线面平行 面面平行 的判定
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2.3 直线与平面平行的性质 2.2.4 平面与平面平行的性质
1.文字语言:一条直线与一个平面平行,则__过这条直线的任一平面与此平面的交线__与该直线平行.
2.图形语言:
3.符号语言:
⎭
⎪⎬⎪
⎫a ∥α
__a ⊂β____α∩β=b __⇒a ∥b 4.作用:线面平行⇒线线平行.
要点二 面面平行的性质定理
1.文字语言:如果两个平行平面同时和第三个平面__相交__,那么它们的交线__平行
__.
2.图形语言:
3.符号语言:
⎭
⎪⎬⎪
⎫α∥β
__α∩γ=a ____β∩γ=b __⇒a ∥b 4.作用:面面平行⇒线线平行.
要点三 平行关系性质的应用
1.若平面α与平面β平行,则α上的任何直线与平面β的位置关系是__平行__. 2.若两个面互相平行,则分别在这两个平行平面内的直线的关系是__平行或异面__. 3.A 是异面直线a ,b 外一点,过A 最多可作__0或1__个平面同时与a ,b 平行. 4.过平面外一点能作__无数__条直线和这个平面平行.
思考: 如果两个平面平行,那么分别位于两个平面内的直线也互相平行,这句话正确吗?为什么?
提示 不正确,因为这两个平面平行,那么位于两个平面内的直线没有公共点,它们平行或异面.
考点一线面平行、面面平行的性质定理
定理可简记为“线面平行,则线线平行”“面面平行,则线线平行”.定理揭示了直线与平面平行中蕴涵着直线与直线平行,即通过直线与平面平行、平面与平面平行可得到直线与直线平行,这给出了一种作平行线的方法.
【例题1】在下列命题中,正确的有__④__(填序号).
①若α∩β=a,b⊂α,则a∥b;
②若a∥平面α,b⊂α,则a∥b;
③若平面α∥平面β,a⊂α,b⊂β,则a∥b;
④平面α∥平面β,点P∈α,a∥β且P∈a,则a⊂α.
思维导引:此类题一般是以符号语言为载体的判断题,熟悉相关定理是前提,全面分析是关键,一般通过合理利用模型及排除法解题.
解析①若α∩β=a,b⊂α,则a,b可能平行也可能相交,①不正确;②若a∥α,b⊂α,则a与b异面或a∥b,②不正确;③若α∥β,a⊂α,b⊂β,则a∥b或a与b异面,③不正确;④若α∥β,点P∈α,知P∉β,所以过点P且平行于β的直线a必在α内,故④正确.
【变式1】(1)若直线a,b均平行于平面α,那么a与b的位置关系是__平行、相交或异面__.
(2)若直线a∥b,且a∥平面β,则b与β的位置关系是__b∥β或b⊂β__.
(3)若直线a,b是异面直线,且a∥β,则b与β的关系是__b∥β或b⊂β或b与β相交__.
解析(1)a∥α,b∥α,则知a,b与α无公共点,而a,b平行、相交、异面都有可能.
(2)a∥b,a∥β知b∥β或b在β内.
(3)b与β的三种位置关系都有可能.
考点二线面平行的性质及应用
利用线面平行的性质定理判断两直线平行的步骤:
(1)先找过已知直线且与已知平面相交的平面;
(2)再找两个平面的交线;
(3)由定理得出结论.
【例题2】如图,已知两条异面直线AB与CD,平面MNPQ与AB,CD都平行,且点M,N,P,Q依次在线段AC,BC,BD,AD上,求证:四边形MNPQ是平行四边形.
思维导引:AB∥平面MNPQ,
CD∥平面MNPQ→
MN∥PQ,
NP∥MQ→
四边形MNPQ
是平行四边形
证明因为AB∥平面MNPQ,且过AB的平面ABC交平面MNPQ于MN,所以AB∥MN.
又过AB的平面ABD交平面MNPQ于PQ,所以AB∥PQ,所以MN∥PQ.同理可证NP ∥MQ.
所以四边形MNPQ为平行四边形.
【变式2】如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于点F.求证:EF∥B1C.
证明由正方形的性质可知A1B1∥AB∥DC,且A1B1=AB=DC,所以四边形A1B1CD 为平行四边形,从而B1C∥A1D,又A1D⊂平面A1DFE,B1C⊄平面A1DFE,于是B1C∥平面A1DFE.又B1C⊂平面B1CD1,平面A1DFE∩平面B1CD1=EF,所以EF∥B1C.
考点三面面平行的性质及应用
应用平面与平面平行的性质定理的基本思路:
【例题3】在长方体ABCD-A1B1C1D1中,E为棱DD1上的点.当平面AB1C∥平面A1EC1时,点E的位置是__与D重合__.
思维导引:平面AB1C∥平面A1EC1,且都与对角面BB1D1D相交,则交线平行.在平行四边形BB1D1D中再来论证平行线的位置.
解析如图,连接B1D1,BD,设B1D1∩A1C1=M,BD∩AC=O.连接ME,B1O,因为平面AB1C∥平面A1EC1,平面AB1C∩平面BDD1B1=B1O,平面A1EC1∩平面BDD1B1=ME,所以B1O∥ME.又由长方体的性质可知四边形B1MDO为平行四边形,则B1O∥MD.故E与D重合.
【变式3】已知三棱柱ABC-A′B′C′中,D是BC的中点,D′是B′C′的中点,设平面A′D′B∩平面ABC=a,平面ADC′∩平面A′B′C′=b,判断直线a,b的位置关系,并证明.
解析直线a,b的位置关系是平行.
如图所示,连接DD′.
因为平面ABC∥平面A′B′C′,
平面A′D′B∩平面ABC=a,