山西省2016年高考理科数学试题(附答案)

合集下载

(完整word版)2016全国三卷理科数学高考真题及答案.docx

(完整word版)2016全国三卷理科数学高考真题及答案.docx

2016 年普通高等学校招生全国统一考试理科数学一.选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的 .(1)设集合 S= S x P(x2)(x3)0 ,T x x 0,则 S I T=(A) [2 ,3](B) (-, 2]U [3,+)(C) [3,+ )(D) (0, 2] U[3,+ )(2)若 z=1+2i ,则4izz1(A)1(B)-1(C) i(D)-iuuv( 1uuuv(3,1),(3)已知向量BA, 2 ) , BC则 ABC=2222(A)30 0(B)450(C) 60 0(D)120 0(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。

图中A 点表示十月的平均最高气温约为150C, B 点表示四月的平均最低气温约为50C。

下面叙述不正确的是(A) 各月的平均最低气温都在00C 以上(B)七月的平均温差比一月的平均温差大(C)三月和十一月的平均最高气温基本相同(D)平均气温高于 200C 的月份有 5 个(5)若tan3,则 cos22sin 26444816(B)(C) 1(A)25(D)2525 431(6)已知a23, b44, c253,则(A )b a c( B)a b c (C) b c a (D) c a b(7)执行下图的程序框图,如果输入的a=4, b=6,那么输出的n=(A ) 3(B ) 4(C) 5(D ) 6(8)在 △ABC 中,B = πBC1cos A =,边上的高等于则43 BC ,( A )3 10( B )101010( C ) -10 ( D ) - 3 1010 10 (9) 如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A ) 18 36 5(B ) 54 18 5(C ) 90 (D ) 81(10) 在封闭的直三棱柱 ABC-A 1B 1C 1 内有一个体积为 V 的球,若AB BC , AB=6 ,BC=8, AA 1 =3,则 V 的最大值是(A ) 4π ( B )9( C ) 6π(D )3223x 2 y 2 1(a b 0) 的左焦点, A , B 分别为 C 的左,右顶点 .P 为(11)已知 O 为坐标原点, F 是椭圆 C :b 2 a 2C 上一点,且 PF ⊥ x 轴 .过点 A 的直线 l 与线段 PF 交于点 M ,与 y 轴交于点 E.若直线 BM 经过 OE 的中点,则C 的离心率为(A )1( B )1( C )2( D )33 2 3 4(12)定义 “规范 01 数列 ”{a n } 如下: { a n } 共有 2m 项,其中 m 项为 0,m 项为 1,且对任意 k 2m , a 1 , a 2, L , a k 中 0 的个数不少于 1 的个数 .若 m=4,则不同的“规范 01 数列”共有 (A ) 18 个( B ) 16 个(C ) 14 个(D ) 12 个二、填空题:本大题共 3 小题,每小题 5 分(13)若 x , y 满足约束条件 错误 ! 未找到引用源。

2016年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2016年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2016年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x|x2﹣4x+3<0},B={x|2x﹣3>0},则A∩B=()A.(﹣3,﹣)B.(﹣3,)C.(1,)D.(,3)2.(5分)设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=()A.1B.C.D.23.(5分)已知等差数列{a n}前9项的和为27,a10=8,则a100=()A.100B.99C.98D.974.(5分)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.B.C.D.5.(5分)已知方程﹣=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是()A.(﹣1,3)B.(﹣1,)C.(0,3)D.(0,)6.(5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π7.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.8.(5分)若a>b>1,0<c<1,则()A.a c<b c B.ab c<ba cC.alog b c<blog a c D.log a c<log b c9.(5分)执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x10.(5分)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为()A.2B.4C.6D.811.(5分)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.12.(5分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11B.9C.7D.5二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)设向量=(m,1),=(1,2),且|+|2=||2+||2,则m=.14.(5分)(2x+)5的展开式中,x3的系数是.(用数字填写答案)15.(5分)设等比数列{a n}满足a1+a3=10,a2+a4=5,则a1a2…a n的最大值为.16.(5分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.三、解答题:本大题共5小题,满分60分,解答须写出文字说明、证明过程或演算步骤.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.18.(12分)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E与二面角C﹣BE﹣F都是60°.(Ⅰ)证明平面ABEF⊥平面EFDC;(Ⅱ)求二面角E﹣BC﹣A的余弦值.19.(12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(Ⅰ)求X的分布列;(Ⅱ)若要求P(X≤n)≥0.5,确定n的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?20.(12分)设圆x2+y2+2x﹣15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(Ⅰ)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(Ⅱ)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.21.(12分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2有两个零点.(Ⅰ)求a的取值范围;(Ⅱ)设x1,x2是f(x)的两个零点,证明:x1+x2<2.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.2016年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x|x2﹣4x+3<0},B={x|2x﹣3>0},则A∩B=()A.(﹣3,﹣)B.(﹣3,)C.(1,)D.(,3)【考点】1E:交集及其运算.【专题】11:计算题;4O:定义法;5J:集合.【分析】解不等式求出集合A,B,结合交集的定义,可得答案.【解答】解:∵集合A={x|x2﹣4x+3<0}=(1,3),B={x|2x﹣3>0}=(,+∞),∴A∩B=(,3),故选:D.【点评】本题考查的知识点是集合的交集及其运算,难度不大,属于基础题.2.(5分)设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=()A.1B.C.D.2【考点】A8:复数的模.【专题】34:方程思想;4O:定义法;5N:数系的扩充和复数.【分析】根据复数相等求出x,y的值,结合复数的模长公式进行计算即可.【解答】解:∵(1+i)x=1+yi,∴x+xi=1+yi,即,解得,即|x+yi|=|1+i|=,故选:B.【点评】本题主要考查复数模长的计算,根据复数相等求出x,y的值是解决本题的关键.3.(5分)已知等差数列{a n}前9项的和为27,a10=8,则a100=()A.100B.99C.98D.97【考点】83:等差数列的性质.【专题】11:计算题;4O:定义法;54:等差数列与等比数列.【分析】根据已知可得a5=3,进而求出公差,可得答案.【解答】解:∵等差数列{a n}前9项的和为27,S9===9a5.∴9a5=27,a5=3,又∵a10=8,∴d=1,∴a100=a5+95d=98,故选:C.【点评】本题考查的知识点是数列的性质,熟练掌握等差数列的性质,是解答的关键.4.(5分)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.B.C.D.【考点】CF:几何概型.【专题】5I:概率与统计.【分析】求出小明等车时间不超过10分钟的时间长度,代入几何概型概率计算公式,可得答案.【解答】解:设小明到达时间为y,当y在7:50至8:00,或8:20至8:30时,小明等车时间不超过10分钟,故P==,故选:B.【点评】本题考查的知识点是几何概型,难度不大,属于基础题.5.(5分)已知方程﹣=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是()A.(﹣1,3)B.(﹣1,)C.(0,3)D.(0,)【考点】KB:双曲线的标准方程.【专题】11:计算题;35:转化思想;4R:转化法;5D:圆锥曲线的定义、性质与方程.【分析】由已知可得c=2,利用4=(m2+n)+(3m2﹣n),解得m2=1,又(m2+n)(3m2﹣n)>0,从而可求n的取值范围.【解答】解:∵双曲线两焦点间的距离为4,∴c=2,当焦点在x轴上时,可得:4=(m2+n)+(3m2﹣n),解得:m2=1,∵方程﹣=1表示双曲线,∴(m2+n)(3m2﹣n)>0,可得:(n+1)(3﹣n)>0,解得:﹣1<n<3,即n的取值范围是:(﹣1,3).当焦点在y轴上时,可得:﹣4=(m2+n)+(3m2﹣n),解得:m2=﹣1,无解.故选:A.【点评】本题主要考查了双曲线方程的应用,考查了不等式的解法,属于基础题.6.(5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π【考点】L!:由三视图求面积、体积.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5F:空间位置关系与距离.【分析】判断三视图复原的几何体的形状,利用体积求出几何体的半径,然后求解几何体的表面积.【解答】解:由题意可知三视图复原的几何体是一个球去掉后的几何体,如图:可得:=,R=2.它的表面积是:×4π•22+=17π.故选:A.【点评】本题考查三视图求解几何体的体积与表面积,考查计算能力以及空间想象能力.7.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.【考点】3A:函数的图象与图象的变换.【专题】27:图表型;48:分析法;51:函数的性质及应用.【分析】根据已知中函数的解析式,分析函数的奇偶性,最大值及单调性,利用排除法,可得答案.【解答】解:∵f(x)=y=2x2﹣e|x|,∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,故函数为偶函数,当x=±2时,y=8﹣e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2﹣e x,∴f′(x)=4x﹣e x=0有解,故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,故选:D.【点评】本题考查的知识点是函数的图象,对于超越函数的图象,一般采用排除法解答.8.(5分)若a>b>1,0<c<1,则()A.a c<b c B.ab c<ba cC.alog b c<blog a c D.log a c<log b c【考点】R3:不等式的基本性质.【专题】33:函数思想;35:转化思想;4R:转化法;51:函数的性质及应用;5T:不等式.【分析】根据已知中a>b>1,0<c<1,结合对数函数和幂函数的单调性,分析各个结论的真假,可得答案.【解答】解:∵a>b>1,0<c<1,∴函数f(x)=x c在(0,+∞)上为增函数,故a c>b c,故A错误;函数f(x)=x c﹣1在(0,+∞)上为减函数,故a c﹣1<b c﹣1,故ba c<ab c,即ab c >ba c;故B错误;log a c<0,且log b c<0,log a b<1,即=<1,即log a c>log b c.故D错误;0<﹣log a c<﹣log b c,故﹣blog a c<﹣alog b c,即blog a c>alog b c,即alog b c<blog a c,故C正确;故选:C.【点评】本题考查的知识点是不等式的比较大小,熟练掌握对数函数和幂函数的单调性,是解答的关键.9.(5分)执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x【考点】EF:程序框图.【专题】11:计算题;28:操作型;5K:算法和程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量x,y的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:输入x=0,y=1,n=1,则x=0,y=1,不满足x2+y2≥36,故n=2,则x=,y=2,不满足x2+y2≥36,故n=3,则x=,y=6,满足x2+y2≥36,故y=4x,故选:C.【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.10.(5分)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为()A.2B.4C.6D.8【考点】K8:抛物线的性质;KJ:圆与圆锥曲线的综合.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5D:圆锥曲线的定义、性质与方程.【分析】画出图形,设出抛物线方程,利用勾股定理以及圆的半径列出方程求解即可.【解答】解:设抛物线为y2=2px,如图:|AB|=4,|AM|=2,|DE|=2,|DN|=,|ON|=,x A==,|OD|=|OA|,=+5,解得:p=4.C的焦点到准线的距离为:4.故选:B.【点评】本题考查抛物线的简单性质的应用,抛物线与圆的方程的应用,考查计算能力.转化思想的应用.11.(5分)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.【考点】LM:异面直线及其所成的角.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5G:空间角.【分析】画出图形,判断出m、n所成角,求解即可.【解答】解:如图:α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABA1B1=n,可知:n∥CD1,m∥B1D1,∵△CB1D1是正三角形.m、n所成角就是∠CD1B1=60°.则m、n所成角的正弦值为:.故选:A.【点评】本题考查异面直线所成角的求法,考查空间想象能力以及计算能力.12.(5分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11B.9C.7D.5【考点】H6:正弦函数的奇偶性和对称性.【专题】35:转化思想;4R:转化法;57:三角函数的图像与性质.【分析】根据已知可得ω为正奇数,且ω≤12,结合x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,求出满足条件的解析式,并结合f(x)在(,)上单调,可得ω的最大值.【解答】解:∵x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,∴,即,(n∈N)即ω=2n+1,(n∈N)即ω为正奇数,∵f(x)在(,)上单调,则﹣=≤,即T=≥,解得:ω≤12,当ω=11时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=﹣,此时f(x)在(,)不单调,不满足题意;当ω=9时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=,此时f(x)在(,)单调,满足题意;故ω的最大值为9,故选:B.【点评】本题考查的知识点是正弦型函数的图象和性质,本题转化困难,难度较大.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)设向量=(m,1),=(1,2),且|+|2=||2+||2,则m=﹣2.【考点】9O:平面向量数量积的性质及其运算.【专题】11:计算题;29:规律型;35:转化思想;5A:平面向量及应用.【分析】利用已知条件,通过数量积判断两个向量垂直,然后列出方程求解即可.【解答】解:|+|2=||2+||2,可得•=0.向量=(m,1),=(1,2),可得m+2=0,解得m=﹣2.故答案为:﹣2.【点评】本题考查向量的数量积的应用,向量的垂直条件的应用,考查计算能力.14.(5分)(2x+)5的展开式中,x3的系数是10.(用数字填写答案)【考点】DA:二项式定理.【专题】11:计算题;34:方程思想;49:综合法;5P:二项式定理.【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为3,求出r,即可求出展开式中x3的系数.==25﹣【解答】解:(2x+)5的展开式中,通项公式为:T r+1r,令5﹣=3,解得r=4∴x3的系数2=10.故答案为:10.【点评】本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.15.(5分)设等比数列{a n}满足a1+a3=10,a2+a4=5,则a1a2…a n的最大值为64.【考点】87:等比数列的性质;8I:数列与函数的综合.【专题】11:计算题;29:规律型;35:转化思想;54:等差数列与等比数列.【分析】求出数列的等比与首项,化简a1a2…a n,然后求解最值.【解答】解:等比数列{a n}满足a1+a3=10,a2+a4=5,可得q(a1+a3)=5,解得q=.a1+q2a1=10,解得a1=8.则a1a2…a n=a1n•q1+2+3+…+(n﹣1)=8n•==,当n=3或4时,表达式取得最大值:=26=64.故答案为:64.【点评】本题考查数列的性质数列与函数相结合的应用,转化思想的应用,考查计算能力.16.(5分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为216000元.【考点】7C:简单线性规划.【专题】11:计算题;29:规律型;31:数形结合;33:函数思想;35:转化思想.【分析】设A、B两种产品分别是x件和y件,根据题干的等量关系建立不等式组以及目标函数,利用线性规划作出可行域,通过目标函数的几何意义,求出其最大值即可;【解答】解:(1)设A、B两种产品分别是x件和y件,获利为z元.由题意,得,z=2100x+900y.不等式组表示的可行域如图:由题意可得,解得:,A(60,100),目标函数z=2100x+900y.经过A时,直线的截距最大,目标函数取得最大值:2100×60+900×100=216000元.故答案为:216000.【点评】本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,不等式组解实际问题的运用,不定方程解实际问题的运用,解答时求出最优解是解题的关键.三、解答题:本大题共5小题,满分60分,解答须写出文字说明、证明过程或演算步骤.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.【考点】HU:解三角形.【专题】15:综合题;35:转化思想;49:综合法;58:解三角形.【分析】(Ⅰ)已知等式利用正弦定理化简,整理后利用两角和与差的正弦函数公式及诱导公式化简,根据sinC不为0求出cosC的值,即可确定出出C的度数;(2)利用余弦定理列出关系式,利用三角形面积公式列出关系式,求出a+b的值,即可求△ABC的周长.【解答】解:(Ⅰ)∵在△ABC中,0<C<π,∴sinC≠0已知等式利用正弦定理化简得:2cosC(sinAcosB+sinBcosA)=sinC,整理得:2cosCsin(A+B)=sinC,即2cosCsin(π﹣(A+B))=sinC2cosCsinC=sinC∴cosC=,∴C=;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S=absinC=ab=,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5+.【点评】此题考查了正弦、余弦定理,三角形的面积公式,以及三角函数的恒等变形,熟练掌握定理及公式是解本题的关键.18.(12分)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E与二面角C﹣BE﹣F都是60°.(Ⅰ)证明平面ABEF⊥平面EFDC;(Ⅱ)求二面角E﹣BC﹣A的余弦值.【考点】MJ:二面角的平面角及求法.【专题】11:计算题;34:方程思想;49:综合法;5H:空间向量及应用;5Q:立体几何.【分析】(Ⅰ)证明AF⊥平面EFDC,利用平面与平面垂直的判定定理证明平面ABEF⊥平面EFDC;(Ⅱ)证明四边形EFDC为等腰梯形,以E为原点,建立如图所示的坐标系,求出平面BEC、平面ABC的法向量,代入向量夹角公式可得二面角E﹣BC﹣A的余弦值.【解答】(Ⅰ)证明:∵ABEF为正方形,∴AF⊥EF.∵∠AFD=90°,∴AF⊥DF,∵DF∩EF=F,∴AF⊥平面EFDC,∵AF⊂平面ABEF,∴平面ABEF⊥平面EFDC;(Ⅱ)解:由AF⊥DF,AF⊥EF,可得∠DFE为二面角D﹣AF﹣E的平面角;由ABEF为正方形,AF⊥平面EFDC,∵BE⊥EF,∴BE⊥平面EFDC即有CE⊥BE,可得∠CEF为二面角C﹣BE﹣F的平面角.可得∠DFE=∠CEF=60°.∵AB∥EF,AB⊄平面EFDC,EF⊂平面EFDC,∴AB∥平面EFDC,∵平面EFDC∩平面ABCD=CD,AB⊂平面ABCD,∴AB∥CD,∴CD∥EF,∴四边形EFDC为等腰梯形.以E为原点,建立如图所示的坐标系,设FD=a,则E(0,0,0),B(0,2a,0),C(,0,a),A(2a,2a,0),∴=(0,2a,0),=(,﹣2a,a),=(﹣2a,0,0)设平面BEC的法向量为=(x1,y1,z1),则,则,取=(,0,﹣1).设平面ABC的法向量为=(x2,y2,z2),则,则,取=(0,,4).设二面角E﹣BC﹣A的大小为θ,则cosθ===﹣,则二面角E﹣BC﹣A的余弦值为﹣.【点评】本题考查平面与平面垂直的证明,考查用空间向量求平面间的夹角,建立空间坐标系将二面角问题转化为向量夹角问题是解答的关键.19.(12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(Ⅰ)求X的分布列;(Ⅱ)若要求P(X≤n)≥0.5,确定n的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?【考点】CG:离散型随机变量及其分布列.【专题】11:计算题;35:转化思想;49:综合法;5I:概率与统计.【分析】(Ⅰ)由已知得X的可能取值为16,17,18,19,20,21,22,分别求出相应的概率,由此能求出X的分布列.(Ⅱ)由X的分布列求出P(X≤18)=,P(X≤19)=.由此能确定满足P (X≤n)≥0.5中n的最小值.(Ⅲ)法一:由X的分布列得P(X≤19)=.求出买19个所需费用期望EX1和买20个所需费用期望EX2,由此能求出买19个更合适.法二:解法二:购买零件所用费用含两部分,一部分为购买零件的费用,另一部分为备件不足时额外购买的费用,分别求出n=19时,费用的期望和当n=20时,费用的期望,从而得到买19个更合适.【解答】解:(Ⅰ)由已知得X的可能取值为16,17,18,19,20,21,22,P(X=16)=()2=,P(X=17)=,P(X=18)=()2+2()2=,P(X=19)==,P(X=20)===,P(X=21)==,P(X=22)=,∴X的分布列为:X16171819202122P(Ⅱ)由(Ⅰ)知:P(X≤18)=P(X=16)+P(X=17)+P(X=18)==.P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19)=+=.∴P(X≤n)≥0.5中,n的最小值为19.(Ⅲ)解法一:由(Ⅰ)得P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19)=+=.买19个所需费用期望:EX1=200×+(200×19+500)×+(200×19+500×2)×+(200×19+500×3)×=4040,买20个所需费用期望:EX2=+(200×20+500)×+(200×20+2×500)×=4080,∵EX1<EX2,∴买19个更合适.解法二:购买零件所用费用含两部分,一部分为购买零件的费用,另一部分为备件不足时额外购买的费用,当n=19时,费用的期望为:19×200+500×0.2+1000×0.08+1500×0.04=4040,当n=20时,费用的期望为:20×200+500×0.08+1000×0.04=4080,∴买19个更合适.【点评】本题考查离散型随机变量的分布列和数学期望的求法及应用,是中档题,解题时要认真审题,注意相互独立事件概率乘法公式的合理运用.20.(12分)设圆x2+y2+2x﹣15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(Ⅰ)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(Ⅱ)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.【考点】J2:圆的一般方程;KL:直线与椭圆的综合.【专题】34:方程思想;48:分析法;5B:直线与圆;5D:圆锥曲线的定义、性质与方程.【分析】(Ⅰ)求得圆A的圆心和半径,运用直线平行的性质和等腰三角形的性质,可得EB=ED,再由圆的定义和椭圆的定义,可得E的轨迹为以A,B为焦点的椭圆,求得a,b,c,即可得到所求轨迹方程;(Ⅱ)设直线l:x=my+1,代入椭圆方程,运用韦达定理和弦长公式,可得|MN|,由PQ⊥l,设PQ:y=﹣m(x﹣1),求得A到PQ的距离,再由圆的弦长公式可得|PQ|,再由四边形的面积公式,化简整理,运用不等式的性质,即可得到所求范围.【解答】解:(Ⅰ)证明:圆x2+y2+2x﹣15=0即为(x+1)2+y2=16,可得圆心A(﹣1,0),半径r=4,由BE∥AC,可得∠C=∠EBD,由AC=AD,可得∠D=∠C,即为∠D=∠EBD,即有EB=ED,则|EA|+|EB|=|EA|+|ED|=|AD|=4,故E的轨迹为以A,B为焦点的椭圆,且有2a=4,即a=2,c=1,b==,则点E的轨迹方程为+=1(y≠0);(Ⅱ)椭圆C1:+=1,设直线l:x=my+1,由PQ⊥l,设PQ:y=﹣m(x﹣1),由可得(3m2+4)y2+6my﹣9=0,设M(x1,y1),N(x2,y2),可得y1+y2=﹣,y1y2=﹣,则|MN|=•|y1﹣y2|=•=•=12•,A到PQ的距离为d==,|PQ|=2=2=,则四边形MPNQ面积为S=|PQ|•|MN|=••12•=24•=24,当m=0时,S取得最小值12,又>0,可得S<24•=8,即有四边形MPNQ面积的取值范围是[12,8).【点评】本题考查轨迹方程的求法,注意运用椭圆和圆的定义,考查直线和椭圆方程联立,运用韦达定理和弦长公式,以及直线和圆相交的弦长公式,考查不等式的性质,属于中档题.21.(12分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2有两个零点.(Ⅰ)求a的取值范围;(Ⅱ)设x1,x2是f(x)的两个零点,证明:x1+x2<2.【考点】51:函数的零点;6D:利用导数研究函数的极值.【专题】32:分类讨论;35:转化思想;4C:分类法;4R:转化法;51:函数的性质及应用.【分析】(Ⅰ)由函数f(x)=(x﹣2)e x+a(x﹣1)2可得:f′(x)=(x﹣1)e x+2a (x﹣1)=(x﹣1)(e x+2a),对a进行分类讨论,综合讨论结果,可得答案.(Ⅱ)设x1,x2是f(x)的两个零点,则﹣a==,令g(x)=,则g(x1)=g(x2)=﹣a,分析g(x)的单调性,令m>0,则g(1+m)﹣g(1﹣m)=,设h(m)=,m>0,利用导数法可得h(m)>h(0)=0恒成立,即g(1+m)>g(1﹣m)恒成立,令m=1﹣x1>0,可得结论.【解答】解:(Ⅰ)∵函数f(x)=(x﹣2)e x+a(x﹣1)2,∴f′(x)=(x﹣1)e x+2a(x﹣1)=(x﹣1)(e x+2a),①若a=0,那么f(x)=0⇔(x﹣2)e x=0⇔x=2,函数f(x)只有唯一的零点2,不合题意;②若a>0,那么e x+2a>0恒成立,当x<1时,f′(x)<0,此时函数为减函数;当x>1时,f′(x)>0,此时函数为增函数;此时当x=1时,函数f(x)取极小值﹣e,由f(2)=a>0,可得:函数f(x)在x>1存在一个零点;当x<1时,e x<e,x﹣2<﹣1<0,∴f(x)=(x﹣2)e x+a(x﹣1)2>(x﹣2)e+a(x﹣1)2=a(x﹣1)2+e(x﹣1)﹣e,令a(x﹣1)2+e(x﹣1)﹣e=0的两根为t1,t2,且t1<t2,则当x<t1,或x>t2时,f(x)>a(x﹣1)2+e(x﹣1)﹣e>0,故函数f(x)在x<1存在一个零点;即函数f(x)在R是存在两个零点,满足题意;③若﹣<a<0,则ln(﹣2a)<lne=1,当x<ln(﹣2a)时,x﹣1<ln(﹣2a)﹣1<lne﹣1=0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,当ln(﹣2a)<x<1时,x﹣1<0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)<0恒成立,故f(x)单调递减,当x>1时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,故当x=ln(﹣2a)时,函数取极大值,由f(ln(﹣2a))=[ln(﹣2a)﹣2](﹣2a)+a[ln(﹣2a)﹣1]2=a{[ln(﹣2a)﹣2]2+1}<0得:函数f(x)在R上至多存在一个零点,不合题意;④若a=﹣,则ln(﹣2a)=1,当x<1=ln(﹣2a)时,x﹣1<0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,当x>1时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,故函数f(x)在R上单调递增,函数f(x)在R上至多存在一个零点,不合题意;⑤若a<﹣,则ln(﹣2a)>lne=1,当x<1时,x﹣1<0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,当1<x<ln(﹣2a)时,x﹣1>0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)<0恒成立,故f(x)单调递减,当x>ln(﹣2a)时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,故当x=1时,函数取极大值,由f(1)=﹣e<0得:函数f(x)在R上至多存在一个零点,不合题意;综上所述,a的取值范围为(0,+∞)证明:(Ⅱ)∵x1,x2是f(x)的两个零点,∴f(x1)=f(x2)=0,且x1≠1,且x2≠1,∴﹣a==,令g(x)=,则g(x1)=g(x2)=﹣a,∵g′(x)=,∴当x<1时,g′(x)<0,g(x)单调递减;当x>1时,g′(x)>0,g(x)单调递增;设m>0,则g(1+m)﹣g(1﹣m)=﹣=,设h(m)=,m>0,则h′(m)=>0恒成立,即h(m)在(0,+∞)上为增函数,h(m)>h(0)=0恒成立,即g(1+m)>g(1﹣m)恒成立,令m=1﹣x1>0,则g(1+1﹣x1)>g(1﹣1+x1)⇔g(2﹣x1)>g(x1)=g(x2)⇔2﹣x1>x2,即x1+x2<2.【点评】本题考查的知识点是利用导数研究函数的极值,函数的零点,分类讨论思想,难度较大.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.【考点】N9:圆的切线的判定定理的证明.【专题】14:证明题;35:转化思想;49:综合法;5M:推理和证明.【分析】(Ⅰ)设K为AB中点,连结OK.根据等腰三角形AOB的性质知OK⊥AB,∠A=30°,OK=OAsin30°=OA,则AB是圆O的切线.(Ⅱ)设圆心为T,证明OT为AB的中垂线,OT为CD的中垂线,即可证明结论.【解答】证明:(Ⅰ)设K为AB中点,连结OK,∵OA=OB,∠AOB=120°,∴OK⊥AB,∠A=30°,OK=OAsin30°=OA,∴直线AB与⊙O相切;(Ⅱ)因为OA=2OD,所以O不是A,B,C,D四点所在圆的圆心.设T是A,B,C,D四点所在圆的圆心.∵OA=OB,TA=TB,∴OT为AB的中垂线,同理,OC=OD,TC=TD,∴OT为CD的中垂线,∴AB∥CD.【点评】本题考查了切线的判定,考查四点共圆,考查学生分析解决问题的能力.解答此题时,充分利用了等腰三角形“三合一”的性质.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.【考点】Q4:简单曲线的极坐标方程;QE:参数方程的概念.【专题】11:计算题;35:转化思想;4A:数学模型法;5S:坐标系和参数方程.【分析】(Ⅰ)把曲线C1的参数方程变形,然后两边平方作和即可得到普通方程,可知曲线C1是圆,化为一般式,结合x2+y2=ρ2,y=ρsinθ化为极坐标方程;(Ⅱ)化曲线C2、C3的极坐标方程为直角坐标方程,由条件可知y=x为圆C1与C2的公共弦所在直线方程,把C1与C2的方程作差,结合公共弦所在直线方程为y=2x可得1﹣a2=0,则a值可求.【解答】解:(Ⅰ)由,得,两式平方相加得,x2+(y﹣1)2=a2.∴C1为以(0,1)为圆心,以a为半径的圆.化为一般式:x2+y2﹣2y+1﹣a2=0.①由x2+y2=ρ2,y=ρsinθ,得ρ2﹣2ρsinθ+1﹣a2=0;(Ⅱ)C2:ρ=4cosθ,两边同时乘ρ得ρ2=4ρcosθ,∴x2+y2=4x,②即(x﹣2)2+y2=4.由C3:θ=α0,其中α0满足tanα0=2,得y=2x,∵曲线C1与C2的公共点都在C3上,∴y=2x为圆C1与C2的公共弦所在直线方程,①﹣②得:4x﹣2y+1﹣a2=0,即为C3 ,∴1﹣a2=0,∴a=1(a>0).【点评】本题考查参数方程即简单曲线的极坐标方程,考查了极坐标与直角坐标的互化,训练了两圆公共弦所在直线方程的求法,是基础题.[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.【考点】&2:带绝对值的函数;3A:函数的图象与图象的变换.【专题】35:转化思想;48:分析法;59:不等式的解法及应用.【分析】(Ⅰ)运用分段函数的形式写出f(x)的解析式,由分段函数的画法,即可得到所求图象;(Ⅱ)分别讨论当x≤﹣1时,当﹣1<x<时,当x≥时,解绝对值不等式,取交集,最后求并集即可得到所求解集.【解答】解:(Ⅰ)f(x)=,由分段函数的图象画法,可得f(x)的图象,如右:(Ⅱ)由|f(x)|>1,可得当x≤﹣1时,|x﹣4|>1,解得x>5或x<3,即有x≤﹣1;当﹣1<x<时,|3x﹣2|>1,解得x>1或x<,即有﹣1<x<或1<x<;当x≥时,|4﹣x|>1,解得x>5或x<3,即有x>5或≤x<3.综上可得,x<或1<x<3或x>5.则|f(x)|>1的解集为(﹣∞,)∪(1,3)∪(5,+∞).【点评】本题考查绝对值函数的图象和不等式的解法,注意运用分段函数的图象的画法和分类讨论思想方法,考查运算能力,属于基础题.。

2016年高考理科数学(全国新课标卷1)(含解析)

2016年高考理科数学(全国新课标卷1)(含解析)

绝密★启用前2016年普通高等学校招生全国统一考试(全国新课标卷1)理科数学使用地区:山西、河南、河北、湖南、湖北、江西、安徽、福建、广东本试卷分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷1至3页,第Ⅱ卷4至6页,满分150分. 考生注意:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3. 考试结束,监考员将本试题卷、答题卡一并收回.第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合2430={|}A x x x -+<,3{}0|2x B x ->=,则A B =( ) A .3(3,)2--B .3(3,)2-C .3(1,)2D .3(,3)22.设(1i)1i x y +=+,其中x ,y 是实数,则|i |x y +=( )A .1 BCD .23.已知等差数列{}n a 前9项的和为27,108a =,则100a =( )A .100B .99C .98D .974.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A .13 B .12 C .23D .345.已知方程222213xym nm n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )A .(1,3)-B.(1-C .(0,3)D.6.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是 ( )A .17πB .18πC .20πD .28π7.函数2|x|2y x e =-在[2,2]-的图象大致为( )ABC D 8. 若0a b >>,01c <<,则( )A .cca b <B .ccab ba > C .alog log b a c b c <D .log log a b c c<9.执行右面的程序框图,如果输入的0x =,1y =,1n =,则输出x ,y 的值满足( )A .2y x =B .3y x =C .4y x =D .5y x =10.以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点,已知||AB =||DE =C 的焦点到准线的距离为( )A .2B .4C .6D .811.平面α过正方体1111ABCD A B C D -的顶点A ,//α平面11CB D ,α平面=ABCD m ,α平面11=ABB A n ,则m ,n 所成角的正弦值为( )A B CD .1312.已知函数()sin()(0,||)2f x x πωϕωϕ=+>≤,4x π=-为()f x 的零点,4x π=为()y f x =图象的对称轴,且()f x 在5(,)1836ππ单调,则ω的最大值为( )A .11B .9C .7D .5姓名________________ 准考证号_____________--------在--------------------此-------------------卷-------------------上--------------------答-------------------题--------------------无------------------效----------第II 卷注意事项:第Ⅱ卷共3页,须用黑色墨水签字笔在答题卡上书写作答,若在试题卷上作答,答案无效.本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答. 二、填空题:本题共4小题,每小题5分.13.设向量a (,1)m =,b (1,2)=,且|a +b ||2=a ||2+b 2|,则m = . 14.5(2x 的展开式中,3x 的系数是 (用数字填写答案).15.设等比数列{}n a 满足1310a a +=,245a a +=,则12n a a a …的最大值为 . 16.某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元. 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos (cos cos )C a B b A c +=. (Ⅰ)求C ;(Ⅱ)若c =ABC △,求ABC △的周长.18.(本小题满分12分)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,90AFD ∠=,且二面角D AF E --与二面角C BE F --都是60. (Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E BC A --的余弦值.19.(本小题满分12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图: 以这100台机器更换的易损零件数的 频率代替1台机器更换的易损零件数 发生的概率,记X 表示2台机器三年 内共需更换的易损零件数,n 表示购 买2台机器的同时购买的易损零件数. (Ⅰ)求X 的分布列;(Ⅱ)若要求()0.5P X n ≤≥,确定n 的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n =19与n =20之中选其一,应选用哪个?20.(本小题满分12分)设圆22215=0x y x ++-的圆心为A ,直线l 过点(10)B ,且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(Ⅰ)证明||||EA EB +为定值,并写出点E 的轨迹方程;(Ⅱ)设点E 的轨迹为曲线1C ,直线l 交1C 于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.21.(本小题满分12分)已知函数2()(2)(1)xf x x e a x =-+-有两个零点.(Ⅰ)求a 的取值范围;(Ⅱ)设1x ,2x 是()f x 的两个零点,证明:122x x +<.请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修41-:几何证明选讲如图,OAB △是等腰三角形,120AOB ∠=.以O 为圆心,12OA 为半径作圆. (Ⅰ)证明:直线AB 与⊙O 相切;(Ⅱ)点C ,D 在⊙O 上,且A ,B ,C ,D 四点共圆,证明:AB CD ∥.23.(本小题满分10分)选修44-:坐标系与参数方程在直线坐标系xOy 中,曲线1C 的参数方程为cos ,1sin ,x a t y a t =⎧⎨=+⎩(t 为参数,0a >).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线2:4cos C ρθ=. (Ⅰ)说明1C 是哪一种曲线,并将1C 的方程化为极坐标方程;(Ⅱ)直线3C 的极坐标方程为0θα=,其中0α满足0tan 2α=,若曲线1C 与2C 的公共点都在3C 上,求a .24.(本小题满分10分),选修45-:不等式选讲已知函数()|1||23|f x x x =+--. (Ⅰ)在图中画出()y f x =的图象; (Ⅱ)求不等式|()|1f x >的解集.ABCDEF2016年普通高等学校招生全国统一考试(全国新课标卷1)理科数学答案解析第Ⅰ卷一、选择题 1.【答案】D【解析】{}{}2A x x 4x 30x 1x 3=-+<=<<,{}3B x 2x 30x x 2⎧⎫=->=>⎨⎬⎩⎭,故3B x 2⎧=⎨⎩【提示】解不等式求出集合【考点】交集及其运算【解析】(1i)x 1yi +=+,x xi 1yi ∴+=+,即x 1x y =⎧⎨=,解得x 1y 1=⎧⎨=,即x y i 1i 2+=+=【解析】等差数列,又10a 8=,【提示】根据已知可得【考点】等差数列的性质】双,方【解析】f (x)y =时,y 8=-x4x e 0-=【解析】a b 1>>线的距离为4.【提示】画出图形,设出抛物线方程,利用勾股定理以及圆的半径列出方程求解即可.【考点】圆与圆锥曲线的综合,抛物线的简单性质11.【答案】A【解析】如图,α∥平面CB α平面ABCD α平面ABA,11CB D △60,则m 32.【提示】画出图形,判断出m 【考点】异面直线及其所成的角【解析】πx 4=-为1πT 2=,即12ππ(n N 2=∈ω为正奇数,f (x)在5π36⎛⎫⎪⎝⎭上单调,πππ361812-=时,11π4-+π2ϕ≤,9π4-+ϕ,π2ϕ≤,ω【答案】2-222a b a b +=+,可得a b 0=,向量a (m,1)=,b (1,2)=,n123n (q++++-…6264==.【提示】设A ,B 两种产品分别是标函数,利用线性规划作出可行域,通过目标函数的几何意义,求出其最大值即可.【考点】简单线性规划的应用三、解答题17.【答案】(Ⅰ)在ABC △已知等式利用正弦定理化简得12ab2,(a ∴的周长为5+(Ⅰ)A BEF 为正方形,AFD 90∠=,A F DF ∴⊥,DF EF F =,AF ∴⊥平面EFDCAF ⊂平面∴平面A BEF (Ⅱ)由A BE EF ⊥BE ∴⊥平面可得DFE 60∠.A B EF ∥EFDC AB ∴∥平面平面EFDC 平面ABCD ,EB (0,2a,0)∴=,a BC ,⎛= ,AB (2a,0,0)=-设平面BEC 的法向量为m (x ,=,则m EB 0m BC 0⎧=⎪⎨=⎪⎩,则m (3,0,=设平面ABC 的法向量为n (x ,y ,z =n BC=0n AB 0⎧⎪⎨=⎪⎩,则,取n (0,3,4)=的大小为θ,m n |m ||n |31316==++【提示】(Ⅰ)证明AF ⊥平面EFDC 平面EFDC ;(Ⅱ)证明四边形EFDC 为等腰梯形,4040=1EX EX <解法二:购买零件所用费用含两部分,一部分为购买零件的费用,另一部分为备件不足时额外购222222143m 41m1m||MN |12242423m 41m3m 4+++===+++时,S 取得最小值12,又10>,可得3S 24833<=【提示】(Ⅰ)求得圆A EB ED =,再由圆的定义和椭圆的定义,b ,c ,即可得到所求轨迹方程;(Ⅱ)设直线l :x my =+0)1x ,2x 1x 121(x 2)e (x 1)-=-2[(x 2)g (x)-+'=∴当x 1<时,e 1,OA OB =120,OK ∴30,1OK OAsin30OA 2=直线AB 与O 相切;D 四点所在圆的圆心,设四点所在圆的圆心,OA OB =的中垂线,∴AB 中点,连结30,1OK OAsin30OA 2=曲线如图:(Ⅱ)由f (x)1>,可得,当3当x ≥时,4x 1->,解得x 5>或x 3<,即有x 3≤<或x 5>.(1,3)(5,)⎫+∞⎪⎭(Ⅰ)运用分段函数的形式写出f (x)的解析式,由分段函数的画法,即可得到所。

2016年高考理科数学全国1卷,附答案

2016年高考理科数学全国1卷,附答案

2016 年高考数学全国 1 卷(理科)一、选择题:本大题共12 小题,每小题 5 分,每小题只有一项是符合题目要求的.9.执行如图的程序框图,如果输入的x=0, y=1,n=1,则输出x ,y 的值满足()2﹣4x+3<0} ,B={x|2x ﹣3>0} ,则 A ∩B=()1.设集合 A={x| x A .(﹣3,﹣)B .(﹣3, ) C.(1, )D .( ,3)2.设( 1+i )x=1+yi ,其中 x ,y 是实数,则 |x+yi|= ( ) A .1B.C.D. 23.已知等差数列 {a n } 前 9 项的和为 27,a 10=8,则 a100=( )A .100B.99C.98D. 97 4.某公司的班车在 7:00,8:00,8:30 发车,小明在 7:50 至 8:30 之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过 10 分钟的概率是( )A .y=2xB .y=3xC . y=4xD.y=5x A .B.C .D .10.以抛物线 C 的顶点为圆心的圆交 C 于 A 、B 两点,交 C 的准线于 D 、 E 两点.已知 |AB|=4,|DE|=2 ,则 C 的焦 点到准线的距离为( ) 5.已知方程﹣=1 表示双曲线,且该双曲线两焦点间的距离为 4,则 n 的取值范围是( )A .2B.4C.6D.8A .(﹣1, 3) B .(﹣1, )C .( 0,3)D.( 0,)11.平面 α过正方体 ABCD ﹣A 1B 1C 1D 1 的顶点 A ,α ∥平面 CB 1D 1,α ∩平面 ABCD=,m α ∩平面 ABB 1A 1=n ,则 m 、n所成角的 6.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是 ,正弦值为( ) 则它的表面积是()A .B.C.D .12.已知函数 f (x )=sin ( ωx+φ)(ω>0,| φ| ≤ ), x=﹣为 f ( x )的零点, x= 为 y=f (x )图象的对称轴, 且 f ( x )在(, )上单调,则 ω 的最大值为() A .17πB . 18πC .20πD .28πA .11B.9C.7D. 57.函数y=2x2﹣e |x|在[﹣2,2] 的图象大致为()二、填空题:本大题共4 小题,每小题5 分,共 20 分 .13.设向量=(m , 1), =(1,2),且 |+ | 2=| | 2+| | 2,则m= .14.(2x+)5 的展开式中, x 3 的系数是.(用数字填写答案)15.设等比数列 {a n } 满足a 1+a 3=10,a 2+a 4=5,则 a 1a 2⋯ a n 的最大值为.A .B .C .D .16.某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料 1.5kg ,乙材料 1kg ,用 5 8.若 a >b >1,0<c <1,则()个工时;生产一件产品B 需要甲材料 0.5kg ,乙材料 0.3kg ,用 3 个工时,生产一件产品A 的利润为 2100 元,生产一件 A .ac <b c B .ab c <ba c C .alogc <b c B .ab c <ba c C .alogb c <blog a c D .log a c <log b c产品B 的利润为 900 元.该企业现有甲材料 150kg ,乙材料 90kg ,则在不超过 600 个工时的条件下,生产产品A 、产品B 的利润之和的最大值为元.第 1页共 9 页深圳星火教育龙华数学组余凤老师整理三、解答题:本大题共 5 小题,满分60 分,解答须写出文字说明、证明过程或步骤.19.(12 分)某公司计划购买 2 台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器演算外时,可以额17.(12 分)△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.购买这种零件作为备件,每个200 元.在机器使用期间,如果备件不足再购买,则每个500 元.现需决策在购买机器时了100 台这种机器在三年使用期内更换的易损零件数,整理集并(Ⅰ)求C;应同时购买几个易损零件,为此搜状图:得如图柱以这100 台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示 2 台机器三年内共需更为,求△ABC的周长.(Ⅱ)若c= ,△ABC的面积换的易损零件数,n 表示购买 2 台机器的同时购买的易损零件数.(Ⅰ)求X的分布列;(Ⅱ)若要求P(X≤n)≥0.5 ,确定n 的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n=19 与n=20 之中选其一,应选用哪个?18.(12 分)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角 DE与二面角C﹣B E﹣F都是60°.A F﹣﹣(Ⅰ)证明平面ABEF⊥平面EFDC;A的余弦值.B C﹣(Ⅱ)求二面角E﹣第2页共9 页理整深圳星火教育龙华数学组余凤老师20.(12 分)设圆x2+y2+2x﹣15=0 的圆心为A,直线l 过点B(1,0)且与x 轴不重合,l 交圆 A 于C,D两点,过 B 作2+y2+2x﹣15=0 的圆心为A,直线l 过点B(1,0)且与x 轴不重合,l 交圆A 于C,D两点,过 B 作21.(12 分)已知函数 f (x)=(x﹣2)ex+a(x﹣1)x+a(x﹣1)2 有两个零点.AC的平行线交AD于点E.(Ⅰ)求 a 的取值范围;(Ⅰ)证明|EA|+|EB| 为定值,并写出点 E 的轨迹方程;(Ⅱ)设x1,x2 是f (x)的两个零点,证明:x1+x2<2.(Ⅱ)设点E的轨迹为曲线C1,直线l 交C1 于M,N两点,过 B 且与l 垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.第 3 页共9 页深圳星火教育龙华数学组余凤老师整理请考生在22、23、24 题中任选一题作答,如果多做,则按所做的第一题计分. [ 选修4-5 :不等式选讲]24.已知函数 f (x)=|x+1| ﹣|2x ﹣3| .[ 选修4-1 :几何证明选讲] (Ⅰ)在图中画出y=f (x)的图象;(Ⅱ)求不等式|f (x)| >1 的解集.22.(10 分)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.[ 选修4-4 :坐标系与参数方程]23.在直角坐标系xOy中,曲线C1 的参数方程为(t 为参数,a>0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cos θ.(Ⅰ)说明C1 是哪种曲线,并将C1 的方程化为极坐标方程;(Ⅱ)直线C3 的极坐标方程为θ=α0,其中α0 满足tan α0=2,若曲线C1 与C2 的公共点都在C3 上,求a.第 4 页共9 页深圳星火教育龙华数学组余凤老师整理2016 年高考数学全国 1 卷(理科)参考答案与试题解析7.【解答】 解:∵ f (x )=y=2x 2﹣e |x| ,∴ f (﹣x )=2(﹣x )2﹣e |x| ,∴ f (﹣x )=2(﹣x )2﹣e |﹣x | =2x 2﹣e |x| ,故函数为偶函数, 一、选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.2 2 x当 x=±2 时, y=8﹣e ∈( 0,1),故排除 A ,B ; 当 x ∈[0 , 2] 时, f (x ) =y=2x ﹣e ,1.【解答】 解:∵集合A={x|x2﹣4x+3<0}= (1,3),B={x|2x ﹣3>0}= ( ,+∞),∴ f ′( x )=4x ﹣e x =0 有解,故函数 y=2x 2﹣e |x| 在[0 ,2] 不是单调的,故排除 C ,x =0 有解,故函数 y=2x 2﹣e |x| 在[0 ,2] 不是单调的,故排除 C ,故选: D∴A ∩B=( ,3),故选: D8.【解答】 解:∵ a >b >1,0< c <1,2.【解答】 解:∵( 1+i ) x=1+yi ,∴ x+xi=1+yi ,即,解得,即 |x+yi|=|1+i|=,∴函数 f (x) =x c 在( 0,+∞)上为增函数,故 a c >b c ,故 A 错误;c 在( 0,+∞)上为增函数,故 a c >b c ,故 A 错误; 故选: B .函数 f (x )=x c ﹣1 在( 0,+∞)上为减函数,故 a c ﹣1<b c ﹣1,故 ba c <ab c,即 ab c >ba c ;故 B 错误; c ﹣1 在( 0,+∞)上为减函数,故 a c ﹣1<b c ﹣1,故 ba c <ab c ,即 ab c >ba c ;故 B 错误;log a c <0,且 log b c <0,log a b < 1,即= <1,即 log a c >log b c .故 D 错误;3.【解答】 解:∵等差数列 {a n }前 9 项的和为 27,S 9===9a 5 .0<﹣l og a c <﹣l og b c ,故﹣b log a c <﹣a log b c ,即 blog a c >alog b c ,即 alog b c <blog a c ,故 C 正确;∴9a 5=27,a 5 =3,又∵ a 10=8,∴ d=1,∴ a 100=a 5+95d=98,故选: C故选: C4. 【解答】 解:设小明到达时间为y ,当 y 在 7: 50 至 8:00,或 8:20 至 8:30 时,9.【解答】 解:输入x =0,y=1,n=1,则x =0,y=1,不满足x2+y 2≥ 36,故 n=2,2+y 2≥ 36,故 n=2,小明等车时间不超过10 分钟,故 P= = ,故选: B则x= ,y=2,不满足x 2+y 2≥ 36,故 n=3,则x = ,y=6,满足x 2+y 2≥ 36,故 y=4x ,2+y 2≥ 36,故 n=3,则x = ,y=6,满足x 2+y 2≥ 36,故 y=4x , 故选: C5.【解答】 解:∵双曲线两焦点间的距离为4,∴ c=2,当焦点在 x 轴上时,可得: 4=(m2+n )+(3m 2﹣n ),解得: m2=1, 22∵方程﹣=1 表示双曲线,∴( m +n )(3m ﹣n )> 0,可得:(n+1)(3﹣n )> 0,210.【解答】 解:设抛物线为 y =2px ,如图: |AB|=4,|AM|=2 ,|DE|=2 ,|DN|= ,|ON|= ,解得:﹣1<n <3,即 n 的取值范围是: (﹣1,3).当焦点在 y 轴上时,可得:﹣4=(m 2+n )+(3m 2﹣n ),解得: m 2=﹣1, 2+n )+(3m 2﹣n ),解得: m 2=﹣1, x A = = , |OD|=|OA| ,=+5,解得: p=4.C 的焦点到准线的距离为:4.无解.故选: A .故选: B .6.【解答】 解:由题意可知三视图复原的几何体是一个球去掉后的几何体,如图: 可得:=,R=2.它的表面积是:×4π?2 2+=17π.故选:A.共9 页第5页理整深圳星火教育龙华数学组余凤老师11.【解答】解:如图:α∥平面CB1D1,α∩平面ABCD=,mα∩平面ABA1B1=n,15.【解答】解:等比数列{a n} 满足a1+a3=10,a2+a4=5,可得q(a1+a3)=5,解得q= .a1+q1=10,解得a1=8.2a2a可知:n∥CD1,m∥B1D1,∵△CB1D1 是正三角形.m、n 所成角就是∠CD1B1=60°.则m、n 所成角的正弦值为:.故选:A.则a1a2⋯a n=a1n?q1+2+3+⋯+(n﹣1)=8n? = = ,当n=3 或4时,表达式取得最大值:=26=64.n?q1+2+3+⋯+(n﹣1)=8n? = = ,当n=3 或4 时,表达式取得最大值:=26=64.故答案为:64.16.【解答】解:(1)设A、B两种产品分别是x 件和y 件,获利为z 元.由题意,得,z=2100x+900y .不等式组表示的可行域如图:由题意可得,解得:,A(60,100),目标函数z=2100x+900y .经过 A 时,直线的截距最大,目标函数取得最大值:2100×60+900×100=216000元.12.【解答】解:∵x=﹣为f (x)的零点,x= 为y=f (x)图象的对称轴,故答案为:216000.∴,即,(n∈N)即ω=2n+1,(n∈N)即ω为正奇数,∵f (x)在(,)上单调,则﹣= ≤,即T= ≥,解得:ω≤12,当ω=11 时,﹣+φ=kπ,k∈Z,∵| φ| ≤,∴φ=﹣,此时 f (x)在(,)不单调,不满足题意;当ω=9 时,﹣+φ=kπ,k∈Z,∵| φ| ≤,∴φ= ,此时 f (x)在(,)单调,满足题意;故ω的最大值为9,故选: B二、填空题:本大题共 4 小题,每小题 5 分,共25 分.13.【解答】解:| + | 2=||2+||2,可得? =0.向量=(m,1),=(1,2),三、解答题:本大题共 5 小题,满分60 分,解答须写出文字说明、证明过程或演算步骤.可得m+2=0,解得m=﹣2.故答案为:﹣2.17.【解答】解:(Ⅰ)∵在△ABC中,0<C<π,∴sinC ≠0已知等式利用正弦定理化简得:2cosC(sinAcosB+sinBcosA )=sinC ,整理得:2cosCsin (A+B)=sinC ,14.【解答】解:(2x+ )r+1= =25 的展开式中,通项公式为:T5﹣r ,5 的展开式中,通项公式为:T5﹣r ,即2cosCsin (π﹣(A+B))=sinC2cosCsinC=sinC ∴cosC= ,∴C= ;令5﹣=3,解得r=4 ∴x 3 的系数 2 =10.故答案为:10.3 的系数 2 =10.故答案为:10.(Ⅱ)由余弦定理得7=a2+b2﹣2ab? ,∴(a+b)2+b2﹣2ab? ,∴(a+b)2﹣3ab=7,∵S= absinC= ab= ,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5+ .第6页共9 页深圳星火教育龙华数学组余凤老师整理18.【解答】(Ⅰ)证明:∵ABEF为正方形,∴AF⊥EF.∵∠AFD=90°,∴AF⊥DF,19.【解答】解:(Ⅰ)由已知得X 的可能取值为16,17,18,19,20,21,22,∵DF∩EF=F,∴AF⊥平面EFDC,∵AF? 平面ABEF,∴平面ABEF⊥平面EFDC;P(X=16)=()2= ,(Ⅱ)解:由AF⊥DF,AF⊥EF,可得∠DFE为二面角D﹣A F﹣E的平面角;由ABEF为正方形,AF⊥平面EFDC,P(X=17)= ,∵BE⊥EF,∴BE⊥平面EFDC即有CE⊥BE,可得∠CEF为二面角C﹣B E﹣F的平面角.可得∠DFE=∠CEF=60°.∵AB∥EF,AB?平面EFDC,EF? 平面EFDC,∴AB∥平面EFDC,∵平面EFDC∩平面ABCD=C,D AB? 平面ABCD,P(X=18)=()2+2()2= ,∴AB∥CD,∴CD∥EF,∴四边形EFDC为等腰梯形.以E为原点,建立如图所示的坐标系,设FD=a,P(X=19)= = ,则E(0,0,0),B(0,2a,0),C(,0,a),A(2a,2a,0),P(X=20)= = = ,∴=(0,2a,0),=(,﹣2a,a),=(﹣2a,0,0)P(X=21)= = ,P(X=22)= ,设平面BEC的法向量为=(x1,y1,z1),则,则,取=(,0,﹣1).∴X的分布列为:X 16 17 18 19 20 21 22设平面ABC的法向量为=(x2,y2,z2),则,则,取=(0,,4).P(Ⅱ)由(Ⅰ)知:设二面角E﹣B C﹣A的大小为θ,则cosθ= = =﹣,P(X≤18)=P(X=16)+P(X=17)+P(X=18)= = .则二面角E﹣B C﹣A的余弦值为﹣.P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19)= + = .∴P(X≤n)≥0.5 中,n 的最小值为19.(Ⅲ)解法一:由(Ⅰ)得P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19)= + = .买19 个所需费用期望:EX1=200×+(200×19+500)×+(200×19+500×2)×+(200×19+500×3)×=4040,买20 个所需费用期望:EX2= +(200×20+500)×+(200×20+2×500)×=4080,∵EX1<EX2,∴买19 个更合适.第7页共9 页理整深圳星火教育龙华数学组余凤老师解法二:购买零件所用费用含两部分,一部分为购买零件的费用,21.【解答】解:(Ⅰ)∵函数 f (x)=(x﹣2)ex+a(x﹣1)2,∴f ′(x)=(x﹣1)e x+2a(x﹣1)=(x﹣1)(e x+2a),x+a(x﹣1)2,∴f ′(x)=(x﹣1)e x+2a(x﹣1)=(x﹣1)(e x+2a),另一部分为备件不足时额外购买的费用,x①若a=0,那么 f (x)=0? (x﹣2)e =0? x=2,函数 f (x)只有唯一的零点2,不合题意;当n=19 时,费用的期望为:19×200+500×0.2+1000 ×0.08+1500 ×0.04=4040 ,②若a>0,那么e x+2a>0 恒成立,当x<1 时,f ′(x)<0,此时函数为减函数;x+2a>0 恒成立,当x<1 时,f ′(x)<0,此时函数为减函数;当n=20 时,费用的期望为:20×200+500×0.08+1000 ×0.4=4080 ,∴买19 个更合适.当x>1 时,f ′(x)>0,此时函数为增函数;此时当x=1 时,函数 f (x)取极小值﹣e,x由f (2)=a>0,可得:函数 f (x)在x>1 存在一个零点;当x<1 时,e <e,x﹣2<﹣1<0,20.【解答】解:(Ⅰ)证明:圆x2+y2+2x﹣15=0 即为(x+1)2+y2+2x﹣15=0 即为(x+1)2+y2 =16,可得圆心A(﹣1,0),半径r=4,∴f (x)=(x﹣2)e >(x﹣2)e+a(x﹣1)x+a(x﹣1) 2x+a(x﹣1) 22=a(x﹣1)2 +e(x﹣1)﹣e,由BE∥AC,可得∠C=∠EBD,由AC=AD,可得∠D=∠C,即为∠D=∠EBD,即有EB=ED,令a(x﹣1)2+e(x﹣1)﹣e=0 的两根为t2+e(x﹣1)﹣e=0 的两根为t 1,t 2,且t 1 <t 2,则|EA|+|EB|=|EA|+|ED|=|AD|=4 ,故 E 的轨迹为以A,B为焦点的椭圆,则当x<t 1,或x>t 2 时,f (x)>a(x﹣1)2+e(x﹣1)﹣e>0,故函数 f (x)在x<1 存在一个零点;即函数 f (x)在R是存在两个零点,满足题意;且有2a=4,即a=2,c=1,b= = ,则点 E 的轨迹方程为+ =1(y≠0);③若﹣<a<0,则ln (﹣2a)<lne=1 ,当x<ln (﹣2a)时,x﹣1<ln (﹣2a)﹣1<lne ﹣1=0,(Ⅱ)椭圆C1:+ =1,设直线l :x=my+1,由PQ⊥l ,设PQ:y=﹣m(x﹣1),e x+2a<e ln (﹣2a)+2a=0,即 f ′(x)=(x﹣1)(e x+2a)>0 恒成立,故 f (x)单调递增,x+2a<e ln (﹣2a)+2a=0,即 f ′(x)=(x﹣1)(e x+2a)>0 恒成立,故 f (x)单调递增,当ln (﹣2a)<x<1 时,x﹣1<0,ex +2a>e ln (﹣2a)+2a=0,由可得(3m 1,y1),N(x2,y2 ),可得y1+y2=﹣,y1y2=﹣,2+4)y2+6my﹣9=0,设M(x2+4)y2+6my﹣9=0,设M(x 即f ′(x)=(x﹣1)(e x+2a)<0 恒成立,故 f (x)单调递减,当x>1 时,x﹣1>0,e x+2a>e ln (﹣2a)+2a=0,x+2a)<0 恒成立,故 f (x)单调递减,当x>1 时,x﹣1>0,e x+2a>e ln (﹣2a)+2a=0,即f ′(x)=(x﹣1)(ex+2a)>0 恒成立,故 f (x)单调递增,故当x=ln (﹣2a)时,函数取极大值,则|MN|= ?|y 1﹣y2|= ? = ? =12? ,由f (ln (﹣2a))=[ln (﹣2a)﹣2] (﹣2a)+a[ln (﹣2a)﹣1] 2=a{[ln (﹣2a)﹣2] 2+1} <0 得:函数 f (x)在R上至多存在一个零点,不合题意;A到PQ的距离为d= = ,|PQ|=2 =2 = ,④若a=﹣,则ln (﹣2a)=1,当x<1=ln (﹣2a)时,x﹣1<0,ex+2a<e ln (﹣2a)+2a=0,x+2a<e ln (﹣2a)+2a=0,即f ′(x)=(x﹣1)(ex+2a)>0 恒成立,故 f (x)单调递增,当x>1 时,x﹣1>0,e x+2a>e ln (﹣2a)+2a=0,则四边形MPNQ面积为S= |PQ| ?|MN|= ? ?12 ?即f ′(x)=(x﹣1)(e x+2a)>0 恒成立,故 f (x)单调递增,故函数 f (x)在R上单调递增,x+2a)>0 恒成立,故 f (x)单调递增,故函数 f (x)在R上单调递增,函数 f (x)在R上至多存在一个零点,不合题意;=24? =24 ,当m=0时,S取得最小值12,又>0,可得S<24? =8 ,⑤若a<﹣,则ln (﹣2a)>lne=1 ,当x<1 时,x﹣1<0,ex+2a<e ln (﹣2a)+2a=0,x+2a<e ln (﹣2a)+2a=0,即f ′(x)=(x﹣1)(ex+2a)>0 恒成立,故 f (x)单调递增,即有四边形MPNQ面积的取值范围是[12 ,8 ).当1<x<ln (﹣2a)时,x﹣1>0,ex+2a<e ln (﹣2a)+2a=0,x+2a<e ln (﹣2a)+2a=0,即f ′(x)=(x﹣1)(ex+2a)<0 恒成立,故 f (x)单调递减,当x>ln (﹣2a)时,x﹣1>0,ex+2a>e ln (﹣2a)+2a=0,即f ′(x)=(x﹣1)(ex+2a)>0 恒成立,故 f (x)单调递增,故当x=1 时,函数取极大值,由f (1)=﹣e<0 得:函数 f (x)在R上至多存在一个零点,不合题意;综上所述, a 的取值范围为(0,+∞)第8 页共9 页深圳星火教育龙华数学组余凤老师整理证明:(Ⅱ)∵x1,x2 是f (x)的两个零点,∴y=2x 为圆C1 与C2 的公共弦所在直线方程,①﹣②得:4x﹣2y+1﹣a3 ,2=0,即为 C2=0,即为 C∴f (x1)=f (x2)=0,且x1≠1,且x2≠1, 2∴1﹣a =0,∴a=1(a>0).∴﹣a= = ,令g(x)= ,则g(x1)=g(x2)=﹣a,[ 选修4-5 :不等式选讲]24.∵g′(x)= ,∴当x<1 时,g′(x)<0,g(x)单调递减;【解答】解:(Ⅰ)f (x)= ,当x>1 时,g′(x)>0,g(x)单调递增;设m>0,则g(1+m)﹣g(1﹣m)= ﹣= ,由分段函数的图象画法,可得 f (x)的图象,如右:设h(m)= ,m>0,(Ⅱ)由|f (x)| >1,可得当x≤﹣1 时,|x ﹣4| >1,解得x>5 或x<3,即有x≤﹣1;则h′(m)= >0 恒成立,即h(m)在(0,+∞)上为增函数,当﹣1<x<时,|3x ﹣2| >1,解得x>1 或x<,即有﹣1<x<或1<x<;h(m)>h(0)=0 恒成立,即g(1+m)>g(1﹣m)恒成立,当x≥时,|4 ﹣x| >1,解得x>5 或x<3,即有x>5 或≤x<3.令m=1﹣x1>0,则g(1+1﹣x1)>g(1﹣1+x1)? g(2﹣x1)>g(x1)=g(x2)? 2﹣x1>x2,综上可得,x<或1<x<3 或x>5.则|f (x)| >1 的解集为(﹣∞,)∪(1,3)∪(5,+∞).即x1+x2<2.请考生在22、23、24 题中任选一题作答,如果多做,则按所做的第一题计分.[ 选修4-1 :几何证明选讲]【解答】证明:(Ⅰ)设K为AB中点,连结OK,∵OA=O,B∠AOB=120°,∴OK⊥AB,∠A=30°,OK=OAsin30°= OA,∴直线AB与⊙O相切;(Ⅱ)因为OA=2OD,所以O不是A,B,C,D四点所在圆的圆心.设T是A,B,C,D四点所在圆的圆心.∵OA=O,B TA=TB,∴OT为AB的中垂线,同理,OC=OD,TC=TD,∴OT为CD的中垂线,∴AB∥CD.[ 选修4-4 :坐标系与参数方程]【解答】解:(Ⅰ)由,得,两式平方相加得,x2+(y﹣1)2+(y﹣1)2=a2.∴C1 为以(0,1)为圆心,以 a 为半径的圆.化为一般式:x2+y2﹣2y+1﹣a2=0.①由x2+y2=ρ2+y2=ρ2,y=ρsin θ,得ρ2﹣2ρsin θ+1﹣a2=0;(Ⅱ)C2:ρ=4cos θ,两边同时乘ρ得ρ2=4ρcosθ,∴x2+y2=4x,②即(x﹣2)2+y2=4.由C3:θ=α0,其中α0 满足t an α0=2,得y=2x,∵曲线C1 与C2 的公共点都在C3 上,第9页共9 页深圳星火教育龙华数学组余凤老师整理。

2016年高考理科数学全国2卷(附答案)

2016年高考理科数学全国2卷(附答案)

.'.学校:____________________ _______年_______班 姓名:____________________ 学号:________- - - - - - - - - 密封线 - - - - - - - - - 密封线 - - - - - - - - -绝密★启用前2016年普通高等学校招生全国统一考试理科数学 全国II 卷(全卷共12页)(适用地区:贵州,甘肃,青海,西藏,黑龙江,吉林,辽宁,宁夏,新疆,内蒙古,云南,重庆,陕西,海南)注意事项:1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。

2.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

3.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

4. 考试结束后,将本试卷和答案卡一并交回。

第I 卷一、 选择题:本题共12小题,每小题5分。

在每个小题给出的四个选项中, 只有一项是符合题目要求的。

(1) 已知i m m z )1()3(-++=在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(3-,1) (B )(1-,3) (C )(1,∞+) (D )(∞-,3-) (2) 已知集合{}3,2,1=A ,{}Z x x x x B ∈<-+=,0)2)(1(,则=B A Y(A ){}1 (B ){}2,1 (C ){}3,2,1,0 (D ){}3,2,1,0,1- (3) 已知向量),1(m a =,)2,3(-=b 且b b a ⊥+)(,则=m(A )8- (B )6- (C )6 (D )8 (4) 圆0138222=+--+y x y x的圆心到直线01=-+y ax 的距离为1,则=a(A )34- (B )43- (C )3 (D )2(5) 如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为 (A )24 (B )18 (C )12 (D )9(6) 右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π (B )24π (C )28π (D )32π(7) 若将函数x y 2sin 2=的图像向左平移12π个单位长度,则平移后图像的对称轴为(A ))(62Z k k x ∈-=ππ (B ))(62Z k k x ∈+=ππ (C ))(122Z k k x ∈-=ππ (D ))(122Z k k x ∈+=ππ(8) 中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的2=x ,2=n ,依次输入的a 为2,2,5,则输出的=s(A )7.'.(B )12 (C )17 (D )34(9) 若53)4cos(=-απ,则=α2sin(A )257 (B )51(C )51- (D )257-(10) 以从区间[]1,0随机抽取n 2个数n n y y y x x x ,⋯⋯,,,,,,2121,构成n 个数对),(),,(),,(2211n n y x y x y x ,⋯,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为 (A )m n 4 (B )m n 2 (C )n m 4 (D )nm2(11) 已知21,F F 是双曲线E :12222=-bya x 的左,右焦点,点M 在E 上,1MF 与x 轴垂直,31sin 12=∠F MF ,则E 的离心率为 (A )2 (B )23(C )3 (D )2(12) 已知函数))((R x x f ∈满足)(2)(x f x f -=-,若函数xx y 1+=与)(x f y =图像的交点为),(,),,(),,(2211m m y x y x y x ⋯,则=+∑=mi i iy x1)((A )0 (B )m (C )m 2 (D )m 4第Ⅱ卷本卷包括必考题和选考题两部分。

2016全国1高考数学(理)真题及答案解析精编版.doc

2016全国1高考数学(理)真题及答案解析精编版.doc

2016 年普通高等学校招生全国统一考试理科数学及答案注意事项:1. 本试卷分第Ⅰ卷 ( 选择题 ) 和第Ⅱ卷 ( 非选择题 ) 两部分 . 第Ⅰ卷 1 至 3 页,第Ⅱ卷 3至5页.2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3. 全部答案在答题卡上完成,答在本试题上无效 .4. 考试结束后,将本试题和答题卡一并交回 .第Ⅰ卷一 . 选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合A { x | x 24x 3 0} , B { x | 2x 3 0} ,则 A I B( 3, 3)( 3,3)(1,3)( 3,3)(A )2(B )2(C )2(D )2(2)设(1 i) x1yi,其中 x ,y 是实数,则x yi =(A )1(B )2(C ) 3(D )2(3)已知等差数列{ an}前9项的和为27,a10=8,则a100=(A)100(B)99(C)98(D)97(4)某公司的班车在 7:00 ,8:00 ,8:30 发车,小明在 7:50 至 8:30 之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10 分钟的概率是(A)( B)( C)( D)(5)已知方程– =1 表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是(A)( –1,3)(B)(–1,3)(C)(0,3)(D)(0,3)(6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径 . 若该几何体的体积是,则它的表面积是(A)17π( B)18π( C)20π( D)28π(7)函数y=2x2–e|x|在[ –2,2] 的图像大致为(A)(B)(C)(D)(8)若a b 10, c 1,则(A)a c b c() ab c ba c()()B C a log b c b log a c D log a c log b c(9)执行右面的程序图,如果输入的x 0, y 1, n 1,则输出x,y的值满足(A)y2x (B) y 3x (C) y 4x (D) y 5x(10)以抛物线 C的顶点为圆心的圆交 C于 A、B两点,交 C的标准线于 D、E两点. 已知 | AB|= 4 2,| DE|=2 5,则C的焦点到准线的距离为(A)2(B)4(C)6(D)8(11) 平面a过正方体ABCD-A B CD的顶点A,a// 平面CBD,平面 ABCD=m,1111 1 1a a平面 ABA1B1=n,则 m、n 所成角的正弦值为(A) 3(B)2(C)3(D) 1 223 312. 已知函数 f xsin(x+)(0,), x 为 f (x) 的零点, x为 y f ( x) 图( )442像的对称轴,且 f ( x) 在5单调,则的最大值为18 ,36(A )11(B )9(C )7 (D )5第II 卷本卷包括必考题和选考题两部分 . 第(13) 题~第 (21) 题为必考题, 每个试题考生都必须作答 . 第(22) 题~第(24) 题为选考题,考生根据要求作答 .二、填空题:本大题共3 小题,每小题 5 分(13) 设向量 a =( m ,1) ,b =(1 ,2) ,且 | a +b | 2=| a | 2+| b | 2,则 m =.(14) (2 x x )5 的展开式中, x 3 的系数是 . (用数字填写答案)( 15)设等比数列满足 a 1+a 3=10,a 2+a 4=5,则 a 1a 2 a n 的最大值为。

2016年高考全国2卷理科数学及答案

2016年高考全国2卷理科数学及答案

绝密★启用前2016年普通高等学校招生全国统一考试理科数学 全国II 卷(全卷共12页)(适用地区:贵州,甘肃,青海,西藏,黑龙江,吉林,辽宁,宁夏,新疆,内蒙古,云南,重庆,陕西,海南)注意事项:1. 本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。

2. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

3. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束后,将本试卷和答案卡一并交回。

第I 卷一、 选择题:本题共12小题,每小题5分。

在每个小题给出的四个选项中, 只有一项是符合题目要求的。

(1) 已知i m m z )1()3(−++=在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(3−,1) (B )(1−,3) (C )(1,∞+) (D )(∞−,3−) (2) 已知集合{}3,2,1=A ,{}Z x x x x B∈<−+=,0)2)(1(,则=B A(A ){}1 (B ){}2,1 (C ){}3,2,1,0 (D ){}3,2,1,0,1− (3) 已知向量),1(m a =,)2,3(−=b 且b b a ⊥+)(,则=m(A )8− (B )6− (C )6 (D )8 (4) 圆0138222=+−−+y x y x的圆心到直线01=−+y ax 的距离为1,则=a(A )34−(B )43− (C )3 (D )2(5) 如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为 (A )24 (B )18 (C )12 (D )9(6) 右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π (B )24π (C )28π (D )32π(7) 若将函数x y 2sin 2=的图像向左平移12π个单位长度,则平移后图像的对称轴为 (A ))(62Z k k x ∈−=ππ (B ))(62Z k k x ∈+=ππ(C ))(122Z k k x ∈−=ππ (D ))(122Z k k x ∈+=ππ(8) 中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的2=x ,2=n ,依次输入的a 为2,2,5,则输出的=s(A )7 (B )12(C )17 (D )34(9) 若53)4cos(=−απ,则=α2sin(A )257(B )51(C )51− (D )257−(10) 以从区间[]1,0随机抽取n 2个数n n y y y x x x ,⋯⋯,,,,,,2121,构成n 个数对),(),,(),,(2211n n y x y x y x ,⋯,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为 (A )n 4 (B )n 2 (C )m 4 (D )m 2否是 0,0==s kn k >输入n x ,输出s开始 结束输入a1+=+⋅=k k ax s s(11) 已知21,F F 是双曲线E :12222=−by a x 的左,右焦点,点M 在E 上,1MF 与x 轴垂直,31sin 12=∠F MF ,则E 的离心率为 (A )2 (B )23(C )3 (D )2(12) 已知函数))((R x x f ∈满足)(2)(x f x f −=−,若函数xx y 1+=与)(x f y =图像的交点为),(,),,(),,(2211m m y x y x y x ⋯,则=+∑=mi i i y x 1)((A )0 (B )m (C )m 2 (D )m 4第Ⅱ卷本卷包括必考题和选考题两部分。

2016年高考全国Ⅰ理科数学试题及答案(word解析版)

2016年高考全国Ⅰ理科数学试题及答案(word解析版)

2016年普通高等学校招生全国统一考试(全国Ⅰ)数学(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2016年全国Ⅰ,理1,5分】设集合{}2|430A x x x =-+<,{}|230B x x =->,则AB =( )(A )33,2⎛⎫-- ⎪⎝⎭ (B )33,2⎛⎫- ⎪⎝⎭ (C )31,2⎛⎫ ⎪⎝⎭(D )3,32⎛⎫⎪⎝⎭【答案】D【解析】{|13}A x x =<<,3{|}2B x x =>,3{|3}2A B x x ∴=<<,故选D .【点评】考察集合运算和简单不等式解法,属于必考题型,难易程度:易. (2)【2016年全国Ⅰ,理2】设(1i)1i x y +=+,其中x ,y 是实数,则i =x y +( )(A )1 (B )2 (C )3 (D )2 【答案】B【解析】由题意知:1x y ==,i =1i 2x y ∴++=,故选B .【点评】察复数相等条件和复数的模,属于必考题型,难易程度:易. (3)【2016年全国Ⅰ,理3,5分】已知等差数列{}n a 前9项的和为27,108a =,则100a =( )(A )100 (B )99 (C )98 (D )97 【答案】C【解析】解法一:199599272a a S a +===,53a ∴= 1051105a a d -∴==-()100101001089098a a d ∴=+-=+=,选C . 解法二:91989272S a d ⨯=+=,即143a d +=,又10198a a d =+=,解得11,1a d =-=,()1001100119998a a d ∴=+-=-+=,故选C . 【点评】考察等差数列的基本性质、前n 项和公式和通项公式,属于必考题型,难易程度:易. (4)【2016年全国Ⅰ,理4,5分】某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )(A )13(B )12 (C )23 (D )34【答案】B【解析】小明可以到达车站时长为40分钟,可以等到车的时长为20分钟,则他等车时间不超过10分钟的概率是201402P ==,故选B .【点评】考察几何概型的概率计算,第一次考察,难易程度:易.(5)【2016年全国Ⅰ,理5,5分】已知方程222213x y m n m n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )(A )()1,3- (B )()1,3- (C )()0,3 (D )()0,3 【答案】A【解析】由题意知:2234m n m n ++-=,解得21m =,1030n n +>⎧∴⎨->⎩,解得13n -<<,故选A .【点评】考察双曲线的简单几何性质,属于了解层次,必考题,难易程度:易. (6)【2016年全国Ⅰ,理6,5分】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是( )(A )17π (B )18π (C )20π (D )28π 【答案】A【解析】该几何体为球体,从球心挖掉整个球的18(如右图所示),故34728383r ππ=解得2r =,2271431784S r r πππ∴=⋅+⋅=,故选A .【点评】考察三视图还原,球的体积表面积计算,经常考察,难易程度:中等. (7)【2016年全国Ⅰ,理7,5分】函数22xy x e =-在[2,2]-的图像大致为( )(A )(B )(C ) (D )【答案】D【解析】解法1(排除法):2()2xf x x e =-为偶函数,且2(2)887.40.6f e =-≈-=,故选D .解法2:2()2xf x x e =-为偶函数,当0x >时,'()4x f x x e =-,作4y x =与x y e =(如图),故存在实数0(0,1)x ∈,使得'0()0f x =且0(0,)x x ∈时,'0()0f x <,0(,2)x x ∈时, '0()0f x >,()f x ∴在0(0,)x 上递减,在0(,2)x 上递增,故选D .【点评】本题结合导数利用函数奇偶性,综合考察函数解析式与函数图像之间的关系,常规题型,属于必考题,难易程度:中等.这类题型的最佳解法应为结合函数的性质,选取特殊点进行排除.(8)【2016年全国Ⅰ,理8,5分】若101a b c >><<,,则( ) (A )c c a b < (B )c c ab ba < (C )log log b a a c b c < (D )log log a b c c <【答案】C【解析】解法1(特殊值法):令14,22a b c ===,,易知C 正确.解法2:当0α>时,幂函数()f x x α=在(0,)+∞上递增,故A 选项错误;当1a >时,a 越大对数函数()log a f x x =的图像越靠近x 轴,当01c <<时,log log a b c c >,故D 选项错误;c c ab ba <可化为()c a ab b<,由指数函数知,当1a >时,()x f x a =在(0,)+∞上递增,故B 选项错误;log log b a a c b c <可化为11log log abb ac c <,1111abbb b a <<<,故选C .【点评】本题综合考察幂函数、指数函数、对数函数的性质和不等式的性质,属于常考题型,难易程度:中等. 结合函数性质证明不等式是比较麻烦的,最好采用特殊值法验证排除.(9)【2016年全国Ⅰ,理9,5分】执行右面的程序图,如果输入的011x y n ===,,,则输出x ,y 的值满足( )(A )2y x = (B )3y x = (C )4y x = (D )5y x = 【答案】C【解析】011x y n ===,,时,框图运行如下: 1、012x y n ===,,;2、1232x y n ===,,;3、3632x y n ===,,,故选C .【点评】考察算法中的循环结构,必考题型,难易程度:易. (10)【2016年全国Ⅰ,理10,5分】以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C的标准线于D 、E 两点.已知42AB =,25DE =,则C 的焦点到准线的距离为( ) (A )2 (B )4 (C )6 (D )8【答案】B【解析】解法1排除法:当4p =时,不妨令抛物线方程为28y x =,当y =1x =,即A 点坐标为(,所以圆的半径为3r =,此时D 点坐标为(-,符合题意,故B 选项正确.解法2:不妨令抛物线方程为22y px =,D 点坐标为2P ⎛- ⎝,则圆的半径为r =,22834p r -=-,即A 点坐标为⎭,所以22=,解得4p =,故选B . 【点评】考察抛物线和圆的简单性质,必考题型,难易程度:中等. (11)【2016年全国Ⅰ,理11,5分】平面a 过正方体1111ABCD A B C D -的顶点A ,//a 平面11CB D ,a 平面ABCD m =,a 平面11ABA B n =,则m 、n 所成角的正弦值为( )(A (B )2 (C (D )13【答案】A【解析】令平面a 与平面11CB D 重合,则11m B D =,1n CD =,故直线m 、n 所成角为60o ,,故选A . 【点评】考察正方体中线面位置关系和两条直线夹角的计算,必考题型,难易程度:中等.(12)【2016年全国Ⅰ,理12,5分】已知函数()()sin 02f x x +πωϕωϕ⎛⎫=>≤ ⎪⎝⎭,,4x π=-为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫ ⎪⎝⎭,单调,则ω的最大值为( )(A )11 (B )9 (C )7 (D )5 【答案】B【解析】解法1(特殊值验证法)令9ω=,则周期29T π=,区间[]44ππ-,刚为94T ,且在53636ππ⎡⎤⎢⎥⎣⎦,上递减,恰好符合题意,故选B .解法2:由题意知152()24369T πππ≥-=,所以29Tπω=≤,故选B .【点评】综合考察三角函数图像的单调性、对称性、零点、周期等性质,属于必考题型,难易程度:偏难.第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分(13)【2016年全国Ⅰ,理13,5分】设向量(),1m =a ,()1,2=b ,且222+=+a b a b ,则m = . 【答案】2-【解析】解法一(几何法)由向量加法的几何意义知a b ⊥,故20a b m ⋅=+=,所以2m =-;解法二(代数法)22(1)9114m m ++=+++,解得2m =-.【点评】考察向量运算,必考题型,难易程度:易.(14)【2016年全国Ⅰ,理14,5分】(52x +的展开式中,3x 的系数是 .(用数字填写答案) 【答案】10【解析】()555215522r rrrr rr T Cx C x---+==,令532r-=,解得4r =,454525210C -∴=⨯=. 【点评】考察二项式定理展开式中指定项问题,必考题型,难易程度:中等.(15)【2016年全国Ⅰ,理15,5分】设等比数列{}n a 满足1310a a +=,245a a +=,则12n a a a ⋅⋅⋅的最大值为 . 【答案】64【解析】由1310a a +=,245a a +=解得118,2a q ==,14118()()22n n n a --∴==,27321(4)21211()()22n nn n a a a ----+⋅⋅⋅+-∴⋅⋅⋅==,所以当3n =或4时,12n a a a ⋅⋅⋅有最大值64.【点评】考察等比数列的通项公式、等差数列求和及二次函数最值问题,必考题型,难易程度:中等. (16)【2016年全国Ⅰ,理16,5分】某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料。

2016全国三卷理科数学高考真题及答案

2016全国三卷理科数学高考真题及答案

2016年普通高等学校招生全国统一考试理科数学一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S ={}{}(x 2)(x 3)0,T 0S x x x =--≥=I >P ,则S I T =(A) [2,3] (B)(-∞ ,2]U [3,+∞) (C) [3,+∞) (D)(0,2]U [3,+∞) (2)若z=1+2i ,则41izz =- (A)1 (B) -1 (C) i (D)-i(3)已知向量1(,22BA =uu v ,1),2BC =uu u v 则∠ABC=(A)300(B) 450(C) 600(D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。

图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。

下面叙述不正确的是(A) 各月的平均最低气温都在00C 以上(B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同(D) 平均气温高于200C 的月份有5个(5)若3tan 4α=,则2cos 2sin 2αα+= (A)6425 (B) 4825 (C) 1 (D)1625(6)已知432a =,344b =,1325c =,则(A )b a c << (B )a b c <<(C )b c a <<(D )c a b << (7)执行下图的程序框图,如果输入的a =4,b =6,那么输出的n =(A )3 (B )4 (C )5 (D )6(8)在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A =(A (B(C )-(D )- (9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )18+(B )54+(C )90 (D )81(10) 在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是 (A )4π (B )92π(C )6π(D )323π(11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 (A )13(B )12(C )23(D )34(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,ka a a 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有 (A )18个 (B )16个 (C )14个 (D )12个二、填空题:本大题共3小题,每小题5分(13)若x ,y 满足约束条件错误!未找到引用源。

2016 年普通高等学校招生全国统一考试理科数学试题(1、2、3卷)参考答案

2016 年普通高等学校招生全国统一考试理科数学试题(1、2、3卷)参考答案

2262016年普通高等学校招生全国统一考试 理科数学(Ⅰ)参考答案第Ⅰ卷(选择题 共60分) 一、选择题 (60分) 1—12 DBCBA ADCCB AB 第Ⅱ卷(非选择题 90分)二、填空题:本大题共4小题,每小题5分13.2- 14.10 15.64 16.216000三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分为12分) 解:(I )由已知及正弦定理得, ()2cosC sin cos sin cos sinC A B+B A =, 即()2cosCsin sinC A+B =.∴2sinCcosC sinC =.可得1cosC 2=,所以C 3π=. (II)由已知,1sin C 2ab =.又C 3π=,所以6ab =.由已知及余弦定理得, 222cosC 7a b ab +-=.∴2213a b +=,从而()225a b +=.∴C ∆AB的周长为5.18.(本小题满分为12分) 解:(I )由已知可得F DF A ⊥,F F A ⊥E ,所以F A ⊥平面FDC E . 又F A ⊂平面F ABE ,∴平面F ABE ⊥平面FDC E .(II )过D 作DG F ⊥E ,垂足为G ,由(I )知DG ⊥平面F ABE .以G 为坐标原点,GF 的方向为x 轴正方向,GF 为单位长度,建立如图所示的空间直角坐标系G xyz -. 由(I )知DF ∠E 为二面角D F -A -E 的平面角,故DF 60∠E =,则DF 2=,DG =可得()1,4,0A ,()3,4,0B -,()3,0,0E -,(D .由已知,//F AB E ,所以//AB 平面FDC E . 又平面CD AB 平面FDC DC E =, ∴//CD AB ,CD//F E . 由//F BE A ,可得BE ⊥平面FDC E ,∴C F ∠E 为二面角C F -BE-的平面角,C F60∠E =.从而可得(C -.∴(C E =,()0,4,0EB =,(C 3,A =--,()4,0,0AB =-.设(),,n x y z =是平面C B E 的法向量,则C 00n n ⎧⋅E =⎪⎨⋅EB =⎪⎩,即040x y ⎧=⎪⎨=⎪⎩, ∴可取(3,0,n =. 设m 是平面CD AB 的法向量,则C 0m m ⎧⋅A =⎪⎨⋅AB =⎪⎩, 同理可取()0,3,4m =.则219cos ,19n m n m n m ⋅==-∴二面角C E -B -A 的余弦值为19-. 19.(本小题满分12分) 解:(Ⅰ)由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2,从而04.02.02.0)16(=⨯==X P ;22716.04.02.02)17(=⨯⨯==X P ;24.04.04.02.02.02)18(=⨯+⨯⨯==X P ; 24.02.04.022.02.02)19(=⨯⨯+⨯⨯==X P ; 2.02.02.04.02.02)20(=⨯+⨯⨯==X P ; 08.02.02.02)21(=⨯⨯==X P ; 04.02.02.0)22(=⨯==X P . 所以X 的分布列为(Ⅱ)由(Ⅰ)知44.0)18(=≤X P ,68.0)19(=≤X P ,故n 的最小值为19. (Ⅲ)记Y 表示2台机器在购买易损零件上所需的费用(单位:元). 当19=n 时,192000.68(19200500)0.2EY =⨯⨯+⨯+⨯(192002500)0.08+⨯+⨯⨯+(192003500)0.044040⨯+⨯⨯=; 当20=n 时,202000.88(202002500)0.08EY =⨯⨯+⨯+⨯⨯(202002500)0.044080+⨯+⨯⨯=. 可知当19=n 时所需费用的期望值小于20=n 时所需费用的期望值,故应选19=n .20.(本小题满分12分) 解:(Ⅰ)因为||||AC AD =,AC EB //,∴ADC ACD EBD ∠=∠=∠, ∴||||ED EB =,故||||||||||AD ED EA EB EA =+=+.又圆A 的标准方程为16)1(22=++y x ,从而4||=AD ,所以4||||=+EB EA . 由题设得)0,1(-A ,)0,1(B ,2||=AB ,由椭圆定义可得点E 的轨迹方程为:13422=+y x (0≠y ). (Ⅱ)当l 与x 轴不垂直时,设l 的方程为)0)(1(≠-=k x k y ,),(11y x M ,),(22y x N . 由⎪⎩⎪⎨⎧=+-=134)1(22y x x k y 得01248)34(2222=-+-+k x k x k .则3482221+=+k k x x ,341242221+-=k k x x . ∴34)1(12||1||22212++=-+=k k x x k MN .过点)0,1(B 且与l 垂直的直线m :)1(1--=x ky ,A 到m 的距离为122+k , ∴1344)12(42||22222++=+-=k k k PQ .∴四边形MPNQ 的面积341112||||212++==k PQ MN S . 可得当l 与x 轴不垂直时,四边形MPNQ面积的取值范围为(.当l 与x 轴垂直时,其方程为1=x ,3||=MN ,8||=PQ ,四边形MPNQ 的面积为12.综上,四边形MPNQ 面积的取值范围为)38,12[.21.(本小题满分12分)解:(Ⅰ)()(1)2(1)x f x x e a x '=-+-(1)(2)x x e a =-+.(i )设0a =,则()(2)xf x x e =-,()f x 只有一个零点. (ii )设0a >,则当(,1)x ∈-∞时,'()0f x <;当(1,)x ∈+∞时,'()0f x >.∴()f x 在(,1)-∞上单调递减,在(1,)+∞上单调递增.又(1)f e =-,(2)f a =,取b 满足0b <且ln2ab <,则 223()(2)(1)()022a fb b a b a b b >-+-=->,228∴()f x 存在两个零点.(iii )设0a <,由'()0f x =得1x =或ln(2)x a =-.若2ea ≥-,则ln(2)1a -≤,∴当(1,)x ∈+∞时,'()0f x >,因此()f x 在(1,)+∞上单调递增. 又当1x ≤时,()0f x <, ∴()f x 不存在两个零点.若2ea <-,则ln(2)1a ->,∴当(1,ln(2))x a ∈-时,'()0f x <; 当(ln(2),)x a ∈-+∞时,'()0f x >. ∴()f x 在(1,ln(2))a -单调递减,在(ln(2),)a -+∞单调递增. 又当1x ≤时,()0f x <, ∴()f x 不存在两个零点.综上,a 的取值范围为(0,)+∞. (Ⅱ)不妨设12x x <,由(Ⅰ)知 12(,1),(1,)x x ∈-∞∈+∞,22(,1)x -∈-∞,()f x 在(,1)-∞上单调递减,∴122x x +<等价于12()(2)f x f x >-,即2(2)0f x -<. 由于222222(2)(1)x f x x e a x --=-+-,而22222()(2)(1)0x f x x e a x =-+-=,∴222222(2)(2)x x f x x e x e --=---.设2()(2)xx g x xex e -=---,则2'()(1)()x x g x x e e -=--.∴当1x >时,'()0g x <,而(1)0g =, ∴当1x >时,()0g x <. 从而22()(2)0g x f x =-<,∴122x x +<.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号22.(本小题满分10分)选修4-1:几何证明选讲 解:(Ⅰ)设E 是AB 的中点,连结OE , ∵,120OA OB AOB =∠=︒, ∴OE AB ⊥,60AOE ∠=︒. 在Rt AOE ∆中,12OE AO =,即O 到直线AB 的距离等于圆O 的半径, ∴直线AB 与⊙O 相切.(Ⅱ)∵2OA OD =,∴O 不是,,,A B C D 四点所在圆的圆心,设'O 是,,,A B C D 四点所在圆的圆心,作直线'OO .由已知得O 在线段AB 的垂直平分线上,又'O 在线段AB 的垂直平分线上, ∴'OO AB ⊥.同理可证,'OO CD ⊥. ∴//AB CD . 23.(本小题满分10分)解:(I )由cos 1sin x a ty a t =⎧⎨=+⎩ (t 均为参数)消去参数t 得1C 的普通方程为 ()2221x y a +-= ①∴1C 为以()01,为圆心,a 为半径的圆. 方程为222210x y y a +-+-= ∵222sin x y y ρρθ+==,∴222sin 10a ρρθ-+-= 即为1C 的极坐标方程(II )24cos C ρθ=:,两边同乘ρ得22224cos cos x y x ρρθρρθ==+=,224x y x ∴+=,即()2224x y -+= ②3C :化为普通方程为2y x =.229由题意:1C 和2C 的公共方程所在直线即为3C .①—②得:24210x y a -+-=,即为3C ,∴210a -=∴1a =或1a =-(舍去).24.(本小题满分10分)解:(I )()4133212342x x f x x x x x ⎧⎪--⎪⎪=--<<⎨⎪⎪-⎪⎩,≤,,≥()y f x =如图所示:(II )由⑴及()1f x >得当1x -≤时,由41x ->,解得5x >或3x <, 1x -∴≤;当312x -<<时,由321x ->,解得1x >或13x <,113x -<<∴或312x <<.当32x ≥,41x ->,解得5x >或3x <,332x <∴≤或5x >. 综上,13x <或13x <<或5x >, ()1f x >∴的解集为()()11353⎛⎫-∞+∞ ⎪⎝⎭,,,.2302016年普通高等学校招生全国统一考试理科数学(Ⅱ)参考答案 第Ⅰ卷(选择题 共60分) 一、选择题 (60分)1—12 ACDAB CBCDC AB第Ⅱ卷(非选择题 90分)二、填空题13.211314.②③④ 15.1和3 16.1ln2-三.解答题17.(本题满分12分) 解:(I )设{}n a 的公差为d ,72874S a ==,∴44a =,∴4113a ad -==,∴1(1)n a a n d n =+-=. ∴[][]11lg lg10b a ===, [][]1111lg lg111b a ===, [][]101101101lg lg 2b a ===.(II )记{}n b 的前n 项和为n T ,则 1000121000T b b b =++⋅⋅⋅+[][][]121000lg lg lg a a a =++⋅⋅⋅+.当0lg 1n a <≤时,129n =⋅⋅⋅,,,;当1lg 2n a <≤时,101199n =⋅⋅⋅,,,; 当2lg 3n a <≤时, 100101999n =⋅⋅⋅,,,; 当lg 3n a =时,1000n =.∴1000091902900311893T =⨯+⨯+⨯+⨯=. 18.(本题满分12分) 解:(I )设续保人本年度的保费高于基本保费为事件A ,()1()1(0.300.15)0.55P A P A =-=-+=. (II )设续保人保费比基本保费高出60%为事件B ,()0.100.053()()0.5511P AB P B A P A +===.(Ⅲ)设本年度所交保费为随机变量X .平均保费0.850.300.15 1.250.20EX a a =⨯++⨯1.50.20 1.750.1020.05a a a +⨯+⨯+⨯0.2550.150.250.3a a a a =+++0.1750.1 1.23a a a ++=,∴平均保费与基本保费比值为1.23. 19.(本小题满分12分)解:(I )证明:∵54AE CF ==,∴AE CF AD CD =,∴EF AC ∥.∵四边形ABCD 为菱形, ∴AC BD ⊥,∴EF BD ⊥, ∴EF DH ⊥,∴EF D H '⊥. ∵6AC =,∴3AO =; 又5AB =,AO OB ⊥,∴4OB =,∴1AEOH OD AO=⋅=, ∴3DH D H '==,∴222'OD OH D H '=+,∴'D H OH ⊥.又∵OH EF H =I ,∴'D H ⊥面ABCD . (II )建立如图坐标系H xyz -. ()500B ,,,()130C ,,,()'003D ,,,()130A -,,, ()430AB =uu u r ,,,()'133AD =-uuur,,,()060AC =uuu r,,,设面'ABD 法向量()1n x y z =,,u r,由1100n AB n AD ⎧⋅=⎪⎨'⋅=⎪⎩得430330x y x y z +=⎧⎨-++=⎩,取345x y z =⎧⎪=-⎨⎪=⎩,∴()1345n =-u r ,,. 同理可得面'AD C 的法向量 ()2301n =u u r,,,∴1212cosn nn nθ⋅==u r u u ru r u u r,∴sinθ.20.(本小题满分12分)解:(I)当4t=时,椭圆E的方程为22143x y+=,A点坐标为()20-,.由已知条件及椭圆的对称性知,直线AM的倾斜角为4π,直线AM的方程为2y x=+.将2x y=-代入22143x y+=,并整理得27120y y-=,解得0y=或127y=,∴1127y=.∴AMN△的面积为11212144227749AMNS∆=⨯⨯⨯=.(II)由已知条件知,3,0,(t k A>>,直线AM的方程为(y k x=.联立(2213x yty k x⎧+=⎪⎨⎪=+⎩并整理,得()222223230tk x x t k t+++-=,解得x=x=∴AM=+=由已知条件知,直线AN的方程为(1y xk=-,∴同理可得AN=.由2AM AN=得22233ktk k t=++,即23632k ktk-=-.∵椭圆E的焦点在x轴,所以3t>,即236332k kk->-,整理得()()23122k kk+-<-2k<.21.(本小题满分12分)解:(I)()f x的定义域为()()22,-∞--+∞,.()()()22224ee222xxx xf xx x x⎛⎫-' ⎪=+=⎪+++⎝⎭.∵当x∈()()22,-∞--+∞,时,()0f x'>,∴()f x在()()22,-∞--+∞,和上单调递增,∴0x>时,()2e0=12xxfx->-+,∴()2e20xx x-++>.(II)()()()24e2ex xa x x ax ag xx----'=()4e2e2x xx x ax ax-++=()322e2xxx axx-⎛⎫+⋅+⎪+⎝⎭=,[)01a∈,.由(I)知,当0x>时,()2e2xxf xx-=⋅+的值域为()1-+∞,,只有唯一解使得2e2ttat-⋅=-+,(]02t∈,.当(0,)x t∈时()0g x'<,()g x单调减;当(,)x t∈+∞时()0g x'>,()g x单调增.()()()222e1ee1e22t tt ttta t th at t t-++⋅-++===+.记()e2tk tt=+.231232在(]0,2t ∈时,()()()2e 102t t k t t +'=>+,∴()k t 单调递增,∴()()21e 24h a k t ⎛⎤=∈ ⎥⎝⎦,.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号 22.(本小题满分10分) 解:(I )∵DF EC ⊥, ∴,DEF CDF ∆~∆∴GDF DEF FCB ∠=∠=∠,DF DE DGCF CD CB ==, ∴,DGF CBF ∆~∆由此可得,DGF CBF ∠=∠由此0180,CGF CBF ∠+∠= ∴,,,B C G F 四点共圆.(II )由,,,B C G F 四点共圆,CG CB ⊥知FG FB ⊥.连结GB .由G 为Rt DFC ∆斜边CD 的中点,知GF GC =,故,Rt BCG Rt BFG ∆~∆ ∴四边形BCGF 的面积S 是GCB ∆面积GCB S ∆的2倍,即111221.222GCB S S ∆==⨯⨯⨯=23.(本小题满分10分)解:(I )由c o s ,s i nx y ρθρθ==可得C的极坐标方程212cos 110.ρρθ++= (II )在(I )中建立的极坐标系中,直线l 的极坐标方程为()R θαρ=∈ 由,A B 所对应的极径分别为12,,ρρ将l 的极坐标方程代入C 的极坐标方程得212cos 110.ρρα++=于是121212cos ,11,ρραρρ+=-= 12||||AB ρρ=-==由||AB =得23cos ,tan 8αα==,所以l 的斜率为3或3-.24.(本小题满分10分)解:(I )12,,211()1,,2212,.2x x f x x x x ⎧-≤-⎪⎪⎪=-<<⎨⎪⎪≥⎪⎩当12x ≤-时,由()2f x <得22,x -<解得1x >-,∴112x -<≤-;当1122x -<<时,()2f x <恒成立;当12x ≥时,由()2f x <得22,x <解得1x <, ∴112x ≤<.综上可得,()2f x <的解集{|11}M x x =-<<.(II )由(I )知,当,a b M ∈时, 11,11a b -<<-<<,∴222222()(1)1a b ab a b a b +-+=+-- 22(1)(1)0a b =--<, ∴|||1|.a b ab +<+2332016年普通高等学校招生全国统一考试理科数学(Ⅲ)参考答案 第Ⅰ卷(选择题 共60分) 一、选择题(60分)1—12 DCADA ABCBB A C第Ⅱ卷(非选择题 90分)二、填空题:本大题共3小题,每小题5分 13.32 14.32π 15.21y x =-- 16.4 三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 解:(Ⅰ)由题意得1111a S a λ==+,∴1≠λ,λ-=111a ,01≠a .由n n a S λ+=1,111+++=n n a S λ得 n n n a a a λλ-=++11,即n n a a λλ=-+)1(1.由01≠a ,0≠λ得0≠n a , ∴11n n a a λλ+=-. ∴}{n a 是首项为λ-11,公比为1-λλ的等比数列, ∴1)1(11---=n n a λλλ. (Ⅱ)由(Ⅰ)得n n S )1(1--=λλ, 由32315=S 得3231)1(15=--λλ,即=-5)1(λλ321,解得1λ=-.18.(本小题满分12分) 解:(Ⅰ)由折线图中数据和附注中参考数据得4=t ,28)(712=-∑=i i t t ,55.0)(712=-∑=i iy y,=40.1749.32 2.89=-⨯=,99.0646.2255.089.2≈⨯⨯≈r .因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关相当高,从而可以用线性回归模型拟合y 与t 的关系.(Ⅱ)由331.1732.9≈=y 及(Ⅰ)得103.02889.2)())((ˆ71271≈=---=∑∑==i ii i it ty y t tb, 92.04103.0331.1ˆˆ≈⨯-≈-=t b y a. ∴y 关于t 的回归方程为: t y10.092.0ˆ+=. 将2016年对应的9=t 代入回归方程得:82.1910.092.0ˆ=⨯+=y. ∴预测2016年我国生活垃圾无害化处理量将约1.82亿吨. 19.(本小题满分12分)解:(Ⅰ)由已知得232==AD AM . 取BP 的中点T ,连接TN AT ,. 由N 为PC 中点知BC TN //,221==BC TN .又BC AD //,∴TN AM ,四边形AMNT 为平行四边形,∴AT MN //.∵⊂AT 平面PAB ,⊄MN 平面PAB ,∴//MN 平面PAB .(Ⅱ)取BC 的中点E ,连结AE . 由AC AB =得BC AE ⊥,从而 AD AE ⊥,且5)2(2222=-=-=BC AB BE AB AE .234以A 为坐标原点,AE 的方向为x 轴正方向,建立如图所示的空间直角坐标系xyz A -,由题意知,)4,0,0(P ,)0,2,0(M ,)0,2,5(C ,)2,1,25(N , (0,2,4)PM =-,)2,1,25(-=PN ,)2,1,25(=AN .设(,,)n x y z =为平面PMN 的法向量,则⎪⎩⎪⎨⎧=⋅=⋅00PN n PM n ,即⎪⎩⎪⎨⎧=-+=-0225042z y x z x , 可取(0,2,1)n =,∴2558|||||,cos |==><AN n AN n . 20.解:由题设)0,21(F .设b y l a y l ==:,:21,则0≠ab ,且221(,0),(,),(,),222a b A B b P a - 11(,),(,)222a b Q b R +--.记过B A ,两点的直线为l ,则l 的方程为0)(2=++-ab y b a x . (Ⅰ)由于F 在线段AB 上,故01=+ab . 记AR 的斜率为1k ,FQ 的斜率为2k ,则222111k b a aba ab a b a a b a k =-=-==--=+-=. ∴FQ AR ∥.(Ⅱ)设l 与x 轴的交点为)0,(1x D ,则1111222ABF S b a FD b a x ∆=-=--,2PQF a bS ∆-=.由题设可得221211ba x ab -=--,∴01=x (舍去),11=x .设满足条件的AB 的中点为),(y x E . 当AB 与x 轴不垂直时,由DE AB k k =可得)1(12≠-=+x x yb a . 而y b a =+2,所以)1(12≠-=x x y .当AB 与x 轴垂直时,E 与D 重合.∴所求轨迹方程为12-=x y . 21.(本小题满分12分)解:(Ⅰ)'()2sin 2(1)sin f x a x a x =---. (Ⅱ)当1a ≥时,'|()||sin 2(1)(cos 1)|f x a x a x =+-+2(1)a a ≤+-32a =-(0)f = ∴32A a =-.当01a <<时,将()f x 变形为2()2c o s (1)c o s 1f x a x a x =+--. 令2()2(1)1g t at a t =+--,则A 是|()|g t 在[1,1]-上的最大值, (1)g a -=,(1)32g a =-,且当14a t a -=时,()g t 取得极小值,极小值为221(1)61()1488a a a a g a a a --++=--=-. 令1114a a--<<,解得13a <-(舍去),15a >.235(ⅰ)当105a <≤时,()g t 在(1,1)-内无极值点,|(1)|g a -=,|(1)|23g a =-,|(1)||(1)|g g -<,所以23A a =-.(ⅱ)当115a <<时,由(1)(1)2(1)0g g a --=->,知1(1)(1)()4ag g g a-->>.又1(1)(17)|()||(1)|048a a a g g a a --+--=>,∴2161|()|48a a a A g a a-++==. 综上,2123,05611,18532,1a a a a A a a a a ⎧-<≤⎪⎪++⎪=<<⎨⎪-≥⎪⎪⎩. (Ⅲ)由(Ⅰ)得'|()||2sin 2(1)sin |f x a x a x =--- 2|1|a a ≤+-.当105a <≤时,'|()|1242(23)2f x a a a A ≤+≤-<-=. 当115a <<时,131884a A a =++≥, ∴'|()|12f x a A ≤+<. 当1a ≥时,'|()|31642f x a a A ≤-≤-=,∴'|()|2f x A ≤.22.(本小题满分10分) 解:(Ⅰ)连结BC PB ,,则,BFD PBA BPD ∠=∠+∠ PCD PCB BCD ∠=∠+∠.∵AP BP =,∴PCB PBA ∠=∠, 又BCD BPD ∠=∠, ∴PCD BFD ∠=∠.又180PFD BFD ∠+∠=, 2PFB PCD ∠=∠,∴1803=∠PCD , ∴ 60=∠PCD .(Ⅱ)∵BFD PCD ∠=∠, ∴ 180=∠+∠EFD PCD ,由此知E F D C ,,,四点共圆,其圆心既在CE 的垂直平分线上,又在DF 的垂直平分线上,∴G 就是过E F D C ,,,四点的圆的圆心, ∴G 在CD 的垂直平分线上, ∴CD OG ⊥.23.(本小题满分10分)解:(I )1C 的普通方程为2213x y +=, 2C 的直角坐标方程为40x y +-=.(Ⅱ)由题意,可设点P的直角坐标为,sin )αα,因为2C 是直线,所以||PQ 的最小值即为P 到2C 的距离()d α的最小值,()d α=sin()2|3πα=+-.当且仅当2()6k k Z παπ=+∈时,()d α,此时P 的直角坐标为31(,)22.24.(本小题满分10分) 解:(Ⅰ)当2a =时,()|22|2f x x =-+. 解不等式|22|26x -+≤,得13x -≤≤. ∴()6f x ≤的解集为236 {|13}x x -≤≤.(Ⅱ)当x R ∈时,()()|2||12|f x g x x a a x +=-++- |212|x a x a ≥-+-+|1|a a =-+, 当12x =时等号成立, ∴当x R ∈时,()()3f xg x +≥等价于|1|3a a -+≥. ① 当1a ≤时,①等价于13a a -+≥,无解. 当1a >时,①等价于13a a -+≥,解得2a ≥.∴a 的取值范围是[2,)+∞.。

2016年全国高考数学(理科)试题与答案_全国1卷(解析版)

2016年全国高考数学(理科)试题与答案_全国1卷(解析版)

绝密 ★ 启用前2016年普通高等学校招生全国统一考试(全国1卷)数学(理科)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合{}2430A x x x =-+< ,{}230x x ->,则A B =I (A )33,2⎛⎫-- ⎪⎝⎭ (B )33,2⎛⎫- ⎪⎝⎭ (C )31,2⎛⎫ ⎪⎝⎭(D )3,32⎛⎫⎪⎝⎭【答案】D考点:集合的交集运算【名师点睛】集合是每年高考中的必考题,一般以基础题形式出现,属得分题.解决此类问题一般要把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数集之间的运算,常借助数轴进行运算.(2)设(1i)1i x y +=+,其中x ,y 实数,则i =x y + (A )1 (B 2 (C 3 (D )2 【答案】B 【解析】试题分析:因为(1)=1+,x i yi +所以=1+,=1,1,||=|1+|2,x xi yi x y x x yi i +==+=故选B.考点:复数运算【名师点睛】复数题也是每年高考必考内容,一般以客观题形式出现,属得分题.高考中复数考查频率较高的内容有:复数相等,复数的几何意义,共轭复数,复数的模及复数的乘除运算,这类问题一般难度不大,但容易出现运算错误,特别是2i 1=-中的负号易忽略,所以做复数题要注意运算的准确性.(3)已知等差数列{}n a 前9项的和为27,108a =,则100a = (A )100 (B )99 (C )98 (D )97 【答案】C 【解析】试题分析:由已知,1193627,98a d a d +=⎧⎨+=⎩所以110011,1,9919998,a d a a d =-==+=-+=故选C.考点:等差数列及其运算【名师点睛】我们知道,等差、等比数列各有五个基本量,两组基本公式,而这两组公式可看作多元方程,利用这些方程可将等差、等比数列中的运算问题转化解关于基本量的方程(组),因此可以说数列中的绝大部分运算题可看作方程应用题,所以用方程思想解决数列问题是一种行之有效的方法.(4)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 (A )13 (B )12 (C )23 (D )34【答案】B考点:几何概型【名师点睛】这是全国卷首次考查几何概型,求解几何概型问题的关键是确定“测度”,常见的测度由:长度、面积、体积等.(5)已知方程222213x y m n m n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是(A )()1,3- (B )()1,3- (C )()0,3 (D )()0,3 【答案】A考点:双曲线的性质【名师点睛】双曲线知识一般作为客观题学生出现,主要考查双曲线几何性质,属于基础题.注意双曲线的焦距是2c 不是c,这一点易出错.(6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是 (A )17π (B )18π (C )20π (D )28π【答案】A 【解析】试题分析: 该几何体直观图如图所示:是一个球被切掉左上角的18,设球的半径为R ,则37428V R 833ππ=⨯=,解得R 2=,所以它的表面积是78的球面面积和三个扇形面积之和2271=42+32=1784S πππ⨯⨯⨯⨯故选A . 考点:三视图及球的表面积与体积【名师点睛】由于三视图能有效的考查学生的空间想象能力,所以以三视图为载体的立体几何题基本上是高考每年必考内容,高考试题中三视图一般常与几何体的表面积与体积交汇.由三视图还原出原几何体,是解决此类问题的关键.(7)函数22xy x e =-在[]2,2-的图像大致为(A )(B )(C ) (D )【答案】D考点:函数图像与性质【名师点睛】函数中的识图题多次出现在高考试题中,也可以说是高考的热点问题,这类题目一般比较灵活,对解题能力要求较高,故也是高考中的难点,解决这类问题的方法一般是利用间接法,即由函数性质排除不符合条件的选项. (8)若101a b c >><<,,则(A )c c a b < (B )c c ab ba < (C )log log b a a c b c < (D )log log a b c c < 【答案】C 【解析】试题分析:用特殊值法,令3a =,2b =,12c =得112232>,选项A 错误,11223223⨯>⨯,选项B错误,2313log 2log 22<,选项C 正确,3211log log 22>,选项D 错误,故选C . 考点:指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数单调性进行比较,若底数不同,可考虑利用中间量进行比较.(9)执行右面的程序框图,如果输入的011x y n ===,,,则输出x ,y 的值满足 (A )2y x = (B )3y x = (C )4y x = (D )5y x =结束【答案】C考点:程序框图与算法案例【名师点睛】程序框图基本是高考每年必考知识点,一般以客观题形式出现,难度不大,求解此类问题一般是把人看作计算机,按照程序逐步列出运行结果.(10)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=42,|DE|=25,则C的焦点到准线的距离为(A)2 (B)4 (C)6 (D)8【答案】B考点:抛物线的性质.【名师点睛】本题主要考查抛物线的性质及运算,注意解析几何问题中最容易出现运算错误,所以解题时一定要注意运算的准确性与技巧性,基础题失分过多是相当一部分学生数学考不好的主要原因.(11)平面α过正方体ABCD-A1B1C1D1的顶点A,α//平面CB1D1,αI平面ABCD=m,αI平面AB B1A1=n,则m、n所成角的正弦值为(A)32(B)22(C)33(D)13【答案】A【解析】试题分析:如图,设平面11CB D I 平面ABCD ='m ,平面11CB D I 平面11ABB A ='n ,因为//α平面11CB D ,所以//',//'m m n n ,则,m n 所成的角等于','m n 所成的角.延长AD ,过1D 作11//DE B C ,连接11,CE B D ,则CE 为'm ,同理11BF 为'n ,而111//,//BD CE B F A B ,则','m n 所成的角即为1,A B BD 所成的角,即为60︒,故,m n 所成角的正弦值为32,选A. 考点:平面的截面问题,面面平行的性质定理,异面直线所成的角.【名师点睛】求解本题的关键是作出异面直线所成角,求异面直线所成角的步骤是:平移定角、连线成形,解形求角、得钝求补.(12).已知函数()sin()(0),24f x x+x ππωϕωϕ=>≤=-, 为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫⎪⎝⎭,单调,则ω的最大值为(A )11 (B )9 (C )7 (D )5 【答案】B考点:三角函数的性质【名师点睛】本题将三角函数单调性与对称性结合在一起进行考查,叙述方式新颖,是一道考查能力的好题.注意本题解法中用到的两个结论:①()()()sin 0,0f x A x A ωϕω=+≠≠的单调区间长度是半个周期;②若()()()sin 0,0f x A x A ωϕω=+≠≠的图像关于直线x x =对称,则()0f x A= 或()0f x A=-.第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分(13)设向量a =(m ,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m = . 【答案】2- 【解析】试题分析:由222||||||+=+a b a b ,得⊥a b ,所以1120m ⨯+⨯=,解得2m =-. 考点:向量的数量积及坐标运算【名师点睛】全国卷中向量大多以客观题形式出现,属于基础题.解决此类问题既要准确记忆公式,又要注意运算的准确性.本题所用到的主要公式是:若()()1122,,,x y x y ==a b ,则1122x y x y ⋅=+a b .(14)5(2)x x +的展开式中,x 3的系数是 .(用数字填写答案)【答案】10考点:二项式定理【名师点睛】确定二项展开式指定项的系数通常是先写出通项1r T +,再确定r 的值,从而确定指定项系数.(15)设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2 …a n 的最大值为 . 【答案】64 【解析】试题分析:设等比数列的公比为q ,由1324105a a a a +=⎧⎨+=⎩得,2121(1)10(1)5a q a q q ⎧+=⎪⎨+=⎪⎩,解得1812a q =⎧⎪⎨=⎪⎩.所以2(1)1712(1)22212118()22n n n n n n nn a a a a q--++++-==⨯=L L ,于是当3n =或4时,12n a a a L 取得最大值6264=.考点:等比数列及其应用高考中数列客观题大多具有小、巧、活的特点,在解答时要注意方程思想及数列相关性质的应用,尽量避免小题大做.(16)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B 需要甲材料0.5kg,乙材料0.3kg,用3个工时.生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元. 【答案】216000作出二元一次不等式组②表示的平面区域(如图),即可行域.考点:线性规划的应用【名师点睛】线性规划也是高考中常考的知识点,一般以客观题形式出现,基本题型是给出约束条件求目标函数的最值,常见的结合方式有:纵截距、斜率、两点间的距离、点到直线的距离,解决此类问题常利用数形结合.本题运算量较大,失分的一个主要原因是运算失误.三.解答题:解答应写出文字说明,证明过程或演算步骤.(17) (本小题满分为12分)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos (cos cos ).C a B+b A c =(I )求C ;(II )若7,c ABC =∆的面积为33,求ABC V 的周长. 【答案】(I )C 3π=(II )57+【解析】 试题分析:(I )先利用正弦定理进行边角代换化简得得1cosC 2=,故C 3π=;(II )根据133sin C 22ab =.及C 3π=得6ab =.再利用余弦定理得 ()225a b +=.再根据7c =可得C ∆AB 的周长为57+.考点:正弦定理、余弦定理及三角形面积公式【名师点睛】三角形中的三角变换常用到诱导公式,()()sin sin ,cos cos ,A B C A B C +=+=- ()tan tan A B C +=-,就是常用的结论,另外利用正弦定理或余弦定理处理条件中含有边或角的等式,常考虑对其实施“边化角”或“角化边.”(18)(本小题满分为12分)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD , 90AFD ∠=o ,且二面角D -AF -E 与二面角C -BE -F 都是60o .(I )证明:平面ABEF ⊥平面EFDC ;(II )求二面角E -BC -A 的余弦值.【答案】(I )见解析(II )219- 试题解析:(I )由已知可得F DF A ⊥,F F A ⊥E ,所以F A ⊥平面FDC E .又F A ⊂平面F ABE ,故平面F ABE ⊥平面FDC E .(II )过D 作DG F ⊥E ,垂足为G ,由(I )知DG ⊥平面F ABE .以G 为坐标原点,GF u u u r 的方向为x 轴正方向,GF u u u r 为单位长度,建立如图所示的空间直角坐标系G xyz -.由(I )知DF ∠E 为二面角D F -A -E 的平面角,故DF 60∠E =o ,则DF 2=,DG 3=,可得()1,4,0A ,()3,4,0B -,()3,0,0E -,(D 3.由已知,//F AB E ,所以//AB 平面FDC E . CA BD EF又平面CD AB I 平面FDC DC E =,故//CD AB ,CD//F E .由//F BE A ,可得BE ⊥平面FDC E ,所以C F ∠E 为二面角C F -BE-的平面角,C F 60∠E =o.从而可得(C -.所以(C E =u u u r ,()0,4,0EB =u u u r,(C 3,A =--u u u r ,()4,0,0AB =-u u u r . 设(),,n x y z =r是平面C B E 的法向量,则 C 00n n ⎧⋅E =⎪⎨⋅EB =⎪⎩u u u r r u u u r r ,即040x y ⎧=⎪⎨=⎪⎩,所以可取(3,0,n =r . 设m r 是平面CD AB 的法向量,则C 00m m ⎧⋅A =⎪⎨⋅AB =⎪⎩u u u r r u u u r r ,同理可取()4m =r.则cos ,n m n m n m ⋅==r r r r r r 故二面角C E-B -A的余弦值为. 考点:垂直问题的证明及空间向量的应用【名师点睛】立体几何解答题第一问通常考查线面位置关系的证明,空间中线面位置关系的证明主要包括线线、线面、面面三者的平行与垂直关系,其中推理论证的关键是结合空间想象能力进行推理,要防止步骤不完整或考虑不全致推理片面,该类题目难度不大,以中档题为主.第二问一般考查角度问题,多用空间向量解决.(19)(本小题满分12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数. (I )求X 的分布列;(II )若要求()0.5P X n ≤≥,确定n 的最小值;(III )以购买易损零件所需费用的期望值为决策依据,在19n =与20n =之中选其一,应选用哪个?【答案】(I )见解析(II )19(III )19n =【解析】试题分析:(I )先确定X 的取值分别为16,17,18,18,20,21,22,,再用相互独立事件概率模型求概率,然后写出分布列;(II )通过频率大小进行比较;(III )分别求出n =9,n =20的期望,根据19=n 时所需费用的期望值小于20=n 时所需费用的期望值,应选19=n .所以X 的分布列为 X 16 17 18 19 20 21 22P 04.0 16.0 24.0 24.0 2.0 08.0 04.0(Ⅱ)由(Ⅰ)知44.0)18(=≤X P ,68.0)19(=≤X P ,故n 的最小值为19.(Ⅲ)记Y 表示2台机器在购买易损零件上所需的费用(单位:元).当19=n 时,08.0)500220019(2.0)50020019(68.020019⨯⨯+⨯+⨯+⨯+⨯⨯=EY 404004.0)500320019(=⨯⨯+⨯+.当20=n 时,04.0)500220020(08.0)50020020(88.020020⨯⨯+⨯+⨯+⨯+⨯⨯=EY 4080=. 可知当19=n 时所需费用的期望值小于20=n 时所需费用的期望值,故应选19=n . 考点:概率与统计、随机变量的分布列【名师点睛】本题把随机变量的分布列与统计及函数结合在一起进行考查,有一定综合性但难度不是太大大,求解关键是读懂题意,所以提醒考生要重视数学中的阅读理解问题.(20). (本小题满分12分)设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围. 【答案】(Ⅰ)13422=+y x (0≠y )(II ))38,12[试题解析:(Ⅰ)因为||||AC AD =,AC EB //,故ADC ACD EBD ∠=∠=∠,所以||||ED EB =,故||||||||||AD ED EA EB EA =+=+.又圆A 的标准方程为16)1(22=++y x ,从而4||=AD ,所以4||||=+EB EA .由题设得)0,1(-A ,)0,1(B ,2||=AB ,由椭圆定义可得点E 的轨迹方程为: 13422=+y x (0≠y ). (Ⅱ)当l 与x 轴不垂直时,设l 的方程为)0)(1(≠-=k x k y ,),(11y x M ,),(22y x N . 由⎪⎩⎪⎨⎧=+-=134)1(22y x x k y 得01248)34(2222=-+-+k x k x k . 则3482221+=+k k x x ,341242221+-=k k x x . 所以34)1(12||1||22212++=-+=k k x x k MN . 过点)0,1(B 且与l 垂直的直线m :)1(1--=x k y ,A 到m 的距离为122+k ,所以 1344)12(42||22222++=+-=k k k PQ .故四边形MPNQ 的面积 341112||||212++==k PQ MN S . 可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值范围为)38,12[.当l 与x 轴垂直时,其方程为1=x ,3||=MN ,8||=PQ ,四边形MPNQ 的面积为12. 综上,四边形MPNQ 面积的取值范围为)38,12[.考点:圆锥曲线综合问题【名师点睛】高考解析几何解答题大多考查直线与圆锥曲线的位置关系,直线与圆锥曲线的位置关系是一个很宽泛的考试内容,主要由求值、求方程、求定值、最值、求参数取值范围等几部分组成, .其中考查较多的圆锥曲线是椭圆与抛物线,解决这类问题要重视方程思想、函数思想及化归思想的应用.(21)(本小题满分12分)已知函数()()()221x f x x e a x =-+-有两个零点.(I)求a 的取值范围;(II)设x 1,x 2是()f x 的两个零点,证明:122x x +<.【答案】(0,)+∞试题解析;(Ⅰ)'()(1)2(1)(1)(2)x x f x x e a x x e a =-+-=-+.(i )设0a =,则()(2)x f x x e =-,()f x 只有一个零点.(ii )设0a >,则当(,1)x ∈-∞时,'()0f x <;当(1,)x ∈+∞时,'()0f x >.所以()f x 在(,1)-∞上单调递减,在(1,)+∞上单调递增.又(1)f e =-,(2)f a =,取b 满足0b <且ln 2a b <,则 223()(2)(1)()022a fb b a b a b b >-+-=->, 故()f x 存在两个零点.(iii )设0a <,由'()0f x =得1x =或ln(2)x a =-. 若2e a ≥-,则ln(2)1a -≤,故当(1,)x ∈+∞时,'()0f x >,因此()f x 在(1,)+∞上单调递增.又当1x ≤时,()0f x <,所以()f x 不存在两个零点. 若2e a <-,则ln(2)1a ->,故当(1,ln(2))x a ∈-时,'()0f x <;当(ln(2),)x a ∈-+∞时,'()0f x >.因此()f x 在(1,ln(2))a -单调递减,在(ln(2),)a -+∞单调递增.又当1x ≤时,()0f x <,所以()f x 不存在两个零点.综上,a 的取值范围为(0,)+∞.考点:导数及其应用【名师点睛】,对于含有参数的函数单调性、极值、零点问题,通常要根据参数进行分类讨论,要注意分类讨论的原则:互斥、无漏、最简;,解决函数不等式的证明问题的思路是构造适当的函数,利用导数研究函数的单调性或极值破解.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号(22)(本小题满分10分)选修4-1:几何证明选讲如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,12OA为半径作圆.(I)证明:直线AB与e O相切;(II)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.OD CBA【答案】(I)见解析(II)见解析试题解析:(Ⅰ)设E 是AB 的中点,连结OE ,因为,120OA OB AOB =∠=︒,所以OE AB ⊥,60AOE ∠=︒.在Rt AOE ∆中,12OE AO =,即O 到直线AB 的距离等于圆O 的半径,所以直线AB 与⊙O 相切. E O'DC OBA(Ⅱ)因为2OA OD =,所以O 不是,,,A B C D 四点所在圆的圆心,设'O 是,,,A B C D 四点所在圆的圆心,作直线'OO .由已知得O 在线段AB 的垂直平分线上,又'O 在线段AB 的垂直平分线上,所以'OO AB ⊥. 同理可证,'OO CD ⊥.所以//AB CD .考点:四点共圆、直线与圆的位置关系及证明【名师点睛】近几年几何证明题多以圆为载体命制,在证明时要抓好“长度关系”与“角度关系的转化”,熟悉相关定理与性质.该部分内容命题点有:平行线分线段成比例定理;三角形的相似与性质;四点共圆;圆内接四边形的性质与判定;切割线定理.(23)(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系x O y 中,曲线C 1的参数方程为cos 1sin x a t y a t =⎧⎨=+⎩(t 为参数,a >0). 在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(I )说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(II )直线C 3的极坐标方程为0θα=,其中0α满足tan 0α=2,若曲线C 1与C 2的公共点都在C 3上,求a .【答案】(I )圆,222sin 10a ρρθ-+-=(II )1⑵ 24cos C ρθ=:,两边同乘ρ得22224cos cos x y x ρρθρρθ==+=Q ,224x y x ∴+=,即()2224x y -+= ②3C :化为普通方程为2y x =,由题意:1C 和2C 的公共方程所在直线即为3C①—②得:24210x y a -+-=,即为3C∴210a -=,∴1a =考点:参数方程、极坐标方程与直角坐标方程的互化及应用【名师点睛】“互化思想”是解决极坐标方程与参数方程问题的重要思想,解题时应熟记极坐标方程与参数方程的互化公式及应用.(24)(本小题满分10分),选修4—5:不等式选讲已知函数()123f x x x =+--.(I )在答题卡第(24)题图中画出()y f x =的图像;(II )求不等式()1f x >的解集.【答案】(I )见解析(II )()()11353⎛⎫-∞+∞ ⎪⎝⎭U U ,,,试题解析:⑴如图所示:考点:分段函数的图像,绝对值不等式的解法【名师点睛】不等式证明选讲多以绝对值不等式为载体命制试题,主要涉及图像、解不等式、由不等式恒成立求参数范围等.解决此类问题通常转换为分段函数求解,注意不等式的解集一定要写出集合形式.。

2016年高考理科数学全国3卷(附答案)

2016年高考理科数学全国3卷(附答案)

学校:____________________ _______年_______班 姓名:____________________ 学号:________- - - - — - - - 密封线 - — — - — — - — — 密封线 — - - - - - —绝密★启用前2016年普通高等学校招生全国统一考试理科数学 全国III 卷(全卷共10页)(适用地区:广西、云南、四川)注意事项:1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。

2.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

3.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束后,将本试卷和答案卡一并交回。

第I 卷一、 选择题:本题共12小题,每小题5分.在每个小题给出的四个选项中, 只有一项是符合题目要求的。

(1)设集合{}{}(x 2)(x 3)0,T 0Sx x x =--≥=I > ,则ST = (A ) [2,3] (B )(-∞,2] [3,+∞)(C) [3,+∞) (D)(0,2] [3,+∞)(2)若z=1+2i ,则41izz =- (A)1 (B) -1 (C ) i (D ) -i(3)已知向量13(,)22BA = ,31(,),22BC = 则∠ABC=(A)300 (B) 450 (C) 600 (D )1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。

图中A 点表示十月的平均最高气温约为150C,B 点表示四月的平均最低气温约为50C 。

下面叙述不正确的是(A) 各月的平均最低气温都在00C 以上 (B) 七月的平均温差比一月的平均温差大 (C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200C 的月份有5个(5)若3tan 4α= ,则2cos 2sin 2αα+=(A )6425 (B) 4825 (C) 1 (D)1625(6)已知432a =,254b =,1325c =,则(A ) b a c << (B) a b c << (C )b c a << (D )c a b <<(7)执行下图的程序框图,如果输入的46a b ==,,那么输出的n =(A )3 (B )4 (C )5 (D )6(8)在ABC △中,π4B,BC 边上的高等于13BC ,则cos A(A )31010 (B )1010 (C )1010(D )31010(9) 如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )18365+ (B )54185+(C )90 (D )81(10) 在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是(A )4π (B )92π (C )6π (D )323π(11) 已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 (A )13(B )12(C )23(D )34(12) 定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a 中0的个数不少于1的个数.若m =4,则不同的“规范01数列"共有 第Ⅱ卷本卷包括必考题和选考题两部分.第(13)~(21)题为必考题,每个试题都必须作答。

(完整)2016全国三卷理科数学高考真题及答案-高中课件精选,推荐文档

(完整)2016全国三卷理科数学高考真题及答案-高中课件精选,推荐文档

2016年普通高等学校招生全国统一考试理科数学一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S ={}{}(x 2)(x 3)0,T 0S x x x =--≥=I >P ,则S I T =(A) [2,3] (B)(-∞ ,2]U [3,+∞) (C) [3,+∞) (D)(0,2]U [3,+∞) (2)若z=1+2i ,则41izz =- (A)1 (B) -1 (C) i (D)-i(3)已知向量12(,)22BA =uu v ,31(,),22BC =uu u v 则∠ABC= (A)300 (B) 450 (C) 600 (D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。

图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。

下面叙述不正确的是(A) 各月的平均最低气温都在00C 以上(B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200C 的月份有5个(5)若3tan 4α=,则2cos 2sin 2αα+= (A)6425 (B) 4825 (C) 1 (D)1625(6)已知432a =,344b =,1325c =,则(A )b a c << (B )a b c <<(C )b c a <<(D )c a b << (7)执行下图的程序框图,如果输入的a =4,b =6,那么输出的n =(A )3 (B )4 (C )5 (D )6(8)在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A = (A )310 (B )10(C )10-(D )310- (9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )18365+ (B )54185+(C )90 (D )81(10) 在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是 (A )4π (B )92π(C )6π(D )323π(11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 (A )13(B )12(C )23(D )34(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a L 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有 (A )18个 (B )16个 (C )14个 (D )12个二、填空题:本大题共3小题,每小题5分(13)若x ,y 满足约束条件错误!未找到引用源。

(最新)2016年高考全国2卷理科数学试题及答案解析

(最新)2016年高考全国2卷理科数学试题及答案解析

2016高考全国II 卷理数(1)已知(3)(1)i zm m 在复平面内对应的点在第四象限,则实数m 的取值范围是()(A )(31),(B )(13),(C )(1,)+(D )(3)-,【答案】A 考点:复数的几何意义.(2)已知集合{1,}A2,3,{|(1)(2)0,}B x x x x Z ,则A B ()(A ){1}(B ){12},(C ){0123},,,(D ){10123},,,,【答案】C【解析】试题分析:集合B {x |1x 2,x Z}{0,1},而A {1,2,3},所以A B {0,1,2,3},故选 C.考点:集合的运算.(3)已知向量(1,)(3,2)am a ,=,且()a b b +,则m=()(A )-8(B )-6 (C )6 (D )8 【答案】D【解析】试题分析:向量a b (4,m 2),由(a b )b得43(m 2)(2)0,解得m 8,故选D.考点:平面向量的坐标运算、数量积. (4)圆2228130x yx y 的圆心到直线10ax y 的距离为1,则a=()(A )43(B )34(C )3(D )2【答案】A 考点:圆的方程、点到直线的距离公式. (5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()(A )24(B )18 (C )12 (D )9【答案】B【解析】试题分析:由题意,小明从街道的E 处出发到F 处最短有24C 条路,再从F 处到G 处最短共有13C 条路,则小明到老年公寓可以选择的最短路径条数为214318C C 条,故选 B.考点:计数原理、组合.。

2016全国卷高考理科数学试卷及答案word版

2016全国卷高考理科数学试卷及答案word版

2016年普通高等学校招生全统一考试理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共24题,共150分第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知i m m z )1()3(-++=在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(3-,1) (B )(1-,3) (C )(1,∞+) (D )(∞-,3-)(2)已知集合{}3,2,1=A ,{}Z x x x x B ∈<-+=,0)2)(1(,则=B A (A ){}1 (B ){}2,1 (C ){}3,2,1,0 (D ){}3,2,1,0,1- (3)已知向量),1(m a =,)2,3(-=b 且b b a ⊥+)(,则=m(A )8- (B )6- (C )6 (D )8 (4)圆0138222=+--+y x y x 的圆心到直线01=-+y ax 的距离为1,则=a(A )34-(B )43- (C )3 (D )2(5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为 (A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π (B )24π(C )28π (D )32π (7)若将函数x y 2sin 2=的图像向左平移12π个单位长度,则平移后图像的对称轴为 (A ))(62Z k k x ∈-=ππ (B ))(62Z k k x ∈+=ππ 44423(C ))(122Z k k x ∈-=ππ (D ))(122Z k k x ∈+=ππ (8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的2=x ,2=n ,依次输入的a 为2,2,5,则输出的=s (A )7 (B )12 (C )17 (D )34 (9)若53)4cos(=-απ,则=α2sin (A )257 (B )51 (C )51- (D )257-(10)以从区间[]1,0随机抽取n 2个数n n y y y x x x ,⋯⋯,,,,,,2121,构成n 个数对),(),,(),,(2211n n y x y x y x ,⋯,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为 (A )m n 4 (B )m n 2 (C )n m 4 (D )nm 2 (11)已知21,F F 是双曲线E :12222=-by a x 的左,右焦点,点M 在E 上,1MF 与x 轴垂直,31sin 12=∠F MF ,则E 的离心率为 (A )2 (B )23(C )3 (D )2 (12)已知函数))((R x x f ∈满足)(2)(x f x f -=-,若函数xx y 1+=与)(x f y =图像的交点为),(,),,(),,(2211m m y x y x y x ⋯,则=+∑=mi i iy x1)((A )0 (B )m (C )m 2 (D )m 4第Ⅱ卷本卷包括必考题和选考题两部分。

2016全国各省市高考数学试题及答案

2016全国各省市高考数学试题及答案

(10)B
第 II 卷
本卷包括必考题和选考题两部分。第(13)题~第(21)题为必考题,每个试题 考生都必须作答。第(22)题~第(24)题未选考题,考生根据要求作答。 二、填空题:本大题共 3 小题,每小题 5 分
(13)
3 2 3
(14)
(15) y 2 x 1 (16)4
三、解答题:解答应写出文字说明,证明过程或演算步骤.
23.(本小题满分 10 分)选修 4-4:坐标系与参数方程 在直角坐标系 xOy 中,曲线 C1 的参数方程为 y sin
x 3 cos ( 为参数 )
,以坐标原点为极点,
以 x 轴的正半轴为极轴, ,建立极坐标系,曲线 C 2 的极坐标方程为 sin( ) 2 2 . 4
(17) (本小题满分 12 分) 解: (Ⅰ)由题意得 a1 S1 1 a1 ,故 1 , a1
1 , a1 0 . 1
由 S n 1 an , S n 1 1 an 1 得 an 1 an 1 an ,即 an 1 ( 1) an . 由 a1 0 ,
所以预测 2016 年我国生活垃圾无害化处理量将约 1.82 亿吨. (19) (本小题满分 12 分) 解: (Ⅰ)由已知得 AM 知 TN // BC , TN
2 AD 2 ,取 BP 的中点 T ,连接 AT , TN ,由 N 为 PC 中点 3
1 BC 2 . 2
又 AD // BC ,故 TN 平行且等于 AM ,四边形 AMNT 为平行四边形,于是 MN // AT . 因为 AT 平面 PAB , MN 平面 PAB ,所以 MN // 平面 PAB . ( Ⅱ)取 BC 的 中点 E , 连结 AE , 由 AB AC 得 AE BC , 从而 AE AD , 且

(完整word版)2016年全国高考数学(理科)试题及答案-全国1卷(解析版)

(完整word版)2016年全国高考数学(理科)试题及答案-全国1卷(解析版)

范围是
(A) 1,3 (B) 1, 3 (C) 0,3 (D) 0, 3
【答案】A
考点:双曲线的性质 【名师点睛】双曲线知识一般作为客观题学生出现,主要考查双曲线几何性质,属于基础题.注意 双曲线的焦距是 2c 不是 c,这一点易出错. (6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何
一. 选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目 要求的.
(1)设集合 A x x2 4x 3 0 , x 2x 3 0 ,则 A B
(A)
3,
3 2
【答案】D
(B)
3,
3 2
(C)
1,
3 2
(D)
3 2
,
3
考点:集合的交集运算 【名师点睛】集合是每年高考中的必考题,一般以基础题形式出现,属得分题.解决此类问题一般 要把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数 集之间的运算,常借助数轴进行运算.
(8)若 a b 1,0 c 1,则 (A) ac bc (B) abc bac (C) a logb c b loga c (D) loga c logb c
【答案】C 【解析】
试题分析:用特殊值法,令 a 3, b
2,c
1
1
得 32
1
22 ,选项
A
1
错误, 3 22
1
2 32 ,选项
2016 高考数学(理科)试卷(全国 1 卷)
绝密 ★ 启用前
2016 年普通高等学校招生全国统一考试(全国 1 卷)
数学(理科)
注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷 1 至 3 页,第Ⅱ卷 3 至 5 页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4. 考试结束后,将本试题和答题卡一并交回. 第Ⅰ卷

2016年高考全国Ⅲ理科数学试题及答案(word解析版)

2016年高考全国Ⅲ理科数学试题及答案(word解析版)

2016年普通高等学校招生全国统一考试(全国Ⅲ)数学(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)【2016年全国Ⅲ,理1,5分】设集合 ,则( )()(){}{}|230,|0S x x x T x x =--≥=>S T =(A ) (B ) (C )(D )[]2,3(][),23,-∞+∞ [)3,+∞(][)0,23,+∞ 【答案】D【解析】由解得或,,所以,故选()()230x x --≥3x ≥2x ≤{}23S x x ∴=≤≥或{}023S T x x x =<≤≥ 或D .【点评】研究集合的关系,处理集合的交、并、补的运算问题,常用韦恩图、数轴等几何工具辅助解题.一般地,对离散的数集、抽象的集合间的关系及运算,可借助韦恩图,而对连续的集合间的运算及关系,可借助数轴的直观性,进行合理转化.(2)【2016年全国Ⅲ,理2,5分】若,则( )i 12z =+4i1zz =-(A )1 (B ) (C ) (D )1-i i -【答案】C【解析】,故选C .4i 4ii (12i)(12i)11zz ==+---【点评】复数的加、减法运算中,可以从形式上理解为关于虚数单位“”的多项式合并同类项,复数的乘法与多i 项式的乘法相类似,只是在结果中把换成.复数除法可类比实数运算的分母有理化.复数加、减2i 1-法的几何意义可依平面向量的加、减法的几何意义进行理解.(3)【2016年全国Ⅲ,理3,5分】已知向量,,则( )1(2BA =u u v 1)2BC =u u u v ABC ∠=(A ) (B ) (C ) (D )30︒45︒60︒120︒【答案】A【解析】由题意,得,所以,故选A .cos BA BC ABC BA BC⋅∠=== 30ABC ∠=︒【点评】(1)平面向量与的数量积为,其中是与的夹角,要注意夹角的定义和它的取值a b ·cos a b a b θ或θa b 范围:;(2)由向量的数量积的性质有,,因此,0180θ︒≤≤︒|a ·cos a ba bθ=·0a b a b ⇔⊥ 或利用平面向量的数量积可以解决与长度、角度、垂直等有关的问题.(4)【2016年全国Ⅲ,理4,5分】某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图.图中点表示十月的平均最高气温约为A ,点表示四月的平均最低气温约为.下面叙述不正确的是( )15C ︒B 5C ︒(A )各月的平均最低气温都在以上 (B )七月的平均温差比一月的平均温差大 0C ︒(C )三月和十一月的平均最高气温基本相同(D )平均气温高于的月份有5个20C ︒【答案】D【解析】由图可知均在虚线框内,所以各月的平均最低气温都在以上,A 正确;由图0C ︒0C ︒可在七月的平均温差大于,而一月的平均温差小于,所以七月的平均7.5C ︒7.5C ︒温差比一月的平均温差大,B 正确;由图可知三月和十一月的平均最高气温都大约在,基本相同,5C ︒C 正确;由图可知平均最高气温高于的月份有3个或2个,所以不正确,故选D .20C ︒【点评】解答本题时易错可能有两种:(1)对图形中的线条认识不明确,不知所措,只觉得是两把雨伞重叠在一起,找不到解决问题的方法;(2)估计平均温差时易出现错误,错选B.(5)【2016年全国Ⅲ,理5,5分】若,则()3tan4α=2cos2sin2αα+=(A)(B)(C)1 (D)642548251625【答案】A【解析】由,得或,所以,3tan4α=34sin,cos55αα==34sin,cos55αα=-=-2161264cos2sin24252525αα+=+⨯=故选A.【点评】三角函数求值:①“给角求值”将非特殊角向特殊角转化,通过相消或相约消去非特殊角,进而求出三角函数值;②“给值求值”关键是目标明确,建立已知和所求之间的联系.(6)【2016年全国Ⅲ,理6,5分】已知,,,则()432a=254b=1325c=(A)(B)(C)(D)b a c<<a b c<<b c a<<c a b<<【答案】A【解析】因为,,所以,故选A.422335244a b==>=1223332554c a==>=b a c<<【点评】比较指数的大小常常根据三个数的结构联系相关的指数函数与对数函数、幂函数的单调性来判断,如果两个数指数相同,底数不同,则考虑幂函数的单调性;如果指数不同,底数相同,则考虑指数函数的单调性;如果涉及到对数,则联系对数的单调性来解决.(7)【2016年全国Ⅲ,理7,5分】执行下图的程序框图,如果输入的,那么输出的46a b==或()n=(A)3 (B)4 (C)5 (D)6【答案】B【解析】第一循环,得;第二循环,得;2,4,6,6,1a b a s n=====2,6,4,10,2a b a s n=-====第三循环,得;第四循环,得2,4,6,16,3a b a s n=====;2,6,4,2016,4a b a s n=-===>=退出循环,输出,故选B.4n=【点评】解决此类型时要注意:第一,要明确是当型循环结构,还是直到型循环结构.根据各自的特点执行循环体;第二,要明确图中的累计变量,明确每一次执行循环体前和执行循环体后,变量的值发生的变化;第三,要明确循环体终止的条件是什么,会判断什么时候终止循环体.(8)【2016年全国Ⅲ,理8,5分】在中,,边上的高等于,则 ( )ABCDπ4B=BC13BC cos A=(A(B(C)(D)--【答案】C【解析】设边上的高线为,则,所以,.由余弦定理,BC AD3BC AD=AC==AB=知,故选C.222cos2AB AC BCAAB AC+-===⋅【点评】在平面几何图形中求相关的几何量时,需寻找各个三角形之间的联系,交叉使用公共条件,常常将所涉及到已知几何量与所求几何集中到某一个三角形,然后选用正弦定理与余弦定理求解.(9)【2016年全国Ⅲ,理9,5分】如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为()(A)(B)(C)90 (D)8118+54+【答案】B【解析】由三视图该集合体是以侧视图为底面的斜四棱柱,所以该几何体的表面积B.2362332354S=⨯⨯+⨯⨯+⨯⨯=+【点评】求解多面体的表面积及体积问题,关键是找到其中的特征图形,如棱柱中的矩形,棱锥中的直角三角形,棱台中的直角梯形等,通过这些图形,找到几何元素间的关系,建立未知量与已知量间的关系,进行求解.(10)【2016年全国Ⅲ,理10,5分】在封闭的直三棱柱内有一个体积为的球,若,111ABC A B C -V AB BC ⊥,,,则的最大值是( )6AB =8BC =13AA =V (A ) (B ) (C ) (D )4π92π6π323π【答案】B【解析】要使球的体积最大,必须球的半径最大.由题意知球的与直三棱柱的上下底面都相切时,球的半V R 径取得最大值,此时球的体积为,故选B .32334439(3322R πππ==【点评】立体几何是的最值问题通常有三种思考方向:(1)根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;(2)将几何体平面化,如利用展开图,在平面几何图中直观求解;(3)建立函数,通过求函数的最值来求解.(11)【2016年全国Ⅲ,理11,5分】已知为坐标原点,是椭圆的左焦点,分O F 2222:1(0)x y C a b a b+=>>,A B 别为的左,右顶点.为上一点,且轴.过点的直线与线段交于点,与轴交于C P C PF x ⊥A l PF M y 点.若直线经过的中点,则的离心率为( )E BM OE C (A ) (B ) (C ) (D )13122334【答案】A【解析】由题意设直线的方程为,分别令与得点,,由l ()y k x a =+x c =-0x =()FM k a c =-OE ka=~OBE ∆,得,即,整理得,所以椭圆离心率为,故选A .CBM ∆12OE OB FM BC=()2ka ak a c a c=-+13c a =1e 3=【点评】求解椭圆的离心率问题主要有三种方法:(1)直接求得的值,进而求得的值;(2)建立,a c e 的齐次等式,求得或转化为关于的等式求解;(3)通过特殊值或特殊位置,求出.,,a b c ba e e (12)【2016年全国Ⅲ,理12,5分】定义“规范01数列”如下:共有项,其中项为0,项为{}n a {}n a 2m m m 1,且对任意,中0的个数不少于1的个数.若,则不同的“规范01数列”共有(2k m ≤12,,,k a a a 4m =)(A )18个 (B )16个 (C )14个 (D )12个【答案】C【解析】由题意,得必有,,则具体的排法列表如下:,故选C .10a =81a =011101101111001101011001110100110101100101010101【点评】求解计数问题时,如果遇到情况较为复杂,即分类较多,标准也较多,同时所求计数的结果不太大时,往往利用表格法、树枝法将其所有可能一一列举出来,常常会达到岀奇制胜的效果.第II 卷本卷包括必考题和选考题两部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山西省2016年高考理科数学试题(附答案)(满分150分,时间120分)第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合2{|430}A x x x =-+<,{|230}B x x =->,则A B =(A )3(3,)2-- (B )3(3,)2- (C )3(1,)2 (D )3(,3)2(2)设(1i)1i x y +=+,其中x ,y 是实数,则i =x y + (A )1 (B 2 (C 3(D )2(3)已知等差数列{}n a 前9项的和为27,10=8a ,则100=a(A )98 (B )99 (C )100 (D )97(4)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是(A )31 (B )21 (C )32 (D )43 (5)已知方程表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是(A )(0,3) (B )(–1,3) (C )(–1,3) (D )(0,3)(6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是(A )20π (B )18π(C )17π (D )28π(7)函数y =2x 2–e |x |在[–2,2]的图像大致为(A ) (B )(C )(D )(8)若101a b c >><<,,则 (A )log log b a a c b c < (B )c c ab ba <(C )c ca b <(D )log log a b c c <(9)执行右面的程序框图,如果输入的0,1,x y ==n =1,则输出,x y 的值满足(A )4y x =(B )3y x =(C )2y x =(D )5y x =(10)以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C 的标准线于D 、E 两点.已知|AB |=2|DE|=5C 的焦点到准线的距离为(A)2 (B)4 (C)6 (D)8(11)平面a 过正方体ABCD -A 1B 1C 1D 1的顶点A ,a //平面CB 1D 1,a ⋂平面ABCD =m ,a ⋂平面ABA 1B 1=n ,则m 、n 所成角的正弦值为(A) 33 (B )22 (C) 32 (D)13 12.已知函数()sin()(0),24f x x+x ππωϕωϕ=>≤=-,为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫ ⎪⎝⎭,单调,则ω的最大值为 (A )11 (B )9 (C )7 (D )5第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分(13) 设向量a=(m ,1),b=(1,2),且|a+b|2=|a|2+|b|2,则m=______. (14) 5(2)x x +的展开式中,x 3的系数是__________.(用数字填写答案)(15)设等比数列满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为___________。

(16) 某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料。

生产一件产品A 需要甲材料1.5kg ,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料0.5kg ,乙材料0.3kg ,用3个工时,生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元。

该企业现有甲材料150kg ,乙材料90kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为___________元。

三.解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本题满分为12分)△ABC 的内角A ,B ,C 的对边分别别为a ,b ,c ,已知2cos (cos cos ).C a B+b A c = (I )求C ;(II )若7,c ABC =的面积为332,求△ABC 的周长. (18)(本题满分为12分)如图,在已A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD ,90AFD ∠=,且二面角D-AF-E 与二面角C-BE-F都是60.(I )证明平面ABEF ⊥EFDC ;(II )求二面角E-BC-A 的余弦值.(19)(本小题满分12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数. (I )求X 的分布列;(II )若要求()0.5P X n ≤≥,确定n 的最小值;(III )以购买易损零件所需费用的期望值为决策依据,在19n =与20n =之中选其一,应选用哪个?20. (本小题满分12分)设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E.(I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M,N 两点,过B 且与l 垂直的直线与圆A 交于P,Q两点,求四边形MPNQ面积的取值范围.(21)(本小题满分12分)已知函数f(x)=(x-2)e x+a(x-1)2有两个零点.(I)求a的取值范围;(II)设x1,x2是的两个零点,证明:+x2<2.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号(22)(本小题满分10分)选修4-1:几何证明选讲如图,△OAB是等腰三角形,∠AOB=120°.以⊙O为圆心,OA为半径作圆.(I)证明:直线AB与O相切;(II)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.(23)(本小题满分10分)选修4—4:坐标系与参数方程在直线坐标系xoy中,曲线C1的参数方程为(t为参数,a>0)。

在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=cosθ.(I)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(II)直线C3的极坐标方程为,其中满足tan=2,若曲线C1与C2的公共点都在C3上,求a。

(24)(本小题满分10分),选修4—5:不等式选讲已知函数f(x)= ∣x+1∣-∣2x-3∣.(I)在答题卡第(24)题图中画出y= f(x)的图像;(II)求不等式∣f(x)∣﹥1的解集。

理科数学参考答案一、 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)D (2)B (3)A (4)B (5)C (6)C (7)D (8)A(9)A (10)B (11)C (12)B二、填空题:本大题共4小题,每小题5分(13)2- (14)10(15)64 (16)216000三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分为12分)解:(I )由已知及正弦定理得,()2cosC sin cos sin cos sinC A B+B A =, 即()2cosCsin sinC A+B =.故2sinCcosC sinC =. 可得1cosC 2=,所以C 3π=.(II )由已知,1sin C 22ab =. 又C 3π=,所以6ab =.由已知及余弦定理得,222cosC 7a b ab +-=.故2213a b +=,从而()225a b +=.所以C ∆AB 的周长为5.(18)(本小题满分为12分)解:(I )由已知可得F DF A ⊥,F F A ⊥E ,所以F A ⊥平面FDC E .又F A ⊂平面F ABE ,故平面F ABE ⊥平面FDC E .(II )过D 作DG F ⊥E ,垂足为G ,由(I )知DG ⊥平面F ABE .以G 为坐标原点,GF 的方向为x 轴正方向,GF 为单位长度,建立如图所示的空间直角坐标系G xyz -.由(I )知DF ∠E 为二面角D F -A -E 的平面角,故DF 60∠E =,则DF 2=,DG 3=,可得()1,4,0A ,()3,4,0B -,()3,0,0E -,()D 0,0,3.由已知,//F AB E ,所以//AB 平面FDC E .又平面CD AB 平面FDC DC E =,故//CD AB ,CD//F E . 由//F BE A ,可得BE ⊥平面FDC E ,所以C F ∠E 为二面角C F -BE -的平面角, C F 60∠E =.从而可得()C 2,0,3-.所以()C 1,0,3E =,()0,4,0EB =,()C 3,4,3A =--,()4,0,0AB =-.设(),,n x y z =是平面C B E 的法向量,则 C 00n n ⎧⋅E =⎪⎨⋅EB =⎪⎩,即3040x z y ⎧+=⎪⎨=⎪⎩, 所以可取()3,0,3n =-.设m 是平面CD AB 的法向量,则C 00m m ⎧⋅A =⎪⎨⋅AB =⎪⎩,同理可取()0,3,4m =.则219cos ,19n m n m n m ⋅==-. 故二面角C E-B -A 的余弦值为21919-.学科&网(19)(本小题满分12分)解:(Ⅰ)由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2,从而04.02.02.0)16(=⨯==X P ;16.04.02.02)17(=⨯⨯==X P ;24.04.04.02.02.02)18(=⨯+⨯⨯==X P ;24.02.04.022.02.02)19(=⨯⨯+⨯⨯==X P ;2.02.02.04.02.02)20(=⨯+⨯⨯==X P ;08.02.02.02)21(=⨯⨯==X P ;04.02.02.0)22(=⨯==X P .所以X 的分布列为(Ⅱ)由(Ⅰ)知44.0)18(=≤X P ,68.0)19(=≤X P ,故n 的最小值为19. (Ⅲ)记Y 表示2台机器在购买易损零件上所需的费用(单位:元).当19=n 时,08.0)500220019(2.0)50020019(68.020019⨯⨯+⨯+⨯+⨯+⨯⨯=EY 404004.0)500320019(=⨯⨯+⨯+.学科&网当20=n 时,04.0)500220020(08.0)50020020(88.020020⨯⨯+⨯+⨯+⨯+⨯⨯=EY 4080=. 可知当19=n 时所需费用的期望值小于20=n 时所需费用的期望值,故应选19=n .20.(本小题满分12分)解:(Ⅰ)因为||||AC AD =,AC EB //,故ADC ACD EBD ∠=∠=∠,所以||||ED EB =,故||||||||||AD ED EA EB EA =+=+.又圆A 的标准方程为16)1(22=++y x ,从而4||=AD ,所以4||||=+EB EA . 由题设得)0,1(-A ,)0,1(B ,2||=AB ,由椭圆定义可得点E 的轨迹方程为: 13422=+y x (0≠y ). (Ⅱ)当l 与x 轴不垂直时,设l 的方程为)0)(1(≠-=k x k y ,),(11y x M ,),(22y x N .由⎪⎩⎪⎨⎧=+-=134)1(22y x x k y 得01248)34(2222=-+-+k x k x k . 则3482221+=+k k x x ,341242221+-=k k x x . 所以34)1(12||1||22212++=-+=k k x x k MN . 过点)0,1(B 且与l 垂直的直线m :)1(1--=x k y ,A 到m 的距离为122+k ,所以 1344)12(42||22222++=+-=k k k PQ .故四边形MPNQ 的面积 341112||||212++==k PQ MN S .学科&网 可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值范围为)38,12[.当l 与x 轴垂直时,其方程为1=x ,3||=MN ,8||=PQ ,四边形MPNQ 的面积为12. 综上,四边形MPNQ 面积的取值范围为)38,12[.(21)(本小题满分12分)解:(Ⅰ)'()(1)2(1)(1)(2)x x f x x e a x x e a =-+-=-+.(i )设0a =,则()(2)x f x x e =-,()f x 只有一个零点.(ii )设0a >,则当(,1)x ∈-∞时,'()0f x <;当(1,)x ∈+∞时,'()0f x >.所以()f x 在(,1)-∞上单调递减,在(1,)+∞上单调递增.又(1)f e =-,(2)f a =,取b 满足0b <且ln 2a b <,则 223()(2)(1)()022a fb b a b a b b >-+-=->, 故()f x 存在两个零点.(iii )设0a <,由'()0f x =得1x =或ln(2)x a =-. 若2e a ≥-,则ln(2)1a -≤,故当(1,)x ∈+∞时,'()0f x >,因此()f x 在(1,)+∞上单调递增.又当1x ≤时,()0f x <,所以()f x 不存在两个零点.学科&网 若2e a <-,则ln(2)1a ->,故当(1,ln(2))x a ∈-时,'()0f x <;当(ln(2),)x a ∈-+∞时,'()0f x >.因此()f x 在(1,ln(2))a -单调递减,在(ln(2),)a -+∞单调递增.又当1x ≤时,()0f x <,所以()f x 不存在两个零点.综上,a 的取值范围为(0,)+∞.(Ⅱ)不妨设12x x <,由(Ⅰ)知12(,1),(1,)x x ∈-∞∈+∞,22(,1)x -∈-∞,()f x 在(,1)-∞上单调递减,所以122x x +<等价于12()(2)f x f x >-,即2(2)0f x -<.由于222222(2)(1)x f x x e a x --=-+-,而22222()(2)(1)0x f x x e a x =-+-=,所以 222222(2)(2)x x f x x e x e --=---.设2()(2)x x g x xe x e -=---,则2'()(1)()x x g x x e e -=--.所以当1x >时,'()0g x <,而(1)0g =,故当1x >时,()0g x <.从而22()(2)0g x f x =-<,故122x x +<.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号(22)(本小题满分10分)选修4-1:几何证明选讲解:(Ⅰ)设E 是AB 的中点,连结OE ,因为,120OA OB AOB =∠=︒,所以OE AB ⊥,60AOE ∠=︒.在Rt AOE ∆中,12OE AO =,即O 到直线AB 的距离等于圆O 的半径,所以直线AB 与⊙O 相切. E O'DC OBA(Ⅱ)因为2OA OD =,所以O 不是,,,A B C D 四点所在圆的圆心,设'O 是,,,A B C D 四点所在圆的圆心,作直线'OO .由已知得O 在线段AB 的垂直平分线上,又'O 在线段AB 的垂直平分线上,所以'OO AB ⊥.同理可证,'OO CD ⊥.所以//AB CD .(23)(本小题满分10分)解:⑴ cos 1sin x a t y a t =⎧⎨=+⎩(t 均为参数) ∴()2221x y a +-= ①∴1C 为以()01,为圆心,a 为半径的圆.方程为222210x y y a +-+-= ∵222sin x y y ρρθ+==,∴222sin 10a ρρθ-+-= 即为1C 的极坐标方程⑵ 24cos C ρθ=:学科&网两边同乘ρ得22224cos cos x y x ρρθρρθ==+=,224x y x ∴+= 即()2224x y -+= ② 3C :化为普通方程为2y x =由题意:1C 和2C 的公共方程所在直线即为3C①—②得:24210x y a -+-=,即为3C∴210a -=∴1a =(24)(本小题满分10分)解:⑴ 如图所示:⑵ ()4133212342x x f x x x x x ⎧⎪--⎪⎪=--<<⎨⎪⎪-⎪⎩,≤,,≥ ()1f x >当1x -≤,41x ->,解得5x >或3x < 1x -∴≤ 当312x -<<,321x ->,解得1x >或13x < 113x -<<∴或312x << 当32x ≥,41x ->,解得5x >或3x < 332x <∴≤或5x > 综上,13x <或13x <<或5x > ()1f x >∴,解集为()()11353⎛⎫-∞+∞ ⎪⎝⎭,,,。

相关文档
最新文档