2021版中考数学基础过关:第11课时~反比例函数-ppt课件

合集下载

中考数学《1.11反比例函数》总复习课件ppt

中考数学《1.11反比例函数》总复习课件ppt

∴m-7=6.∴m=13.
考点 扫描
综合 探究
考点1
考点2
考点3
【变式训练】(2016· 山东烟台)如图,在平面直角坐标系中,菱形 OABC的面积为12,点B在y轴上,点C在反比例函数y= 的图象上, 则k的值为 -6 .
【解析】连接AC,交y轴于点D,∵四边形ABCO为菱形,∴AC⊥OB,且 CD=AD,BD=OD.∵菱形OABC的面积为12,∴△CDO的面积为 3.∴|k|=6.∵反比例函数图象位于第二象限,∴k<0,k=-6.
1.11 反比例函数
考纲 解读
命题 解读
结合具体情境体会反比例函数的意义,能根据已知条件确定反比例 函数的表达式;掌握反比例函数的图象和性质,根据图象和表达式 y= (k≠0)探索并理解k>0和k<0时图象的变化情况;能用反比例函 数解决简单实际问题.
考纲 解读
命题 解读
2014—2016 年安徽中考命题分析 2017 年安徽中考命题预测 题 分 考查内容:反比例函数的图象与性质,反比 年份 考查点 题号 型 值 例函数与一次函数的综合,几何中的动点 问题. 反比例函数与 解 2016 一次函数的综 答 20 10 考查题型:纵观安徽省近几年的中考试题, 不难发现,反比例函数知识每年都考,题型 合 题 有选择题(2013 年、2014 年),或者解答题 (2012 年、2015 年、2016 年).选择题中, 反比例函数知识往往与几何中的动点问 反比例函数与 解 题结合;解答题中,要么考查反比例函数的 2015 一次函数的综 答 21 12 实际应用(2012 年),要么考查反比例函数 合 题 与一次函数的综合(2014 年、2015 年),无 论是选择题,还是解答题,难度都在中等以 上.

第11章 反比例函数-2021年中考数学一轮复习(考点梳理+重难点讲解+过关演练)

第11章  反比例函数-2021年中考数学一轮复习(考点梳理+重难点讲解+过关演练)

2021年中考数学一轮复习(通用版)第11章反比例函数考点梳理考点一反比例函数的概念、图象和性质1.反比例函数的概念一般地,函数y=(k为常数,且k≠0)叫做反比例函数.【点拨】(1)函数y=kx-1或xy=k都是反比例函数;(2)反比例函数中自变量的取值范围是x≠0. 2.反比例函数的图象和性质(1)反比例函数y=kx(k为常数,且k≠0)的图象是.(2)反比例函数的图象无限接近,但永不与相交.(3)反比例函数的图象和性质第一、三象限第二、四象限一象限,再结合每个象限内反比例函数图象的增减性来比较,解决这种问题的一个有效办法是画出草图,标上各点,再比较大小.3.确定反比例函数的表达式(1)求反比例函数的表达式可用待定系数法.由于反比例函数的表达式中只有一个待定系数,因此只需已知一组对应值即可.(2)求反比例函数表达式的一般步骤:①设反比例函数的表达式;①把已知的一组对应值代入函数表达式,建立方程;①解方程求得待定系数的值.4.反比例函数的系数k的几何意义如图,设点P(x,y)是反比例函数y=kx图象上任一点,过点P作x轴的垂线,垂足为A,则①OP A的面积=12OA·P A=12|xy|=12|k|,这就是反比例函数的系数k的几何意义.【点拨】根据比例系数k的几何意义,求k值时,要根据双曲线所在的象限正确确定k的符号.考点二反比例函数的应用1.反比例函数与一次函数的综合应用(1)求函数解析式一般先通过一个已知点求出反比例函数解析式,再由反比例函数的解析式求出另一个交点的坐标,再将这两点的坐标代入一次函数的解析式中,解方程(组)即可.(2)求交点坐标将一次函数的解析式与反比例函数的解析式联立成方程组求解即可;对于正比例函数与反比例函数,其均关于原点对称,只要知道一个交点的坐标,就可以求出其关于原点对称的另一个交点的坐标.(3)求面积①当有一边在坐标轴上时,通常将坐标轴上的边作为底边,再利用点的坐标求得底边上的高,然后利用面积公式求解;①当两边均不在坐标轴上时,一般可采用割补法将其转化为一边在坐标轴上的两个三角形面积的和或差来求解.此外,求面积时要充分利用“数形结合”的思想,即用“坐标”求“线段”,用“线段”求“坐标”.(4)比较两个函数值的大小,求自变量的取值范围2.反比例函数的实际应用利用反比例函数解决实际问题,首先要建立反比例函数的数学模型,这也是关键一步,一般地,建立反比例函数模型有两种思路:(1)题目中明确指出变量间存在反比例函数关系,在这种情况下,可利用待定系数法求反比例函数的解析式.(2)题目中未指出变量间存在反比例函数关系,在这种情况下可利用基本数量关系求反比例函数的关系式,反比例函数模型建立后,进一步地可利用反比例函数的图像及性质解决问题.重难点讲解考点一正确理解反比例函数的概念,会求k值和反比例函数的解析式方法指导:因为反比例函数的解析式y=kx(k≠0)中只有一个待定系数k,确定了k的值,也就确定了反比例函数的解析式,因而只需给出一组x,y的值或图象上一点的坐标,代入y=kx(k≠0)中即可求出k的值,从而确定反比例函数的解析式.另外,反比例函数解析式y=kx(k≠0)也可以变形为k=xy(k≠0),所以要求的k值就等于双曲线上任意一点的横坐标与纵坐标之积.进一步理解得到反比例函数解析式y=kx(k≠0)中,比例系数k的几何意义是过双曲线上任意一点作x轴、y轴的垂线,所得的矩形面积为|k|.经典例题1 (2020•安徽滁州模拟)如图,在平面直角坐标系中,反比例函数y=kx(x>0)经过矩形ABOC的对角线OA的中点M,已知矩形ABOC的面积为16,则k的值为()A.2B.4C.6D.8【解析】设A(a,b),则ab=16,∵点M是OA的中点,∴M(12a,12b),∵反比例函数y=kx(x>0)经过点M,∴k=12a﹒12b=14ab=14×16=4.【答案】B考点二一次函数与反比例函数的综合方法指导:这类问题常有以下四种主要题型:(1)利用k值与图象的位置关系,综合确定系数符号或图象位置.解题策略:分k>0和k<0两种情况考虑.(2)已知直线与双曲线的表达式求交点坐标.解题策略:联立直线与双曲线的方程组成方程组求解.(3)用待定系数法确定直线与双曲线的表达式.解题策略:待定系数法.(4)应用函数图象的性质比较一次函数值与反比例函数值的大小.解题策略:看图象,以两个图象的交点为界,图象在上方的函数值比图象在下方的要大.经典例题2 (2020•黑龙江大庆模拟)如图,一次函数y=-x+5的图象与反比例函数y=kx(k≠0)在第一象限的图象交于A(1,n)和B两点.(1)求反比例函数的解析式与点B坐标;(2)求△AOB的面积.【解析】(1)利用待定系数法求出点A坐标即可解决问题.(2)构建方程组求出交点B坐标,直线y=-x +5交y轴于E(0,5),根据S△AOB=S△OBE-S△AOE计算即可.解:(1)∵A(1,n)在直线y=-x+5上,∴n=-1+5=4,∴A(1,4),把A(1,4)代入y=kx得到k=4,∴反比例函数的解析式为y=4x.(2)由45y xy x ⎧=⎪⎨⎪=-+⎩,,解得14x y =⎧⎨=⎩,或41x y =⎧⎨=⎩,, ∴B (4,1),直线y =-x +5交y 轴于E (0,5), ∴S △AOB =S △OBE -S △AOE =12×5×4-12×5×1=7.5.考点三 反比例函数的应用 方法指导:利用反比例函数解决实际问题,我们应抽象概括出反比例函数关系,建立反比例函数模型.根据已知条件写出反比例函数的解析式,并能把实际问题反映在函数的图象上,结合图象和性质解决实际问题.因此,利用反比例函数解决实际问题的关键是建立反比例函数模型,即求出反比例函数解析式.一般地,建立反比例函数模型有以下两种常用方法:(1)待定系数法:若题目提供的信息中明确此函数为反比例函数,则可设反比例函数解析式为y =kx(k ≠0),然后求出k 的值即可.(2)列方程法:若题目信息中变量之间的函数关系不明确,在这种情况下,通常是列出关于函数(y )和自变量(x )的方程,进而解出函数,得到函数解析式.经典例题3 (2020·江西模拟)小明家饮水机中原有水的温度为20℃,通电开机后,饮水机自动开始加热[此过程中水温y (℃)与开机时间x (分)满足一次函数关系],当加热到100℃时自动停止加热,随后水温开始下降[此过程中水温y (℃)与开机时间x (分)成反比例关系],当水温降至20℃时,饮水机又自动开始加热…,重复上述程序(如图所示),根据图中提供的信息,解答下列问题: (1)当0≤x ≤10时,求水温y (℃)与开机时间x (分)的函数关系式; (2)求图中t 的值;(3)若小明在通电开机后即外出散步,请你预测小明散步57分钟回到家时,饮水机内的温度约为多少℃?解:(1)当0≤x≤10时,设水温y(℃)与开机时间x(分)的函数关系为y=kx+b,依据题意,得2010100 bk b⎧⎨⎩=,+=,解得820kb⎧⎨⎩=,=,故此函数解析式为y=8x+20.(2)在水温下降过程中,设水温y(℃)与开机时间x(分)的函数关系式为y=mx,依据题意,得100=10m,即m=1000,故y=1000x,当y=20时,20=1000t,解得t=50.(3)∵57-50=7<10,∴当x=7时,y=8×7+20=76.答:小明散步57分钟回到家时,饮水机内的温度约为76℃.过关演练1.(2020·河南一模)已知点A(2,a),B(-3,b)都在双曲线y=-6x上,则()A.a<b<0B.a<0<b C.b<a<0 D.b<0<a2.(2020•山东德州中考)函数y=kx和y=-kx+2(k≠0)在同一平面直角坐标系中的大致图象可能是()A B C D 3.(2020•贵州黔西南州中考)如图,在菱形ABOC中,AB=2,①A=60°,菱形的一个顶点C在反比例函数y═kx(k≠0)的图象上,则反比例函数的解析式为()A .y =-x B .y =-x C .y =-3xD .y =x4.(2020·湖南长沙模拟)若点A (3,4)是反比例函数y =kx图象上一点,则下列说法正确的是( ) A .图象分別位于二、四象限 B .当x <0时,y 随x 的增大而减小 C .点(2,-6)在函数图象上 D .当y ≤4时,x ≥3 5.(2020·安徽合肥模拟)在同一坐标系中,函数y =kx和y =-kx +3的大致图象可能是( )A B C D6.(2020·安徽合肥一模)如图,若反比例函数y =k x (x <0)的图象经过点(-12,4),点A 为图象上任意一点,点B 在x 轴负半轴上,连接AO ,AB ,当AB =OA 时,①AOB 的面积为( )A .1B .2C .4D .无法确定7. (2020•湖北孝感中考)已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A)与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示,则这个反比例函数的解析式为( )A.I=24RB.I=36RC.I=48RD.I=64R8. (2020•湖南长沙中考)2019年10月,《长沙晚报》对外发布长沙高铁西站设计方案.该方案以“三湘四水,杜娟花开”为设计理念,塑造出“杜娟花开”的美丽姿态.该高铁站建设初期需要运送大量土石方.某运输公司承担了运送总量为106m3土石方的任务,该运输公司平均运送土石方的速度v(单位:m3/天)与完成运送任务所需时间t(单位:天)之间的函数关系式是()A.v=610tB.v=106t C.v=6110t2D.v=106t29.(2020·河北一模)已知反比例函数y=mx与一次函数y=kx+b的图象相交于点A(4,1),B(a,2)两点,一次函数的图象与y轴交于点C,点D在x轴上,其坐标为(1,0),则①ACD的面积为()A.12B.9C.6D.510.(2020·广东广州一模)如图所示,已知A(13,y1),B(3,y2)为反比例函数y=1x图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A.(13,0) B.(43,0) C.(23,0) D.(103,0)11.(2020·湖北十堰一模)已知反比例函数y=24kx+(k是常数,且k≠-2)的图象有一支在第二象限,则k的取值范围是.12.(2020•江苏无锡模拟)如果反比例函数y=3ax-(a是常数)的图象在第一、三象限,那么a的取值范围是.13.(2020•山东滨州中考)若正比例函数y=2x的图象与某反比例函数的图象有一个交点的纵坐标是2,则该反比例函数的解析式为.14.(2020•四川甘孜州中考)如图,在平面直角坐标系xOy中,一次函数y=x+1的图象与反比例函数y=2 x的图象交于A,B两点,若点P是第一象限内反比例函数图象上一点,且①ABP的面积是①AOB的面积的2倍,则点P的横坐标为.15.(2020·安徽阜阳模拟)如图,菱形ABCD的顶点A,B的横坐标分别为1,4,BD①x轴,双曲线y=5 x (x>0)经过A,B两点,则菱形ABCD的面积为.16.(2020•山东青岛)如图所示,点A是反比例函数y=kx(x<0)的图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,若△ABP的面积是2,则k=.17.(2020•浙江台州中考)小明同学训练某种运算技能,每次训练完成相同数量的题目,各次训练题目难度相当.当训练次数不超过15次时,完成一次训练所需要的时间y(单位:秒)与训练次数x(单位:次)之间满足如图所示的反比例函数关系.完成第3次训练所需时间为400秒.(1)求y与x之间的函数关系式;(2)当x的值为6,8,10时,对应的函数值分别为y1,y2,y3,比较(y1-y2)与(y2-y3)的大小:y1-y2y2-y3.18.(2020•山东济宁中考)在①ABC中,BC边的长为x,BC边上的高为y,①ABC的面积为2.(1)y关于x的函数关系式是,x的取值范围是;(2)在平面直角坐标系中画出该函数图象;(3)将直线y=-x+3向上平移a(a>0)个单位长度后与上述函数图象有且只有一个交点,请求出此时a的值.19.(2020·安徽合肥三模)如图,一次函数y=-x+b的图象与反比例函数y=kx(x<0)的图象交于点A(-3,m),与x轴交于点B(-2,0).(1)求一次函数和反比例函数的表达式;(2)若直线y=3与直线AB交于点C,与双曲线交于点D,求CD的长;(3)根据图象,直接写出不等式-x+b<kx<3的解集.20.(2020·浙江金华模拟)如图,一次函数y1=-x+4的图象与反比例函数y2=kx(k为常数,且k≠0)的图象交于A(1,a),B两点,与y轴和x轴分别交于C,D两点,AM①y轴,BN①x轴,垂足分别为M,N两点,且AM与BN交于点E.(1)求反比例函数的表达式及点B的坐标;(2)直接写出反比例函数图象位于第一象限且y1<y2时自变量x的取值范围;(3)求①OAB与①ABE的面积的比.21.(2020•四川成都中考)在平面直角坐标系xOy中,反比例函数y=mx(x>0)的图象经过点A(3,4),过点A的直线y=kx+b与x轴、y轴分别交于B,C两点.(1)求反比例函数的表达式;(2)若①AOB的面积为①BOC的面积的2倍,求此直线的函数表达式.22.(2020•山东聊城中考)如图,已知反比例函数y=kx的图象与直线y=ax+b相交于点A(-2,3),B(1,m).(1)求出直线y=ax+b的表达式;(2)在x轴上有一点P使得①P AB的面积为18,求出点P的坐标.23.(2020·江西南昌模拟)制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料烧到800①,然后停止煅烧进行锻造操作,经过8min时,材料温度降为600①.煅烧时温度y(①)与时间x(min)成一次函数关系;锻造时,温度y(①)与时间x(min)成反比例函数关系(如图).已知该材料初始温度是26①.(1)分别求出材料煅烧和锻造时y与x的函数关系式,并且写出自变量x的取值范围;(2)根据工艺要求,当材料温度低于400①时,须停止操作,那么锻造的操作时间有多长?参考答案考点梳理考点一 1.kx2. (1)双曲线 (2)坐标轴 坐标轴 (3)减小 增大 中心 过关演练1. B 【解析】①双曲线y =6x,k =-6<0,①双曲线在第二、四象限,①2>0,-3<0,①点A (2,a )在第四象限,点B (-3,b )在第二象限,①a <0<b .2. D 【解析】在函数y =k x 和y =-kx +2(k ≠0)中,当k >0时,函数y =kx的图象在第一、三象限,函数y =-kx +2的图象在第一、二、四象限,故选项A 、B 错误,选项D 正确;当k <0时,函数y =kx的图象在第二、四象限,函数y =-kx +2的图象在第一、二、三象限,故选项C 错误.3. B 【解析】①在菱形ABOC 中,①A =60°,菱形边长为2,①OC =2,①COB =60°,①点C 的坐标为(-1,,①顶点C 在反比例函数y ═k x 的图象上,=1k,得k y =-x .4. B 【解析】①点A (3,4)是反比例函数y =kx图象上一点,①k =xy =3×4=12,①此反比例函数的解析式为y =12x.①k =12>0,①此函数的图象位于一、三象限,故选项A 错误;①k =12>0,①在每一象限内y 随x 的增大而减小,故选项B 正确;①2×(-6)=-12≠12,①点(2,-6)不在此函数的图象上,故选项C 错误;当y ≤4时,即y =12x≤4,解得x <0或x ≥3,故选项D 错误. 5. D 【解析】由反比例函数图象得函数y =kx(k 为常数,k ≠0)中k >0,根据一次函数图象可得-k >0,则k <0,故选项A 错误;由反比例函数图象得函数y =kx(k 为常数,k ≠0)中k >0,根据一次函数图象可得-k >0,则k <0,故选项B 错误;由反比例函数图象得函数y =kx(k 为常数,k ≠0)中k <0,根据一次函数图象可得-k <0,则k >0,故选项C 错误;由反比例函数图象得函数y =kx(k 为常数,k ≠0)中k >0,根据一次函数图象可得-k <0,则k >0,故选项D 正确.6. B 【解析】①反比例函数y =k x (x <0)的图象经过点(-12,4),①k =-12×4=-2,过A 点作AC ①OB于点C,①①ACO的面积为12×2=1,①AO=AB,①OC=BC,①S①AOB=2S①AOC=2.7. C 【解析】设I=kR,把(8,6)代入得:k=8×6=48,故这个反比例函数的解析式为I=48R.8. A 【解析】①运送土石方总量=平均运送土石方的速度v×完成运送任务所需时间t,①106=vt,①v=6 10t.9. D 【解析】①点A(4,1)在反比例函数y=mx上,①m=xy=4×1=4,①y=4x.把B(a,2)代入y=4x得2=4a,①a=2,①B(2,2).①把A(4,1),B(2,2)代入y=kx+b.①1422k bk b⎧⎨⎩=+,=+,解得123kb⎧⎪⎨⎪⎩=-,=,①一次函数的解析式为y=12x+3,①点C在直线y=12x+3上,①当x=0时,y=3,①C(0,3).过A作AE①x轴于点E.①S①ACD=S梯形AEOC-S①COD-S①DEA=(13)42+⨯-12×1×3-12×1×3=5.10. D 【解析】把A(13,y1),B(3,y2)代入反比例函数y=1x得y1=3,y2=13,①A(13,3),B(3,13).连接AB,在①ABP中,由三角形的三边关系定理得:|AP-BP|<AB,①延长AB交x轴于P′,当P在P′点时,P A-PB=AB,即此时线段AP与线段BP之差达到最大,设直线AB的解析式是y=ax+b(a≠0),把点A,B的坐标代入得133133a ba b⎧⎪⎪⎨⎪⎪⎩=+,=+,解得1103ab⎧⎪⎨⎪⎩=-,=,①直线AB的解析式是y=-x+103,当y=0时,x=103,即P(103,0).11. k<-2 【解析】①反比例函数y=24kx+的图象有一支在第二象限,①2k+4<0,解得k<-2.12. a>3 【解析】∵反比例函数y=3ax-(a是常数)的图象在第一、三象限,∴a-3>0,∴a>3.13. y=2x【解析】当y=2时,即y=2x=2,解得x=1,故该点的坐标为(1,2),将(1,2)代入反比例函数表达式y=kx,解得k=2,故该反比例函数的解析式为y=2x.14. 2【解析】①当点P在AB下方时作AB的平行线l,使点O到直线AB和到直线l的距离相等,则①ABP的面积是①AOB的面积的2倍,直线AB与x轴交点的坐标为(-1,0),则直线l与x轴交点的坐标C(1,0),设直线l的表达式为y=x+b,将点C的坐标代入上式并解得:b=-1,故直线l的表达式为y=x-1①,而反比例函数的表达式为y=2x①,联立①①并解得x=2或-1(舍去);①当点P在AB上方时,同理可得,直线l的函数表达式为:y=x+3①,联立①①并解得x舍去负值).15. 452【解析】连接AC,与BD交于点M,①菱形对角线BD①x轴,①AC①BD,①点A,B横坐标分别为1和4,双曲线y=5x(x>0)经过A,B两点,①AM=5-54=154,BM=4-1=3,①AC=152,BD=6,①菱形ABCD的面积12AC·BD=452.16. -4 【解析】设反比例函数的解析式为y=kx.∵△AOB的面积=△ABP的面积=2,△AOB的面积=12|k|,∴12|k|=2,∴k=±4;又反比例函数的图象的一支位于第二象限,∴k<0.∴k=-4.17. 解:(1)设y与x之间的函数关系式为y=kx,把(3,400)代入y=kx得,400=3k,解得k=1200,①y与x之间的函数关系式为y=1200x;(2)>提示:把x=6,8,10分别代入y=1200x得,y1=12006=200,y2=12008=150,y3=120010=120,①y1-y2=200-150=50,y2-y3=150-120=30,①50>30,①y1-y2>y2-y3.18. 解:(1)y=4xx>0 提示:①在①ABC中,BC边的长为x,BC边上的高为y,①ABC的面积为2,①12xy=2,①xy=4,①y关于x的函数关系式是y=4x,x的取值范围为x>0.(2)在平面直角坐标系中画出该函数图象如图所示;(3)将直线y =-x +3向上平移a (a >0)个单位长度后解析式为y =-x +3+a ,解34y x a y x =-++⎧⎪⎨=⎪⎩,, 整理得,x 2-(3+a )x +4=0,①平移后的直线与上述函数图象有且只有一个交点,①①=(3+a )2-16=0,解得a =1,a =-7(不合题意舍去),故此时a 的值为1.19. 解:(1)由点B (-2,0)在一次函数y =-x +b 上,得b =-2,①一次函数的表达式为y =-x -2;由点A (-3,m )在y =-x -2上,得m =1,①A (-3,1),把A (-3,1)代入数y =kx(x <0)得k =-3,①反比例函数的表达式为y =-3x. (2)y =3,即y C =y D =3,当y C =3时,-x C -2=3,解得x C =-5,当y D =3时,3=-3Dx ,解得x D =-1,①CD =x D -x C =-1-(-5)=4. (3)不等式-x +b <kx<3的解集为-3<x <-1. 20. 解:(1)当x =1时,a =-x +4=3,①点A 的坐标为(1,3).将点A (1,3)代入y =kx中,①k =1×3=3,①反比例函数的表达式为y =3x ,联立34y xy x ⎧⎪⎨⎪⎩=,=-+,解得13x y ⎧⎨⎩=,=,或31x y ⎧⎨⎩=,=, ①B (3,1). (2)反比例函数图象位于第一象限且y 1<y 2时自变量x 的取值范围为0<x <1或x >3. (3)①A (1,3),B (3,1),①E (3,3),AE =2,BE =2,①S ①ABE =12×2×2=2,①S ①OAB =S 四边形ONEM -S ①ABE -S ①AOM -S ①BON =3×3-2-12×3×1-12×3×1=4,①①OAB 与①ABE 的面积的比是4①2=2①1.21. 解:(1)①反比例函数y=mx(x>0)的图象经过点A(3,4),①k=3×4=12,①反比例函数的表达式为y=12x;(2)①直线y=kx+b过点A,①3k+b=4,①过点A的直线y=kx+b与x轴、y轴分别交于B,C两点,①B(-b k ,0),C(0,b),①①AOB的面积为①BOC的面积的2倍,①12×4×|-bk|=2×12×|-bk|×|b|,①b=±2,当b=2时,k=23,当b=-2时,k=2,①直线的函数表达式为y=23x+2,y=2x-2.22. 解:(1)将点A(-2,3)的坐标代入反比例函数表达式y=kx,解得k=-2×3=-6,故反比例函数表达式为y=-6x,将点B的坐标代入上式,解得m=-6,故点B(1,-6),将点A,B的坐标代入一次函数表达式得326=a ba b=-+⎧⎨-+⎩,,解得3=3ab=-⎧⎨-⎩,,故直线的表达式为y=-3x-3;(2)设直线与x轴的交点为E,当y=0时,x=-1,故点E(-1,0),分别过点A,B作x轴的垂线AC,BD,垂足分别为C,D,则S①P AB=12PE•CA+12PE•BD=32PE+62PE=92PE=18,解得PE=4,故点P的坐标为(3,0)或(-5,0).23. 解:(1)材料锻造时,设y=kx(k≠0),由题意得600=8k,解得k=4800,当y=800时,4800x=800,解得x=6,①点B的坐标为(6,800).材料煅烧时,设y=ax+26(a≠0),由题意得800=6a+26,解得a=129,①材料煅烧时,y与x的函数关系式为y=129x+26(0≤x≤6).4800÷26=184.6,①锻造操作时y与x的函数关系式为y=4800x(6<x<184.6).(2)把y=400代入y=4800x,得x=12,12-6=6(分).答:锻造的操作时间为6分钟.。

人教版九年级初三数学下册《反比例函数的图像和性质》PPT课件

人教版九年级初三数学下册《反比例函数的图像和性质》PPT课件
4 3 2 -1
2-3
-4
-5
-6
3)图像位于二、四象限。
y=
−6

x • y = - 6
(-x ) • y =6
4)y随x的增大而增大。
5)函数图像与坐标轴无交点。
01
反比例函数图像小结
当k<0时,反比例函数y =


的图象:
(1)函数图象分别位于第二、第四象限;
(2)在每一个象限内,y随x的增大而增大.
01
反比例函数图像
观察反比例函数 y=
6

和y= -
6
的图象,你发现了什么?

y= −
6

y
y=
6
6

5
形状:图像都是由两条曲线组成,因此称反比例函数的图象为双曲线。
4
两个分支都无限趋近坐标轴,但不与坐标轴相交。
3
2
位置:
6
函数 y= (k>0)图像位于第一、三象限内.
6
函数y= -(k<0)图像位于第二、四象限内.
A.
B.
C.
D.
【详解】

解:当k>0时,函数y= 的图象在第一、三象限,函数y=kx+1在第一、二、三象限,故选项C错误,选项D正确,

当k<0时,函数y=的图象在第二、四象限,函数y=kx+1在第一、二、四象限,故选项A、B错误,故选:D.

02
练一练
3.(2018·福建省永春第一中学初二期末)在同一平面直角坐标系中,函数
01
反比例函数图像小结
当k>0时,反比例函数y =


的图象:

关于反比例函数的ppt课件

关于反比例函数的ppt课件

05
反比例函数的学习方 法
理解概念和定义
总结词:掌握基础
详细描述:首先需要理解反比例函数的基本概念和定义,包括反比例函数的表达 式、自变量和因变量的关系等。
学习图像和性质
总结词:深入理解
详细描述:通过学习反比例函数的图像和性质,可以更好地理解函数的特性,包括函数的单调性、奇 偶性等。
掌握应用和比较
图像特性
正比例函数图像是一条通过原点 的直线,而反比例函数的图像则 位于第一象限和第三象限,且在 x轴和y轴上分别存在一个无穷远
点。
增减性
正比例函数随着x的增大而增大 或减小,而反比例函数在x增大 时y减小,在x减小时y增大。
与一次函数的比较
01
定义
一次函数的一般形式为y=kx+b,其中k和b为常数且k≠0;反比例函数
题目2
已知反比例函数$y = frac{k}{x}$的图 象经过第一、三象限,且与直线$y = mx + b$相交于两点,求证:这两点 的横坐标互为相反数。
题目1
已知点$(m,n)$和$(p,q)$在反比例函 数$y = frac{k}{x}$的图象上,且$m times n = p times q$,求证:$k = 0$。
双曲余切函数
01
02
03
定义
双曲余切函数是双曲函数 的一种,定义为 (e^x + e^-x) / (e^x - e^-x)。
性质
双曲余切函数在实数范围 内是连续且可导的,具有 类似于余切函数的周期性 和奇偶性。
应用
双曲余切函数在解决某些 数学问题、优化算法和工 程计算中有应用。
双曲反正切函数
定义
关于反比例函数的 ppt课件

2021年中考数学第十一讲 反比例函数(51PPT)

2021年中考数学第十一讲 反比例函数(51PPT)

…ቤተ መጻሕፍቲ ባይዱ
(3)如果以此蓄电池为电源的用电器的限制电流不能超过10 A,那么用电器可变 电阻应控制在什么范围内?
【自主解答】
(1)电流I是电阻R的反比例函数,设I= ,k
R
∵R=4 Ω时,I=9 A∴9= k,解得k=4×9=36,
4
∴I= 3;6
R
(2)列表如下:
R/Ω 3
4
5
68
9 10 12
I/A 12 9 7.2 6 4.5 4 3.6 3
x
5.(2019·贵港中考)如图,菱形ABCD的边AB在x轴上,点A的坐标为(1,0),点
D(4,4)在反比例函数y= k (x>0)的图象上,直线y= 2 x+b经过点C,与y轴交于点E,
x
3
连接AC,AE.
(1)求k,b的值;
(2)求△ACE的面积.
【解析】(1)由已知可得AD=5,
∵四边形ABCD为菱形,
4.(2020·凉山州中考)如图,已知直线l:y=-x+5.
(1)当反比例函数y= k (k>0,x>0)的图象与直线l在第一象限内至少有一个交点时,
x
求k的取值范围;
(2)若反比例函数y=
k x
(k>0,x>0)的图象与直线l在第一象限内相交于点A(x1,
y1),B(x2,y2),当x2-x1=3时,求k的值,并根据图象写出此时关于x的不等式-x+5
x
分别为点D,E.当矩形ODCE与△OAB的面积相等时,k的值为___2___.
3.(2020·凉山州中考)如图,矩形OABC的面积为 100 ,对角线OB与双曲线y=
3

《反比例函数》PPT优秀教学课件

《反比例函数》PPT优秀教学课件

观察思考 北京市的总面积为1.68×104 km2,人均占有面积S km2/人,全市总 人口n人,那么S与n有何关系.
n ·S = 11..6688× ×110044 n
1000 t=
v
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
观察思考 某住宅小区要种植一块面积为2 000 m2的矩形,草坪的长为y m,宽 为x m,那么y与x有何关系.
典型例题
例1.指出下列函数中的反比例函数:
k
(1)
y
=
1 x﹢1
(2)
y =﹣
3
﹣3 =4
4x x
(3) y =
k x
(k≠0)
y与x+1成反比例
y
﹣2
=x
k
(4)
y=
k2﹢1 x

1

0
(5) xy =﹣2
1 y= x
k
(6) y = x﹣1
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
26.1.1 反比例函数
学习目标
1. 经历在实际问题中提炼出具有反比例变化规律的数学表达式;

比 例
2. 能识别反比例函数的常见形式;


3. 利用待定系数法求解反比例函数的解析式;
4. 理解反比例函数在描述现实世界中的重要意义.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
观察思考
观察思考
反比例函数
v · t = 1000
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
观察思考
反比例函数
1000 v · t = 10v00

中考数学总复习 第11课时 反比例函数数学课件

中考数学总复习 第11课时 反比例函数数学课件

1.如图,过双曲线上任意一点 P 分别作 x 轴、y 轴的垂线 PM,PN,
所得的矩形 PMON 的面积 S=PM·PN=|y|·|x|=|xy|.

∵y=,∴xy=k.
∴S=|k|,即过双曲线上任意一点作 x 轴、y 轴的垂线,所得的矩
形面积为|k|.
2.如上图,过双曲线上的任意一点 E 作 EF 垂直于其中一坐标轴,
D.当x<0时,y随着x的增大而增大
No
Image
12/9/2021
第二十四页,共二十四页。

【例4】 如图,若双曲线
(x>0)与边长为5的等边三角形AOB的边
y=

OA,AB分别相交于C,D两点,且OC=3BD,则实数k的值为
.
命题点4
12/9/2021
第十五页,共二十四页。
命题
命题
命题
(mìng
tí)点1
(mìng
tí)点2
(mìng
tí)点3
命题点4
命题点5
命题点6
解析:如图,过点 C 作 CE⊥x 轴于点 E,过点 D 作 DF⊥x 轴于点
6
2
交双曲线 y=-和 y=于 A,B 两点,P 是 x 轴上任意一点,则△ABP 的面
积等于
.
12/9/2021
第十二页,共二十四页。
命题
命题
命题
(mìng
tí)点1
(mìng
tí)点2
(mìng
tí)点3
命题点4
命题点5
命题点6
解析:(方法一)设直线l交y轴于点C,如图,连接PC,OA,OB.
(2)观察图象,请指出在y轴的右侧,当y1>y2时,x的取值范围.

反比例函数ppt课件

反比例函数ppt课件

数学
返回目录
▶▶ 典型例题
【例2】已知y是x的反比例函数,且当x=3时,y=8.
(1)求出y与x之间的函数关系式;
(2)当y=-12时,求x的值.
数学
返回目录
▶▶ 典型例题

思路点拨:(1)利用反比例函数的定义,设y= ,然后把x=3,y=8代入求出k.从

而得到反比例函数解析式;
(2)把y=-12代入(1)中的解析式中计算出x的值即可.
1.下列函数是反比例函数的是 (
2
A.y=

)

B.y=2
2.函数y=xk-1是反比例函数,则k=(
A.0
A
B.1
A
2
C.y= 2

2
D.y=
+2
C.2
D.3
)
数学
返回目录
▶▶ 对应练习
3.下列关系式中,y是x的反比例函数的是

A.y=

1
B.y= 2

1
C.y=
2+1
D.-2xy=1
(
D
)

(2)解:∵其中一个菱形的一条对角线长为6 cm,
48
∴另一条对角线长为 =8(cm),
6
∴这个菱形的边长为
6 2
2
+
8 2
=5(cm),
2
∴这个菱形的边长为5 cm.
返回目录
谢谢观看
This is the last of the postings.
Thank you for watching.
北师大版 九年级数学上册
1
解析:A项,y= (k≠0),不符合题意;B项,y= 2 ,是y与x2成反比例,不符合题意;

初三反比例函数ppt课件

初三反比例函数ppt课件
揭示本质
从函数形式上,我们可以将反比例函 数表示为y=k/x,其中k为常数,且 k≠0。这表明函数的输出y与输入x成 反比关系。
反比例函数的表达形式基本源自式y=k/x,其中k为常数,且k≠0。
变形形式
当k>0时,函数图像位于第一、三象限,y随x的增大而减小;当k<0时,函数图 像位于第二、四象限,y随x的增大而增大。
交点与函数图像的关系
01
当两个函数有交点时,交点的横 纵坐标分别对应两个函数在某一 点处的函数值。
02
通过交点,可以观察两个函数在 某一点处的相互关系及其变化趋 势。
利用交点解决实际问题
路程问题
01
在两个物体以不同速度相对运动的问题中,交点的横坐标表示
相遇的时间,纵坐标表示相遇的地点。
工程问题
02
满足奇偶性定义
由于反比例函数满足奇函数的定义 ,即$f( - x) = - f(x)$,因此它是奇 函数。
反比例函数的凹凸性
二阶导数判定
通过求二阶导数判断函数的凹凸 性。如果二阶导数大于0,则函 数是凹函数;如果二阶导数小于 0,则函数是凸函数。对于反比 例函数,可以通过求导再求二阶
导数来判断凹凸性。
在工程进度问题中,交点的横坐标表示完成工程所需的总时间
,纵坐标表示完成工程量。
经济问题
03
在投入产出问题中,交点的横坐标表示投资额,纵坐标表示产
值。
06
CATALOGUE
复习与巩固
反比例函数的概念与性质复习
总结词:掌握基础
详细描述:通过图表和实例,复习反 比例函数的概念和性质,包括定义、 表达式、图像等。
凹函数
通过计算二阶导数发现,反比例 函数是凹函数。这意味着函数图

《反比例函数》PPT课件

《反比例函数》PPT课件

(来自《点拨》)
1 列说法不正确的是( )
1
A.在y= x -1中,y+11与x成反比例
x
B.在xy=-12中,y与 成正比例
2x2
C.在y=
中,y与x成反比例
知2-练
(来自《典中点》)
知识点 2 确定反比例函数的表达式
知2-讲
1. 求反比k例函数的表达式,就是确定反比例函数表达式
y = x (k≠0)中常数k的值,它一般需经历:
知3-练
(来自《典中点》)
知3-练
2 一司机驾驶汽车从甲地去乙地,他以80 千米/小
时的平均速度用了4个小时到达乙地,当他按原
路匀速返回时,汽车的速度v千米/小时与时间t小
时的函数关系是( )
A.v=320t C.v=20t
B.v=
320 t
D.v=
20 t
(来自《典中点》)
一般地形如y= (k为k常数, ⑴“反比例关系”与“反比例函数”:成反 x
(来自《点拨》)
总结
知3-讲
建立反比例函数的模型,首先要找出题目中的
等量关系,然后把未知量用未知数表示,列出等式,
转化为反比例函数的一般式即可.同时注意未知数的
取值范围.
(来自《点拨》)
1 在下列选项中,是反比例函数关系的是( ) A.多边形的内角和与边数的关系 B.正三角形的面积与边长的关系 C.直角三角形的面积与边长的关系 D.三角形的面积一定时,它的底边长a与这边上 的高h之间的关系
速地求出反比例函数解析式中的k.从而得到反比例函数的 解析式.两个变量的积均是一个常数(或定值).这也是识别两 个量是否成反比例函数关系的关键.
用待定系数法确定反比例函数表达的“四步骤”:

中考数学复习 第11讲 反比例函数课件

中考数学复习 第11讲 反比例函数课件


8
解:(1)将点 A(2,4)代入 y= ,得 m=8,则反比例函数解析式为 y= ,
当 x=-4 时,y=-2,则点 B(-4,-2),将点 A(2,4),B(-4,-2)代入 y=kx+b,
2 + = 4,
= 1,

解得
则一次函数解析式为 y=x+2.

=
2,
-4 + = -2,
考点四
k
(k≠0)
x 中k的几何意义
1.如图,过双曲线上任意一点P分别作x轴、y轴的垂线PM,PN,所得的矩形
PMON的面积S=PM·PN=|y|·|x|=|xy|.
又xy=k,∴S=|k|,即过双曲线上任意一点作x轴、y轴的垂线,所得的矩形面
积为|k| .
2.如上图,过双曲线上的任意一点E作EF垂直于其中一坐标轴,垂足为F,连接
D.第二、四象限
2021/12/8
第十八页,共二十八页。
B )
1
3.(2016 甘肃天水)反比例函数 y=- 的图象上有两点

P1(x1,y1),P2(x2,y2),若x1<0<x2,则下列结论(jiélùn)正确的是(
A.y1<y2<0
B.y1<0<y2
C.y1>y2>0
D.y1>0>y2
1

解析:∵y=- ,∴xy=-1.∴x,y 异号.
考法4
考法6
考法5


例2(2018湖南怀化)函数y=kx-3与y= (k≠0)在同一坐标系内的图象可能
是(
)
分析:根据(gēnjù)当k>0或k<0时,y=kx-3和y= (k≠0)经过的象限,二者一致的

中考数学复习 第一部分 知识梳理 第三章 函数 第11讲 反比例函数数学课件

中考数学复习 第一部分 知识梳理 第三章 函数 第11讲 反比例函数数学课件

设A1D=a,则OD=2+a,P2D=3a. ∴P2(2+a,3a).
答图1-11-2
∵P2(2+a,3a)在反比例函数的图象(tú xiànɡ)上,
∴代入y= ,得(2+a)·3a=3.
化简,得a2+2a-1=0.解得a=-1±2.
∵a>0,∴a=-1+2.∴A1A2=-2+22.
∴OA122/9=/2O021A1+A1A2=22,所以点A2的坐标为(22,0).
13. (2017枣庄)如图1-11-11,反比例函数y=2x的图象经过矩 形OABC的边AB的中点(zhōnɡ diǎn)D,则矩形OABC的面积为 ___4_____.
14. (2018宜宾)如图1-11-12,已知反比例函数= (m≠0)
的图象经过点(1,4),一次函数y=-x+b的图象经过反比例 函数图象上的点Q(-4,n). (1)求反比例函数与一次函数的表达式; (2)一次函数的图象分别(fēnbié)与x轴,y轴交于A,B两点, 与反比例函数图象的另一个交点为点P,连接OP,OQ, 求△OPQ的面积.
第十八页,共二十四页。
基础训练
9. (2018衡阳)对于反比例函数y=- ,下列说法(shuōfǎ)不正确 的是( ) D
A.图象分布在第二、四象限
B.当x>0时,y随x的增大而增大 C.图象经过点(1,-2) D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则 y1<y2
10. (2018无锡)已知点P(a,m),Q(b,n)都在反比
12/9/2021
第二十二页,共二十四页。
解:(1)∵反比例函数(hánshù)y= (m≠0)的图象经过点Q(1, 4),

反比例函数数学PPT课件

反比例函数数学PPT课件
第9题图
重难点精讲优练
类型 1 反比例函数图象与性质
m 练习1 已知函数y= x 的图象如图所示,以下结论:① m<0;②在每个分支 上,y随x的增大而增大;③若点A(-1,a)、点B(2,b)在图象上,则a<b;④ 若点P(x,y)在图象上,则点P1(-x,-y)也在图象上.其中正确的个数是( )
x
基础点巧练妙记
2.在具体问题中间根据k的几何意义通过求出相应三角形或四边形的面积求出 k的值,从而求得表达式.
提分必练
8.已知点P(-4,-3)在反比例函数y= k (k≠0)的图象上,
则k=__1__2____.
x
提分必练
k 例如函图数,的反解比析例式函为数__y_=___yx_=__的_-.图4x象经过点M,矩形OAMB的面积为4,则此反比
A. 4个 B. 3个 C. 2个 D. 1个
重难点精讲优练
【解析】①根据反比例函数的图象的两个分支分别位于二、四象限,
可得m<0,故正确;②在每个分支上y随x的增大而增大,故正确; ③若点A(-1,a)、点B(2,b)在图象上,结合图象可知a>b,故错 误;④若点P(x,y)在图象上,则点P1(-x,-y)也在图象上,故正 确.故选B.
提分必练
3.如果反比例函数y= m+1 在各自象限内,y随x的增大而减小,那么m
的取值范围是( D ) x
A. m<0 B. m>0 C. m<-1 D. m>-1
失分点
反比例函数值的大小比较
4.在函数y=- a2+1 (a为常数)的图象上有三点(-3,y1),(-1,y2),(2,
x
y3),则函数值y1,y2,y3的大小关系是
y
-2 0
3

《反比例函数》课件完美版1

《反比例函数》课件完美版1

3、在下列函数中,y是x的反比例函数 的是( C )
(A)y 8 x5
(C)xy5
(B)y
1 3x
7
(D)y 2 x2
《反比例函数》课件完美版1(PPT优 秀课件 )
《反比例函数》课件完美版1(PPT优 秀课件 )
三、归纳小结
1、反比例函数的定义:形如 y k (k为
x
常数,k≠0)的函数称为反比例函数,自
x
因为 当 x 2 时 y 1
所以有
1
k 2
解得 k 2
所以
y与
x
的函数关系式是
y
2 x
《反比例函数》课件完美版1(PPT优 秀课件 )
《反比例函数》课件完美版1(PPT优 秀课件 )
四、强化训练
(2)当
x
1 4
时,求y的值;
解: 把
x1 4
代入 y
2 x

y
2 1
8
4
《反比例函数》课件完美版1(PPT优 秀课件 )
九年级数学人教版·下册
第二十六章 反比例函数
26.1.1 反比例函数
授课人:XXXX
一、新课引入
1、什么是函数?
答:在某变化过程中有两个变量x、y,按照
某个对应法则,对于给定的 x,有唯一确定 的y与之对应,那么y就叫做 x的函数。其中 x 叫自变量 ,y叫 因变量.
2、正比例函数一般形式是y= kx (k ≠0) , 它的图象是一条过原点的直线 .
x
(C) y6x1
(D) xy123
2、反比例函数经过点(2,-3),则这个
反比例函数关系式为 y 6 x
《反比例函数》课件完美版1(PPT优 秀课件 )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档