高中数学专题复习基本不等式

合集下载

(完整版)高考数学-基本不等式(知识点归纳)

(完整版)高考数学-基本不等式(知识点归纳)

高中数学基本不等式的巧用一.基本不等式1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x+≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x2 ≥23x 2·12x2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2∴值域为(-∞,-2]∪[2,+∞)解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。

(完整版)高中数学基本不等式题型总结

(完整版)高中数学基本不等式题型总结

专题 基本不等式【一】基础知识基本不等式:)0,0a b a b +≥>>(1)基本不等式成立的条件: ;(2)等号成立的条件:当且仅当 时取等号.2.几个重要的不等式(1);(2);()24a b ab +≤(),a b R ∈)+0,0a b a b ≥>>【二】例题分析【模块1】“1”的巧妙替换【例1】已知,且,则的最小值为 .0,0x y >>34x y +=41x y+【变式1】已知,且,则的最小值为 .0,0x y >>34x y +=4x x y+【变式2】(2013年天津)设, 则的最小值为 .2,0a b b +=>1||2||a a b+【例2】(2012河西)已知正实数满足,则的最小值为 . ,a b 211a b +=2a b +【变式】已知正实数满足,则的最小值为 . ,a b 211a b+=2a b ab ++【例3】已知,且,则的最小值为 .0,0x y >>280x y xy +-=x y +【例4】已知正数满足,则的最小值为 .,x y 21x y +=8x y xy+【例5】已知,若不等式总能成立,则实数的最大值为 . 0,0a b >>212m a b a b+≥+m【例6】(2013年天津市第二次六校联考)与圆相交于两点,()1,0by a b +=≠221x y +=,A B 为坐标原点,且△为直角三角形,则的最小值为 . O AOB 2212a b +【例7】(2012年南开二模)若直线始终平分圆的周长,()2200,0ax by a b -+=>>222410x y x y ++-+=则的最小值为 . 11a b+【例8】设分别为具有公共焦点的椭圆和双曲线的离心率,为两曲线的一个公共点,且满足12,e e 12,F F P ,则的最小值为120PF PF ⋅= 22214e e +【例9】已知,则的最小值是( )0,0,lg 2lg 4lg 2x y x y >>+=11x y+A .6B .5C .D .3+【例10】已知函数,若,且,则的最小值为 .()4141x x f x -=+120,0x x >>()()121f x f x +=()12f x x +【模块二】“和”与“积”混合型【例1】(2012年天津)设,若直线与轴相交于点A,与y 轴相交于B ,且与圆,m n R ∈:10l mx ny +-=x l 相交所得弦的长为,为坐标原点,则面积的最小值为 .224x y +=2O AOB ∆【例2】设,,若,,则的最大值为_______.,x y R ∈1,1a b >>2x y a b ==28a b +=11x y+【例3】若实数满足,则的最大值为 .,x y 221x y xy ++=x y +【例4】(2013年南开一模)已知正实数满足,则的最小值为 .,a b 21a b ab ++=a b +【例5】设,若直线与圆相切,则的取值范围是,m n R ∈()()1120m x n y +++-=()()22111x y -+-=m n +( )(A ) (B )1⎡+⎣(),11⎡-∞⋃+∞⎣(C ) (D )22⎡-+⎣(),22⎡-∞-⋃++∞⎣【例6】已知,且成等比数列,则的最小值为 . 1,1x y >>11ln ,,ln 44x y xy 【例7】(2015天津)已知 则当的值为 时取得最大值.0,0,8,a b ab >>=a ()22log log 2a b ⋅【例8】(2011年天津)已知,则的最小值为 .22log log 1a b +≥39a b +【例9】下列说法正确的是( )A .函数的最小值为x x y 2+=B .函数的最小值为)0(sin 2sin π<<+=x x x yC .函数的最小值为x x y 2+=D .函数的最小值为x x y lg 2lg +=【例10】设的最小值是(),,5,33x y x y x y ∈+=+R 且则A .10B .C ..。

高中数学一轮复习考点专题训练:专题35 基本不等式(解析版)

高中数学一轮复习考点专题训练:专题35 基本不等式(解析版)

高考数学一轮考点扫描专题35 基本不等式一、【知识精讲】 1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0. (2)等号成立的条件:当且仅当a =b 时取等号.(3)其中a +b2称为正数a ,b a ,b 的几何平均数.2.两个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ),当且仅当a =b 时取等号.(2)ab ≤⎝ ⎛⎭⎪⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. 3.利用基本不等式求最值 已知x ≥0,y ≥0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)如果和x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值是s 24(简记:和定积最大).[微点提醒]1.b a +a b≥2(a ,b 同号),当且仅当a =b 时取等号.2.ab ≤⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22. 3.21a +1b≤ab ≤a +b 2≤a 2+b 22(a >0,b >0).二、【典例精练】考点一 利用基本不等式求最值 角度1 通过配凑法求最值 【例1-1】设a >b >0,则a 2+1ab +1aa -b 的最小值是( ) A .1 B .2 C .3D .4【答案】D 【解析】 a 2+1ab +1aa -b =(a 2-ab )+1a 2-ab +1ab+ab ≥2a 2-ab ·1a 2-ab+21ab×ab =4,当且仅当a 2-ab =1a 2-ab 且1ab=ab , 即a =2,b =22时取等号,故选D. 角度2 通过常数代换法求最值【例1-2】已知x >0,y >0,且x +2y =xy ,则x +y 的最小值为________. 【答案】3+2 2【解析】由x >0,y >0,x +2y =xy ,得2x +1y=1,所以x +y =(x +y )⎝ ⎛⎭⎪⎫2x +1y=3+2y x +xy ≥3+2 2.当且仅当x =2y 时取等号.【解法小结】 在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,主要有两种思路:(1)对条件使用基本不等式,建立所求目标函数的不等式求解.常用的方法有:折项法、变系数法、凑因子法、换元法、整体代换法等.(2)条件变形,进行“1”的代换求目标函数最值. 考点二 基本不等式在实际问题中的应用【例2】 运货卡车以每小时x 千米的速度匀速行驶130千米,按交通法规限制50≤x ≤100(单位:千米/时).假设汽油的价格是每升2元,而汽车每小时耗油⎝ ⎛⎭⎪⎫2+x 2360升,司机的工资是每小时14元.(1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值. 【解析】 (1)设所用时间为t =130x(h),y =130x ×2×⎝ ⎛⎭⎪⎫2+x 2360+14×130x ,x ∈[50,100].所以,这次行车总费用y 关于x 的表达式是y =130×18x +2×130360x ,x ∈[50,100](或y =2 340x +1318x ,x ∈[50,100]).(2)y =130×18x +2×130360x ≥2610,当且仅当130×18x =2×130360x ,即x =1810时等号成立.故当x =1810千米/时,这次行车的总费用最低,最低费用的值为2610元. 【解法小结】 1.设变量时一般要把求最大值或最小值的变量定义为函数. 2.根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值. 3.在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解. 考点三 基本不等式的综合应用【例3】 (1) (2017·山东高考)若直线x a +y b=1(a >0,b >0)过点(1,2),则2a +b 的最小值为________. (2)(一题多解)(2018·江苏卷)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠ABC =120°,∠ABC 的平分线交AC 于点D ,且BD =1,则4a +c 的最小值为________. 【答案】 (1)8 (2)9【解析】(1) ∵直线x a +y b=1(a >0,b >0)过点(1,2), ∴1a +2b=1,∴2a +b =(2a +b )⎝ ⎛⎭⎪⎫1a +2b =4+4a b +b a≥4+24a b ·ba=8,当且仅当b a =4ab,即a =2,b =4时,等号成立. 故2a +b 的最小值为8.(2)法一 依题意画出图形,如图所示.易知S △ABD +S △BCD =S △ABC ,即12c sin 60°+12a sin 60°=12ac sin 120°, ∴a +c =ac ,∴1a +1c=1,∴4a +c =(4a +c )⎝ ⎛⎭⎪⎫1a +1c=5+c a +4a c≥9,当且仅当c a =4a c ,即a =32,c =3时取“=”.法二 以B 为原点,BD 所在直线为x 轴建立如图所示的平面直角坐标系,则D (1,0),∵AB =c ,BC =a , ∴A ⎝ ⎛⎭⎪⎫c 2,32c ,C ⎝ ⎛⎭⎪⎫a2,-32a .∵A ,D ,C 三点共线,∴AD →∥DC →. ∴⎝ ⎛⎭⎪⎫1-c 2⎝ ⎛⎭⎪⎫-32a +32c ⎝ ⎛⎭⎪⎫a 2-1=0,∴ac =a +c ,∴1a +1c=1,∴4a +c =(4a +c )⎝ ⎛⎭⎪⎫1a +1c =5+c a +4a c≥9,当且仅当c a =4a c , 即a =32,c =3时取“=”. 【解法小结】 基本不等式的应用非常广泛,它可以和数学的其他知识交汇考查,解决这类问题的策略是: 1.先根据所交汇的知识进行变形,通过换元、配凑、巧换“1”等手段把最值问题转化为用基本不等式求解,这是难点.2.要有利用基本不等式求最值的意识,善于把条件转化为能利用基本不等式的形式.3.检验等号是否成立,完成后续问题. 三、【名校新题】1.(2019·孝感调研)“a >b >0”是“ab <a 2+b 22”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】由a >b >0,可知a 2+b 2>2ab ,充分性成立,由ab <a 2+b 22,可知a ≠b ,a ,b ∈R,故必要性不成立.2.(2019·玉溪一中月考)已知f (x )=x 2-2x +1x ,则f (x )在⎣⎢⎡⎦⎥⎤12,3上的最小值为( )A.12 B.43C.-1D.0【答案】D【解析】 f (x )=x 2-2x +1x =x +1x -2≥2-2=0,当且仅当x =1x,即x =1时取等号.又1∈⎣⎢⎡⎦⎥⎤12,3,所以f (x )在⎣⎢⎡⎦⎥⎤12,3上的最小值为0.3.(2019·济南联考)若a >0,b >0且2a +b =4,则1ab的最小值为( )A.2B.12C.4D.14【答案B【解析】】因为a >0,b >0,故2a +b ≥22ab (当且仅当2a =b 时取等号). 又因为2a +b =4, ∴22ab ≤4⇒0<ab ≤2, ∴1ab ≥12,故1ab 的最小值为12(当且仅当a =1,b =2时等号成立). 4.(2019·长春质量监测)已知x >0,y >0,且4x +y =xy ,则x +y 的最小值为( ) A .8 B .9 C .12 D .16【答案】B【解析】 由4x +y =xy 得4y +1x=1,则x +y =(x +y )·⎝ ⎛⎭⎪⎫4y +1x =4x y +yx +1+4≥24+5=9,当且仅当4x y=yx,即x =3,y =6时取“=”,故选B. 5.(2019·江西上饶联考)已知正数a ,b ,c 满足2a -b +c =0,则ac b2的最大值为( ) A .8 B .2 C .18 D .16【答案】 C【解析】 因为a ,b ,c 都是正数,且满足2a -b +c =0,所以b =2a +c ,所以ac b 2=ac 2a +c2=ac4a 2+4ac +c2=14a c +ca+4≤124a c ·c a+4=18,当且仅当c =2a >0时等号成立.故选C. 6.(2019·太原模拟)若P 为圆x 2+y 2=1上的一个动点,且A (-1,0),B (1,0),则|PA |+|PB |的最大值为( ) A.2 B.2 2C.4D.4 2【答案】B【解析】由题意知∠APB =90°,∴|PA |2+|PB |2=4,∴⎝ ⎛⎭⎪⎫|PA |+|PB |22≤|PA |2+|PB |22=2(当且仅当|PA |=|PB |时取等号), ∴|PA |+|PB |≤22,∴|PA |+|PB |的最大值为2 2.7.(2019·衡水中学质检)正数a ,b 满足1a +9b=1,若不等式a +b ≥-x 2+4x +18-m 对任意实数x 恒成立,则实数m 的取值范围是( ) A.[3,+∞) B.(-∞,3] C.(-∞,6]D.[6,+∞)【答案】D【解析】 因为a >0,b >0,1a +9b=1,所以a +b =(a +b )⎝ ⎛⎭⎪⎫1a +9b =10+b a +9a b≥16,当且仅当b a =9ab,即a =4,b =12时取等号. 依题意,16≥-x 2+4x +18-m ,即x 2-4x -2≥-m 对任意实数x 恒成立. 又x 2-4x -2=(x -2)2-6,所以x 2-4x -2的最小值为-6,所以-6≥-m ,即m ≥6.8.(2019·山西模拟)已知不等式(x +y )·⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( ) A .2 B .4 C .6 D .8【答案】 B【解析】 (x +y )⎝ ⎛⎭⎪⎫1x +a y =1+a ·x y +y x +a ≥1+a +2a =(a +1)2,当且仅当a ·x y =y x,即ax 2=y 2时“=”成立.∵(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9,∴(x +y )⎝ ⎛⎭⎪⎫1x +a y 的最小值为(a +1)2≥9.∴a ≥4.故选B.9. (2019·厦门模拟)已知f (x )=32x-(k +1)3x+2,当x ∈R 时,f (x )恒为正值,则k 的取值范围是( ) A.(-∞,-1)B.(-∞,22-1)C.(-1,22-1)D.(-22-1,22-1)【答案】B【解析】由f (x )>0得32x -(k +1)3x +2>0,解得k +1<3x+23x .又3x +23x ≥22(当且仅当3x=23x ,即x =log 3 2时,等号成立).所以k +1<22,即k <22-1.10.(2019·上海模拟)设x ,y 均为正实数,且32+x +32+y =1,则xy 的最小值为( )A .4B .4 3C .9D .16【答案】 D 【解析】32+x +32+y=1可化为xy =8+x +y ,∵x ,y 均为正实数,∴xy =8+x +y ≥8+2xy (当且仅当x =y 时等号成立),即xy -2xy -8≥0,解得xy ≥4,即xy ≥16,故xy 的最小值为16.故选D.11.(2019·湖南师大附中模拟)已知△ABC 的面积为1,内切圆半径也为1,若△ABC 的三边长分别为a ,b ,c ,则4a +b +a +bc 的最小值为( )A.2B.2+ 2C.4D.2+2 2【答案】D【解析】 因为△ABC 的面积为1,内切圆半径也为1, 所以12(a +b +c )×1=1,所以a +b +c =2,所以4a +b +a +b c =2(a +b +c )a +b +a +b c =2+2c a +b +a +b c≥2+22, 当且仅当a +b =2c ,即c =22-2时,等号成立, 所以4a +b +a +bc的最小值为2+2 2. 12.(2019·绵阳诊断)若θ∈⎝ ⎛⎭⎪⎫0,π2,则y =1sin 2θ+9cos 2θ的取值范围为( ) A .[6,+∞) B .[10,+∞) C .[12,+∞) D .[16,+∞)【答案】 D【解析】 ∵θ∈⎝ ⎛⎭⎪⎫0,π2,∴sin 2θ,cos 2θ∈(0,1),∴y =1sin 2θ+9cos 2θ=⎝ ⎛⎭⎪⎫1sin 2θ+9cos 2θ(sin 2θ+cos 2θ)=10+cos 2θsin 2θ+9sin 2θcos 2θ≥10+2cos 2θsin 2θ·9sin 2θcos 2θ=16,当且仅当cos 2θsin 2θ=9sin 2θcos 2θ,即θ=π6时等号成立.故选D.13. (2019·合肥调研)设x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x +1,y ≥2x -1,x ≥0,y ≥0,若目标函数z =abx +y (a >0,b >0)的最大值为35,则a +b 的最小值为________. 【答案】8【解析】 可行域如图所示,当直线abx +y =z (a >0,b >0)过点B (2,3)时,z 取最大值2ab +3.于是有2ab +3=35,ab =16.所以a +b ≥2ab =8,当且仅当a =b =4时等号成立, 所以(a +b )min =8.14. (2019·乐山一中月考)设0<x <32,则函数y =4x (3-2x )的最大值为________.【答案】92【解析】 y =4x (3-2x )=2[2x (3-2x )]≤2⎣⎢⎡⎦⎥⎤2x +(3-2x )22=92, 当且仅当2x =3-2x ,即x =34时,等号成立.∵34∈⎝ ⎛⎭⎪⎫0,32,∴函数y =4x (3-2x )⎝ ⎛⎭⎪⎫0<x <32的最大值为92. 15.(2019·潍坊调研)函数y =a1-x(a >0,a ≠1)的图象恒过定点A ,若点A 在直线mx +ny -1=0上,且m ,n为正数,则1m +1n的最小值为________.【答案】4【解析】∵曲线y =a 1-x恒过定点A ,x =1时,y =1,∴A (1,1).将A 点代入直线方程mx +ny -1=0(m >0,n >0), 可得m +n =1,∴1m +1n =⎝ ⎛⎭⎪⎫1m +1n ·(m +n )=2+n m +mn≥2+2n m ·mn=4, 当且仅当n m =m n 且m +n =1(m >0,n >0),即m =n =12时,取得等号.16.(2019·河南八校测评)已知等差数列{a n }中,a 3=7,a 9=19,S n 为数列{a n }的前n 项和,则S n +10a n +1的最小值为________. 【答案】3【解析】∵a 3=7,a 9=19, ∴d =a 9-a 39-3=19-76=2,∴a n =a 3+(n -3)d =7+2(n -3)=2n +1, ∴S n =n (3+2n +1)2=n (n +2),因此S n +10a n +1=n (n +2)+102n +2=12⎣⎢⎡⎦⎥⎤(n +1)+9n +1≥12×2(n +1)·9n +1=3, 当且仅当n =2时取等号.故S n +10a n +1的最小值为3. 17.(2019·孝感模拟)经测算,某型号汽车在匀速行驶过程中每小时耗油量y (L)与速度x (km/h)(50≤x ≤120)的关系可近似表示为y =⎩⎪⎨⎪⎧175x 2-130x +4 900,x ∈[50,80,12-x60,x ∈[80,120].(1)该型号汽车的速度为多少时,可使得每小时耗油量最少?(2)已知A ,B 两地相距120 km ,假定该型号汽车匀速从A 地驶向B 地,则汽车速度为多少时总耗油量最少? 【解析】(1)当x ∈[50,80)时,y =175(x 2-130x +4 900)=175[(x -65)2+675],所以当x =65时,y 取得最小值,最小值为175×675=9.当x ∈[80,120]时,函数y =12-x 60单调递减,故当x =120时,y 取得最小值,最小值为12-12060=10.因为9<10,所以当x =65,即该型号汽车的速度为65 km/h 时,可使得每小时耗油量最少. (2)设总耗油量为l L ,由题意可知l =y ·120x,①当x ∈[50,80)时,l =y ·120x =85⎝ ⎛⎭⎪⎫x +4 900x -130≥85⎝⎛⎭⎪⎫2 x ×4 900x-130=16,当且仅当x =4 900x,即x =70时,l 取得最小值,最小值为16;②当x ∈[80,120]时,l =y ·120x =1 440x-2为减函数,所以当x =120时,l 取得最小值,最小值为10.因为10<16,所以当速度为120 km/h 时,总耗油量最少.18. (2019·西安模拟)某商人投资81万元建一间工作室,第一年装修费为1万元,以后每年增加2万元,把工作室出租,每年收入租金30万元.(1)若扣除投资和各种装修费,则从第几年开始获取纯利润?(2)若干年后该商人为了投资其他项目,对该工作室有两种处理方案:①年平均利润最大时,以46万元出售该工作室;②纯利润总和最大时,以10万元出售该工作室.问该商人会选择哪种方案? 【解析】 (1)设第n 年获取利润为y 万元.n 年付出的装修费构成一个首项为1,公差为2的等差数列,n 年付出的装修费之和为n ×1+n n -12×2=n 2,又投资81万元,n 年共收入租金30n 万元, ∴利润y =30n -n 2-81(n ∈N *).令y >0,即30n -n 2-81>0,∴n 2-30n +81<0, 解得3<n <27(n ∈N *),∴从第4年开始获取纯利润. (2)方案①:年平均利润t =30n -81+n2n=30-81n-n =30-⎝ ⎛⎭⎪⎫81n +n ≤30-281n ·n =12(当且仅当81n=n ,即 n =9时取等号),∴年平均利润最大时,以46万元出售该工作室共获利润12×9+46=154(万元). 方案②:纯利润总和y =30n -n 2-81=-(n -15)2+144(n ∈N *), 当n =15时,纯利润总和最大,为144万元,∴纯利润总和最大时,以10万元出售该工作室共获利润144+10=154(万元), 两种方案盈利相同,但方案①时间比较短,所以选择方案①.。

高中6个基本不等式的公式

高中6个基本不等式的公式

高中6个基本不等式的公式高中6个基本不等式的公式总的来说,高中数学中的6个基本不等式公式是:(一)、二次不等式:ax²+bx+c>0;(二)、三角不等式:sinα+cosα>1;(三)、平方和不等式:a²+b²>2ab;(四)、指数不等式:an>bn;(五)、对数不等式:lnA<lnB;(六)、比较不等式:a>b。

一、二次不等式所谓的二次不等式,指的是形如ax²+bx+c>0的不等式结构,它是十分重要的,用来描述我们一类由双曲线组成的函数。

双曲线函数是一类非线性函数,受到各种外部因素的作用不会改变函数的存在形式,尽管其具体的参数可能会发生变化。

二、三角不等式三角不等式是一类与三角学相关的不等式,它们非常重要,有助于我们正确推理出三角形的其他特征。

其中最为重要的是sinα+cosα>1,这个不等式说明了在三角形内,任意一个角的正弦值是小于它的余弦值的,而它们的和则要大于1.三、平方和不等式平方和不等式有助于我们正确推断出空间里的形状的特性,它的形式如a²+b²>2ab,它推断了如果有两个边的长度为a和b,其和的平方要大于两者的乘积,也就是说任何一个正方形都有其两条边之和要大于两边乘积的特性。

四、指数不等式指数不等式是一类非常重要的数学不等式,它们由an>bn构成,例如4²>2³,这种不等式用来推断出当前指数的大小的变化,即指数不等式可以用来推断出更大的数值要比较小的数值大。

五、对数不等式对数不等式是由lnA<lnB构成的一类逆函数,即任何一个大于0的数值,当它们取反数之后所得到的值都是小于0的,但是它们仍然可以用来推断出比较大小的特性。

六、比较不等式比较不等式是一类用来推断出大小的不等式,它们最为重要的形式就是a>b,它们能够用来快速准确的推断出大数比小数大的情况,不需要拆分细节就可以迅速的把握出其大小之间的差异。

高中数学:基本不等式(含答案)

高中数学:基本不等式(含答案)

高中数学:必修5 基本不等式一、基础知识1.重要不等式:a 2+b 2≥2ab (a ,b ∈R )一般地,对于任意实数a ,b ,有a 2+b 2≥2ab ,当且仅当______________时,等号成立.2.基本不等式如果a >0,b >0,那么2a bab +≤,当且仅当______________时,等号成立. 其中,2a b+叫做正数a ,b 的算术平均数,ab 叫做正数a ,b 的几何平均数. 因此基本不等式也可叙述为:两个正数的算术平均数不小于它们的几何平均数.3.基本不等式的证明(1)代数法:方法一 因为a >0,b >0,所以我们可以用a ,b 分别代替重要不等式中的a ,b ,得22()()2a b a b +≥⋅,当且仅当a b =时,等号成立.即2a bab +≥( a >0,b >0),当且仅当a =b 时,等号成立. 方法二 因为2222()()2()0a b ab a b ab a b +-=+-=-≥, 所以20a b ab +-≥,即2a b ab +≥,所以2a bab +≤. 方法三 要证2a bab +≥,只要证2a b ab +≥,即证20a b ab +-≥,即证2()0a b -≥,显然2()0a b -≥总是成立的,当且仅当a =b 时,等号成立.(2)几何法:如图,AB 是圆的直径,C 是AB 上一点,AC =a ,BC =b ,过点C 作垂直于AB 的弦DE ,连接AD ,BD .易证Rt Rt ACD DCB △∽△,则CD 2=CA ·CB ,即CD =______________.这个圆的半径为2a b +,显然它大于或等于CD ,即2a bab +≥,当且仅当点C 与圆心重合,即a =b 时,等号成立.2a bab +≤的几何意义:半径不小于半弦.4.重要不等式和均值不等式的常用变形公式及推广公式(1)2b a a b +≥(a ,b 同号);2b aa b +≤-(a ,b 异号). (2)12a a +≥(a >0);12a a+≤-(a <0). (3)114a b a b +≥+(a >0,b >0);22a a b b≥-(a >0,b >0).(4)222a b ab +≤,2()2a b ab +≤,4ab ≤a 2+b 2+2ab ,2(a 2+b 2)≥(a +b )2(,)a b ∈R . (5)12212(,,,,2)nn n a a a a a a a n n n+++≥∈≥∈R N ,.(6)2121212111()()(,,,n n na a a n a a a a a a ++++++≥为正实数,且2)n n ≥∈N ,.5.均值不等式链若a >0,b >0,则2112a b a b+≤≤≤+,当且仅当a =b 时,等号成立.其中211a b +分别叫做a ,b 的调和平均数和平方平均数.6.最值定理已知x >0,y >0,则若x+y 为定值s ,则当且仅当x =y 时,积xy 有最大值24s (简记:和定积最大); 若xy 为定值t ,则当且仅当x =y 时,和x +y有最小值简记:积定和最小).参考答案:重难易错点:一、利用基本不等式判断不等式是否成立要判断不等式是否成立,关键是把握其运用基本不等式时能否严格遵循“一正、二定、三相等”这三个条件.例1.(1)设f (x )=ln x ,0<a <b ,若p =f ),q =()2a b f +,r =12(f (a )+f (b )),则下列关系式中正确的是 A .q =r <pB .p =r <qC .q =r >pD .p =r >q(2)给出下列不等式:①12x x +≥;②1||2x x+≥;③21(0)4x x x +>>;④1sin 2sin x x +≥;⑤若0<a <1<b ,则log a b +log b a ≤-2.其中正确的是______________. 【答案】(1)B ;(2)②⑤.【点析】基本不等式常用于有条件的不等关系的判断、比较代数式的大小等.一般地,结合所给代数式的特征,将所给条件进行转换(利用基本不等式可将整式和根式相互转化),使其中的不等关系明晰即可解决问题.二、利用基本不等式证明不等式利用基本不等式证明不等式的一般思路:先观察题中要证明的不等式的结构特征,若不能直接使用基本不等式证明,则考虑对代数式进行拆项、变形、配凑等,使之达到能使用基本不等式的形式;若题目中还有其他条件,则先观察已知条件和所证不等式之间的联系,当已知条件中含有“1”时,要注意“1”的代换.另外,解题时要时刻注意等号能否取到.例2.(1)已知a >0,b >0,c >0,求证:222a b c a b c b c a++≥++;(2)已知a >b ,ab =2,求证:224a b a b+≥-.观察a-b,a2+b2,可联想到通过加减2ab的方法配凑出(a-b)2,从而化为可使用基本不等式的形式,结合ab =2可使问题得到解决.三、利用基本不等式求最值(1例3.(1)已知f(x)=x+1x+2(x<0),则f(x)有A.最大值为4B.最小值为4 C.最小值为0 D.最大值为0(2)已知0<x<4,则x(4-x)取得最大值时x的值为A.0 B.2 C.4 D.16(3)已知函数f(x)=2x(x>0),若f(a+b)=16,则f(ab)的最大值为_______________;(4)已知a,b∈R,且ab=8,则|a+2b|的最小值是_______________.【答案】(1)D;(2)C;(3)16;(4)8.【点析】利用基本不等式求最值要牢记三个关键词:一正、二定、三相等,即①一正:各项必须为正;②二定:各项之和或各项之积为定值;③三相等:必须验证取等号时条件是否具备.(2使用基本不等式条件的可通过“变形”来转换,常见的变形技巧有:拆项、凑项、凑系数等.例4.(1)已知x>0,则函数y=231x xx++的最小值为_______________;(2)若x>1,则函数y=11xx+-的最小值为_______________;(3)若0<x<125,则函数y=x(12-5x)的最大值为_______________.(31”的替换,或构造不等式求解.例5.(1)已知a>0,b>0,a+b=1,则11a b+的最小值为_______________;(2)已知a>0,b>0,11a b+=2,则a+b的最小值为_______________;(3)若正实数x,y满足x+y+3=xy,则xy的最小值是_______________;(4)已知x >0,y >0,x +y +xy =3,则x +y 的最小值是_______________. 【答案】(1)4;(2)2;(3)9;(4)2.【点析】在构造不等式求最值时,既要掌握公式的正用,也要注意公式的逆用.例如,当a >0,b >0时,a 2+b 2≥2ab 逆用就是ab ≤222a b +;2a b+≥ab 逆用就是ab ≤2()2a b +等.还要注意“添项、拆项、凑系数”的技巧和等号成立的条件等.四、基本不等式在实际中的应用利用基本不等式解决应用问题的关键是构建模型,一般来说,都是从具体的几何图形,通过相关的关系建立关系式.在解题过程中尽量向模型2bax ab x+≥(a >0,b >0,x >0)上靠拢. 例6.如图,要规划一个矩形休闲广场,该休闲广场含有大小相等的左右两个矩形草坪(如图中阴影部分所示),且草坪所占面积为18 000 m 2,四周道路的宽度为10 m ,两个草坪之间的道路的宽度为5 m .试问,怎样确定该矩形休闲广场的长与宽的尺寸(单位:m ),能使矩形休闲广场所占面积最小?【答案】当矩形休闲广场的长为140 m ,宽为175 m 时,可使休闲广场的面积最小.【点析】本题容易出现的思维误区:①未能理清草坪边长与休闲广场边长之间的关系;②求出目标函数后不会运用基本不等式求最值,缺乏必要的配凑、转化变形能力,从而无法利用基本不等式求最值,或者不会利用基本不等式等号成立的条件求变量的取值.五、忽略等号成立的条件导致错误例7、函数22()2f x x =+的最小值为_______________.【错解】2222223211()22222x x f x x x x x +++===++≥+++,所以函数()f x 的最小值为2.【错因分析】错解中使用基本不等式时,等号成立的条件为22122x x +=+,即22x +=1,显然x 2≠-1,即等号无法取到,函数()f x 的最小值为2是不正确的. 【正解】()21222+++=x x x f ,令()()t t t g t x t 1,2,22+=≥+=.易知函数()tt t g 1+=在[)∞+,2上六、忽略等号成立的一致性导致错误例8、若x>0,y>0,且x+2y=1,则11x y+的最小值为_______________.基本不等式:基础习题强化1.已知01x <<,则(1)x x -取最大值时x 的值为A B C D 2.若实数,a b 满足323a b +=,则84a b +的最小值是A .B .4C .D .3.若0,0,x y >>且22x y +=,则21x y+的最小值是A .3BC .3D .924.若1a >,则211a a a -+-的最小值是A .2B .4C .1D .35.已知2212,202b m a a n b a -=+>=≠-()(),则m ,n 之间的大小关系是 A .m >nB .m <nC .m =nD .不能确定6.己知,a b 均为正实数,且直线60ax by +-=与直线()3250b x y --+=互相垂直,则23a b +的最小值为 A .12B .13C .24D .257.已知0a >,0b >,11a b a b +=+,则12a b+的最小值为A .4B .C .8D .168.若正数a ,b 满足3ab a b =++,则ab 的取值范围为________________. 9.已知,,a b c +∈R ,且3a b c ++=,则111a b c++的最小值是________________.10.若实数a ,b 满足12a b+=ab 的最小值为________________. 11.设230<<x ,则函数4(32)y x x =-的最大值为________________. 12.已知a >0,b >0,ab =8,则当a 的值为________________时,22log log (2)a b ⋅取得最大值.能力提升13.已知a ,b 都是正实数,且满足2a b ab +=,则2a b +的最小值为A .12B .10C .8D .614.已知1,1a b >>,且11111a b +=--,则4a b +的最小值为 A .13B .14C .15D .1615.已知不等式1)()9ax y x y++≥(对任意正实数x ,y 恒成立,则正实数a 的最小值为 A .8B .6C .4D .216.若正实数,a b 满足1a b +=,则A .11a b+有最大值4 B .ab 有最小值14C .a b +有最大值2D .22a b +有最小值2217.已知0,0a b >>,若不等式3103m a b a b--≤+恒成立,则m 的最大值为 A .4B .16C .9D .318.设实数x ,y 满足2102146x y x y x y +≤⎧⎪+≤⎨⎪+≥⎩,则xy 的最大值为A .252B .492C .12D .1419.已知a >0,b >0,c >0,且a +b +c =1,则111a b c++的最小值为_________________. 20.在4×+9×=60的两个中,分别填入一个自然数,使它们的倒数之和最小,则中应分别填入____________和____________.21.若a ,b ,c >0且(a +c )(a +b )=423-,则2a +b +c 的最小值为________________. 22.已知正实数a ,b 满足:1a b +=,则222a ba b a b +++的最大值是________________.其他23.某校要建一个面积为450平方米的矩形球场,要求球场的一面利用旧墙,各面用钢筋网围成,且在矩形一边的钢筋网的正中间要留一个3米的进出口(如图所示).设矩形的长为x 米,钢筋网的总长度为y 米. (1)列出y 与x 的函数关系式,并写出其定义域;(2)问矩形的长与宽各为多少米时,所用的钢筋网的总长度最小?24.(1)求函数2710(1)1x x y x x ++=>-+的最小值;(2)已知正数a ,b 和正数x ,y ,若a +b =10,1a bx y+=,且x +y 的最小值是18,求a ,b 的值.25.已知函数2()21,f x x ax a a =--+∈R .(1)若2a =,试求函数()(0)f x y x x=>的最小值; (2)对于任意的[0,2]x ∈,不等式()f x a ≤成立,试求a 的取值范围.26.(天津文理)已知a ,b ∈R ,且360a b -+=,则128ab+的最小值为_______________. 27.(江苏)在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,120ABC ∠=︒,ABC ∠的平分线交AC于点D ,且1BD =,则4a c +的最小值为_______________.28.(山东理)若0a b >>,且1ab =,则下列不等式成立的是A .()21log 2aba ab b +<<+ B .()21log 2a b a b a b<+<+ C .()21log 2a b a a b b +<+<D .()21log 2a ba b a b +<+< 29.(天津文理)若,a b ∈R ,0ab >,则4441a b ab++的最小值为________________.30.(江苏)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________________. 31.(山东文)若直线1(0,0)x ya b a b+=>>过点(1,2),则2a b +的最小值为________________.【参考答案】1.【答案】B 2.【答案】C 3.【答案】D 4.【答案】D 5.【答案】A 6.【答案】D 7.【答案】B8.【答案】[)+∞,9 9.【答案】3 10.【答案】 11.【答案】9212.【答案】4 13.【答案】C 14.【答案】B 15.【答案】C 16.【答案】C 17.【答案】B 18.【答案】A19.【答案】9 20.【答案】6 4 21.【答案】2 22.23.【答案】(1)9003(0150)y x x x=+-<<;(2)长为30米,宽为15米时,所用的钢筋网的总长度最小. 24.【答案】(1)9;(2)28a b =⎧⎨=⎩或82a b =⎧⎨=⎩. 25.【答案】(1)2-;(2)3[,)4+∞.26.【答案】0.25 27.【答案】9 28.【答案】B 29.【答案】4 30.【答案】30 31.【答案】8。

高一数学基本不等式

高一数学基本不等式

高一数学基本不等式有哪几个?
高中数学基本不等式常用的有六个,在以后学习的过程中还要积累一些常见的不等式。

1.基本不等式a^2+b^2≧2ab
对于任意的实数a,b都成立,当且仅当a=b时,等号成立。

证明的过程:因为(a-b)^2≧0,展开的a^2+b^2-2ab≧0,将2ab右移就得到了公式a^2+b^2≧2ab。

它的几何意义就是一个正方形的面积大于等于这个正方形内四个全等的直角三角形的面积和。

2.基本不等式√ab≦(a+b)/2
这个不等式需要a,b均大于0,等式才成立,当且仅当a=b时等号成立。

证明过程:要证(a+b)/2≧√ab,只需要证a+b≧2√ab,只需证(√a-√b)^2≧0,显然(√a-√b)^ 2≧0是成立的。

它的几何意义是圆内的直径大于被弦截后得到直径的两部分的乘积的二倍。

3.b/a+a/b≧2
这个不等式的要求ab>0,当且仅当a=b时等号成立,也就是说a,b可以同时为正数,也可以同时为负数。

证明的过程:b/a+a/b=(a^2+b^2)/ab≧2,只需证a^2+b^2≧2ab即可。

4.基本不等式的拓展公式:a^3+b^3+c^3≧3abc,a,b,c均为正数。

5.(a+b+c)/3≧³√abc,a,b,c均为正数,当且仅当a=b=c时等号成立。

6.柯西不等式。

高三数学 第一轮复习 04:基本不等式

高三数学 第一轮复习 04:基本不等式

高中数学第一轮复习04基本不等式·知识梳理·模块01:平均值不等式一、平均值不等式有关概念1、通常我们称a b+2为正数a b 、a b 、的几何平均值。

2、定理:两个正数的算术平均数大于等于它们的几何平均值,即对于任意的正数b a 、,有2a b+≥,且等号当且仅当a b =时成立.3、定理:对于任意的实数b a 、,有2()2a b ab +≥,且等号当且仅当b a =时成立。

即对任意的实数b a 、,有222a b ab +≥,且等号当且仅当b a =时成立。

[注意事项]:222a b ab +≥和2a b+≥两者的异同:(1)成立的条件是不同的:前者只要求,a b 都是实数,而后者要求,a b 都是正数;(2)取等号的条件在形式上是相同的,都是“当且仅当a b =时取等号”;(3)222a b ab +≥可以变形为:222a b ab +≤;2a b +≥可以变形为:2(2a b ab +≤。

4、平均值不等式的几何证明法:如图,AB 是圆的直径,点C 是AB 上的一点,AC a =,BC b =,过点C 作DC AB ⊥交圆于点D ,连接AD 、BD .易证~Rt ACD Rt DCB ∆∆,那么2CD CA CB =⋅,即CD =.这个圆的半径为2b a +,它大于或等于CD ,即ab ba ≥+2,其中当且仅当点C 与圆心重合,即a b =时,等号成立.[知识拓展]1、当0a b <≤时,2112a ba b a b+≤≤≤+(调和平均值≤几何平均值≤算术平均值≤平方平均值)2、123,,,,n a a a a 是n 个正数,则12na a a n+++ 称为这n个正数的算术平均数,称为这n 个正数的几何平均数,它们的关系是:12n a a a n+++≥ ,当且仅当12n a a a ===时等号成立.二、利用基本不等式求最值问题(1)“积定和最小”:a b +≥⇔如果积ab 是定值P ,那么当a b =时,和a b +有最小值;(2)“和定积最大”:2(2a b ab +≤⇔如果和a b +是定值S ,那么当a b =时,积ab 有最大值214S .[注意事项]:基本不等式求最值需注意的问题:(1)各数(或式)均为正;(2)和或积为定值;(3)等号能否成立,即“一正、二定、三相等”这三个条件缺一不可。

高一数学复习考点题型专题讲解7 基本不等式

高一数学复习考点题型专题讲解7  基本不等式

高一数学复习考点题型专题讲解第7讲 基本不等式一、单选题1.下列不等式恒成立的是( ) A .222a b ab +≤B .222a b ab +≥-C .a b +≥-.a b +≤【答案】B【分析】由基本不等式,可判定A 不正确;由2222()0a b ab a b ++=+≥,可判定B 正确;根据特例,可判定C 、D 不正确;【解析】由基本不等式可知222a b ab +≥,故A 不正确;由222a b ab +≥-,可得2220a b ab ++≥,即()20a b +≥恒成立,故B 正确; 当1,1a b =-=-时,不等式不成立,故C 不正确; 当0,1a b ==时,不等式不成立,故D 不正确. 故选:B.2.已知0x >,则2x x+的最小值为( ) A.2C ..4 【答案】C【分析】根据给定条件利用均值不等式直接计算作答.【解析】因为0x >,则2x x +≥2x x=,即x =“=”, 所以2xx+的最小值为故选:C3.已知a >0,b >0,a +b =4,则下列各式中正确的是( )A .1114ab+…B .111a b +…C 2D .11ab…【答案】B【分析】利用基本不等式逐个分析判断即可 【解析】解:因为a >0,b >0,a +b =4,所以111112(22)1444a b a b b a a b a b a b ++⎛⎫⎛⎫+=+=+++= ⎪ ⎪⎝⎭⎝⎭…, 当且仅当a =b =2时取等号,B 正确,A 错误;由基本不等式可知ab 22a b +⎛⎫⎪⎝⎭…=4,当且仅当a =b =2时取等号,2,C 错误;114ab …,D 错误. 故选:B .4.0ab >是2ba ab+>的( ) A .充分不必要条件B .必要不充分条件 C .充要条件D .既不充分也不必要条件 【答案】B【分析】解法一:根据充分条件与必要条件的概念,结合不等式的基本性质直接判断,即可得出结果.解法二:利用基本不等式的等号成立的条件可以否定充分性,利用代数变形,结合不等式的基本性质可以论证必要性.【解析】解法一:当1a b ==时,满足10ab =>,但2b a ab+=,2b a ab+>不成立,故0ab >是2b aa b+>的不充分条件; 当0ab <时02b a a b +<<,2b a a b +>不成立,当0ab =时b a a b +无意义,即2b a a b+>不成立,故0ab >是2b a a b+>的必要条件;综上,0ab >是2b a ab+>的必要不充分条件.解法二:当0ab >时,0,0b a ab>>,2b a ab+≥=,当且仅当a b =时取等号,所以0ab >是2ba a b+>的不充分条件;若2b a a b +>,则222b a b a a b ab++=>,所以0ab >,故0ab >是2b a a b +>的必要条件; 综上,0ab >是2b a a b+>的必要不充分条件. 故选:B.5.已知0x >,0y >,48x y +=,则x y的最大值为( )A..4C .6D .8 【答案】B【分析】利用基本不等式化简已知条件,由此求得x y的最大值【解析】因为48x y =+≥2,从而4x y ≤.当且仅当44,1x x y y=⇒==时等号成立. 故选:B6.若a >0,b >0,且a ≠b ,则( )A.2a b +2a b +C2a b +D 2a b + 【答案】B【解析】利用基本不等式或作差法判断选项. 【解析】∵a ,b ∈R +,且a ≠b ,∴a +b >2a b+, 而222()24a b a b ++-=2()4a b ->0,∴2a b +故选:B7.已知0x >,0y >,251x y +=,则1125x y+的最小值是( ) A .2B .8C .4D .6 【答案】C【分析】根据题意,结合“1”的妙用,即可求解. 【解析】解析:由251x y +=得()1111522522224252525y x x y x y x y x y ⎛⎫+=+⋅+=++≥=+= ⎪⎝⎭,当且仅当5225y x x y =,即14x =,110y =时,等号成立,所以1125x y +的最小值是4. 故选:C .8.《几何原本》中的几何代数法是以几何方法研究代数问题,这种方法是后西方数学家处理问题的重要依据,通过这一原理,很多的代数公理或定理都能够通过图形实现证明,也称之为无字证明.下图是我国古代数学家赵爽创作的弦图,弦图由四个全等的直角三角形与一个小正方形拼成的一个大正方形.若直角三角形的直角边长分别为a 和b ,则该图形可以完成的无字证明为( ).A.)0,02a b a b +>>B .()22200a b ab a b +≥>>, C()20,011a b a b≥>>+D()002a ba b +>>,【答案】B【分析】由图可知大正方形的面积大于等于4个直角三角形的面积和,从而可得结论 【解析】解:因为直角三角形的直角边长分别为a 和b ,所以大正方形的面积为22a b + 由图可知大正方形的面积大于等于4个直角三角形的面积和,所以221422a b ab ab +≥⨯=(0,0a b >>)故选:B9.下列结论正确的是( )A .当0x >,0y >且21x y +=时,11x y+≤B .当0x >4≥ C .当2x ≥时,2x x+的最小值是D .当0a >时,11a a ++的最小值为1 【答案】B【分析】根据1122x y x yx y x y+++=+结合基本不等式,即可判断A ;直接利用基本不等式即可判断BC ,注意取等号的条件; 根据111111a a a a +=++-++结合基本不等式,即可判断D. 【解析】解:因为0x >,0y >且21x y +=,所以112221233x y x y y x xyx y x y +++=+=+++≥+=+当且仅当2y x x y =,21x y +=,即1x ,1y =113x y +≥+A 错误:当0x >4≥=4x =时等号成立,故B 正确;当0x >时,2x x +≥当且仅当2x x=.即x 但已知条件中2x ≥,故C 错误;当10a +>时,1111121111a a a a +=++-≥=-=++,当且仅当111a a +=+,即0a =时等号成立,但已知条件中0a >,故D 错误.故选:B.10.已知0a >,0b >,若不等式41ma b a b+≥+恒成立,则m 的最大值为( ) A .10B .12C .16D .9【答案】D【分析】利用参变分离的方法将不等式变形为41()m a b a b⎛⎫≤++ ⎪⎝⎭恒成立,再由基本不等式得出代数式的最值,可得选项.【解析】由已知0a >,0b >,若不等式41ma b a b+≥+恒成立, 所以41()m a b a b⎛⎫≤++ ⎪⎝⎭恒成立,转化成求41()y a b a b⎛⎫=++ ⎪⎝⎭的最小值,414()559b a y a b a b a b ⎛⎫=++=++≥+= ⎪⎝⎭,当且仅当4b aa b=时取等 所以9m ≤. 故选:D .11.若x >1,则22222x x x -+-有( )A .最小值1B .最大值1C .最小值-1D .最大值-1 【答案】A【分析】将给定表达式整理变形,再利用基本不等式即可作答.【解析】因x >1,则()()()2211221*********x x x x x x x -+-+⎡⎤=⋅=-+≥⎢⎥---⎣⎦1,当且仅当111x x -=-,即2x =时取等号. 所以22222x x x -+-有最小值为1.故选:A12.设a ,b ,c ,d 均为大于零的实数,且abcd =1,令m =a (b +c +d )+b (c +d )+cd ,则a 2+b 2+m 的最小值为( )A .8B ...【答案】B【分析】根据条件可得2222()()a b m a b a b c d ab cd ++=++++++,然后利用重要不等式和基本不等式可求出22a b m ++的最小值.【解析】解:a ,b ,c ,d 均大于零且1abcd =,()()m a b c d b c d cd =+++++,2222()()a b m a b a b c d ab cd ∴++=++++++ 2243ab ab cd ab cd ab cd +++=++…44++…当且仅当a b =,c d =,3ab cd=,即141()3a b ==,143c d ==时取等号,22a b m ∴++的最小值为4+故选:B .【点睛】本题考查了重要不等式和基本不等式在求最值中的应用,考查了转化思想,属中档题.二、多选题13.(多选题)下列不等式不一定成立的是( )A.x +1x ≥2B 2.2212x x +≥D .2-3x -4x ≥2【答案】AD【分析】取0x <可判断A ;2B ;由基本不等式可判断C ;取0x >可判断D.【解析】对于选项A :当x <0时,102x x+<<,故A 错误;对于选项B 2B 正确;对于选项C :221122x x x x+≥⋅=,故C 正确; 对于选项D :变形为430x x+≤,当x 取正数时不成立,故D 错误. 故选:AD.14.已知0,0a b >>,则下列不等式一定成立的是( )A .114ab+B .11()()4a b ab++≥C 22a b≥+D .2≥+aba b 【答案】ABC【分析】对A ,利用基本不等式a b +≥B ,将不等式左边展开,再利用基本不等式即可判断;对C ,利用()2222a b a b ++≥以及a b +≥D ,利用特殊值即可判断.【解析】解:对A ,114a b ++≥, 当且仅当“a b =”时“=”成立,故A 正确;对B ,11()224baa b a b a b ⎛⎫++=++≥+ ⎪⎝⎭,当且仅当“a b =”时“=”成立,故B 正确;对C ()2222a b a b a b a b ++≥≥=++, 当且仅当“a b =”时“=”成立,故C 正确;对D ,当1,2a b ==时,2224123ab a b ⨯==++=2≥+aba b 不成立,故D 错误; 故选:ABC.15.某公司一年购买某种货物800吨,现分次购买,设每次购买x 吨,运费为8万元/次.已知一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和y 最小,则下列说法正确的是( ) A .当40x =时,y 取得最小值 B .当45x =时,y 取得最小值 C .min 320y = D .min 360y = 【答案】AC【分析】根据题意列出总存储费用之和80084y x x=⨯+的表达式,再利用基本不等式求最值即可判断选项【解析】一年购买某种货物800吨,每次购买x 吨,则需要购买800x次,又运费是8万元/次,一年的总存储费用为4x 万元, 所以一年的总运费与总存储费用之和80084y x x=⨯+万元.因为80084320y x x =⨯+≥=,当且仅当64004x x =,即40x =时,等号成立, 所以当40x =时,y 取得最小值,min 320y =. 故选:AC .16.设0,0a b >>,则下面不等式中恒成立的是( ) A .221a b a b ++>+BC.211ab≤+.114a b a b+≤+ 【答案】ABC【解析】利用做差法可判断A ;讨论,a b ,平方作差可判断B ;利用基本不等式可判断C 、D.【解析】对于A ,()222222111110222a b a b a a b b a b ⎛⎫⎛⎫++-+=-+-+=-+-+> ⎪ ⎪⎝⎭⎝⎭,所以221a b a b ++>+,故A 正确;对于B ,当a b <当a b ≥时,2a b b a b b a =-+=-+≥,a b =时取等号,故B 正确;对于C ,0,0a b >>,2211ab a b ab=≤=++ 当且仅当a b =时取等号,故C 正确;对于D ,0,0a b >>,()11224b a a b ab ab⎛⎫∴++=++≥+ ⎪⎝⎭,114a b a b∴+≥+,当且仅当a b =时取等号,故D 错误. 故选:ABC【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方. 17.下列不等式正确的是( )A .若0x <,则12xx +≤-B .若x ∈R 22≥ C .若x ∈R ,则2111x <+D .若0x >,则()1114⎛⎫++≥ ⎪⎝⎭x x 【答案】ABD【解析】利用基本不等式可判断ABD 选项的正误;取0x =可判断C 选项的正误.【解析】对于A 选项,当0x <时,0x ->,则()()112x x xx ⎡⎤+=--+≤-=-⎢⎥-⎣⎦, 当且仅当1x =-时,等号成立,A 选项正确; 对于B 选项,x R ∈Q ,则222x ≥+,22212x ++==≥,时,即221x +=,显然不成立,等号不成立,22>,B 选项正确;对于C 选项,取0x =,可得2111x =+,C 选项错误;对于D 选项,0x >,()1111224x x x x⎛⎫++=++≥+= ⎪⎝⎭,当且仅当1x =时,等号成立,D 选项正确. 故选:ABD.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.18.若不等式()2232a b x a b ++≥+对任意正数a ,b 恒成立,则实数x 的可能取值为( ) A.2C.1 【答案】AD【分析】由题设可得()()2260,02a b a b a b x ++>>+≤恒成立,应用基本不等式求不等式右边的最小值,即可确定x 的范围.【解析】∵不等式()2232a b x a b ++≥+对任意正数a ,b 恒成立, ∴()()2260,02a b a b a b x ++>>+≤恒成立. ∵()()()2226632224a b a b a b a b a b a b +++++≥=+≥=+++a b =.∴x ≤A ,D. 故选:AD.三、填空题19.给出下面三个推导过程:①∵a ,b 为正实数,∴b a +a b 2;②∵a ∈R ,a ≠0,∴4a+a 4;③∵x ,y ∈R ,xy <0,∴xy +yx =-x y y x ⎡⎤⎛⎫⎛⎫-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦≤- 2.其中正确的推导过程为________. 【答案】①③【分析】①符合基本不等式的条件,故①的推导过程正确; ②不符合基本不等式的条件,所以②的推导过程错误;③x y⎛⎫- ⎪⎝⎭,y x ⎛⎫- ⎪⎝⎭均为正数,符合基本不等式的条件,故③的推导过程正确.【解析】①∵a ,b 为正实数,∴ba ,a b为正实数,符合基本不等式的条件,故①的推导过程正确;②a ∈R ,a ≠0,不符合基本不等式的条件,∴②的推导过程错误;③由xy <0,得xy ,y x均为负数,∴x y⎛⎫- ⎪⎝⎭,y x ⎛⎫- ⎪⎝⎭均为正数,符合基本不等式的条件,故③的推导过程正确.故选①③. 故答案为:①③【点睛】本题主要考查基本不等式的应用,意在考查学生对该知识的理解掌握水平. 20.若0a b <<,且1a b +=,则实数12、b 、2ab 、22a b +中最大的一个是______. 【答案】b【分析】由0a b <<,1a b +=,所以12a b <<,再结合222a b ab +>,则可判断22122a ab a b b <<<+<,得解.【解析】因为0a b <<,1a b +=,所以12a b <<,222ab a b <+,因为22222a b a b +⎛⎫+> ⎪⎝⎭,所以2212a b +>,又()222221a b a a b a b b b b b b +=⋅+<⋅+=-+=,所以2212a b b <+<,又212222a b ab +⎛⎫<= ⎪⎝⎭,1222ab a a >⨯=, 所以122a ab <<.所以22122a ab a b b <<<+<. 故答案为:b .21.若a 、b 、x 、y ∈R ,221x y +=,221a b +=,则ax by +的最大值是______. 【答案】1【分析】利用基本不等式得最大值. 【解析】因为221x y +=,221a b +=,所以22222222222222222()2()()1ax by a x abxy b y a x a y b x b y a b x y +=++≤+++=++=, 当且仅当ay bx =即a xb y =时等号成立.故答案为:1.22.设0,0a b >>,且不等式110ka b a b++≥+恒成立,则实数k 的最小值等于___________. 【答案】4-【分析】先分离出参数k ,得11()()k a b a b -++…,然后利用基本不等式求得11()()a b a b -++的最大值即可.【解析】解:由110ka b a b +++…,得11()()k a b a b-++…,11()()(2)(24b a a b a b a b -++=-++-+=-…, 当且仅当a b =时取等号,4k ∴-…,即实数k 的最小值等于4-.故答案为:4-.23.若一个三角形的三边长分别为a ,b ,c ,设()12p a b c =++,则该三角形的面积S =这就是著名的“秦九韶-海伦公式”若△ABC 的周长为8,2AB =,则该三角形面积的最大值为___________. 【答案】【分析】计算得到4p =,2c =,6a b +=,根据均值不等式得到9ab ≤,代入计算得到答案.【解析】()142p a b c =++=,2c =,6a b +=,6a b +=≥9ab ≤, 当3a b ==时等号成立.S ==故答案为:24.已知a b c >>2a c-的大小关系是____________2a c-. 【分析】将2a c -化为()()2a b b c -+-,然后运用基本不等式比较大小. 【解析】∵a b c >>,∴0a b ->,0b c ->,∴()()22a b b c a c -+--=a b b c -=-,即2b a c =+时取等号,2a c-. 【点睛】本题考查利用基本不等式的运用,属于简单题,将2a c -化为()()2a b b c -+-是关键.四、解答题25.已知实数a 和b ,判断下列不等式中哪些是正确的. (1)222a b ab +≥; (2)222a b ab +≥-(3)2a b+≥ (4)2b a a b+≥; (5)12a a +≥; (6)2b aa b+≥; (7)()()2222a b a b +≥+. 【答案】(1)正确 (2)正确 (3)错误 (4)错误 (5)错误 (6)正确 (7)正确【分析】(1)由()20a b -≥判断不等式成立. (2)由()20a b +≥判断不等式成立. (3)利用特殊值判断不等式错误. (4)利用特殊值判断不等式错误. (5)利用特殊值判断不等式错误. (6)结合基本不等式判断不等式成立. (7)利用差比较法判断不等式成立. (1)由于()20a b -≥,222220,2a ab b a b ab -+≥+≥,所以不等式正确. (2)由于()20a b +≥,222220,2a ab b a b ab ++≥+≥-,所以不等式正确. (3)当,a b 为负数时,不等式2a b+≥. (4)当,b a a b 为负数时,不等式2b a a b+≥不成立,所以不等式错误. (5)当a 为负数时,不等式12a a +≥不成立,所以不等式错误. (6)依题意,a b 不为零,,b a a b同号,2b a b a a b a b +=+≥,当且仅当1b a =±时等号成立,所以不等式正确.()()()222220a b a b a b +-+=-≥,所以()()2222a b a b +≥+,所以不等式正确.26.下列结论是否成立?若成立,试说明理由;若不成立,试举出反例.(1)若0ab >,则a b +≥(2)若0ab >2; (3)若0ab <,则2b a ab+≤-. 【答案】(1)不成立,理由见解析; (2)成立,理由见解析; (3)成立,理由见解析;【分析】取特殊值判断(1),由均值不等式判断(2)(3). (1)取1,2a b =-=-满足0ab >,此时a b +≥ (2)0ab >,0,0a bb a∴>>,2,当a b =时等号成立. (3)0ab <,0,0b aa b∴<<,2b a b a a b a b ⎡⎤⎛⎫⎛⎫∴+=--+-≤-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,当a b =-时等号成立. 27.证明下列不等式,并讨论等号成立的条件: (1)若0a >,则322a a a +≥; (2)若4ab =,则228a b +≥;(3)若11x -≤≤12; (4)若0ab ≠,则2b aa b+≥; (5)对任意实数a 和b ,2222431a b a b ++≥++.【答案】(1)证明见解析,当且仅当1a =时等号成立; (2)证明见解析,当且仅当2a b ==±时,等号成立.(3)证明见解析,当且仅当x = (4)证明见解析,当且仅当220a b =≠时,等号成立. (5)证明见解析,当且仅当221a b +=时等号成立.【分析】(1)直接利用作差法对关系式进行变换,进一步求出结果. (2)利用基本不等式的应用求出结果.(3)利用算术平均数和几何平均数的运用及整体思想的应用求出结果. (4)利用分类讨论思想的应用和均值不等式的应用求出结果. (5)利用关系式的变换和均值不等式的应用求出结果. (1)证明:由于3232222()()(1)a a a a a a a a a -+=---=-,当0a >时,2(1)0a -≥,所以20(1)a a -≥,即3202a a a -+≥,所以322a a a +≥,当且仅当1a =时,等号成立.(2)证明:因为4ab =,所以2228a b ab +≥=,当且仅当2a b ==±时,等号成立. (3)证明:因为11x -≤≤,所以201x ≤≤,210x -≥22(1)122x x +-=,当且仅当221x x =-,即x = (4)证明:因为0ab ≠,当0ab >时,2ba b a a b a b +=+…,当且仅当0a b =≠时,等号成立.当0ab <时,()()2b a b a a b a b +=-+-…,当且仅当0a b =-≠时,等号成立. 综上可得0ab ≠,则2b aa b+≥,当且仅当220a b =≠时,等号成立. (5)证明:对任意实数a 和b ,2211a b ++≥所以222222224411141311a b a b a b a b ++=+++-=-=++++.当且仅当221a b +=时等号成立.28.已知0a >,0b >,21a b +=,求23ab+的最小值.下面是某同学的解答过程:请指出上面解答过程中的错误,并给出正确解答.【答案】解答过程中没有给出取最小值的条件,事实上这个最小值是取不到的,原因是两次利用均值不等式,等号成立的条件不一致;正确解答见解析.【分析】根据基本不等式应用的条件: “一正”、“二定”、 “三相等” 即可得出答案. 【解析】解答过程中没有给出取最小值的条件,事实上这个最小值是取不到的, 原因是两次利用均值不等式,等号成立的条件不一致.具体情况如下:23a b +≥23a b =,即32a b =时,等号成立,2a b +≥2a b =时,等号成立,显然,32a b =和2a b =不可能同时成立. 正确的解答如下:因为0a >,0b >,21a b +=,所以()2323432888baa b a b a b a b ⎛⎫+=++=+++⎪≥+ ⎝⎭当且仅当43b aa b=时,等号成立,即2b =,代入21a b +=,得a =,从而b =因此23ab+的最小值为8+a =,b =29.已知1y x x=+.(1)已知x >0,求y 的最小值; (2)已知x <0,求y 的最大值. 【答案】(1)2;(2)-2.【分析】(1)直接利用基本不等式求解即可(2)由于x <0,所以先对式子变形()1y x x ⎡⎤=--+⎢⎥-⎣⎦,然后再利用基本不等式即可【解析】(1)因为x >0,所以12y x x=+≥,当且仅当1x x=,即x =1时等号成立.所以y 的最小值为2.(2)因为x <0,所以-x >0.所以()12y x x ⎡⎤=--+≤-=-⎢⎥-⎣⎦,当且仅当1x x -=-,即x =-1时等号成立. 所以y 的最大值为-2.【点睛】此题考查基本不等式的应用,属于基础题. 30.已知x ,y 都是正数.求证:()12y xx y+≥; ()2()()()2233338.x y x y x y x y +++≥【答案】()1证明见解析;()2证明见解析.【分析】()1运用基本不等式:a b +≥a b =时取得等号),即可求证;()2运用基本不等式和不等式的基本性质即可求证.【解析】解:()1证明:由x ,y 都是正实数,可得2y x xy+≥(当且仅当x y =时取得等号);()2证明:由基本不等式可知()()()(()(22332x y x y x y xy +++≥⋅⋅()23388xy xy x y =⋅=,(当且仅当x y =时取得等号).【点睛】本题考查不等式的证明,运用基本不等式,考查化简推理的能力,属于基础题.31.已知a ,b ,c 均为正数,且1abc =,求证: (1)()()()8a b b c a c +++≥;(2111a b c≤++.【答案】(1)证明见解析;(2)证明见解析. 【分析】(1)利用基本不等式直接证明即可. (2)利用基本不等式直接证明即可.【解析】证明:(1)因为a ,b ,c 均为正数,1abc =,所以a b +≥b c +≥a c +≥ 三式相乘,得()()()88a b b c a c abc +++≥=, 当且仅当1a b c ===时,等号成立. (2)因为a ,b ,c 均为正数,1abc =,所以11ab+≥=11b c +≥=11a c +≥=三式相加,得11122a b c⎛⎫++≥ ⎪⎝⎭,111a b c≤++,当且仅当1a b c ===时,等号成立.32.已知0a >,0b >,且(1a b +.(1)求3311a b +的最小值;(2)是否存在实数,a b ,使得1123a b +?若存在,求出,a b 的值;若不存在,请说明理由.【答案】(1)(2)不存在,理由见解析【分析】(1a b=+≥12≤ab ,再根据3311a b +≥=求解即可.(2)首先根据基本不等式得到1123a b +≥>,即可判断不存在实数,a b ,使得1123a b +. (1)因为0a >,0b >,(1a b +,a b=+≥a b == 所以12≤ab .因为3311a b +≥=≥a b == 所以3311a b +的最小值为 (2)因为0a >,0b >,又由(1)知12≤ab ,所以1123a b +≥=≥, 当且仅当23a b =时取等号.因为当且仅当a b ==12ab =,所以1123a b +><,a b ,使得1123a b +. 33.在城市旧城改造中,某小区为了升级居住环境,拟在小区的闲置地中规划一个面积为2200m 的矩形区域(如图所示),按规划要求:在矩形内的四周安排2m 宽的绿化,绿化造价为200元/2m ,中间区域地面硬化以方便后期放置各类健身器材,硬化造价为100元/2m .设矩形的长为(m)x ,总造价为y (元).(1)将y 表示为关于x 的函数;(2)当x 取何值时,总造价最低,并求出最低总造价. 【答案】(1)8000040018400,050y x xx=++<<;(2)当x =为18400.【解析】(1)根据题设先计算出绿化的面积和硬化地面的面积,从而可得y 表示为关于x 的函数;(2)利用基本不等式可求何时取何最值.【解析】(1)因为矩形区域的面积为2200m ,故矩形的宽为200x, 绿化的面积为20080022224416x x x x ⎛⎫⨯⨯+⨯⨯-=+-⎪⎝⎭,中间区域硬化地面的面积为()200800442164x x x x ⎛⎫--=--⎪⎝⎭,故8008004162002164100y x x x x ⎛⎫⎛⎫=+-⨯+--⨯ ⎪ ⎪⎝⎭⎝⎭, 整理得到8000040018400y x x=++, 由4020040x x->⎧⎪⎨->⎪⎩可得050x <<,故8000040018400,050y x x x=++<<. (2)由基本不等式可得80000400184004001840018400x x++≥⨯=,当且仅当x =故当x =18400.【点睛】方法点睛:利用基本不等式解决应用问题时,注意合理构建数学模型,求最值时注意“一正二定三相等”,特别是检验等号是否可取. 34.(1)已知01x <<,则(43)x x -取得最大值时x 的值为? (2)已知54x <,则1()4245f x x x =-+-的最大值为? (3)函数22(1)1x y x x +=>- 的最小值为? 【答案】(1)23;(2)1;(3)2【分析】(1)积的形式转化为和的形式,利用基本不等式求最值,并要检验等号成立的条件;(2)结构为和的形式转化为积的形式,并使积为定值,同时要检验等号成立的条件;(3)二次式除以一次式求最值,一般二次式用一次式表示出来,然后再分离,最后用基本不等式求解即可.【解析】(1)2113434(43)(3)(43)[]3323x x x x x x +--=⨯⨯-≤⨯=, 当且仅当343x x =-,即23x =时,取等号. 故所求x 的值为23.(2)因为54x <,所以540x ->,则11()42(54)332314554f x x x x x =-+=--++≤-=-+=--. 当且仅当15454x x-=-,即1x =时,取等号. 故1()4245f x x x =-+-的最大值为1. (3)2222122311x x x x y x x +-++-+==-- 2(1)2(1)31x x x -+-+=-3(1)221x x =-++≥-.当且仅当311x x -=-,即1x =时,取等号.故函数的最小值为2.。

高中数学基本不等式知识点及练习题

高中数学基本不等式知识点及练习题

高中数学基本不等式知识点及练习题1.基本不等式:对于任意正实数a和b,有ab≤(a+b)/2.2.几个重要的不等式:1) 平方差公式:对于任意实数a和b,有(a-b)^2≥0,即a^2+b^2≥2ab.2) 两个同号数的平方和大于它们的积:对于任意正实数a 和b,有a^2+b^2≥2ab.3) 两个异号数的平方和小于它们的积:对于任意实数a和b,如果ab<0,则a^2+b^2<2ab.4) 平均值不等式:对于任意正实数a和b,有(a+b)/2≥√(ab).3.算术平均数与几何平均数:对于任意正实数a和b,它们的算术平均数为(a+b)/2,几何平均数为√(ab)。

基本不等式可以叙述为两个正数的算术平均数大于或等于它们的几何平均数.4.利用基本不等式求最值问题:1) 如果积xy是定值p,那么当且仅当x=y时,x+y有最小值是2p.2) 如果和x+y是定值p,那么当且仅当x=y时,xy有最大值是p^2/4.一个技巧:在运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a^2+b^2≥2ab逆用就是ab≤(a^2+b^2)/(a+b)^2;还要注意“添、拆项”等技巧和公式等号成立的条件等.两个变形:1) a^2+b^2≥(a+b)^2/2≥ab(a>0,b>0,当且仅当a=b时取等号).2) a^2+b^2≥2ab(a,b∈R,当且仅当a=b时取等号).三个注意:1) 使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽视。

要利用基本不等式求最值,这三个条件缺一不可.2) 在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.3) 连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致.应用一:求最值:例1:已知x<5,求函数y=4x-2+1/(2x+1)的最大值.解题技巧:技巧一:凑项.例1:已知x<5,求函数y=4x-2+1/(2x+1)的最大值.技巧二:凑系数.例1.当x^2+7x+10/(x+1)的值域.技巧三:分离.例3.求y=x(8-2x)的最大值,当y<4时。

高中数学基本不等式知识点归纳及练习题

高中数学基本不等式知识点归纳及练习题

高中数学基本不等式知识点归纳及练习题1.基本不等式:ab≤a+b 2(1)基本不等式成立的条件:a>0,b>0.(2)等号成立的条件:当且仅当a=b时取等号.2.几个重要的不等式(1)a2+b2≥2ab(a,b∈R);(2)ba+ab≥2(a,b同号);(3)ab≤⎝⎛⎭⎪⎫a+b22(a,b∈R);(4)a2+b22≥⎝⎛⎭⎪⎫a+b22(a,b∈R).3.算术平均数与几何平均数设a>0,b>0,则a,b的算术平均数为a+b2,几何平均数为ab,基本不等式可叙述为两个正数的算术平均数大于或等于它的几何平均数.4.利用基本不等式求最值问题已知x>0,y>0,则(1)如果积xy是定值p,那么当且仅当x=y时,x+y有最小值是2p.(简记:积定和最小)(2)如果和x+y是定值p,那么当且仅当x=y时,xy有最大值是p24.(简记:和定积最大)一个技巧运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a2+b2≥2ab逆用就是ab≤a2+b22;a+b2≥ab(a,b>0)逆用就是ab≤⎝⎛⎭⎪⎫a+b22(a,b>0)等.还要注意“添、拆项”技巧和公式等号成立的条件等.两个变形(1)a2+b22≥⎝⎛⎭⎪⎫a+b22≥ab(a,b∈R,当且仅当a=b时取等号);(2) a2+b22≥a+b2≥ab≥21a+1b(a>0,b>0,当且仅当a=b时取等号).这两个不等式链用处很大,注意掌握它们.三个注意(1)使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.(2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.(3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致.应用一:求最值例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x解题技巧:技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。

高中数学基本不等式专题复习

高中数学基本不等式专题复习

高中数学基本不等式专题复习第11课:基本不等式与双根号函数一、双根号函数形如y=√(px+q),p>0,q>0.图像如右图所示:1)x>0时,当x=0时取到最小值min=2√(pq);2)值域:当x=q/p时取到最小值min=2p;3)当p<0,q<0时,函数图像关于X轴对称,为二、四象限倒双根号;4)当pq<0时,不是双根号函数。

2、研究:以y=3√(x-)为例二、基本不等式a+b≥2√(ab)1、一正:只要a、b为正,上式就恒成立!2、二定:当利用基本不等式求一端的最值时,则必须配凑出不等式另一端是定值!积定和最小,取等于ab/2;3、三相等:用来验证等号能否取;当求最值时则是验证最值能否取到!成败的关键!示例:求函数y=x+3/(x-2)(x>2)的最小值。

错误解法:当x>2时,得a=x,b=3/(x-2),则a+b=x+3/(x-2)≥2√(3),当且仅当x=2时,函数有最小值2√(3)。

正确解法:将y=x+3/(x-2)(x>2)化为y=(x-2)/2+3/(2(x-2)),即y=√(3/2)√(x-2)+√(3/2)√(3/(x-2)),此时a=√(3/2),b=√(3/2),则a+b=2√(3/2),取等于ab/2,即函数有最小值2√(3)。

两者联系:1)基本不等式去等号时的值即为双根号函数的拐点;2)凡是利用“积定和最小”求最值的函数均可换元为双根号函数!三、利用基本不等式求最值类型一:形如y=(ax+b)/(ax^2+bx+c)1、求y=4x+3/(x-2)的最小值;2、求y=x/(x+1)的最小值;3、求y=sin(x)+cos(x)的最大值。

类型二:形如y=(cx+d)/(x^2+x+9)1、求y=3x-5/(4x-5)的最小值;2、求y=2x/(x+4e+4)的值域;3、求y=e^x/(x+1)的最小值;4、求y=(x^2+2x+1)/(x+2)的最小值;5、求y=√(2x/(1-2x))的最小值;6、求y=x/(2x+1)的值域。

高一数学基本不等式综合复习

高一数学基本不等式综合复习

第5讲基本不等式1.基本不等式:ab≤a+b2(1)基本不等式成立的条件:a≥0,b≥0.(2)等号成立的条件:当且仅当时取等号.(3)其中称为正数a,b的算术平均数,称为正数a,b的几何平均数.2.利用基本不等式求最值已知x≥0,y≥0,则(1)如果积xy是定值p,那么当且仅当时,x+y有最小值是.(简记:积定和最小)(2)如果和x+y是定值s,那么当且仅当时,xy有最大值是.(简记:和定积最大)常用结论几个重要的不等式(1)a2+b2≥2ab(a,b∈R),当且仅当a=b时取等号.(2)ab(a,b∈R),当且仅当a=b时取等号.(3)a2+b22≥(a,b∈R),当且仅当a=b时取等号.(4)b a+ab≥2(a,b同号),当且仅当a=b时取等号.考点1利用基本不等式求最值[典例]1.(2022·河北·高三阶段练习)已知实数a ,b 满足条件33ba b ++=,则22a b +的最小值为()A .8B .6C .4D .22.(2022·湖南湖南·二模)函数()122y x x x =+>-+的最小值为()A .3B .2C .1D .03.(多选)(2022·河北石家庄·二模)设正实数m ,n 满足2m n +=,则下列说法正确的是()A .11m n+上的最小值为2B .mn 的最大值为1C 的最大值为4D .22m n +的最小值为544.[2021河南平顶山模拟]若对于任意x >0,不等式xx 2+3x +1≤a 恒成立,则实数a 的取值范围为()A .15,+BC ∞D ∞,15[举一反三]1.(2022·山西·怀仁市第一中学校二模(文))函数413313y x x x ⎛⎫⎪⎝=>-⎭+的最小值为()A .8B .7C .6D .52.(2022·安徽·高三阶段练习(文))已知0x >,0y >,22x y +=,则12x y+的最小值是()A .1B .2C .4D .63.(2022·全国·模拟预测)已知a ,b 为非负数,且满足26a b +=,则()()2214a b ++的最大值为()A .40B .1674C .42D .16944.(2022·重庆巴蜀中学高三阶段练习)已知正实数a ,b 满足220ab a +-=,则4a b +的最小值是()A .2B .2C .2D .65.(多选)(2022·河北保定·一模)下面描述正确的是()A .已知0a >,0b >,且1a b +=,则22log log 2a b +≤-B .函数()lg f x x =,若0a b <<,且()()f a f b =,则2+a b 的最小值是C .已知()1210,012x y x x y+=>>++,则3x y +的最小值为2+D .已知()22200,0x y x y xy x y +---+=>>,则xy 的最小值为7126.(多选)(2022·重庆八中高三阶段练习)设001a b a b >>+=,,,则下列不等式中一定成立的是()A .114a b+≥B .2212a b +≥CD .10b +<7.(2022·天津市西青区杨柳青第一中学高三阶段练习)已知a ,b 为正实数,且2a b +=,则2221a b a b +++的最小值为____________,此时=a ____________.8.(2022·浙江·镇海中学模拟预测)已知1x y >>,则()41x y x y xy y-+++-的最小值为___________.9.(2022·天津·大港一中高三阶段练习)设0m n >>,那么()41m m n n+-的最小值是___________.10.(2022·天津河北·一模)已知0a >,0b >,且1a b +=,则11a ba b +++的最大值为__________.11.(2022·全国·高三专题练习)已知0,0,0,233x y z x y z >>>++=,求222111()(2)(3)462x y z y z x+++++的最小值;考点2利用基本不等式证明不等式(2022·全国·高三专题练习)已知,,a b c 都是正数,求证:(1)()()24a b ab cabc ++≥;(2)若1a b c ++=,则11192a b b c c a ++≥+++.[举一反三]1.(2022·云南·昆明一中高三阶段练习(文))已知a ,b ,c 为正数.(1)求24a a +的最小值;(2)求证:bc ac ab a b c a b c++≥++.2.(2022·陕西·西安工业大学附中高三阶段练习(文))已知0,0a b >>.(1)若2a b +=,求1411+++a b的最小值;(2)求证:2222(1)++≥++a b a b ab a b .3.(2022·河南开封·二模(文))已知,,R a b c +∈,且abc =1.(1)求证:222111a b c a b c++++≥;(2)若a =b +c ,求a 的最小值.4.(2022·全国·高三专题练习)已知正数a ,b ,c 满足3a b c ++=.(1)求abc 的最大值;(2)证明:3333a b b c c a abc ++≥.考点3基本不等式中的恒成立问题典例1.(2022·全国·高三专题练习)若对任意220,1xx a x x >≥++恒成立,则实数a 的取值范围是()A .[1,)-+∞B .[3,)+∞C .2,3⎡⎫+∞⎪⎢⎣⎭D .(,1]-∞2.(2022·全国·高三专题练习)设,a b c >>,n N ∈,且2110na b b c a c+≥---恒成立,则n 的最大值是()A .2B .3C .4D .5[举一反三]1.(2021·重庆梁平·高三阶段练习)已知正实数a ,b 满足191a b+=,若不等式2418a b x x m +≥-++-对任意的实数x 恒成立,则实数m 的取值范围是()A .[)3,+∞B .(],3-∞C .(],6-∞D .[)6,+∞2.(2021·浙江·模拟预测)对任意正实数,a b不等式2(1)2a b ab a bλλ+-+≥+则()A .实数λ有最小值1B .实数λ有最大值1C .实数λ有最小值12D .实数λ有最大值123.(多选)(2022·全国·高三专题练习)当0x >,0y >,R m ∈时,2222y xm m k x y+>-++恒成立,则k 的取值可能是()A .2-B .1-C .1D .24.(2022·全国·高三专题练习)不等式22221122xy yz a a x y z ++-++≤对任意正数x ,y ,z 恒成立,则a 的最大值是__________.5.(2021·重庆一中高三阶段练习)已知对任意正实数x ,y ,恒有()2222x y a x xy y +-+≤,则实数a 的最小值是___________.6.(2022·全国·高三专题练习)若不等式()x a x y ++对一切正实数,x y 恒成立,则实数a 的最小值为_____.考点4基本不等式与其他专题综合典例1.(2022·安徽安庆·二模(文))若函数()41sin 2cos 33f x x x a x =-+在(),-∞+∞内单调递增,则实数a 的取值范围是___________.2.[2021湖北鄂东南联考]方程(x 2018+1)(1+x 2+x 4+…+x 2016)=2018x 2017的实数解的个数为________.3.(2022·广东·高三阶段练习)在足球比赛中,球员在对方球门前的不同的位置起脚射门对球门的威胁是不同的,出球点对球门的张角越大,射门的命中率就越高.如图为室内5人制足球场示意图,设球场(矩形)长BC 大约为40米,宽AB 大约为20米,球门长PQ 大约为4米.在某场比赛中有一位球员欲在边线BC 上某点M 处射门(假设球贴地直线运行),为使得张角PMQ ∠最大,则BM 大约为()(精确到1米)A .8米B .9米C .10米D .11米[举一反三]1.(2022·北京·101中学高三阶段练习)已知某产品的总成本C (单位:元)与年产量Q (单位:件)之间的关系为23300010C Q =+.设该产品年产量为Q 时的平均成本为f (Q )(单位:元/件),则f (Q )的最小值是()A .30B .60C .900D .18002.(多选)(2022·重庆·模拟预测)已知ABC 为锐角三角形,且sin sin sin A B C =,则下列结论中正确的是()A .tan tan tan tanBC B C +=B .tan tan tan tan tan tan A B C A B C =++C .41tan 3A <≤D .tan tan tan A B C 的最小值为43.(2021·全国·高三专题练习)如图,将一矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求点B 在AM 上,点D 在AN 上,且对角线MN 过点C ,已知4AB =,3AD =,那么当BM =_______时,矩形花坛的AMPN 面积最小,最小面积为______.第5讲基本不等式1.基本不等式:ab≤a+b2(1)基本不等式成立的条件:a≥0,b≥0.(2)等号成立的条件:当且仅当a=b时取等号.(3)其中a+b2称为正数a,b的算术平均数,ab称为正数a,b的几何平均数.2.利用基本不等式求最值已知x≥0,y≥0,则(1)如果积xy是定值p,那么当且仅当x=y时,x+y有最小值是2p.(简记:积定和最小)(2)如果和x+y是定值s,那么当且仅当x=y时,xy有最大值是s24.(简记:和定积最大)常用结论几个重要的不等式(1)a2+b2≥2ab(a,b∈R),当且仅当a=b时取等号.(2)ab(a,b∈R),当且仅当a=b时取等号.(3)a2+b22≥(a,b∈R),当且仅当a=b时取等号.(4)b a+ab≥2(a,b同号),当且仅当a=b时取等号.考点1利用基本不等式求最值[典例]1.(2022·河北·高三阶段练习)已知实数a ,b 满足条件33ba b ++=,则22a b +的最小值为()A .8B .6C .4D .2【答案】D【解析】因为33ba b ++=≥,当且仅当33a b=,即a b =时取等号,所以643a b a b ++≥⋅,所以24a b +≥,2a b +≥,()222122a b a b +≥+=,当且仅当1a b ==时等号成立,所以22a b +的最小值为2故选:D.2.(2022·湖南湖南·二模)函数()122y x x x =+>-+的最小值为()A .3B .2C .1D .0【答案】D【解析】因为2x >-,所以20x +>,102x >+,利用基本不等式可得11222022x x x x +=++-≥=++,当且仅当122x x +=+即1x =-时等号成立.故选:D.3.(多选)(2022·河北石家庄·二模)设正实数m ,n 满足2m n +=,则下列说法正确的是()A .11m n+上的最小值为2B .mn 的最大值为1C的最大值为4D .22m n +的最小值为54【答案】AB【解析】∵0,0,2m n m n >>+=,∴()1111111222222n m m n m n m n m n ⎛⎫⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当且仅当n mm n=,即1m n ==时等号成立,故A 正确;2m n +=≥ 1mn ≤,当且仅当1m n ==时,等号成立,故B 正确;22224⎡⎤≤+=⎢⎥⎣⎦,2=,当且仅当1m n ==时等号成立,最大值为2,故C 错误;()22222m n m n++≥=,当且仅当1m n ==时等号成立,故D 错误.故选:AB4.[2021河南平顶山模拟]若对于任意x >0,不等式xx 2+3x +1≤a 恒成立,则实数a 的取值范围为()A .15,+BC ∞D ∞,15[答案]A[解析]由x >0,xx 2+3x +1=1x +1x+3,令t =x +1x ,则t ≥2x ·1x=2,当且仅当x =1时,t 取得最小值2.x x 2+3x +1取得最大值15,所以对于任意的x >0,不等式x x 2+3x +1≤a 恒成立,则a ≥15.[举一反三]1.(2022·山西·怀仁市第一中学校二模(文))函数413313y x x x ⎛⎫⎪⎝=>-⎭+的最小值为()A .8B .7C .6D .5【答案】D【解析】因为13x >,所以3x -1>0,所以()4433112153131y x x x x =+=-++≥=--,当且仅当43131x x -=-,即x =1时等号成立,故函数413313y x x x ⎛⎫⎪⎝=>-⎭+的最小值为5.故选:D .2.(2022·安徽·高三阶段练习(文))已知0x >,0y >,22x y +=,则12x y+的最小值是()A .1B .2C .4D .6【答案】C【解析】解:因为0x >,0y >,22x y +=,所以()1211214122244222y x x y x y x y x y ⎛⎛⎫⎛⎫+=++=+++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当4y x x y =,即12x =,1y =时取等号;故选:C3.(2022·全国·模拟预测)已知a ,b 为非负数,且满足26a b +=,则()()2214a b ++的最大值为()A .40B .1674C .42D .1694【答案】D 【解析】()()222222222214444444a b ab a b a b ab ab a b ++=+++=++-++()()()22222362a b ab ab =++-=+-,又2112902()2222a b ab a b +≤=⋅⋅≤=,当且仅当3,32a b ==时取“=”,则22916936(2)36(2)24ab +-≤+-=,所以当3,32a b ==时,()()2214a b ++的最大值为1694.故选:D4.(2022·重庆巴蜀中学高三阶段练习)已知正实数a ,b 满足220ab a +-=,则4a b +的最小值是()A .2B .2C .2D .6【答案】B【解析】由220ab a +-=,得22a b =+,所以()a b b b b b +=+=++-=++884222222,当且仅当,a b b b ==+++28222,即a b ==2取等号.故选:B.5.(多选)(2022·河北保定·一模)下面描述正确的是()A .已知0a >,0b >,且1a b +=,则22log log 2a b +≤-B .函数()lg f x x =,若0a b <<,且()()f a f b =,则2+a b的最小值是C .已知()1210,012x y x x y+=>>++,则3x y +的最小值为2+D .已知()22200,0x y x y xy x y +---+=>>,则xy 的最小值为712【答案】AC【解析】对于选项A ,∵0a >,0b >,1a b +=,∴1a b =+≥,∴14ab ≤,当且仅当12a b ==时取等号,∴22221log log log log 24a b ab +=≤=-,∴A 正确;对于选项B :因为1ab =,所以22a b a a+=+,又01a <<,所以由对勾函数的单调性可知函数()2=+h a a a在()0,1上单调递减,所以()()3,h a ∈+∞,即23+>a b ,故B 不正确;对于选项C ,根据题意,已知()()3121x y x x y +=+++-,则()()()21122123321212x x y x x y x x y x x y +⎛⎫+++++=++≥+⎡⎤ ⎣⎦++++⎝⎭当且仅当()21212++=++x x y x x y ,即1==x y时,等号成立,所以32x y +≥+,故C 正确;对于选项D ,()()2222032x y x y xy x y x y xy +---+=⇒+-+=-,令0x y t +=>,所以214t t -≥-,所以1732412xy xy -≥-⇒≥,此时1,2712x y xy ⎧+=⎪⎪⎨⎪=⎪⎩无解,所以选项D 不正确,故选:AC .6.(多选)(2022·重庆八中高三阶段练习)设001a b a b >>+=,,,则下列不等式中一定成立的是()A .114a b+≥B .2212a b +≥CD .10b +<【答案】AB【解析】对于A :因为001a b a b >>+=,,,所以()11111124b a a b a b a b a b ⎛⎫+=++=+++≥+ ⎪⎝⎭,当且仅当b a a b =,即12a b ==时取等号,所以114a b+≥成立.故A 正确;对于B :因为001a b a b >>+=,,,所以2124a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当12a b ==时取等号.所以()22212122a b a b ab ab +=+-=-≥成立.故B 正确;对于C :因为001a b a b >>+=,,,所以()()113a b +++=,所以()()311a b =+++≥.记u =,则0u >,所以211336u a b =++++≤+=,所以u <≤≤故C 错误;对于D :因为0,b >所以10+>b .故D 错误.故选:AB7.(2022·天津市西青区杨柳青第一中学高三阶段练习)已知a ,b 为正实数,且2a b +=,则2221a b a b +++的最小值为____________,此时=a____________.【答案】6-63+【解析】 a ,b 为正实数,且2a b +=,222221111a b b a a b a b +-+∴+=+++2111a b a b =++-++2111a b =+++()()1211131a b a b ⎛⎫=++++ ⎪+⎝⎭()2111331b a a b ⎛⎫+=+++ ⎪+⎝⎭(1133≥++当且仅当()2112b aa b a b ⎧+=⎪⎨+⎪+=⎩即6a =-4b =时取“=”故答案为:6-63+8.(2022·浙江·镇海中学模拟预测)已知1x y >>,则()41x y x y xy y-+++-的最小值为___________.【答案】9【解析】()()()()41414411911x y x y x y x y x y xy y x y x y -+⎡⎤-+⎛⎫⎡⎤⎣⎦++=++=-++++⎪⎢⎥---⎣⎦⎝⎭≥,当且仅当32x y =⎧⎨=⎩时等号成立,取等条件满足1x y >>,所以()41x y x y xy y -+++-的最小值为9.故答案为:99.(2022·天津·大港一中高三阶段练习)设0m n >>,那么()41m m n n+-的最小值是___________.【答案】8【解析】解:0m n >>Q ,所以()()2224m n n m m n n ⎡⎤-+-≤=⎢⎥⎣⎦,当且仅当m n n -=,即2m n =时取等号;所以214()m n n m ≥-,所以()()42422448114m m m m n nm m +≥+-⨯≥+==,当且仅当2244m m =,即1m =时取等号,所以()481m m n n +≥-,当且仅当1m =、12n =时取等号;故答案为:810.(2022·天津河北·一模)已知0a >,0b >,且1a b +=,则11a b a b +++的最大值为__________.【答案】23【解析】1111111111211111111a b a b a b a b a b a b +-+-⎛⎫+=+=-+-=-+ ⎪++++++++⎝⎭.因为0a >,0b >,且1a b +=,所以()1111111111311a b a b a b ⎛⎫⎛⎫+⋅=++++ ⎪ ⎪++++⎝⎭⎝⎭()1111142222311333b a a b ⎛++⎛⎫=++≥+=+= ⎪ ++⎝⎭⎝,当且仅当11111b a a b a b ++⎧=⎪++⎨⎪+=⎩即12a b ==时取等.所以114222111133a b a b a b ⎛⎫+=-≤-= ⎪++++⎝⎭.,即11a b a b +++的最大值为23.故答案为:23.11.(2022·全国·高三专题练习)已知0,0,0,233x y z x y z >>>++=,求222111()(2)(3)462x y z y z x+++++的最小值;【答案】274【解析】由222111[()(2)(3)]462x y z y z x+++++222(111)++2111[()1(2)1(3)1]462x y z y z x ≥+⨯++⨯++⨯2111[(23)()]462x y z y z x=+++++21232323[3()]623x y z x y z x y z x y z++++++=+++212332[3(3)]62323y x z x z y x y x z y z =+++++++2381(324≥+=.所以222111()(2)(3)462x y z y z x +++++≥274,当且仅当231x y z ===时等号成立,综上,222111()(2)(3)462x y z y z x +++++的最小值为274. 考点2利用基本不等式证明不等式(2022·全国·高三专题练习)已知,,a b c 都是正数,求证:(1)()()24a b ab cabc ++≥;(2)若1a b c ++=,则11192a b b c c a ++≥+++.【解】(1)()()2222244a b ab c abc a b acab bc abc++-=+++-()()()()22222222b a ac c a b bc c b a c a b c =-++-+=-+-,∵,,a b c 都是正数,∴()()220b a c a b c -+-≥,当且仅当“a b c ==”时等号成立,∴()()24a b ab c abc ++≥.(2)()()()11111112a b b c c a a b b c c a a b b c c a ⎛⎫++=+++++++⎡⎤ ⎪⎣⎦++++++⎝⎭132a b b c b c c a c a a b b c a b c a b c a b c a ⎡++++++⎤⎛⎫⎛⎫⎛⎫=++++++ ⎪ ⎪⎢⎥++++++⎝⎭⎝⎭⎝⎭⎣⎦132⎛≥+ ⎝()19322222=+++=,当且仅当“13a b c ===”时等号成立,∴11192a b b c c a ++≥+++.[举一反三]1.(2022·云南·昆明一中高三阶段练习(文))已知a ,b ,c 为正数.(1)求24a a +的最小值;(2)求证:bc ac ab a b c a b c++≥++.【解】(1)因为24a a+24=322a a a ++≥=,当且仅当“2a =”时等号成立,所以当2a =时,24a a+的最小值为3.(2)因为2bc ac c a b +≥=,同理2ac ab a b c +≥,2bc ab b a c +≥,所以三式相加得22()bc ac ab a b c a bc ⎛⎫++≥++ ⎪⎝⎭,所以bc ac aba b c a b c++≥++,当且仅当“a b c ==”时等号成立2.(2022·陕西·西安工业大学附中高三阶段练习(文))已知0,0a b >>.(1)若2a b +=,求1411+++a b的最小值;(2)求证:2222(1)++≥++a b a b ab a b .【解】(1)因为0,0a b >>,所以10,10a b +>+>,又2a b +=,所以1++14a b +=,所以14114114(1)19()[(1)(1)][5](54)1141141144b a a b a b a b a b +++=++++=++≥+=++++++当且仅当14(1)112b a a b a b ++⎧=⎪++⎨⎪+=⎩,即1353a b ⎧=⎪⎪⎨⎪=⎪⎩时取等号,所以1411+++a b 的最小值为94.(2)因为22222a b a a b +≥①,222a b ab +≥②,22222a b b ab +≥③,所以,由①②③,同向不等式相加可得:222222222222a b a b a b ab ab ++≥++,当且仅当ab a b ==,即1a b ==时取等号.即2222(1)++≥++a b a b ab a b 成立.3.(2022·河南开封·二模(文))已知,,R a b c +∈,且abc =1.(1)求证:222111a b c a b c++++≥;(2)若a =b +c ,求a 的最小值.【解】(1)111abc abc abc bc ac ab a b c a b c++=++=++222222222222b c a c a b a b c +++≤++=++,当且仅当1a b c ===时等号成立.(2)依题意,,R a b c +∈,11,abc bc a==,所以a b c =+≥=,当且仅当b c =时等号成立.所以23322,2a a ≥≥,所以a 的最小值为232,此时23222a b c ===.4.(2022·全国·高三专题练习)已知正数a ,b ,c 满足3a b c ++=.(1)求abc 的最大值;(2)证明:3333a b b c c a abc ++≥.【解】(1)由a b c ++≥,当且仅当a b c ==时,取得等号.又3a b c ++=,所以3313abc ⎛⎫≤= ⎪⎝⎭.故当且仅当1a b c ===时,abc 取得最大值1.(2)证明:要证3333a b b c c a abc ++≥,需证2223a b c c a b++≥.因为()222222a b c a b c a b c c a b c a bc a b ⎛⎫⎛⎫⎛⎫+++++=+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()26a b c ≥=++=,即2223a b c c a b++≥,当且仅当1a b c ===时取得等号.故3333a b b c c a abc ++≥. 考点3基本不等式中的恒成立问题1.(2022·全国·高三专题练习)若对任意220,1xx a x x >≥++恒成立,则实数a 的取值范围是()A .[1,)-+∞B .[3,)+∞C .2,3⎡⎫+∞⎪⎢⎣⎭D .(,1]-∞【答案】C【解析】解:因为0x >,所以22221131x x x x x =≤=++++,当且仅当1x x =即1x =时取等号,因为221x a x x ≥++恒成立,所以23a ≥,即2,3a ⎡⎫∈+∞⎪⎢⎣⎭;故选:C2.(2022·全国·高三专题练习)设,a b c >>,n N ∈,且2110na b b c a c+≥---恒成立,则n 的最大值是()A .2B .3C .4D .5【答案】C【解析】解:2110n a b b c a c+≥---等价于2110()a c n a b b c ⎛⎫+-≥ ⎪--⎝⎭,()110110()a c a b b c a b b c a b b c ⎛⎫⎛⎫+-=-+- ⎪ ⎪----⎝⎭⎝⎭10()111111b c a ba b b c --=++≥+=+--故得到211,n n N +≥∈则n 的最大值是4.故选:C.[举一反三]1.(2021·重庆梁平·高三阶段练习)已知正实数a ,b 满足191a b+=,若不等式2418a b x x m +≥-++-对任意的实数x 恒成立,则实数m 的取值范围是()A .[)3,+∞B .(],3-∞C .(],6-∞D .[)6,+∞【答案】D【解析】因为0a >,0b >,191a b+=,所以()199101016a a b a b a b a b b ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当9b a a b =,即4a =,12b =时取等号.由题意,得241186x x m ≥-++-,即242x x m --≥-对任意的实数x 恒成立,又()2242266x x x --=--≥-,所以6m -≥-,即6m ≥.故选:D .2.(2021·浙江·模拟预测)对任意正实数,a b不等式2(1)2a b ab a bλλ+-+≥+则()A .实数λ有最小值1B .实数λ有最大值1C .实数λ有最小值12D .实数λ有最大值12【答案】C【解析】2(1)2a b ab a b λλ+-++故222a b ab ab a b a b λ+⎛⎫-≥ ⎪++⎝⎭,()()22022a b a b ab a b a b -+-=≥++,当a b =时,不等式恒成立;当a b¹时,222aba ba b aba bλ+≥+-+12,a b=时等号成立,a b¹12<,故12λ≥.故选:C.3.(多选)(2022·全国·高三专题练习)当0x>,0y>,Rm∈时,2222y x m m kx y+>-++恒成立,则k的取值可能是()A.2-B.1-C.1D.2【答案】AB【解析】因为0x>,0y>,所以222y xx y+≥=,当且仅当2x y=时,等号成立.因为()222111m m k m k k-++=--++≤+.若2222y x m m kx y+>-++恒成立,则12k+<,解得1k<.故选:AB.4.(2022·全国·高三专题练习)不等式22221122xy yz a ax y z++-++≤对任意正数x,y,z恒成立,则a的最大值是__________.【答案】1【解析】因为222222212222xy yz xy yz xy yzx y z x y y z xy yz+++==++++++≤,当x y z==时取等号,所以2222xy yzx y z+++的最大值是12,即211122a a+-≥,解得112a-≤≤,所以a的最大值是1.故答案为:15.(2021·重庆一中高三阶段练习)已知对任意正实数x,y,恒有()2222x y a x xy y+-+≤,则实数a的最小值是___________.【答案】2【解析】解:因为0,0x y>>,则()2220x xy y x y xy-+=-+>,则()2222x y a x xy y +-+≤,即2222x y a x xy y +-+≤,又22222211x y xy x xy y x y +=-+-+,因为222x y xy +≥,所以22112xy x y -≥+,所以22121xy x y≤-+,即22222x y x xy y +≤-+,当且仅当x y =时,取等号,所以2222max2x y x xy y ⎛⎫+= ⎪-+⎝⎭,所以2a ≥,即实数a 的最小值是2.故答案为:2.6.(2022·全国·高三专题练习)若不等式()x a x y ++对一切正实数,x y 恒成立,则实数a 的最小值为_____.【答案】2【解析】()()22=22x a x y x x x y x y ++∴++++ ,当且仅当=2x y 时取等号,0,0x y >> 0x y ∴+>()x a x y ++maxa ∴≥⎝⎭222x yx y +≤=+max=2a ∴≥⎝⎭,a ∴的最小值为2故答案为:2考点4基本不等式与其他专题综合[典例]1.(2022·安徽安庆·二模(文))若函数()41sin 2cos 33f x x x a x =-+在(),-∞+∞内单调递增,则实数a 的取值范围是___________.【答案】[]33-【解析】因函数()f x 在(),-∞+∞内单调递增,则R x ∀∈,42()cos 2sin 033f x x a x '=--≥,即42sin cos 233a x x ≤-,整理得242sin 33a x x ≤+,当sin 0x =时,则203≤成立,R a ∈,当sin 0x >时,42sin 33sin a x x ≤+,而4221sin (2sin )33sin 3sin x x x x +=+≥当且仅当12sin sin x x =,即sin 2x =时取“=”,则有3a ≤,当sin 0x <时,42sin 33sin a x x ≥+,而4221sin [(2sin )]33sin 3sin x x x x +=--+≤--当且仅当12sin sin x x -=-,即sin x =时取“=”,则有a ≥综上得,33a -≤≤所以实数a 的取值范围是[]33-.故答案为:,33⎡-⎢⎣⎦2.[2021湖北鄂东南联考]方程(x 2018+1)(1+x 2+x 4+…+x 2016)=2018x 2017的实数解的个数为________.[答案]1[解析]由题意知x >0,∴(x 2018+1)(1+x 2+x 4+…+x 2016)≥2x 2018·1×12(21·x 2016+2x 2·x 2014+…+2x 2016·1)=2018x 2017,当且仅当x =1时等号成立,因此实数解的个数为1.3.(2022·广东·高三阶段练习)在足球比赛中,球员在对方球门前的不同的位置起脚射门对球门的威胁是不同的,出球点对球门的张角越大,射门的命中率就越高.如图为室内5人制足球场示意图,设球场(矩形)长BC 大约为40米,宽AB 大约为20米,球门长PQ 大约为4米.在某场比赛中有一位球员欲在边线BC 上某点M 处射门(假设球贴地直线运行),为使得张角PMQ ∠最大,则BM 大约为()(精确到1米)A .8米B .9米C .10米D .11米【答案】C【解析】由题意知,8,12PB QB ==,设,,PMB QMB BM x ∠=∠==αβ,则812tan ,tan x x==αβ,所以()212844tan tan 1289696962612x x x PMQ x x x x x x x -∠=-===≤=++⋅+⋅βα,当且仅当96x x =,即96x =9610≈,所以BM 大约为10米.故选:C.[举一反三]1.(2022·北京·101中学高三阶段练习)已知某产品的总成本C (单位:元)与年产量Q (单位:件)之间的关系为23300010C Q =+.设该产品年产量为Q 时的平均成本为f (Q )(单位:元/件),则f (Q )的最小值是()A .30B .60C .900D .1800【答案】B【解析】23300010()Q C f Q Q Q +==3300010Q Q =+3300022306010Q Q≥⋅⨯=,当且仅当3300010Q Q=,即当100Q =时等号成立.所以f (Q )的最小值是60.故选:B.2.(多选)(2022·重庆·模拟预测)已知ABC 为锐角三角形,且sin sin sin A B C =,则下列结论中正确的是()A .tan tan tan tanBC B C +=B .tan tan tan tan tan tan A B C A B C =++C .41tan 3A <≤D .tan tan tan A B C 的最小值为4【答案】ABC【解析】解:因为()sin sin sin cos sin cos sin sin A B C B C C B B C =+=+=,两边同除cos cos B C 得tan tan tan tan B C B C +=,故A 正确;由均值不等式tan tan tan tan B C B C +=≥tan tan 4B C ≥当且仅当tan tan 2B C ==时取等号,()tan tan tan tan 1tan tan B CA B C B C+=-+=--,所以tan tan tan tan tan tan A B C A B C ++=,故B 正确;tan tan 1tan 1tan tan 1tan tan 1B C A B C B C ==+--,由tan tan 4B C ≥,所以110tan tan 13B C <≤-,所以得31tan 1ta 1n tan 14A B C =+≤-<,故C 正确;22tan tan 1tan tan 12tan tan t 1ta t n t 1a n t n a n an a A B C B C B C B B C C ==-++--,由tan tan 13B C -≥且1y x x =+在[)3,+∞上单调递增,所以tan tan tan A B C 的最小值为163,故D 错误.故选:ABC3.(2021·全国·高三专题练习)如图,将一矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求点B 在AM 上,点D 在AN 上,且对角线MN 过点C ,已知4AB =,3AD =,那么当BM =_______时,矩形花坛的AMPN 面积最小,最小面积为______.【答案】448【解析】解:设BM x =,则34x x AN =+,则123AN x=+,则()1248433242448AMPN S x x x x ⎛⎫=++=+++= ⎪⎝⎭,当且仅当483xx=,即4x=时等号成立,故矩形花坛的AMPN面积最小值为48.即当4BM=时,矩形花坛的AMPN面积最小,最小面积为48.故答案为:4;48.。

数学基本不等式知识点(高中数学知识点复习资料归纳整理)

数学基本不等式知识点(高中数学知识点复习资料归纳整理)

数学基本不等式知识点(高中数学知识点复习资料归纳整理)基本不等式【考纲要求】1. 了解基本不等式的证明过程,理解基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;2. 会用基本不等式解决最大(小)值问题.3. 会应用基本不等式求某些函数的最值;能够解决一些简单的实际问题【知识网络】【考点梳理】考点一:重要不等式及几何意义1.重要不等式:如果,那么(当且仅当时取等号“=”).2.基本不等式:如果是正数,那么(当且仅当时取等号“=”).要点诠释:和两者的异同:(1)成立的条件是不同的:前者只要求都是实数,而后者要求都是正数;(2)取等号“=”的条件在形式上是相同的,都是“当且仅当时取等号”。

(3)可以变形为:,可以变形为:.3. 如图,是圆的直径,点C是AB上的一点,AC=a,BC=b,过点C作交圆于点D,连接AD、BD易证,那么,即.这个圆的半径为,它大于或等于CD,即,其中当且仅当点C与圆心重合,即a=b时,等号成立.要点诠释:1. 在数学中,我们称为a,b的算术平均数,称为a,b 的几何平均数. 因此基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.2. 如果把看作是正数的等差中项,看作是正数的等比中项,那么基本不等式可以叙述为:两个正数的等差中项不小于它们的等比中项.考点二:基本不等式的证明1. 几何面积法如图,在正方形ABCD中有四个全等的直角三角形。

设直角三角形的两条直角边长为a、b,那么正方形的边长为。

这样,4个直角三角形的面积的和是2ab,正方形ABCD的面积为。

由于4个直角三角形的面积小于正方形的面积,所以:。

当直角三角形变为等腰直角三角形,即a=b时,正方形EFGH缩为一个点,这时有。

得到结论:如果,那么(当且仅当时取等号“=”)特别的,如果a>0,b>0,我们用、分别代替a、b,可得:如果a>0,b>0,则,(当且仅当a=b时取等号“=”).通常我们把上式写作:如果a>0,b>0,,(当且仅当a=b时取等号“=”)2. 代数法∵,当时,;当时,.所以,(当且仅当时取等号“=”).特别的,如果,,我们用、分别代替、,可得:如果,,则,(当且仅当时取等号“=”).通常我们把上式写作:如果,,,(当且仅当时取等号“=”).要点三、用基本不等式求最大(小)值在用基本不等式求函数的最值时,应具备三个条件:一正二定三取等。

高中数学总复习:基本不等式

高中数学总复习:基本不等式


3

3(+)

3
解析:因为 a + b =1,所以 + = +
= + +
3

3

3


3
3,因为 a >0, b >0,所以 + +3≥2
3

3
· +3=5,当且仅
3

3
1
3

3
当 = ,即 a = , b = 时等号成立,即 + 的最小值为5.
3

4
4
3

目录
1
由结论1知
= x + +1≥2+1=3,当且仅当 x =1


时,等号成立,故 f ( x )的最小值为3.故选B.
目录
高中总复习·数学(提升版)
2. (2024·六盘水一模)设 a , b ∈R, ab ≠0,有下列不等式:① ab


2
2
;②

2
2

2 +2

;③
2
2
( a , b 同号).其中恒成立的是
1. 在△ ABC 中,点 D 是 AC 上一点,且 =4 , P 为 BD 上一点,


2 + 2


2. ab ≤(
)2, ab ≤
( a , b ∈R).
2
2
2 + 2

3.
≥(
)2( a , b ∈R).
2
2
目录
高中总复习·数学(提升版)
1.
2 ++1
函数 f ( x )=
( x >0)的最小值是(

A. 2

高中数学:基本不等式

高中数学:基本不等式

基本不等式1、基本不等式√ab≤a+b2(a>0,b>0),当且仅当a=b时取等号其中,a+b2为正数a,b的算数平均数,√ab为正数a,b的几何平均数2、基本不等式的变形(1)a2+b2≥2ab(a,b∈R),当且仅当a=b时取等号(2)a+b≥2√ab(a>0,b>0),当且仅当a=b时取等号(3)ab≤(a+b2)2(a,b∈R),当且仅当a=b时取等号(4)a+1a ≥2(a>0),当且仅当a=1时取等号;a+1a≤−2(a<0),当且仅当a=−1时取等号(5)ba +ab≥2(a,b同号),当且仅当a=b时取等号(6)2aba+b 为正数a,b的调和平均数,√a2+b22为正数a,b的平方平均数则:2aba+b ≤√ab≤a+b2≤√a2+b22(a>0,b>0)注意:运用基本不等式及其变形时,一定要验证等号是否成立。

3、基本不等式与最值已知x>0,y>0(1)如果xy是定值p,那么当且仅当x=y时,x+y有最小值2√p(简记:积定和最小)(2)如果x+y是定值s,那么当且仅当x=y时,xy有最大值s 24(简记:和定积最大)注意:①一正二定三相等②连续使用基本不等式时,等号要同时成立题型一、基本不等式的性质1、下列不等式中正确的是()A.a2+b2≥4abB.a+4a≥4C.a2+2+1a2+2≥4 D.a2+4a2≥42、若正实数a,b满足a+b=1,则()A.1a +1b有最大值4 B.ab有最小值14C.√a+√b有最大值√2D.a2+b2有最小值√22题型二、代数式最值的求解方法——拼凑法1、已知8a+2b=1(a>0,b>0),则ab的最大值为____________2、已知f(x)=x 2+3x+6x+1(x>0),则f(x)的最小值是______________3、若a、b∈R,ab>0,则a 4+4b4+1ab的最小值为________________4、中国南宋大数学家秦九韶提出了“三斜求积术",即已知三角形三边长求三角形面积的公式:设三角形的三条边长分别为a,b,c,则三角形的面积S可由公式S=√p(p−a)(p−b)(p−c)求得,其中p为三角形周长的一半,这个公式也被称为海伦一秦九韶公式,现有一个三角形的边长满足a=6, b+c =8,则此三角形面积的最大值为_____________题型三、条件最值的求解方法——常数代换法1、若正实数x,y满足x+y=1,则4x +9y的最小值为_____________2、已知x>0,y>0,z>0,且9y+z +1x=1,则x+y+z的最小值为________________3、若正实数x,y满足x+y=1,则4x+1+1y的最小值为_____________4、若正实数x,y满足x+4y−xy=0,则3x+y的最大值为________________5、已知a、b都是正数,且ab=1,则12a +12b+8a+b的最小值为______________6、已知a、b都是正数,且ab+a+b=3,则ab的最大值是________________;a+2b的最小值是______________7、已知5x2y2+y4=1(x,y∈R),则x2+y2的最小值是_____________8、已知ab=12,a,b∈(0,1),那么11−a+21−b的最小值为_______________题型四、应用题1、某果农种植一种水果,每年施肥和灌溉等需投人4万元为了提高产量同时改善水果口味以赢得市场,计划在今年投入x万元用于改良品种。

高中数学基本不等式知识点

高中数学基本不等式知识点

高中数学基本不等式知识点1.不等式性质比较大小方法:(1)作差比较法(2)作商比较法不等式的基本性质①对称性:abba②传递性:ab,bcac③可加性:aba+cb+c④可积性:ab,c0acbc⑤加法法则:ab,cda+cb+d⑥乘法法则:ab0,cd0acbd⑦乘方法则:ab0,anbn(nN)⑧开方法则:ab02.算术平均数与几何平均数定理:(1)如果a、bR,那么a2+b22ab(当且仅当a=b时等号)(2)如果a、bR+,那么(当且仅当a=b时等号)推广:如果为实数,则重要结论(1)如果积某y是定值P,那么当某=y时,和某+y有最小值2;(2)如果和某+y是定值S,那么当某=y时,和某y有最大值S2/4。

3.证明不等式的常用方法:比较法:比较法是最基本、最重要的方法。

当不等式的两边的差能分解因式或能配成平方和的形式,则选择作差比较法;当不等式的两边都是正数且它们的商能与1比较大小,则选择作商比较法;碰到绝对值或根式,我们还可以考虑作平方差。

综合法:从已知或已证明过的不等式出发,根据不等式的性质推导出欲证的不等式。

综合法的放缩经常用到均值不等式。

4.不等式的解法(1)不等式的有关概念同解不等式:两个不等式如果解集相同,那么这两个不等式叫做同解不等式。

同解变形:一个不等式变形为另一个不等式时,如果这两个不等式是同解不等式,那么这种变形叫做同解变形。

提问:请说出我们以前解不等式中常用到的同解变形去分母、去括号、移项、合并同类项(2)不等式a某b的解法①当a0时不等式的解集是{某|某b/a}; ②当a0时不等式的解集是{某|某(3)一元二次不等式与一元二次方程、二次函数之间的关系(4)绝对值不等式|某|0)的解集是{某|-aa(a0)的解集是{某|某-a或某a},几何表示为:oo-a0a小结:解绝对值不等式的关键是-去绝对值符号(整体思想,分类讨论)转化为不含绝对值的不等式,通常有下列三种解题思路:(1)定义法:利用绝对值的意义,通过分类讨论的方法去掉绝对值符号;(2)公式法:|f(某)|af(某)a或f(某)-a;|f(某)|a-a(3)平方法:|f(某)|a(a0)f2(某)a2;|f(某)|a(a0)f2(某)a2;(4)几何意义(5)分式不等式的解法(6)一元高次不等式的解法数轴标根法把不等式化为f(某)0(或0)的形式(首项系数化为正),然后分解因式,再把根按照从小到大的顺序在数轴上标出来,从右边入手画线,最后根据曲线写出不等式的解。

高三复习-高中4个基本不等式的公式

高三复习-高中4个基本不等式的公式

高三复习-高中4个基本不等式的公式高中数学复习是每位学生都要面对的一项重要任务,掌握基本不等式的公式尤为关键。

本文将介绍高中数学中常用的四个基本不等式的公式,帮助学生更好地理解和记忆这些重要知识点。

一、算数平均-几何平均不等式算数平均-几何平均不等式是高中数学中最基本也是最常用的不等式之一。

它的表达形式如下:对于任意的正实数a1,a2,...,an,有如下不等式成立:(a1 + a2 + ... + an)/ n ≥ (√(a1×a2×...×an))这个不等式告诉我们,一组正数的算术平均数大于等于它们的几何平均数。

它常用于求证一个正数与它的倒数的最小值,或者用于推导其他不等式。

二、柯西-施瓦茨不等式柯西-施瓦茨不等式是高中数学中的另一个重要不等式,它用于说明两个向量之间的关系。

柯西-施瓦茨不等式的表达形式如下:对于任意的实数a1,a2,...,an和b1,b2,...,bn,有如下不等式成立:(a1b1 + a2b2 + ... + anbn) ≤ √(a1^2 + a2^2 + ... + an^2) × √(b1^2 + b2^2 + ... + bn^2)这个不等式表明,两个向量的内积不会超过两个向量的模的乘积,并且取等号的条件是两个向量成比例。

柯西-施瓦茨不等式在高中数学的证明中经常使用。

三、均值不等式均值不等式是高中数学中的另一个重要不等式概念,它包括算术平均数与几何平均数之间的关系,以及算术平均数与谐波平均数之间的关系。

1. 算术平均数与几何平均数不等式:对于任意的正实数a1,a2,...,an,有如下不等式成立:(a1 + a2 + ... + an) / n ≥ √(a1×a2×...×an)这个不等式告诉我们,一组正数的算术平均数大于等于它们的几何平均数。

2. 算术平均数与谐波平均数不等式:对于任意的正实数a1,a2,...,an,有如下不等式成立:(a1 + a2 + ... + an) / n ≥ n / (1/a1 + 1/a2 + ... + 1/an)这个不等式告诉我们,一组正数的算术平均数大于等于它们的谐波平均数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章 不等式课 题:基本不等式教学目标:学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不 等号“≥”取等号的条件是:当且仅当这两个数相等。

教学重点:2a b+≤的证明过 程。

教学难点:2a b+≤等号成立条件。

教学过程: 1.课题导入2a b+≤的几何背景: 如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。

你能在这个图案中找出一些相等关系或不等关系吗?教师引导学生从面积的关系去找相等关系或不等关系。

2.讲授新课1.探究图形中的不等关系将图中的“风车”抽象成如图,在正方形ABCD 中右个全等的直角三角形。

设直角三角形的两条直角边长为a,b 这样,4个直角三角形的面积的和是2ab ,正方形的面积为22a b +。

由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式:222a b ab +≥。

当直角三角形变为等腰直角三角形,即a=b 时,正方形EFGH 缩为一个点,这时有222a b ab +=。

2.得到结论:一般的,如果)""(2R,,22号时取当且仅当那么==≥+∈b a ab b a b a 3.思考证明:你能给出它的证明吗?证明:因为222)(2b a ab b a -=-+当a b ≠时22,()0,,()0,a b a b a b ->=-=当时所以,0)(2≥-b a ,即.2)(22ab b a ≥+4.1)2a b+特别的,如果a>0,b>0,我们用分别代替a 、b ,可得a b +≥,(a>0,b>0)2a b+2)2a b+≤用分析法证明:要证2a b+≥只要证 a+b ≥ (2) 要证(2),只要证 a+b- ≥0 (3) 要证(3),只要证 ( - )2(4) 显然,(4)是成立的。

当且仅当a=b 时,(4)中的等号成立。

3)2a b+≤的几何意义 探究:课本第110页的“探究”在右图中,AB 是圆的直径,点C 是AB 上的一点,AC=a,BC=b 。

过点C 作垂直于AB 的弦DE ,连接AD 、BD 。

2a b+的几何解释吗?易证Rt △A CD ∽Rt △D CB ,那么CD 2=CA ·CB即CD =ab . 这个圆的半径为2b a +,显然,它大于或等于CD ,即ab ba ≥+2,其中当且仅当点C 与圆心重合,即a =b 时,等号成立.2a b+≤几何意义是“半径不小于半弦” 评述:1.如果把2ba +看作是正数a 、b 的等差中项,ab 看作是正数a 、b 的等比中项,那么该定理可以叙述为:两个正数的等差中项不小于它们的等比中项.2.在数学中,我们称2ba +为a 、b 的算术平均数,称ab 为a 、b 的几何平均数.本节定理还可叙述为:两个正数的算术平均数不小于它们的几何平均数. [补充例题]例1 已知x 、y 都是正数,求证:(1)yxx y +≥2;(2)(x +y )(x 2+y 2)(x 3+y 3)≥8x 3y 3. 分析:在运用定理:ab ba ≥+2时,注意条件a 、b 均为正数,结合不等式的性质(把握好每条性质成立的条件),进行变形. 3.随堂练习1.已知a 、b 、c 都是正数,求证(a +b )(b +c )(c +a )≥8abc分析:对于此类题目,选择定理:ab ba ≥+2(a >0,b >0)灵活变形,可求得结果. 4.小结重要不等式a 2+b 2≥2ab ;两正数a 、b 的算术平均数(2ba +),几何平均数(ab )及它们的关系(2ba +≥ab ).它们成立的条件不同,前者只要求a 、b 都是实数,而后者要求a 、b 都是正数.第六章 不等式课 题:基本不等式教学目标:2a b+≤;会应用此不等式求某些函数的最值;能够解决一些简单的实际问题教学重点:2a b+≤的应用教学难点:2a b+求最大值、最小值。

教学过程: 1.课题导入1.重要不等式:如果)""(2R,,22号时取当且仅当那么==≥+∈b a ab b a b a 2.基本不等式:如果a,b 是正数,那么).""(2号时取当且仅当==≥+b a ab ba 3.我们称b a ba ,2为+的算术平均数,称b a ab ,为的几何平均数. ab b a ab b a ≥+≥+2222和成立的条件是不同的:前者只要求a,b 都是实数,而后者要求a,b 都是正数。

2.讲授新课例1(1)用篱笆围成一个面积为100m 2的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短。

最短的篱笆是多少?(2)段长为36 m 的篱笆围成一个一边靠墙的矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?解:(1)设矩形菜园的长为x m ,宽为y m ,则xy=100,篱笆的长为2(x+y ) m 。

由2x y+≥可得 x y +≥ 2()40x y +≥。

等号当且仅当x=y 时成立,此时x=y=10. 因此,这个矩形的长、宽都为10m 时,所用的篱笆最短,最短的篱笆是40m. (2)解法一:设矩形菜园的宽为x m ,则长为(36-2x )m ,其中0<x <21,其面积S =x (36-2x )=21·2x (36-2x )≤2122236236()28x x +-=当且仅当2x =36-2x ,即x =9时菜园面积最大,即菜园长9m ,宽为9 m 时菜园面积最大为81 m 2解法二:设矩形菜园的长为x m.,宽为y m ,则2(x+y)=36, x+y=18,矩形菜园的面积为xy m 2。

由18922x y +==,可得 81xy ≤ 当且仅当x=y,即x=y=9时,等号成立。

因此,这个矩形的长、宽都为9m 时,菜园的面积最大,最大面积是81m 2归纳:1.两个正数的和为定值时,它们的积有最大值,即若a ,b ∈R +,且a +b =M ,M 为定值,则ab ≤42M ,等号当且仅当a =b 时成立.2.两个正数的积为定值时,它们的和有最小值,即若a ,b ∈R +,且ab =P ,P 为定值,则a +b ≥2P ,等号当且仅当a =b 时成立.例2 某工厂要建造一个长方体无盖贮水池,其容积为4800m 3,深为3m ,如果池底每1m 2的造价为150元,池壁每1m 2的造价为120元,问怎样设计水池能使总造价最低,最低总造价是多少元?分析:此题首先需要由实际问题向数学问题转化,即建立函数关系式,然后求函数的最值,其中用到了均值不等式定理。

解:设水池底面一边的长度为x m ,水池的总造价为l 元,根据题意,得)1600(720240000xx l ++= 29760040272024000016002720240000=⨯⨯+=⋅⨯+≥xx 当.2976000,40,1600有最小值时即l x xx ==因此,当水池的底面是边长为40m 的正方形时,水池的总造价最低,最低总造价是297600元 评述:此题既是不等式性质在实际中的应用,应注意数学语言的应用即函数解析式的建立,又是不等式性质在求最值中的应用,应注意不等式性质的适用条件。

归纳:用均值不等式解决此类问题时,应按如下步骤进行:(1)先理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数; (2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题; (3)在定义域内,求出函数的最大值或最小值; (4)正确写出答案. 3.随堂练习1.已知x ≠0,当x 取什么值时,x 2+281x的值最小?最小值是多少? 2.课本第113页的练习1、2、3、4 4.课时小结用均值不等式求函数的最值,应注意考查下列三个条件:(1)函数的解析式中,各项均为正数;(2)函数的解析式中,含变数的各项的和或积必须有一个为定值;(3)函数的解析式中,含变数的各项均相等,取得最值即用均值不等式求某些函数的最值时,应具备三个条件:一正二定三取等。

第六章 不等式课 题:基本不等式教学目标:2a b+≤;会用此不等式证明不等式,会应用此不等式求某些函数的最值,能够解决一些简单的实际问题教学重点:2a b+≤,会用此不等式证明不等式,会用此不等式求某些函数的最值教学难点:利用此不等式求函数的最大、最小值。

教学过程: 1.课题导入1.基本不等式:如果a,b 是正数,那么).""(2号时取当且仅当==≥+b a ab ba22a b+≤求最大(小)值的步骤。

2.讲授新课1)利用基本不等式证明不等式例1 已知m>0,求证24624m m+≥。

[思维切入]因为m>0,所以可把24m和6m 分别看作基本不等式中的a 和b, 直接利用基本不等式。

[证明]因为 m>0,,由基本不等式得246221224m m +≥=⨯= 当且仅当24m=6m ,即m=2时,取等号。

规律技巧总结 注意:m>0这一前提条件和246m m⨯=144为定值的前提条件。

3.随堂练习1[思维拓展1] 已知a,b,c,d 都是正数,求证()()4ab cd ac bd abcd ++≥.[思维拓展2] 求证22222()()()a b c d ac bd ++≥+.例2 求证:473a a +≥-. [思维切入] 由于不等式左边含有字母a,右边无字母,直接使用基本不等式,无法约掉字母a,而左边44(3)333a a a a +=+-+--.这样变形后,在用基本不等式即可得证.[证明]443(3)333733a a a +=+-+≥==-- 当且仅当43a -=a-3即a=5时,等号成立.规律技巧总结 通过加减项的方法配凑成基本不等式的形式. 2)利用不等式求最值例3 (1) 若x>0,求9()4f x x x =+的最小值; (2)若x<0,求9()4f x x x =+的最大值.[思维切入]本题(1)x>0和94x x⨯=36两个前提条件;(2)中x<0,可以用-x>0来转化.解 1) 因为 x>0 由基本不等式得9()412f x x x =+≥==,当且仅当94x x =即x=32时, 9()4f x x x =+取最小值12.(2)因为 x<0, 所以 -x>0, 由基本不等式得:99()(4)(4)()12f x x x x x -=-+=-+-≥=,所以 ()12f x ≤. 当且仅当94x x -=-即x=-32时, 9()4f x x x=+取得最大-12. 规律技巧总结 利用基本不等式求最值时,个项必须为正数,若为负数,则添负号变正. 随堂练习2[思维拓展1] 求9()45f x x x =+-(x>5)的最小值. [思维拓展2] 若x>0,y>0,且281x y+=,求xy 的最小值. 4.课时小结2a b+≤证明不等式和求函数的最大、最小值。

相关文档
最新文档