC =83AB ,D 是BC 的中点,则线段AD 的长为____cm A .2 B .3 C .5 D .6 13.用一个平面去截正方体,所得截面是三角形,留下较大的几何体一定有( ) A .7个面B .15条棱C .7个顶点D .10个顶点14.下列图形中,是圆锥的表面展开图的是( )A .B .C .D .15.下列说法不正确的是( ) A .两条直线相交,只有一个交点 B .两点之间,线段最短C .两点确定一条直线D .过平面上的任意三点,一定能作三条直线二、填空题16.线段AB =12cm ,点C 在线段AB 上,且AC =13BC ,M 为BC 的中点,则AM 的长为_______cm.17.如图,能用O ,A ,B ,C 中的两个字母表示的不同射线有____条.18.从起始站A 市坐火车到终点站G 市中途共停靠5次,各站点到A 市距离如下: 站点B C D E F G 到A 市距离(千米)4458051135149518252270若火车车票的价格由路程决定,则沿途总共有不同的票价____种.19.已知点、、A B C 都在直线l 上,13BC AB =,D E 、分别为AC BC 、中点,直线l 上所有线段的长度之和为19,则AC =__________.20.在直线AB 上,点A 与点B 的距离是8cm ,点C 与点A 的距离是2cm ,点D 是线段AB 的中点,则线段CD 的长为________.21.要整齐地栽一行树,只要确定了两端的树坑的位置,就能确定这一行树坑所在的直线,这里用到的数学知识是_________.22.如图,若AOB ∠是直角,OM 平分AOC ∠,ON 平分COB ∠,则MON ∠=________.23.如图所示,填空:(1)AOB AOC ∠=∠+_________;(2)COB COD ∠=∠-_________=_________-_________; (3)AOB COD AOD ∠+∠-∠=_________.24.用一个平面截三棱柱,最多可以截得________边形;用一个平面截四棱柱,最多可以截得________边形;用一个平面截五棱柱,最多可以截得________边形.试根据以上结论,猜测用一个平面去截n 棱柱,最多可以截得________边形.25.把命题“等角的余角相等”改写成“如果……那么……”的形式:__________________________. 是______命题(填“真”或“假”)26.一个几何体,从不同方向看到的图形如图所示.拼成这个几何体的小正方体的个数为______.三、解答题27.线段12cm AB =点C 在线段AB 上,点D ,E 分别是AC 和BC 的中点. (1)若点C 恰好是AB 中点,求DE 的长; (2)若4cm AC =,求DE 的长;(3)若点C 为线段AB 上的一个动点(点C 不与A ,B 重合),求DE 的长. 28.如图,平面上有四个点A ,B ,C ,D .(1)根据下列语句画图: ①射线BA ;②直线AD ,BC 相交于点E ;③延长DC 至F (虚线),使CF=BC ,连接EF (虚线). (2)图中以E 为顶点的角中,小于平角的角共有__________个.29.如图,以直线AB 上一点O 为端点作射线OC ,使80BOC ∠=︒,将一个直角三角形的直角顶点放在点O 处(注:90DOE ∠=︒)()1如图①,若直角三角板DOE 的一边OD 放在射线OB 上,则COE ∠= .()2如图②,将直角三角板DOE 绕点O 逆时针方向转动到某个位置,若OC 恰好平分∠BOE ,求COD ∠的度数;()3如图③,将直角三角板DOE 绕点O 转动,如果OD 始终在BOC ∠的内部,试猜想BOD ∠与COE ∠有怎样的数量关系?并说明理由.30.如图,已知40AOB ∠=︒,3BOC AOB ∠=∠,OD 平分AOC ∠,求BOD ∠的度数.。
2022年人教版七年级上册数学第四章几何图形初步单元教案
第四章几何图形初步4.1几何图形4.1.1立体图形与平面图形第1课时认识几何图形◇教学目标◇【知识与技能】1.通过实物和具体模型,认识从实物中抽象出来的几何图形;2.了解立体图形和平面图形的概念,并能归纳常见的立体图形和平面图形.【过程与方法】经历探索立体图形与平面图形之间的关系,发展空间观念.【情感、态度与价值观】体会把实物抽象出几何图形的过程.◇教学重难点◇【教学重点】识别一些基本几何图形.【教学难点】认识从物体外形抽象出来的几何图形.◇教学过程◇一、情境导入观察下图中的“鸟巢”,你能抽象出熟悉的几何图形吗?二、合作探究探究点立体图形与平面图形典例1下列图形中不是立体图形的是()A.四棱锥B.长方形C.长方体D.正方体[解析]几何图形的各部分不都在同一平面内的图形叫立体图形,几何图形的各部分都在同一平面内的图形叫平面图形.由定义可知A,C,D均为立体图形.[答案] B下列各组图形中都是平面图形的一组是()A.三角形、圆、球、圆锥B.点、线段、数学书的封面、长方体C.点、三角形、四边形、圆D.点、直线、线段、正方体[答案] C典例2将下列的几何体进行分类,并说出每个几何体的名称.[解析]分别根据柱体、锥体、球体的定义进行分类.[答案]柱体有(1)(2)(4)(7);锥体有(5)(6);球体有(3).(1)长方体(四棱柱);(2)三棱柱;(3)球;(4)圆柱;(5)圆锥;(6)四棱锥;(7)六棱柱.将下列几何体分类,柱体有;锥体有.(只填序号)[答案]①②③⑤⑥三、板书设计认识几何图形立体图形{柱体{棱柱圆柱锥体{棱锥圆锥台体{棱台圆台球体:球◇教学反思◇本节课的内容较简单,课堂上通过动手操作培养学生动手操作能力,同时也加深了学生对立体图形和平面图形的认识;通过自主探究活动,让学生感受图形的形状特点,提升学生的空间想象能力.第2课时折叠、展开与从不同方向观察立体图形◇教学目标◇【知识与技能】1.会识别从正面、左面、上面看物体所得的平面图形;2.会画一些常见几何体及简单组合体从正面、左面、上面看物体所得的平面图形;3.直观认识简单立体图形的平面展开图.【过程与方法】在平面图形和立体图形的相互转化中,初步发展空间观念,发展几何直觉.【情感、态度价值观】通过探讨现实生活中的实物制作,激发学生学习的热情.【情感、态度与价值观】培养敢于面对困难的精神,感受几何图形的美感.◇教学重难点◇【教学重点】识别、画出简单几何体从正面、左面、上面看物体所得的平面图形,了解直棱柱、棱锥、圆柱、圆锥的平面展开图.【教学难点】由从正面、左面、上面看物体所得的平面图形,还原为实物图,根据平面展开图想象相应的几何体.◇教学过程◇一、情境导入对于一些立体图形的问题,常把它们转化为平面图形来研究处理,从不同的方向看立体图形,往往会得到不同形状的平面图形.例如放在桌面上的茶杯,从不同侧面得到不同的图形,你能用学过的诗句描述这种现象吗?二、合作探究探究点1会从正面、左面、上面看物体所得的平面图形典例1如图的几何体是由一个正方体切去一个小正方体形成的,从正面看得到的图形是()[答案] D下列水平放置的四个几何体中,从正面看得到的图形与其他三个不相同的是()[答案] D典例2一个几何体由大小相同的小方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小方块的个数,则从正面看到几何体的形状图是()[答案] D探究点2会画从正面、左面、上面看物体所得的平面图形典例3如图是由4个大小相等的正方体搭成的几何体,你能画出从正面、左面、上面看得到的平面图形吗?[解析]从正面、左面、上面看得到的平面图形分别如图所示:探究点3探究立体图形的展开图典例4如图所示,下列四个选项中,不是正方体表面展开图的是()[答案] C三、板书设计折叠、展开与从不同方向观察立体图形1.从不同的方向观察立体图形2.立体图形的展开图◇教学反思◇本节课的内容有点难度,主要是培养学生的空间观念和空间想象力.应鼓励学生多动手画图,让学生自主探索立体图形与平面图形之间的对应关系.4.1.2点、线、面、体◇教学目标◇【知识与技能】1.认识点、线、面、体的几何特征,感受它们之间的关系;2.探索点、线、面运动后形成的几何图形.【过程与方法】培养学生操作、观察、分析、猜测和概括等能力,同时渗透转化、化归、变换的思想.【情感、态度与价值观】培养学生积极主动的学习态度和自主学习的方式.◇教学重难点◇【教学重点】了解点、线、面、体是组成几何图形的基本元素,认识点、线、面、体的几何特征,感受它们之间的关系.【教学难点】探索点、线、面运动后形成的几何图形.◇教学过程◇一、情境导入如图是一个长方体,它有几个面?面和面相交的地方形成了几条棱?棱和棱相交成几个顶点?二、合作探究探究点1从静态角度认识点、线、面、体典例1如图所示的几何体是由几个面围成的?面与面相交成几条线?它们是直的还是曲的?[解析] 从图中可以看出该几何体由4个面组成,4个面相交成6条线,有2条是曲的.圆柱由 面围成,它有 个底面,是平的,有 个侧面,是曲的,底面与侧面相交形成的线有 条,是 (填“直的”或“曲的”). [答案] 3 2 1 两 曲的探究点2 从动态角度认识点、线、面、体典例2 将一个直角三角形绕它的最长边(斜边)旋转一周得到的几何体为 ()[解析] 圆柱是由一长方形绕其一边长旋转而成的;圆锥是由一直角三角形绕其直角边旋转而成的;C 中该几何体是由直角梯形绕其下底旋转而成的;D 中该几何体是由直角三角形绕其斜边旋转而成的. [答案] D如图所示的图形绕虚线旋转一周,所形成的几何体是 ( )[答案] B 三、板书设计点、线、面、体点、线、面、体{定义关系{静态关系动态关系◇教学反思◇本节课在学生已有的数学知识基础上,由学生自己观察、发现、探究从对点的认识到对线、面、体的进一步认识,使学生经历运用图形描述现实世界的过程,进一步发展学生的抽象思维能力.4.2直线、射线、线段第1课时直线、射线、线段的概念◇教学目标◇【知识与技能】理解直线、射线、线段的概念及它们的联系与区别,掌握它们的表示方法.【过程与方法】能在现实情境中,进行抽象的数学思考,提高抽象概括能力.【情感、态度与价值观】体验通过实验获得数学猜想,得到直线性质的过程.◇教学重难点◇【教学重点】理解直线、射线、线段的概念、表示方法及它们的联系与区别.【教学难点】直线、射线、线段的表示方法;实现文字、图形、符号三种语言的相互转化.◇教学过程◇一、情境导入我们在小学已经学过线段、射线和直线,你能说说它们的区别和联系吗?二、合作探究探究点1探究直线的性质典例1下列语句中正确的个数是 ()①延长直线AB;②延长射线OA;③在线段AB的延长线上取一点C;④延长线段BA至C,使AC=AB.A.1个B.2个C.3个D.4个[答案] B探究点2线段在生活中的应用典例2我们知道,若线段上取一个点(不与两个端点重合,以下同),则图中线段的条数为1+2=3条;若线段上取两个点,则图中线段的条数为1+2+3=6条;若线段上取三个点,则图中线段的条数为1+2+3+4=10条…请用你找到的规律解决下列实际问题:杭甬铁路(即杭州——宁波)上有萧山,绍兴,上虞,余姚4个中途站,则车站需要印制的不同种类的火车票为()A.6种B.15种C.20种D.30种[解析]车票需要考虑往返情况,故有2(1+2+3+4+5)=30.[答案] D乘火车从A站出发,沿途经过3个车站方可到达B站,那么A、B两站之间需要制定种不同的票价.[答案]10三、板书设计直线、射线、线段的概念直线、射线、线段{直线:无端点,无长度射线:一端点,无长度线段:两端点,有长度◇教学反思◇本节课是学生学习几何图形知识的基础,这堂课需要掌握的知识点多,而且比较抽象,教师在教学时要体现新课程的三维目标,并在有效地利用学生已有的旧知来引导学生学习新知.第2课时线段的比较◇教学目标◇【知识与技能】1.了解尺规作图的概念,会用尺规作图作一条线段等于已知线段;了解度量线段的两种方法,对线段进行大小比较.2.理解线段中点的概念,利用和、差、倍、分关系计算线段的长度.【过程与方法】经历画图的数学活动过程,提高学生的动手操作与实践能力.【情感、态度价值观】体会数学是解决实际问题的重要工具,通过对解决问题过程的反思,懂得知识源于生活并用于生活.◇教学重难点◇【教学重点】线段的大小比较,利用和、差、倍、分关系计算线段的长度.【教学难点】线段的等分点表示方法及运用.◇教学过程◇一、情境导入小明和小华在比身高,以下是他们的对话:小明:“我身高1.5 m.”小华:“我身高1.53 m,比你高3 cm.”怎样比较两条线段的长短呢?你能从比身高上受到一些启发吗?二、合作探究探究点1尺规作图典例1如图,已知线段a,b,c(a>b),用圆规和直尺画线段,使它等于a-b+2c.[解析]如图所示:线段AE=a-b+2c.探究点2探索比较线段长短的方法典例2A,B,C三点在同一直线上,线段AB=5 cm,BC=4 cm,那么线段AC的长度是()A.1 cmB.9 cmC.1 cm或9 cmD.以上答案都不对[解析]第一种情况:C点在AB之间上,故AC=AB-BC=1 cm;第二种情况:当C点在AB的延长线上时,AC=AB+BC=9 cm.[答案] C三、板书设计线段的比较线段的长短比较{度量法叠合法◇教学反思◇教师要尝试让学生自主学习,优化课堂数学的反馈与评价,通过评价激发学生的求知欲,坚定学生学习的自信心.第3课时线段的性质◇教学目标◇【知识与技能】1.掌握“两点之间,线段最短”的性质,并能熟练应用;2.理解两点的距离,并能计算线段中两点的距离.【过程与方法】经历画图的数学活动过程,提高学生的动手操作与实践能力.【情感、态度价值观】体验通过实验获得数学猜想,得到直线性质的过程.◇教学重难点◇【教学重点】掌握“两点之间,线段最短”的性质及应用.【教学难点】两点的距离定义及计算.◇教学过程◇一、情境导入如图,从A地到B地有四条道路,除它们外能否再修一条从A地到B地的最短道路?如果能,请你联系以前所学的知识,在图上画出最短路线.二、合作探究探究点1探究线段性质典例1如图所示,设A,B,C,D为4个村庄,现在需要在四个村庄中间建一个自来水中心,请你确定一个点,使这4个村庄的居民到该中心的距离之和最小.[解析]如图,连接AC,BD交于O点,此时距离之和AC+BD为最小.如图所示,A,B是两个村庄,若要在河边l上修建一个水泵站往两村输水,问水泵站应修在河边的什么位置,才能使铺设的管道最短,并说明理由.[解析]如图所示,根据两点之间,线段最短,连接AB,交l于O点,则O点为水泵站位置.“两点之间,线段最短”这一定理在生活中有许多应用,例如修高速路时,隧道将路变直;铺水管时,走最短的路线等.探究点2两点间的距离典例2已知线段AB=10 cm,点C在直线AB上,试探讨下列问题:(1)是否存在一点C,使它到A,B两点的距离之和等于8 cm?并说明理由;(2)是否存在一点C,使它到A,B两点的距离之和等于10 cm?若存在,它的位置是唯一的吗?(3)当点C到A,B两点距离之和等于20 cm,试说明点C的位置,并举例说明.[解析](1)根据两点之间,线段最短,AC+BC最短距离为10 cm,故不存在合条件的点.(2)存在,这样的点不唯一,线段AB上任意一点均满足条件.(3)存在,在A、B两点外5 cm处的点均满足条件.三、板书设计线段的性质1.线段性质:两点之间线段最短2.两点的距离:连接两点间的线段的长度,叫做这两点间的距离◇教学反思◇本节课通过引导学生主动参与学习过程,探究出线段的性质,从中培养学生动手和合作交流的能力,解决生活中的数学问题是为了进一步巩固两点之间的距离的意义,渗透数形结合思想解决线段长问题,渗透分类讨论思想,训练学生思维严谨性.4.3角4.3.1角◇教学目标◇【知识与技能】1.从实例中建立角的概念,从静态和动态两方面理解角的形成,掌握角的两种定义形式;2.掌握角的四种表示方法,角的度量单位及其换算.【过程与方法】提高学生的识图的能力,学会用运动变化的观点看问题.【情感、态度与价值观】保持学习兴趣,养成积极探索的精神和合作意识,感受数学的价值.◇教学重难点◇【教学重点】角的概念与角的表示方法.【教学难点】角的度量单位及其换算.◇教学过程◇一、情境导入时钟的时针、分针组成的形状是?二、合作探究探究点1探究角的定义及表示方法典例1看图解答下列问题:(1)以A为顶点共有几个角?如何表示?(2)以D为顶点共有几个角?如何表示?(3)图中能用一个大写字母表示的角有几个?分别是哪些角?∠BAC能用∠A表示吗?为什么?(4)图中共有几个角?[解析](1)以A为顶点共有3个角,分别是∠3,∠4,∠BAC.(2)以D为顶点共有8个角,分别是∠5,∠6,∠BDA,∠7,∠EDC,∠8,∠ADG,∠BDG.(3)能用一个大写字母表示的角有2个,分别是∠B,∠C;∠BAC不能用∠A表示,因为以A为顶点的角不止一个角.(4)图中共有17个角.探究点2角的度量典例2(1)填空:①57.18°=度分秒;②17°31'48″=度.(2)解答:38°15'与38.15°相等吗?如不等,谁大?[解析](1)①571048②17.53(2)因为38.15°=38°9',38°9'<38°15',所以38°15'大.(1)36.33°可化为()A.36°30'3″B.36°33'C.36°30'30″D.36°19'48″(2)15°24'36″=°.[答案](1)D(2)15.41°【技巧点拨】用度、分、秒表示的角度和用度表示的角度的相互转化的过程正好相反:大单位化小单位乘以进率;而小单位化大单位要除以进率.三、板书设计角角{角的概念角的表示方法度、分、秒的换算◇教学反思◇通过本节课的学习,学生做到了以下三个方面:首先,理解角的定义并掌握角的四种表示方法.其次,能够熟练进行度、分、秒的换算,为接下来角的和差运算打下良好的基础.最后,形成严谨的学习态度.4.3.2角的比较与运算◇教学目标◇【知识与技能】1.掌握角的大小比较方法和角的和差运算;2.理解角平分线的定义及表示方法并能在实际情景中应用.【过程与方法】经历比较角的大小、用量角器画角平分线、用折纸法确定角平分线的过程,积累活动经验,培养动手操作能力.【情感、态度与价值观】让学生认识到用新知识构建新意义的过程,增强学生学习数学的愿望和信心,培养学生爱思考,善于交流的良好的学习习惯.◇教学重难点◇【教学重点】理解角平分线的定义.【教学难点】角平分线的定义、表示及应用.◇教学过程◇一、情境导入前面我们已经学习了比较两条线段的方法,那么怎样比较两个角的大小呢?二、合作探究探究点1角的大小比较典例1如图,射线OC,OD分别在直角∠AOB的内部,外部,则下列各式正确的是()A.∠AOB<∠BOCB.∠AOB=∠CODC.∠AOB<∠AODD.∠BOC>∠DOC[解析]∠BOC在∠AOB的内部,所以∠AOB>∠BOC,A错误;∠AOB与∠COD无重叠的边,∠AOB在∠AOD的内部,所以∠AOB<∠AOD,C正确;同理可得D错误.[答案] C探究点2探究角的和差运算典例2计算:(1)65°53'26″+37°14'53″;(2)106°27'30″-98°25'42″;(3)23°25'24″×4;(4)102°48'21″÷3.[解析](1)65°53'26″+37°14'53″=102°8'19″.(2)106°27'30″-98°25'42″=8°1'48″.(3)23°25'24″×4=93°41'36″.(4)102°48'21″÷3=34°16'7″.计算:(1)45°4'+2°58'=;(2)180°-72°55'=;(3)108°×5=;(4)180°26'÷5=.[答案](1)48°2'(2)107°5'(3)540°(4)36°5'12″探究点3探究角平分线的定义及表示典例3如图,OB 是∠AOC 的平分线,OD 是∠EOC 的平分线,如果∠AOE =130°,求∠BOD 的度数.[解析] 因为OB 是∠AOC 的平分线,OD 是∠EOC 的平分线,所以∠COB =12∠AOC ,∠COD =12∠COE ,所以∠BOD =∠COB +∠COD =12(∠AOC +∠COE )=12∠AOE =65°.三、板书设计角的比较与运算角的比较与运算{角的大小比较角的和差运算角平分线的定义及相关计算◇教学反思◇在讲授知识的过程中必须对旧的知识进行适当的复习,使学生能对角的知识有一个更深的记忆.在角的形象比较中,要努力引导学生的思维方向.重叠法是一个难点,但此法比较适用于实际中的比较.对于角度的计算要设计各个类型的教学.4.3.3余角和补角◇教学目标◇【知识与技能】1.掌握余角、补角的定义、性质及应用;2.理解方位角的意义,会画方位角.【过程与方法】经历余角、补角性质的推导和应用过程,初步掌握图形语言与符号语言之间的相互转化,进一步提高识图能力,发展空间观念.【情感、态度与价值观】通过互余、互补性质的学习过程,培养善于观察、独立思考、合作交流的良好学习习惯.◇教学重难点◇【教学重点】方位角的辨析与应用.【教学难点】余角、补角的性质及应用.◇教学过程◇一、情境导入知识回顾(1)叙述直角、平角的概念.(2)画出直角、平角的图形.二、合作探究探究点1探究余角、补角的性质典例1点A,O,B在一直线上,射线OD,OE分别平分∠AOC和∠BOC.(1)图中互余的角有对;(2)∠3的补角是.[解析](1)由已知,∠1=∠2,∠3=∠4,且∠2+∠4=90°,所以互余的角有:∠1与∠3,∠1与∠4,∠2与∠3,∠2与∠4共4对;(2)∠3的补角是∠AOE.[答案](1)4(2)∠AOE探究点2角的计算还多1°,求这个角.典例2一个角的补角与这个角的余角的和是平角的34×180+1,解得[解析]设这个角为x°,则它的余角为(90-x)°,补角为(180-x)°,则(90-x+180-x)=34x=67.答:这个角为67°.,则这个角的度数是.一个角的补角与它的余角的2倍的差是平角的13[答案]60°探究点3方位角典例3如图,O点是学校所在位置,A村位于学校南偏东42°方向,B村位于学校北偏东25°方向,C村位于学校北偏西65°方向,在B村和C村间的公路OE(射线)平分∠BOC.(1)求∠AOE的度数;(2)公路OE上的车站D相对于学校O的方位是什么?(以正北、正南方向为基准)[解析](1)因为A村位于学校南偏东42°方向,所以∠1=42°,则∠2=48°.因为C村位于学校北偏西65°方向,所以∠COM=65°.因为B村位于学校北偏东25°方向,所以∠4=25°,所以∠BOC=90°.因为OE(射线)平分∠BOC,所以∠COE=45°,∠EOM==20°,所以∠AOE=20°+90°+48°=158°.(2)由(1)可得∠EOM=20°,则车站D相对于学校O的方位是北偏西20°.三、板书设计余角和补角余角和补角{余角、补角的性质余角、补角的计算方位角◇教学反思◇对于七年级学生来说,他们在生活中已有一定的确定位置的经验,方位角的概念、方位角的表示是学生在小学就有所了解的,但根据题意画出方位角以及运用方位角的知识确定点的方位是学生不熟悉的.。
人教版数学七年级上册4.1.1章前引言及几何图形课件
简单立体图形的分类:
立体图形
圆柱 柱体
棱柱 圆锥
锥体 棱锥
球体
小结
柱体
圆柱 棱柱
立
圆锥
体 图
锥体
几形
棱锥
何 图
球体
形平
面
图
形
当堂检测
些收获? 2、你从同学身上学到了什么?
生活中很多图案都由简单的几 何图形构成,我们也有能力设计美 观、有意义的图案。
长方体
圆柱
六棱柱
四棱锥
虽然立体图形与平面图形是两类不同的几何图形, 但它们是互相联系的.立体图形中某些部分是平面图形。
图中的各立体图形的表面中包含哪些平面图形? 试指出这些平面图形在立体图形中的位置。
四、棱柱与棱锥
三棱柱
四棱柱
三棱锥
四棱锥
棱柱: 有两个底面,侧面都是长方形。
棱锥: 有一个底面,侧面都是三角形。
北 京
上 海
香 港
悉 尼
圆形兽场—意大利
大英博物馆—英国
地球—我们的家
金字塔—埃及
天坛祈年殿—中国
第四章 几何图形初步 第一节
(1)认识一些简单的立体 图形和平面图形,能说出常 见的几何图形的名称; (2)会指出立体图形和平 面图形的区别和联系。
一、几何图形
球
三角形
正方体
四棱锥
圆
八边形
我们把从实物中抽象出的各种图形统称为几何图形, 几何图形是数学研究的主要对象之一。
请你把相应的实物与图形用线连接起来.
二、立体图形与平面图形
各部分不都在同一平面内的几何图形是立体图形; 各部分都在同一平面内的几何图形是平面图形。
三、图形间的联系
人教版初中数学七年级上册单元课件-第四章几何图形初步
4.1.1 立体图形与平面图形
1、会认识常见的平面几何图形和立体几何图形。 2、能对立体几何图形进行简单的分类。
浏览内容:课本P116~118 浏览时间:3分钟 浏览方法:独立浏览教材 诊断: (1)什么是几何图形?什么是立体图形?什么是平面图 形? (2)平面图形和立体图形如何分类?它们与几何图形有 什么联系?
锥体{圆锥:底面是圆,顶是尖的,侧面是曲面;} 只有一个底面 球体
棱锥:底面是多边形,侧面是三角形; 球:由曲面围成
下列立体图形中的表面包含哪些平面图形? 并指出这些平面图形在立体图形中的位置。
答:包含圆、长方形、五边形、六边形、三角形, 它们位于立体图形的上下底面和侧面。
注意:立体图形与平面图形是两类不同的几何 图形,但它们是相互联系的,立体图形中 某些部分是平面图形!
长方体 长方形 正方形
线段
点
下列实物的形状与给出的哪个几 何图形相似?
长方体
正方体
球
圆柱
圆锥
下列实物的形状与给出的哪个几 何图形相似?
帐篷
笔筒
金字塔
棱柱
棱锥
这类图形有什么共同的特征?
长方体
正方体
球
圆柱
圆锥
棱柱
棱锥
像长方体、正方体、球、圆柱、圆锥、 各部分都不在同一平面内! 棱柱、棱锥等那样各部分不在同一平面 内的几何图形都是立体图形。
长方体
圆柱
正方体
圆锥
2、教科书147页 1、教科书116页
复习巩固 第1题 练习
4.1.2 点、线、面、体
★几何图形都是由点、线、面、体经过运动变化组成的, 其中点是最基本的图形.面与面相交形成 ,线 与线相交形成 . ★点动成 ,线动成 线 点 ,面动成 . 线有直线和曲线之分,面也有曲面和平面之 线 面 分. ★旋转平面图形可以形成立体图形 . 体
人教版七年级上册数学第4章 几何图形初步 直线、射线、线段
13.观察下列图形(无三直线共点)找出规律,并解答问题.
(1)5条直线相交(无三直线共点),有______个交点,平面被分 成______块; 10 16
n(n-1) (2)n条直线相交(无三直线共点),有______2______个交点,
平面被分成____n_(_n_2+__1_)+__1______块;
A
9.如图,建筑工人在砌墙时,经常在两个墙角的位置分 别插一根木桩,然后拉一条直的参照线,其运用到的 数学原理是____________________. 两点确定一条直线
10.(1)三条直线a,b,c两两相交,有 ( D )交点. A.1B.2C.3D.1或3
【点拨】三条直线两两相 交,可以分两种情况,如 图①,则只有1个交点;如 图②,则有3个交点.
R版七年级上
第四章几何图形初步
4.2 直线、射线、线段 第1课时 直线、射线、线段
提示:点击 进入习题
1C
2D
3C
4C
5C
答案显示
6B
7C
8A
提示:点击 进入习题
9 见习题
10 见习题
11 见习题 12 见习题
答案显示
13 见习题
14 见习题
1.下列几何语言描述中,正确的是( C ) A.直线mn与直线ab相交于点D B.点A在直线M上 C.点A在直线AB上 D.延长直线AB
(2)假如A,B,C,D,E五个人聚会,每两个人握手一次, 共握手多少次?
解:共握手10次.
【点拨】上述结论可以推广“一条直线上有 n 个点,则 线段条数为n(n2-1)”.这个结论有广泛的应用,比如本 题中的(2)(3)题和将在后面学习的确定角的个数等.
最新人教版七年级数学上册 第四章 几何图形初步 优秀教案教学设计 含教学反思
第四章几何图形初步4.1 几何图形 (1)4.1.1 立体图形与平面图形 (1)第1课时认识几何图形 (1)第2课时从不同方向看立体图形和立体图形的展开图 (4)4.1.2 点、线、面、体 (8)4.2 直线、射线、线段 (11)第1课时直线、射线、线段 (11)第2课时比较线段的长短 (14)4.3 角 (18)4.3.1 角 (18)4.3.2 角的比较与运算 (21)4.3.3 余角和补角 (25)4.4 课题学习设计制作长方体形状的包装纸盒 (31)4.1 几何图形4.1.1 立体图形与平面图形第1课时认识几何图形【知识与技能】通过观察生活中的大量图片或实物,体验、感受、认识以生活中的事物为原型的几何图形,认识一些简单几何体(长方体、正方体、棱柱、棱锥、圆柱、圆锥、球等)的基本特性,能识别这些几何体.【过程与方法】能由实物形状想象出几何图形,由几何图形想象出实物形状,进一步丰富学生对几何图形的感性认识.【情感态度】从现实世界中抽象出几何图形的过程,感受图形世界的丰富多彩,激发学生对学习空间与图形的兴趣,通过与其他同学交流、活动,初步形成参与数学活动、主动与他人合作交流的意识.【教学重点】识别简单几何体.【教学难点】从具体事物中抽象出几何图形.一、情境导入,初步认识播放北京奥运会的比赛场馆宣传片.导语:2008年奥运会在我国首都北京举行,尽管已成为历史的记忆,但它永远铭刻在每一个中国人的心中,让我们一起来看看北京奥运会国家体育场(鸟巢)图.(出示章前图)你能从中找到一些熟悉的图形吗?学生看书小组讨论交流.引导学生从周围的事物(如建筑物、地板、围墙、公园等)找到一些美丽图形的图片或实物,互相交流,并思考在这些图片或实物中有我们熟悉的图形吗?【教学说明】奥运会的成功举办向全世界展现了我们祖国的综合国力,选用2008年北京奥运会国家体育场(鸟巢)图作为引例能调动学生的学习兴趣,同时对学生进行爱国主义教育,增强他们的民族自信心和自豪感.通过多媒体向学生展示丰富的图形世界,给学生带来直观感受,让学生体会图形世界的多姿多彩;在此基础上,要求学生从中找出一些熟悉或不熟悉的几何图形,并结合生活中具体例子(如建筑设计、艺术设计等),说明研究几何图形的应用价值,从而调动学生学习的积极性,激发学习的兴趣.二、思考探究,获取新知找一找探索教材第115页思考题并出示实物(如地球仪、字典及魔方等)及多媒体演示(如谷堆、铅笔、帐篷、卢浮宫、金字塔等),它们与我们学过的哪些图形相类似?【教学说明】长方体、正方体、圆柱、圆锥、球都是学生已经学习过的图形,棱柱、棱锥也是学生很熟悉的图形,通过找一找,结合具体实例引入.从熟悉的生活中识别立体图形,不仅帮助学生理解,而且让他们感受生活中处处有数学.议一议出示已准备好的教具棱柱、圆柱、棱锥、圆锥模型,让学生看一看,比较观察后说说它们的异同.(教师巡视指导,提倡学生尽量用自己的语言描述,互相补充.)看一看再动手摸一摸,观察、感觉几何体之间的联系与区别,是为了更好地识别几何体.想一想生活中还有哪些物体的形状类似于这些立体图形呢?小组讨论后回答.教师提醒学生体会几何图形与生活的密切联系.赛一赛小组长组织组员完成教材第116页思考题,并进行学习汇报.让学生主动参与学习活动,自主完成平面图形学习,交流各自的学习成果,培养学生的自主学习能力.三、典例精析,掌握新知例1 如图,将下列两个图形沿AB剪开,再展开,实际动手做一做,再对照实物画出展开后的图形.【解析】圆锥的侧面展开图是一个扇形,底面是一个圆.圆柱的侧面展开图是一个矩形,两底面是两个等圆.由此我们可以了解组成圆锥和圆柱的基本图形.解:圆锥、圆柱的展开图如下:【教学说明】认识一个图形的组成,实际动手操作是最有效的途径.解完这道题,你应得到这样的启示:实践是认识生活、认识世界的必经之路.例2 请说出下列几何体的名称,再根据你的感受简要说说它们的一些特征.【分析】(1)—(6)的名称比较容易识别,要善于发现其中所体现的独特特征.解:(1)圆柱.特征:两个底面是圆的几何体;(2)圆锥.特征:像锥体,且底面是圆;(3)正方体(也叫立方体).特征:所有面都是正方形;(4)长方体.特征:其侧面均为长方形(特殊情况有两个面为正方形);(5)棱柱.特征:底面为多边形,侧面为长方形;(6)球.特征:圆圆的实体.【教学说明】几何体的识别以直观为主,其几何特征也以形象感觉说明即可.当然,你还可以尽可能地从其他角度去感受这些几何体的特征,因为观察角度的变化,发现的特征就可能不一样.试试看.例3 先观察下列图形,再动手填写下表.【分析】从上图可以看出四边形被一条对角线分成两个三角形,从五边形的一个顶点可以引2条对角线,六边形被对角线分成4个三角形,从n边形的一个顶点可以引出的对角线条数恰为其边数与3之差即(n-3)条.所以构成的三角形为边数与2之差,即(n-2)个.解:2,4,n-3;2,4,n-2.四、运用新知,深化理解1~2.教材第116页练习.【教学说明】这两道题较为简单,教师可让学生口答,如学生回答不全教师可补充.【答案】略五、师生互动,课堂小结请学生谈:我知道了什么?我学会了什么?我发现了什么?1.布置作业:从教材习题4.1中选取.2.完成练习册中本课时的练习.3.选做题:(1)收集一些常见的几何体的实物;(2)设计一张由简单的平面图形(如圆、三角形、直线等)组合成的优美图案,并写上一两句贴切、诙谐的解说词.本节教学应通过实际问题启发、做、想、试等方式让学生主动探索来认识知识,在学生自己动手实践、小组合作的基础上,发现并认识立体图形与平面图形,这样的教学,可使学生得到探索发现的成功感,自然获取知识并形成应用能力.第2课时从不同方向看立体图形和立体图形的展开图【知识与技能】1.经历从不同方向观察物体的活动过程,初步体会从不同方向观察同一物体可能看到不一样的结果,了解为什么要从不同方向看.2.通过实际操作,能认识和判断立体图形的平面展开图.【过程与方法】在立体图形与平面图形相互转换的过程中,初步建立空间观念,培养几何意识.【情感态度】激发学生学习空间与图形的兴趣,通过与其他同学交流、活动,初步形成积极参与数学活动,主动与他人合作交流的意识.【教学重点】识别一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简单组合得到的平面图形.【教学难点】画出从正面、左面、上面看正方体及简单组合体的平面图.一、情境导入,初步认识多媒体演示庐山景观,请学生背诵苏东坡《题西林壁》并说说诗中意境.跨越学科界限,以苏东坡的诗《题西林壁》“横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.”营造一个崭新的数学学习氛围,并从中挖掘蕴含的数学道理.比一比讲台上依次放置粉笔盒、乒乓球、热水瓶.请四位学生上来后按照不同的方位站好,然后向同学们汇报各自看到的情形.从身边的事物入手,采用游戏的形式,有助于学生积极主动地参与,激发学生的学习潜能,感受新知.自己从中发现从不同的方向看,确实看到的可能不一样.如何进行楼房的图纸设计?出示楼房模型.多媒体展示神舟八号无人飞船.问:如何进行飞船的图纸设计?(出示三张设计平面图),并问每张图分别从什么方向看?看起来,楼房、航天飞船等均是立体图形,但是设计图都是平面图形,建筑单位、工厂均按照平面设计图加工,其中一个小零件如课本第117页图4.1-6,先需要看的图是图(2),所以,我们要研究立体图形从不同方向看它得到的平面图.进一步培养学生的空间想象能力以及与他人合作交流的能力.二、思考探究,获取新知探究 1 分别从正面、左面、上面观察乒乓球、粉笔盒、茶叶盒,各能得到什么平面图形?(出示实物)让学生从不同方向观察立体图形,体验立体图形转化为平面图形的过程.长方体、圆锥分别从正面、左面、上面观察,各能得到什么图形?试着画一画.(出示实物)这样,我们将立体图形转化成了平面图形,以四人小组为学习单位进行小组创作,培养学生的观察力和创新能力.教科书第117页图4.1-7,从正面、左面、上面观察得到的平面图形你能画出来吗?适当变动正方体的摆放位置,你还能解决吗?【教学说明】小组合作学习,你摆我答,动手画一画,展示此活动设计既能引发学生动脑思考、动手实践,在你摆我答的小组合作学习中,又给学生创造了交流的机会,引导学生学会合作,突破创新,达到共同提高的目的.探究2 (1)出示教材第118页图4.1-9的平面展开图,让学生说一说这是什么立体图形?【教学说明】教师让学生回答,若学生对此有困难,可让学生自己动手画一画,剪一剪,仔细体会.(2)让学生拿出自己的墨水盒或其他正方体方盒,动手剪一剪,看能得到几种正方体的展开图.【教学说明】正方体的展开图是教学重点,教师必须对此重视,让学生以小组为单位展开讨论和剪切,争取尽可能地多剪出几种展开图,教师根据学生回答情况予以板书和归纳.三、典例精析,掌握新知例1 你能画出如图所示的正方体和圆柱体的从不同方向看到的平面图形吗?试试看!【分析】正方体的从不同方向看到的平面图形都是正方形,圆柱体从正面、左面看到的平面图形都是长方形,从上往下看是圆.解:正方体看到的结果分别如图所示:圆柱体看到的结果如下所示:例 2 (1)前面所讲的苏东坡的《题西林壁》中有一句传诵千古的名句:“横看成岭侧成峰,远近高低各不同”,请用简单的几何图形画出这句话所表达的意境.(2)同伴交流一下这句话给我们的启示,特别谈谈对我们学习数学知识的启迪.【分析】从诗句的意思中应看出这句话是以群山为背景的.诗句中所蕴含的哲理会是仁者见仁,智者见智,所以,互相交流十分必要.解:(1)如图(2)以下启示供参考:“变换思考角度,获得的结论就不同”.“从不同角度看同一问题,可能获得不同的解决途径”等.例 3 如图,需要再补画一个面,折叠后才能围成一个正方体,下面是四位同学补画另一个面的情况(图中阴影部分),其中正确的是().【分析】A、C、D三项中的展开图都不能围成正方体,只有B项符合要求.【答案】B四、运用新知,深化理解1~3.教材第118~119页练习.【教学说明】这几道题是考查立体图形的视图和展开图的.题目较为简单,教师可让学生举手回答.【答案】1.(1)是从上面看到的;(2)是从正面看到的;(3)是从左面看到的.2.圆柱体—(4),圆锥体—(6),三棱柱—(3).3.C五、师生互动,课堂小结请学生谈:我知道了什么?我学会了什么?我发现了什么?提醒学生注意:多看,多动手,多想象,是学好几何知识的基本途径之一.1.布置作业:从教材习题4.1中选取.2.完成练习册中本课时的练习.本节教学应通过引导观察和实际动手操作,让学生主动探索来认识知识,在学生自己动手实践、小组合作的基础上,发现从不同角度看物体可以得到不同的结果,在实践中体验认识生活与客观世界,并逐步养成勤于动手,善于观察,勇于思考的学习习惯.4.1.2 点、线、面、体【知识与技能】通过丰富的实例,学生进一步认识点、线、面、体的几何特征,感受它们之间的关系.【过程与方法】培养学生操作、观察、分析、猜测和概括等能力,同时渗透转化、化归、变换的思想.【情感态度】学生养成积极主动的学习态度和自主学习的方式.【教学重点】认识点、线、面、体的几何特征,感受它们之间的关系.【教学难点】在实际背景中体会点的含义.一、情境导入,初步认识多媒体演示西湖风光,垂柳、波澜不起的湖面、音乐喷泉、雨天、亭子……随着镜头的切换,学生在欣赏美丽风景的同时,教师引导学生注意观察:垂柳像什么?平静的湖面像什么?湖中的小船像什么?随着音乐起伏的喷泉又像什么?在岸边的亭子中我们寻找到了哪些几何图形?从中感受生活中的点、线、面、体.【教学说明】从西湖风光引入新课,引导学生观察生活中的美妙画面,不仅能激发学生的学习兴趣,而且让学生对点、线、面、体有了初步的形象认识,感知知识来源于生活.如“点”是没有大小的,学生难以真正理解,可以借助湖中的小船、地图上用点表示这些生活实例在城市的位置,让学生体会到“点”的含义.二、思考探究,获取新知课件演示:灿烂的星空,有流星划过天际;汽车雨刷;长方形绕它的一边快速转动;问:这些图形给我们什么样的印象?观察、讨论,让学生共同体会“点动成线、线动成面、面动成体”.让学生举出更多的“点动成线、线动成面、面动成体”的例子.小组合作学习,学生利用学具完成教材第120页练习第2题.(动手转一转)【教学说明】教师利用多媒体动态演示,让学生主动参与学习活动,观察感受,经历体验图形的变化过程,通过合作学习,感悟知识的生成、变化、发展,激发学生的联想与再创造能力.学生自己动手实践操作,加深学生印象,化解难度.教师展示图片(建筑或生活的实物等),让学生找找生活中的平面、曲面、直线、点等.让学生找出生活中更多的包含平面、曲面、直线、曲线、点的例子.1.教材119页思考,并回答它的问题.【教学说明】引导学生观察后得出结论:面与面相交得到线,线与线相交得到点.2.教材120页练习第1题(提供实物,议一议,动手摸一摸),对于第1题,思考以下问题:这些立体图形是由几个面围成的,它们都是平的吗?圆锥的侧面与底面相交成几条线,是直线还是曲线?正方体有几个顶点?经过每个顶点有几条边?【教学说明】让学生自己体会并小组讨论得出点、线、面、体之间的关系.三、典例精析,掌握新知例 1 直观地认识形形色色的平面图形,特别是对简单的多边形——三角形有更多的感觉,认识多边形可由三角形组合而成.如:有边长为1的等边三角形卡片若干张,使用这些三角形卡片拼出边长分别是2,3,4,……的等边三角形,这些等边三角形的边长为n,所用卡片总数为S:试求当n=12时,S=_______.【分析】据图可以看出,当n=2时,S=4;当n=3时,S=9;当n=4时S=16,由此可推出:卡片总数S与边长n之间的关系式S=n2,故所求答案为144.例2 利用点、线、面、体的几何特征和它们之间的关系,可以进行图形分割与变化.如:苏学美同学为班级“学生专栏”设计了报头图案,并用文字说明图案的含义,如图(1).请你用最基本的几何图形(如直线、射线、线段、角、三角形、四边形、多边形、圆、圆弧等)中若干个,为“环保专栏”在图(2)方框中设计一个报头图案,并简要说明图案的含义.【教学说明】本题由学生自主完成,互相交流.四、运用新知,深化理解1.下列说法中,正确的有()(1)柱体的两个底面一样大;(2)圆柱的面与面的交线都是圆;(3)棱柱的底面是四边形;(4)棱柱的侧面一定是长方形;(5)长方体一定是柱体;(6)长方体的面不可能是正方形.A.(1)(2)(4)B.(1)(2)(5)C.(2)(3)(5)D.(2)(4)(5)2.一个几何体只有一个顶点、一个侧面、一个底面,则这个几何体是()A.棱柱B.棱锥C.圆锥D.圆柱3.飞机飞行表演在空中留下漂亮的“彩带”用数学知识解释为_______;在朱自清的《春》中有描写春雨“像牛毛,像细丝,密密地斜织着”的语句,这里把雨看成了_______,这说明_______;把一张纸对折,形成一条折痕,用数学知识解释为_______;用铁丝围成一个长方形,绕它的一边旋转,形成一个_______,这说明_______.4.如图是在一个正方体的一个角挖去一个小正方体后得到的几何体,这个几何体的顶点个数是_______.5.请你从数学的角度描述下列现象.(1)国庆之夜,炸响的礼花在天空中(瞬间)留下美丽的弧线;(2)用一条拉直的细线切一块豆腐;(3)将2012张十六开的白纸摞成长方体.【教学说明】教师先让学生自主完成上述几题,然后让学生回答并予以点评.【答案】1.B 2.C 3.点动成线线线动成面面与面相交成线圆柱体面动成体4.14 5.(1)点动成线(2)线动成面(3)面动成体五、师生互动,课堂小结请学生谈:我知道了什么?我学会了什么?我发现了什么?要求学生留心观察身边的事物,从实际生活中感受理解几何知识.1.布置作业:从教材习题4.1中选取.2.完成练习册中本课时的练习.3.“当你远远地去观察霓虹灯组成的图案时,图案中的每个霓虹灯就是一个点;在交通图上,点用来表示每个地方;电视屏幕上的画面也是由一个个小点组成;运用点可以组成数字和字母,这正是点阵式打印机的原理.”说说你对上述这段叙述的理解和体会.本节教学重在指导学生通过观察生活中的实物,抽象出几何图形的形成过程,把培养学生的观察、思考、提炼的素质放在首位.学生之间可以以小组为单位,在合作中交流,使知识的认识变为学生主动参与的过程.4.2 直线、射线、线段第1课时直线、射线、线段【知识与技能】1.进一步认识直线、射线、线段的联系和区别,逐步掌握它们的表示方法.2.结合实例,了解两点确定一条直线的性质,并能初步应用.3.会画一条线段等于已知线段.【过程与方法】能根据语句画出相应的图形,会用语句描述简单的图形.在图形的基础上发展数学语言.【情感态度】初步体验图形是有效描述现实世界的重要手段,并能初步应用空间与图形的知识解释生活中的现象以及解决简单的实际问题,体会研究几何图形的意义.【教学重点】认识直线、射线、线段的区别与联系.学会正确表示直线、射线、线段,逐步使学生懂得几何语句的意义并能建立几何语句与图形之间的联系.【教学难点】能够把几何图形与语句表示、符号书写很好地联系起来.一、情境导入,初步认识1.观察教材第125页图4.2-1.2.学校总务处为解决下雨天学生雨伞的存放问题,决定在每个班级教室外钉一根2米长的装有挂钩的木条.本校三个年级,每个年级八个班,问至少需要买几颗钉子?你能帮总务处的师傅算一算吗?【教学说明】创设实际问题情景,引导学生思考,激发学习兴趣.二、思考探究,获取新知学生按照学习小组,利用打好的小洞,10cm长,1cm宽的硬纸条和撒扣进行实践活动,小组之间交流实践成果,相互补充完善,并解决问题1和2得到直线性质:两点确定一条直线.画一画要求学生分别画一条直线、射线、线段,教师给出规范表示方法.【教学说明】学生通过动手实践,观察分析,猜想,合作交流,体验并感悟到直线的性质.让学生自己归纳性质,在小组交流中完善表述.(教学中学生用自己的语言描述性质,语言可能不够准确简练、完整细致,面对这种情况,不必操之过急,要允许学生有一个发展的时间与空间.)结合自己所画图形寻找直线、射线、线段的特征,说说它们之间的区别与联系并交流.思考:怎样由一条线段得到一条射线或一条直线?举出生活中一些可以看成直线、射线、线段的例子.设计意图:在自己动手画好直线、射线和线段的基础上,要求学生说出它们的区别与联系,目的是使学生进一步认识线段、射线、直线.完成教科书126页练习,使学生逐步懂得几何语句的意义并能建立几何语句与图形之间的联系.数学活动独立探究:画一条线段等于已知线段a,说说你的想法.小组交流补充.教师边说边示范尺规作图并要求学生写好结论.【教学说明】慢慢让学生读清楚题意并学会按照要求正确画出图形.并让学生自己说出想法,培养学生独立操作、自主探索的数学实验学习能力.三、典例精析,掌握新知例1 动手画一画,邀同伴讨论下列问题:(1)过一个已知点可以画多少条直线?(2)过两个已知点可以画多少条直线?(3)过三个已知点一定可以画出直线吗?(4)经过平面上三点A,B,C中的每两点可以画多少条直线?(5)借鉴(4)的结论,猜想经过平面上四点A,B,C,D中的任意两点画直线会有什么样的结果?如果不能画,请简要说明理由,如能画,画出图来.【分析】解答本题时,要仔细读题,注意体会不同问题间的细微区别,以便求得正确的答案.解:(1)过一点可以画无数条直线.(2)过两个点可以画唯一的一条直线.(3)过三个已知点不一定能画出直线,当三点不共线时,不能作出直线;当三点共线时,能画一条直线.(4)当A,B,C三点不共线时,过其中的每两点可以画一条直线,所以共有三条直线;当A,B,C三点共线时,上面画的三条直线重合了,只能画一条直线,如图(一):(5)经过平面内四点中的任意两点画直线有三种结果,如图(二):①当A,B,C,D四个点在同一条直线上时,只可以画出一条直线.②当A,B,C,D四个点有三个点在同一条直线上时,可画出4条直线.③当A,B,C,D四个点中任意三个点都不在同一条直线上时,可画出6条直线.【教学说明】题(3)和题(4)中分别没有明确平面上三点,四点是否在同一条直线上,解答时要分各种可能情况解答,这种解答方法叫分类讨论.运用分类方法时,要考虑到可能出现的所有情形,不能丢掉任何一种,否则就不完整,不全面.例2 如图(1)(2)(3)中给出的直线,射线,线段,根据它们各自性质,判断其能否相交?【分析】这是用几何图形语言给出的已知条件的例题,读懂图形语言是学习几何知识的基础.结合直线、射线、线段的几何性质作出判断.解:图(1)中直线AB与直线CD相交;图(2)中射线CD与直线AB不相交,因为射线CD是以C为端点C向D所在方向延伸的;图(3)中射线CD与线段AB不相交,因为线段AB不能延伸,而射线CD延伸方向为C向D所在方向,故它们不相交;图(4)中线段AB与线段CD不相交,因为线段AB与线段CD都不能延伸.【教学说明】本题解答关键在理解三种基本图形的延伸性质.四、师生互动,课堂小结请学生互相交流我知道了哪些概念?我学会了什么解题方法?我发现了什么新知识?1.布置作业:从教材习题4.2中选取.2.完成练习册中本课时的练习.本课时主要介绍直线、射线、线段的概念、表示方法,以及它们的区别与联系,是典型的概念教学课.教学中,教师应给学生充分探寻直线的基本知识,直线、射线、线段的表示方法的素材和动手动脑、合作交流的时间与空间,鼓励学生在活动观察时感受概念的形成过程,获得数学体验.提醒学生结合生活经验、留心周围事物,借助实物来认识图形.第2课时比较线段的长短【知识与技能】1.结合图形认识线段间的数量关系,学会比较线段的大小.2.知道两点之间的距离和线段中点的含义.【过程与方法】。
七年级数学上册第四章几何图形初步4.1几何图形4.1.2点、线、面、体课件(新版)新人教版
图4-1-2-2
图4-1-2-3 解析 A是由4旋转得到的,B是由2旋转得到的,C是由1旋转得到的,D是 由3旋转得到的. 点拨 利用面动成体这一性质解题.
题型二 探索几何体的顶点、棱、面之间的关系 例2 新年晚会会场上,悬挂着五彩缤纷的小装饰,其中有各种各样的立 体图形,多面体是其中的一部分,多面体中围成立体图形的每一个面都 是平的,没有曲的,如棱柱、棱锥等,如图4-1-2-4.
)
答案 B
5.如图,第二行的图形绕虚线旋转一周,便形成第一行的某个图形(几何 体),将对应的两个图末)圆柱是由长方形绕着它的一边所在直线旋 转一周得到的,那么图4-1-2-1是以下四个图形中的哪一个绕着直线旋转 一周得到的 ( )
图4-1-2-1
初中数学(人教版)
七年级 上册
第四章 几何图形初步
知识点 点、线、面、体
重要提示 (1)几何图形都是由点、线、面、体组成的,点是构成图形 的基本元素.点、线、面、体经过运动变化,就能组合成各种各样的几 何图形,形成多姿多彩的图形世界. (2)一般地,有曲面的几何体都可以由某个平面图形旋转得到.将一个平 面图形旋转成立体图形,既与平面图形的形状有关,也与平面图形旋转 时所绕的轴有关,因此在分析平面图形旋转后得到的立体图形时,要综 合分析平面图形的形状和旋转轴两个因素.
解析 分三种情况进行讨论. ①以8 cm长的边所在直线为轴,旋转得到的圆锥的体积V1= ×π×62×8=9 6π(cm3). ②以6 cm长的边所在直线为轴,旋转得到的圆锥的体积V2= ×π×82×6=1
1 3 1 3
28π(cm3).
③以10 cm长的边所在直线为轴,旋转得到的几何体是由两个同底面的 圆锥组成的,设圆锥底面的半径为r cm,则有 ×6×8= ×10×r,解得r=4.8.
人教版七年级数学上册《几何图形初步》全章教学案
第四章 几何图形初步(集体案)4.1 几何图形4.1.1 立体图形与平面图主备人: 复核:七年级数学备课组教学目标:1.初步了解立体图形和平面图形的概念.2.能从具体物体中抽象出长方体、正方体、球、圆锥、棱锥、棱柱等立体图形;能举出类似长方体、正方体、球、圆锥、棱锥、棱柱的物体实体.教学重点:常见几何体的识别教学难点:从实物中抽象几何图形.教法:小组合作探究教学过程一、创设情境,导入新课.1.让我们一起来看看北京奥运会奥运村模型图.(出示章前图)2.展示丰富多彩的图形世界(学观察课本114页图形)二、直观感知,识别图形1.对于各种各样的物体,数学中关注是它们的形状、大小和位置.2.展示一个长方体教具,让学生分别从整体和局部抽象出几何图形.观察长方体教具的外形,从整体上看,它的形状是长方体,看不同的侧面,得到的是正方形或长方形,只看棱、顶点等局部,得到的是线段、点.3.观察其他的实物教具(或图片)让学生从中抽象出圆柱,球,长方体等图形.4.我们把从实物中抽象出的各种图形统称为几何图形.比如长方体,长方形 ,圆柱,线段,点,三角形,四边形等.几何图形是数学研究的主要对象之一.有些几何体的各部分不都在同一平面内,它们是立体图形.如长方体,立方体等. 有些几何图形和各部分都在同一平面内,它们是平面图形.如线段,角,长方形,圆等.三、 实践探究.1. 引导学生观察帐篷,金字塔的图片,从面抽象出棱柱,棱锥.2.你能说说圆柱与棱柱,圆锥与棱锥的区别吗?3.你能再举一些圆柱、棱柱、圆锥、棱锥的实例吗?4.下图中实物的形状对应哪些立体图形?把相应的实物与图形用线连起来(课本115页思考内容)四、课堂小结这节课你有什么收获?五、作业设计课本第121页习题4.1第1、2题;第125页习题4.1第7、8题。
六、教学反思:4.1.1 几何图形(二)(集体案)主备人:复核:七年级数学备课组教学目标1.能识别简单几何体的三种视图.2.会画简单立体图形及其它们的简单组合的三种视图.3.在从不同方向看立体图形的活动过程中,体验立体图形与平面图形之间的相互转化,从而建立空间观念,发展几何直觉.教学重点:1.在观察的过程中初步体会从不同方向观察同一物体可能看到不同的结果.2.能识别简单物体的三视图,会画简单立体图形及其它们组合的三种视图.教学难点:1.在面和体的转换中丰富几何直觉和数学活动经验,发展空间观念2.能识别简单物体的三视图,会画简单立体图形及其它们组合的三种视图.教学方法:实验探究教学过程一、创设情景,引入新课1.请欣赏漫画并思考:为什么会出现争执?2. “横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.”这是宋代诗人苏轼的著名诗句(《题西林壁》).你能说出“横看成岭侧成峰”中蕴含的数学道理吗?二、新课学习1.不同角度看直棱柱、圆柱、圆锥、球体.让学生分别从正面、左面、右面,上面等各个角度观察:正方体木块,长方体木块,三棱镜,六角扳手,易拉罐,排球,圆锥,由浅入深,体会从不同方向看直棱柱、圆柱、圆锥、球等立体图形得到的平面图形,难点是在体会曲面的透视图,让学生交流、体验,集体作出小结.(可以给出三个视图的名称)2.猜一猜,看一看Ⅰ.左看右看上看下看一个物体都是圆?(猜一物体)Ⅱ.什么物体左看右看上看下看都是正方形?若是长方形呢?(各猜一物体)Ⅲ.桌上放着一个圆锥和圆柱,请说出下面三幅图是分别从哪个方向看到的.3. 分别从不同方向观察以下实物(茶叶盒、魔方、书、乒乓球等),你看到了什么图形?你能一一画下来吗7(画出示意图即可)4.(从不同角度看简单的组合图形,由少数组合逐步加多)如下图,画出下列几何体分别从正面、左面,上面看,得到的平面图形.(学生独立思考、合作交流,最后从模型上得到验证)三、实践与探究1.课本第117页探究:上图是一个由9个正方体组成的立体图形,分别从正面、左面、上面观察这个图形,各能得到什么图形?2.再试一试,画出它的三视图.3.怎样画得又快又准?4.用6个相同的小方块搭成一个几何体,它的俯视图如图所示.则一共有几种不同形状的搭法(你可以用实物模型动手试一试)?四、课堂练习1.课本p118练习1,2题。
七年级数学上册第四章几何图形初步认识4.1.1 立体图形与平面图形 第2课时(图文详解)
人教版七年级数学上册第四章几何图形初步认识
5.长方形、正方形、圆等都是 平面 图形. 6.写出下列几何体的名称.
棱柱
棱锥
圆锥
人教版七年级数学上册第四章几何图形初步认识
7.下列图形中为圆柱的是( D ).
8.埃及金字塔类似于几何体( C ).
(A)圆锥 (B)圆柱 (C)棱锥 (D)棱柱
人教版七年级数学上册第四章几何图形初步认识
你做对了吗?
人教版七年级数学上册第四章几何图形初步认识
1.下面是由六个正方形连在一起的图形,经折叠后能围 成正方体的图形有哪几个?
A
B
C
D
E
F
G
人教版七年级数学上册第四章几何图形初步认识
2.(武汉中考)如图所示,李老师办公桌上放着一个圆柱 形茶叶盒和一个正方体的墨水盒,小芳从上面看,看到的 图形是( )
人教版七年级数学上册第四章几何图形初步认识
9.下列图形中不是立体图形的是( D ).
(A)球
(B)圆柱
(C)圆锥 (D)圆
人教版七年级数学上册第四章几何图形初步认识
10.小明为班级专栏设计了一个图案,如图所示,主 题是“我们喜爱合作学习”,请你也尝试用圆、扇形、 三角形、四边形、直线等为环保专栏设计一个图案, 并标明你的主题.
人教版七年级数学上册第四章几何图形初步认识
4.(宁波中考)骰子是一种特别的数字立方体(如图),它
符合以下规则:相对两面的点数之和总是7.下面四幅图中
可以折成符合规则的骰子的是( )
(A)
人教版七年级上册数学第4章 几何图形初步 正方体的展开与折叠
8.(2019·资阳)如图是正方体的展开图,每个面都标注了字母, 如果 b 在下面,c 在左面,那么 d 在( C ) A.前面 B.后面 C.上面 D.下面
*9.(2019·鄂尔多斯)下面四个图形中,经过折叠能围成如图所示 的几何图形的是( )
【点拨】三角形图案的某一顶点应与圆形的图案相对,而选项 A 与此不符,所以错误;三角形图案所在的面应与正方形的图案所 在的面相邻,而选项 C 与此不符;三角形图案所在的面应与圆 形的图案所在的面相邻,而选项 D 与此不符,正确的是 B.
【答案】B
10.如图是一个正方体纸盒的展开图,如果这个正方体纸盒相对 两个面上式子的值相等,求 a,x,y 的值.
解:由题意得 a=4,2x-5=3,5-x=y+1. 解 2x-5=3,得 x=4. 则 5-4=y+1,故 y=0. 所以 a,x,y 的值分别为 4,4,0.
11.如图是一个正方体的展开图,每个面上都标注了字母,回答 下列问题:
人教版七年级上
第四章 几何图形初步
第1节 几何图形 第3课时正方体的展开与折叠
提示:点击 进入习题
1 2D 3B 4D 5 见习题
6B 7A 8C 9B 10 见习题
答案显示
提示:点击 进入习题
11 见习题 12 见习题 13 见习题
答案显示
1.常见的正方体的展开图有以下几种形状(如图):
2.(中考·长春)下列图形中,可以是正方体表面展开图的是( D )
3.(2019·深圳)下列哪个图形是正方体的展开图( B )
4.如图,可以折叠成一个无盖正方体盒子的是( D ) A.① B.①② C.②③ D.①③
*5.(2018·杭州市临安区)马小虎准备制作一个封闭的正方体盒子, 他先用 5 个大小一样的正方形制成如图所示的拼接图形(实线 部分),经折叠后发现还少一个面,请你在图中的拼接图形上 再接一个正方形,使新拼接成的图形经过折叠后能成为一个 封闭的正方体盒子(添加所有符合要求的正方形,添加的正方 形用阴影表示).
人教版 七年级数学 知识总结 第四章 几何图形初步
P ②点不在线上 点 P 不在直线 ������ 上
直线 ������ 不过点 P
P
������
������
O 反向延长射线 AB
������
O
注:延长线具有方向性
(5)等分点:将线段平均分成几份的点 ①两等分点(中点):点 B 将线段 AC 平均分成两 份(点 B 正好在线段 AC 的中间)。
第四章 几何图形初步
4.1 几何图形 4.1.1 立体图形与平面图形 4.1.2 点、线、面、体
4.2 直线、射线、线段 4.3.1 角
4.3 角 4.3.2 角的比较与运算 4.3.3 余角和补角
4.1 几何图形
4.1.1 立体图形与平面图形
(1)定义 平面图形:各部分都在同一平面内 立体图形:各部分不 都在同一平面内
������
������
������
O
第二步:用圆规量取������的长度,以 O 为圆心,������为半径画
弧,与直线������相交于点 A。则 OA=������.
������
O
A
第三步:以 A 为圆心,������为半径画弧,与直线������相交于点 B。则 OB=2������.
������
线
线与线相交
点
―9―
4.2 直线、射线、线段
(1)复习旧知: 直线:向两端无限延伸(无长度)。 射线:向一端无限延伸(无长度)。 线段:有两个端点(有长度)。
(4)延长线: ①延长线段
A
B
(2)记法:大写字母表示点,小写字母表示线;
①直线:取线上任意两个字母(两点确定一条直线)
������
A
B
人教版七年级上册数学第4章 几何图形初步 直线、射线、线段
射线有 14 条,可以表示的射线有 10 条,分别是射线 AB、射线 AC、射线 BA、射线 BE、射线 BC、射线 DB、射线 DC、射线 CB、射线 CA、射线 CF.
向两方无限延伸 向一方无限延伸 不可向任何一方延伸
不可度量
不可度量
可度量
8.下列几何语言描述正确的是( C ) A.直线 mn B.点 A 在直线 M 上 C.点 A 在直线 AB 上 D.延长直线 AB
9.如图,A,B,C 是同一直线上的三点,下列说法不.正.确.的是 (D ) A.线段 AB 与线段 BA 是同一条线段 B.直线 AB 与直线 BC 是同一条直线 C.射线 AB 与射线 AC 是同一条射线 D.射线 BA 与射线 BC 是同一条射线
解:将 n=45 代入n(n2-1), 得n(n2-1)=45×244=990.
答:共握 990 次手.
1.经过__两____点有一条直线,并且__只__有____一条直线.简单说 成:__两_点_____确定一条直线.
2.当两条不同的直线有一个__公_共__点_____时,我们就称这两条直 线相交,这个__公_共__点___________________叫做它们的交点.
*3.经过同一平面内任意三点中的两点共可以画出( C ) A.一条直线 B.两条直线 C.一条或三条直线 D.三条直线
(2)探索归纳
如果平面上有 n(n≥3)个点,且每 3 个点均不在同一直线上, n(n-1)
那么最多可以画_______2_______条直线(用含 n 的式子表示).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥: 只有一个底 面,底面是个圆。圆锥 的侧面是个曲面。把圆 锥的侧面展开得到一个 扇形这些面围成的几何 体叫棱锥.
棱锥:有一个面是多 边行,其余各面是有一个 公共顶点的三角形,这些 面围成的几何体叫棱锥.
球:半圆绕它的直径旋转一周, 旋转所成的曲面叫球面,球面所围成 的几何体叫球体,简称球.
比一比
猜一猜
把下列立体图形展开后,猜猜 看它的平面展开图是什么。
圆柱
长方体
五棱柱
圆锥
圆 柱
展开
长方体
展开
棱柱
展开
圆锥
展开
做一做 想一想 用剪刀把桌上的正方体纸盒按任意方式沿 棱展开,你能得到哪些不同的展开图?比 比哪一小组的展开图更与众不同。
第一类,中间四连方,两侧各一 个,共六种。
A
B
C
D
E
F
G
比比你的想象力
下列图形能折叠成什么立体图形?
圆 柱
棱 柱
圆 锥
棱 柱
找朋友
考考你
1、如果“你”在前面,那么谁在后面? 了 太 你 们 棒 !
KEY: 棒
2、“坚”在下,“就”在后,胜利在哪里?
坚
持
就
胜 利
是
下图是一个正方体的展开图,标注了字母 A的面是正方体的正面,如果正方体的左面与 右面所标注代数式的值相等,求 x 的值.
4.1.1
几何图形
天安门广场
天坛祈年殿—中国
国家体育馆—中国
水立方
金字塔—埃及
泰姬陵—印度
圆形斗兽场—意大利
香 港
白宫—美国
巴台农神庙—希腊
大英博物馆—英国
观察我们周围的世界, 就会发现建筑物的形状千 姿百态,古埃及的金塔,
法国的凯旋门,中国的故
宫与城,这些千姿百态的
圆柱体
球
圆锥体
常见的立体图形
长方体
正方体 圆锥 棱锥
圆柱 棱柱
球
圆柱:有两个面互相 平行,并且都是圆形,侧 面是曲面,展开是个长方 形,这些面所围成的 几何 体叫圆柱.
棱柱:有两个面互相 平行,其余各面都是平行 四边形,并且每相邻两个 平行四边形的公共边互相 平行.这些面所围成的 几 何体叫棱柱.
从正面看
从左面看
从上面看
练一练:分别从正面、左面、上面观察下面的立体图 形,各能得到什么平面图形?
立体图形 正面 左面 上面
分别从正面、左面、上面看一个由若干个正方体组成的立 体图形,得到的平面图形如下图所示,你能搭出这个立体图形吗? 动手试试看!
正面
左面
上面
试一试
下面六个正方形连在一起的图形,经折 叠后能围成正方体的图形有哪几个?(动手试 试)
建筑物美化了我们生活的
空间,同时也带给我们许
多遐想:建筑师是怎样设
计创造的呢?这其中蕴涵
着许多有关图形的知识
据说在很久以前,埃及的尼罗河每年都会有 洪水泛滥.泛滥的河水在给下游带来肥沃的土壤 的同时,往往将土地的地界冲垮.所以每年洪水 退后,人们便要重新对土地进行测量、计算,以 便重新划分田地.日积月累,古代埃及人便逐渐 学会了计算简单图形面积的方法,进而形成了有 关图形的一些知识.后来人们便将些知识称为 “Geometry”,意为“测地术”,即测量土地的方 法.这就是几何学的雏形.
2.如图,你能看到哪些平面图形?
想一想: “横看成岭侧成峰” 一句中,蕴含了怎样的数学道理?
对于一些立体图形的问题,常把它们转化为平面图形 来研究和处理.从不同方向看立体图形,往往会得到不同形 状的平面图形.在建筑、工程等设计中,也常常用从不同方 向看到的平面图形来表示立体图形. 这是一个工件的立体图,设计师们常常画出从不同方 向看它得到的平面图形来表示它.
-2
3
-4
1
A 3x-2
有一个正方体,在它的各个面上分别涂了 白、红、黄、兰、绿、黑六种颜色。甲、乙、 丙三位同学从三个不同的角度去观察此正方体, 结果如下图,问这个正方体各个面的对面的颜 色是什么?
黑 红
白
兰
绿
红
黄
兰
黄
甲
乙
丙
1、学会了从不同方向观察立体图形。 2、 学会了简单几何体(如棱柱,正方体 等)的平面展开图,知道按不同的方式展 开会得到不同的展开图。 3、学会了动手实践,与同学合作。 4、友情提醒:不是所有立体图形都有平面展 开图,比如球体。
棱柱与圆柱有什么相同点与不同点?
相同点:圆柱和棱柱都是由两个形状相同的 底面构成,都给人一种直立的感觉. 不同点:圆柱的两个底面是圆形,而棱柱的 底面是多边形.圆柱的侧面只有一个是曲面,而 棱柱的侧面是多个都是平面.
棱柱有直棱柱和斜棱柱
直棱柱(棱柱)
斜棱柱
这两个图形有什么不同?
立体图形
平面图形
从左侧看
图3
图1
图2
从正面看 从上面看
你能指出这些图形分别从哪 个角度观察得到的吗?
长方体
圆 柱
圆锥
四棱锥
从上面看
从左边看
长方体
从正面看
从上面看
从左面看
从正面看
从上面看 从左面看
从正面看
从上面看
从左面看
从正面看
从上面看
从左面看
从正面看
从正面看
从左面看
从上面看
分别从正面、左面、 上面观察这个图形,各能 得到什么平面图形?
长方体
正方体
圆柱
球
圆锥
圆台
生活中你会常见很多实物,由下列实物能 想象出你熟悉的几何体吗?
生活中你会常见很多实物,由下列实物能 想象出你熟悉的几何体吗?
生活中你会常见很多实物,由下列实物能 想象出你熟悉的几何体吗?
长方体
生活中你会常见很多实物,由下列实物能 想象出你熟悉的几何体吗?
长方体 正方体
画立体图形时,常把被遮挡的轮廓画成虚线.
课堂小结
几何图形的分类
几何 图形
立体图形:包括正方体,长方 体,球体,圆柱体, 圆锥,棱 柱,棱锥等. 平面图形:包括三角形,正方 形,长方形,菱形,梯形,平行 四边形,圆形等.
几 何 图 形
平 面 图 形 柱体
棱柱 圆柱
立 体 图 形
棱锥 锥体 圆锥 球体
你能说出下列图形的名字吗?
三角形 平行四边形
正方形
梯形
五边形
八边形
圆
圆环Leabharlann 椭圆五角星几何图形的各部分都在同一平内,这样 的几何图形叫做平面图形.
观察下列图形,从中找出你熟悉的几何图形:
从实物中抽象出来的各种图形统称为几何图形.
常见的立体图形
有些几何图形(如长方体、正方体、圆柱、圆锥、球等) 的各部分不都在同一平面内,这样的几何图形叫做立体图形.
第二类,中间三连方,两侧各有 一、二个,共三种。
第三类,中间二连方,两侧各有二 个,只有一种。
第四类,两排各三个,只有一种。
探究:右图是一个 由 9 个正方体组成的立 体图形,分别从正面、 左面、上面观察这个图 形,各能得到什么平面 图形?
正面
左面
上面
练一练:
从正面、左面、上面 看这个由正方体组合成的 立体图形各能得到什么平 面图形?
生活中你会常见很多实物,由下列实物能 想象出你熟悉的几何体吗?
长方体 正方体
圆柱体
生活中你会常见很多实物,由下列实物能 想象出你熟悉的几何体吗?
长方体 正方体
圆柱体
球
生活中你会常见很多实物,由下列实物能 有些几何图形的 各部分不都在同 想象出你熟悉的几何体吗? 一平面内,这些图形是立体图形。
长方体 正方体
下列实物与给出的哪个几何体相似?
图1
图2
图3
1、请你把相应的实物与图形用线连接起来.
2、你能说出下列图形中有哪些平面图形吗
指出下列立体图形的名称,并指出图中的各立体 图形的表面中包含哪些平面图形
当堂达标测试(满分100分)
(一)选择题(每小题20分,共40分.) 1.下列说法错误的是( D ) A.长方体和正方体都是四棱柱 B.棱柱的侧面都是四边形 C.柱体的上下底面形状相同 D.圆柱只有底面为圆的两个面 2.下列几种图形:①长方形;②梯形;③正方体; B ) ④圆柱;⑤圆锥;其中属于立体图形的是( A. ①②③;B. ③④⑤;C. ③⑤;D.④⑤
(二)填空题(每小题20分,共40分.) 3.我们所学的常见的立体图形有 柱 体, 锥 体, 球 体. 4.柱体包括圆柱和 棱柱 ,锥体包括棱锥和 圆锥 . (三)图中的一些物体与我们学过的哪些图形相类似? 把相应的物体和图形连接起来(20分)
练习:
1.如图,你能看到哪些立体图形?
(第1题)
( 第2题)