对数与对数函数知识点及例题讲解

合集下载

突破14 对数与对数函数(重难点突破)(解析版)

突破14 对数与对数函数(重难点突破)(解析版)

突破14 对数与对数函数重难点突破一、基础知识【知识点一、对数】 1.对数的概念(1)对数:一般地,如果x a N =(0,1)a a >≠且,那么数 x 叫做以a 为底 N 的对数,记作_______,其中a 叫做对数的底数,N 叫做真数.(2)常用对数:通常我们将以_______为底的对数叫做常用对数,并把10log N 记为lg N .(3)自然对数:在科学技术中常使用以无理数e=2.718 28……为底数的对数,以e 为底的对数称为自然对数,并把e log N 记为ln N . 2.对数与指数的关系当a >0,且a ≠1时,log ba a Nb N =⇔=.即3.对数的性质根据对数的概念,知对数log (0,1)a N a a >≠且具有以下性质: (1)负数和零没有对数,即0N >; (2)1的对数等于0,即log 10a =; (3)底数的对数等于1,即log 1a a =. 【知识点二、对数的运算】 1.基本性质若0,1,0a a N >≠>且,则 (1)log a Na=______;(2)log ba a =______.2.对数的运算性质如果0,1,0,0a a M N >≠>>且,那么:(1)log _________a (M N)=⋅; (2)log ________aM=N; (3)log _______()n a M =n ∈R . 【知识点三、换底公式及公式的推广】 1.对数的换底公式log log (0,1;0,1;0)log c b c NN b b c c N b=>≠>≠>且且.【注】速记口诀:换底公式真神奇,换成新底可任意, 原底加底变分母,真数加底变分子.2.公式的推广 (1)1log log a b b a=(其中a >0且1a ≠;b >0且1b ≠);(2)log log n na ab b =(其中a >0且1a ≠;b >0);(3)log log n m a a mb b n=(其中a >0且1a ≠;b >0); (4)1log log a ab b =-(其中a >0且1a ≠;b >0);(5)log log log log a b c a b c d d ⋅⋅=(其中a ,b ,c 均大于0且不等于1,d >0). 【知识点四、对数函数】 1.对数函数的概念一般地,我们把函数log (0,1)a y x a a =>≠且叫做对数函数,其中x 是自变量,函数的定义域是_____. 2.对数函数(0,1)xy a a a =>≠且的结构特征 (1)对数符号前面的系数是1;(2)对数的底数是不等于1的正实数(常数); (3)对数的真数仅有自变量x . 【知识点五、对数函数的图象与性质】1.一般地,对数函数log (0,1)a y x a a =>≠且的图象和性质如下表所示:01a << 1a >图象定义域 (0,)+∞值域 R奇偶性 非奇非偶函数过定点 过定点(1,0),即1x =时,0y =单调性 在(0,)+∞上是___函数 在(0,)+∞上是___函数 函数值的变化情况当01x <<时,0y >; 当1x >时,0y <当01x <<时,0y <; 当1x >时,0y >【注】速记口诀:对数增减有思路,函数图象看底数; 底数只能大于0,等于1了可不行; 底数若是大于1,图象从下往上增; 底数0到1之间,图象从上往下减; 无论函数增和减,图象都过(1,0)点.2.对数函数log (0,1)a y x a a =>≠且中的底数对其图象的影响在直线x =1的右侧,当a >1时,底数越大,图象越靠近x 轴;当0<a <1时,底数越小,图象越靠近x 轴,即“底大图低”.【知识点六、反函数】根据指数与对数的关系,将指数式(0,1)xy a a a =>≠且(其中x 是自变量,且x ∈R ,y 是x 的函数,(0,)y ∈+∞)化成对数式,即log a x y =,于是对于任意一个(0,)y ∈+∞,通过式子log a x y =都有唯一一个x ∈R 与之对应,这样将y 看成自变量,x 是y 的函数,这时我们就说log ((0,))a x y y =∈+∞是函数()x y a x =∈R 的反函数.由于习惯上将x 看成自变量,而将y 看成因变量,因此,我们将log a x y =中的x ,y 互换,写成log ((0,))a y x x =∈+∞,即对数函数log ((0,))a y x x =∈+∞是指数函数()x y a x =∈R 的反函数,它们的图象关于直线y x =对称.知识参考答案:一、1.(1)log a x N = (2)10 二、1.(1)N(2)b2.(1)log log a a M +N (2)log log a a M N -(3)log a n M四、1.(0,)+∞ 五、1.减增二、题型分析1.对数的概念解决使对数式有意义的参数问题,只要注意满足底数和真数的条件,然后解不等式(组)即可.对数的概念是对数式和指数式互化的依据,在互化过程中应注意对数式和指数式之间的对应关系. 【例1】在对数式(1)log (3)x x --中,实数x 的取值范围应该是 A .1<x <3B .x >1且x ≠2C .x >3D .1<x <3且x ≠2【答案】D【名师点睛】本题极易忽略底数的限制范围,底数1x -需大于0且不等于1. 【变式训练1】在M =log (x ﹣3)(x +1)中,要使式子有意义,x 的取值范围为( ) A .(﹣∞,3] B .(3,4)∪(4,+∞) C .(4,+∞) D .(3,4)【分析】由对数的定义可得,由此解得x 的范围.【答案】解:由函数的解析式可得 ,解得3<x <4,或x >4.故选:B .【点睛】本题主要考查对数的定义,属于基础题.【变式训练2若对数ln (x 2﹣5x +6)存在,则x 的取值范围为 . 【分析】由已知利用对数的概念可得x 2﹣5x +6>0,解不等式即可得解. 【答案】解:∵对数ln (x 2﹣5x +6)存在,∴x 2﹣5x +6>0,∴解得:3<x 或x <2,即x 的取值范围为:(﹣∞,2)∪(3,+∞). 故答案为:(﹣∞,2)∪(3,+∞).【点睛】本题考查对数函数的定义域的求法,是基础题.解题时要认真审题,仔细解答. 2.对数运算性质的应用对数的运算性质是进行对数运算和化简的基础,所以要熟记对数的运算性质以及对数恒等式,化简的原则是:(1)尽量将真数化为 “底数”一致的形式;(2)将同底的多个对数的和(差)合成积(商)的对数;(3)将积(商)的对数分成若干个对数的和(差).运算时要灵活运用对数的相关公式求解,如log a a =1(0,1)a a >≠且,log log 1a b b a ⋅=等.【例2】计算:(1)9log 32162)23(log--+; (2)2(lg 5)lg 2lg 5lg 2+⨯+.【答案】(1)13--;(2)1.【名师点睛】在计算23log(32)+-的值时,注意将32-化为132+即可求解.在求解(2)时,注意提取公因式,利用lg 2lg51+=求解.【变式训练1】(2019春•东莞市期末)计算(1)2﹣()+lg +()lg 1(2)lg 52+lg 8+lg 5lg 20+(lg 2)2【分析】(1)进行分数指数幂和对数的运算即可;(2)进行对数的运算即可. 【答案】解:(1)原式=;(2)原式=2lg 5+2lg 2+lg 5(2lg 2+lg 5)+(lg 2)2=2+(lg 2+lg 5)2=3. 【点睛】考查分数指数幂和对数的运算,完全平方公式的运用. 【变式训练2】(2019•西湖区校级模拟)计算: (1);(2).【分析】(1)进行对数的运算即可;(2)进行指数式和根式的运算即可. 【答案】解:(1)原式=;(2)原式=.【点睛】考查对数的运算性质,以及指数式和根式的运算.【变式训练3】(2019春•大武口区校级月考)(1)()0+()+();(2)【分析】(1)进行分数指数幂的运算即可;(2)进行对数的运算即可. 【答案】解:(1)原式=;(2)原式=.【点睛】考查分数指数幂和对数的运算,以及对数的定义. 3.换底公式的应用换底公式即将底数不同的对数转化为底数相同的对数,进而进行化简、计算或证明.换底公式应用时究竟换成什么为底,由已知条件来确定,一般换成以10为底的常用对数或以e 为底的自然对数.【例3】已知711,log 473ab ⎛⎫== ⎪⎝⎭,试用,a b 表示49log 48.【答案】492log 482b a+=. 【解析】11lg3,73lg 7aa ⎛⎫=∴= ⎪⎝⎭.∵7log 4,b =∴lg 4lg 7b =. 则49lg 48lg 4lg32log 48lg 49lg 72lg 722a b ab +==+=+=. 【名师点睛】在解题的方向还不清楚的情况下,一般统一为常用对数(当然也可以换成其他非1的正数为底).【变式训练1】(2019秋•中江县校级期中)利用对数的换底公式化简下列各式: (1)log a c •lo g c a ;(2)log 23•log 34•log 45•log 52; (3)(log 43+log 83)(log 32+log 92).【分析】根据换底公式,把对数换为以10为底的对数,进行计算即可. 【答案】解:(1)log a c •log c a =•=1;(2)log 23•log 34•log 45•log 52=•••=1; (3)(log 43+log 83)(log 32+log 92)=(+)(+)=(+)(+)=• =.【点睛】本题考查了对数的计算问题,也考查了换底公式的灵活应用问题,是基础题目. 【变式训练2】利用对数的换底公式化简下列各式:(log 43+log 83)(log 32+log 92) 【分析】利用对数性质、运算法则、换底公式直接求解.【答案】解:(log 43+log 83)(log 32+log 92) =(log 6427+log 649)(log 94+log 92) =log 64243•log 98 = ==.【点睛】本题考查对数值的求法,考查对数性质、运算法则、换底公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题. 4.对数方程的求解解对数方程时,(1)等号两边为底数相同的对数式,则真数相等;(2)化简后得到关于简单对数式的一元二次方程,再由对数式与指数式的互化求解. 【例4】方程1122log (95)log (32)2x x ---=-+的解为 .【答案】2x =【名师点睛】本题所给方程的底数相同,若底数不同,则还需化为同底数再求解.另外,解对数方程必须把所求得的解代入原方程进行检验,以确保所有的真数都大于零,这是必不可少的步骤. 【变式训练1】求下列各式中x 的值: (1)log 4x =﹣,求x ;(2)已知log 2(log 3x )=1,求x .【分析】(1)根据对数和指数之间的关系即可将log 232=5化成指数式; (2)根据对数和指数之间的关系即可将3﹣3=化成对数式;(3)根据对数的运算法则即可求x;(4)根据对数的运算法则和性质即可求x.【答案】解:(1)∵log232=5,∴25=32(2)∵3﹣3=,∴log3=﹣3;(3)∵log4x=﹣,∴x===2﹣3=;(4)∵log2(log3x)=1,∴log3x=2,即x=32=9.【点睛】本题主要考查指数式和对数式的化简,根据指数和对数的关系是解决本题的关键.【变式训练2】求下列各式中x的值:(1)log x27=;(2)4x=5×3x.【分析】(1)根据log x27=,可得=,进而得到x=9,(2)根据4x=5×3x,可得,化为对数式可得答案.【答案】解:(1)∵log x27=,∴=27=33=,故x=9,(2)∵4x=5×3x.∴,∴x=【点睛】本题考查的知识点是指数式与对数式的互化,熟练掌握a x=N⇔log a N=x(a>0,且a≠1,N>0)是解答的关键.【变式训练3】先将下列式子改写指数式,再求各式中x的值.①log2x=﹣②log x3=﹣.【分析】化对数式为指数式,然后利用有理指数幂的运算性质化简求值.【答案】解:①由log2x=﹣,得==;②由log x 3=﹣,得,即.【点睛】本题考查对数式化指数式,考查了有理指数幂的运算性质,是基础的计算题. 5.与对数函数有关的函数的定义域和值域定义域是使解析式有意义的自变量的取值集合,求与对数函数有关的定义域问题时,要注意对数函数的概念,若自变量在真数上,则必须保证真数大于0;若自变量在底数上,应保证底数大于0且不等于1.同时还要注意偶次方根的被开方数非负,分母不能为零等.求值域时,一方面要抓住对数函数的定义域和单调性,另一方面,若是复合函数,则要抓住中间变量的取值范围.【例5】已知函数33()log (2)log (6)f x x x =-++. (1)求函数()f x 的定义域; (2)求函数()f x 的最大值.【答案】(1)(6,2)-;(2)34log 2. 【解析】(1)由题意得2060x x ->⎧⎨+>⎩,解得62x -<<,故函数()f x 的定义域是(6,2)-.(2)33()log (2)log (6)f x x x =-++=23log (412)x x --+,(6,2)x ∈-.令22412(2)16t x x x =--+=-++,则(0,16]t ∈. 又3log y t =在(0,16]t ∈上为增函数,∴()f x 的最大值是33(2)log 164log 2f -==.【名师点睛】求函数的最值,一定要坚持“定义域优先”的原则.由对数函数组成的复合函数的最值问题,可利用换元法求解,但要注意中间变量的取值范围.学科&网 【变式训练1】(2019•西湖区校级模拟)函数的定义域是( ) A .B .C .D .【分析】由函数的解析式列出不等式进行求解即可. 【答案】解:由题意得,,解得x >,则函数的定义域是,故选:C .【点睛】本题考查了函数的定义域的求法,属于基础题. 【变式训练2】(2018秋•宜宾期末)函数y =的定义域是( )A .(,+∞)B .(,1]C .(﹣∞,1]D .[1,+∞)【分析】首先由根式有意义得到log 0.5(4x ﹣3)≥0,然后求解对数不等式得到原函数的定义域. 【答案】解:要使原函数有意义,则log 0.5(4x ﹣3)≥0, 即0<4x ﹣3≤1,解得. 所以原函数的定义域为(].故选:B .【点睛】本题考查了对数函数定义域,训练了对数不等式的解法,是基础的计算题. 【变式训练3】(2018春•连城县校级月考)函数y =的定义域是( )A .[1,+∞)B .(,+∞)C .(1,+∞)D .(,1]【分析】利用对数的性质求解. 【答案】解:函数y =的定义域满足:,解得.故选:D .【点睛】本题考查对数函数的定义域的求法,解题时要注意对数性质的灵活运用,是基础题. 6.对数函数的图象对数函数=log (0,1)a y x a a >≠且的图象过定点(1,0),所以讨论与对数函数有关的函数的图象过定点的问题,只需令真数为1,解出相应的,x y ,即可得到定点的坐标.当底数1a >时,对数函数()log a f x x =是(0,)+∞上的增函数,当1x >时,底数a 的值越小,函数图象越“陡”,其函数值增长得越快;当底数01a <<时,对数函数()log a f x x =是(0,)+∞上的减函数,当01x <<时,底数a 的值越大,函数图象越“陡”,其函数值减小得越快.也可作直线y =1与所给图象相交,交点的横坐标即为各个底数,依据在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大,可比较底数的大小.【例6】设0,1a a >≠且,函数2log (2)a y x =++的图象恒过定点P ,则P 点的坐标是 A .(1,2)-B .(2,1)-C .(3,2)-D .(3,2)【答案】A【名师点睛】本题求定点坐标的依据是对数函数=log (0,1)a y x a a >≠且的图象过定点(1,0),不必分1a >和01a <<两种情况讨论.【变式训练1】(2019•西湖区校级模拟)若当x ∈R 时,函数f (x )=a |x |始终满足0<|f (x )|≤1,则函数y =log a ||的图象大致为( )A .B .C .D .【分析】由于当x ∈R 时,函数f (x )=a |x |始终满足0<|f (x )|≤1,利用指数函数的图象和性质可得0<a <1.先画出函数y =log a |x |的图象,此函数是偶函数,当x >0时,即为y =log a x ,而函数y =log a ||=﹣log a |x |,即可得出图象.【答案】解:∵当x ∈R 时,函数f (x )=a |x |始终满足0<|f (x )|≤1. 因此,必有0<a <1.先画出函数y =log a |x |的图象:红颜色的图象. 而函数y =log a ||=﹣log a |x |,其图象如黑颜色的图象. 故选:B .【变式训练2】(2018秋•船营区校级月考)函数f (x )=的图象可能是( )A .B .C.D.【分析】先求出函数的定义域,再判断函数为奇函数,即图象关于原点对称,故可以排除BC,再根据函数值域,可排除D.【答案】解:∵f(x)=,∴函数定义域为(﹣∞,0)∪(0,+∞),∵,∴函数f(x)为奇函数,图象关于原点对称,故排除B、C,∵当0<x<1时,lnx<0,∴f(x)=<0,x∈(0,1)故排除D.故选:A.【点睛】本题主要考查了绝对值函数以及函数的值域、奇偶性和单调性,属于基础题.【变式训练3】(2019秋•洛南县期末)函数y=|lg(x+1)|的图象是()A.B.C.D.【分析】本题研究一个对数型函数的图象特征,函数y=|lg(x+1)|的图象可由函数y=lg(x+1)的图象将X轴下方的部分翻折到X轴上部而得到,故首先要研究清楚函数y=lg(x+1)的图象,由图象特征选出正确选项【答案】解:由于函数y=lg(x+1)的图象可由函数y=lgx的图象左移一个单位而得到,函数y=lgx的图象与X 轴的交点是(1,0),故函数y =lg (x +1)的图象与X 轴的交点是(0,0),即函数y =|lg (x +1)|的图象与X 轴的公共点是(0,0),考察四个选项中的图象只有A 选项符合题意故选:A .【点睛】本题考查对数函数的图象与性质,解答本题关键是掌握住对数型函数的图象图象的变化 规律,由这些规律得出函数y =|lg (x +1)|的图象的特征,再由这些特征判断出函数图象应该是四个选项中的那一个 7.对数函数单调性的应用(1)比较对数式的大小:若比较同底数的两个对数式的大小,可直接利用对数函数的单调性;若比较底数不同、真数相同的两个对数式的大小,可以先用换底公式化为同底后,再进行比较,也可以利用顺时针方向底数增大画出对数函数的图象,再进行比较;若比较底数与真数都不同的两个对数式的大小,常借助1,0等中间量进行比较.(2)解简单的对数不等式:形如log log a a x b >的不等式,常借助=log a y x 的单调性求解,如果a 的取值不确定,需分1a >与01a <<两种情况进行讨论;形如log a x b >的不等式,应将b 化为以a 为底数的对数式的形式,再借助=log a y x 的单调性求解. 【例7】已知13212112,log ,log 33a b c -===,则 A .a b c >>B .a c b >>C .c a b >>D .c b a >>【答案】 C【名师点睛】本题中既有指数式,又有对数式,无法直接比较大小,可借助中间量1,0来进行比较. 【变式训练1】(2019秋•沙坪坝区校级月考)已知a =log 30.3,b =30.3,c =0.30.2,则( ) A .a <b <c B .a <c <bC .c <a <bD .b <c <a【分析】容易得出,从而可得出a ,b ,c 的大小关系.【答案】解:∵log 30.3<log 31=0,30.3>30=1,0<0.30.2<0.30=1 ∴a <c <b .故选:B .【点睛】考查对数函数、指数函数的单调性,以及增函数、减函数的定义.【变式训练2】(2019•西湖区校级模拟)下列关系式中,成立的是( ) A . B . C . D .【分析】容易得出,从而可得出正确的选项.【答案】解:∵log 34>log 33=1,0<0.31.7<0.30=1,log 0.310<log 0.31=0, ∴.故选:A .【点睛】考查对数函数和指数函数的单调性,增函数和减函数的定义. 8.对数型复合函数的性质及其应用 (1)对数复合函数的单调性复合函数y =f [g (x )]是由y =f (x )与y =g (x )复合而成,若f (x )与g (x )的单调性相同,则其复合函数f [g (x )]为增函数;若f (x )与g (x )的单调性相反,则其复合函数f [g (x )]为减函数.对于对数型复合函数y =log a f (x )来说,函数y =log a f (x )可看成是y =log a u 与u =f (x )两个简单函数复合而成的,由复合函数单调性“同增异减”的规律即可判断.另外,在求复合函数的单调性时,首先要考虑函数的定义域.学科%网(2)对于形如y =log a f (x )(a >0,且a ≠1)的复合函数,其值域的求解步骤如下: ①分解成y =log a u ,u =f (x )两个函数; ②求f (x )的定义域; ③求u 的取值范围;④利用y =log a u 的单调性求解.【例8】讨论函数()2log 32()1a f x x x =--的单调性.【答案】答案详见解析.【解析】由3x 2−2x −1>0,得函数的定义域为{x |x >1或x <13-}. ①当a >1时,若x >1,∵u =3x 2−2x −1为增函数,∴f(x)=log a(3x2−2x−1)为增函数.若x<13-,∵u=3x2−2x−1为减函数,∴f(x)=log a(3x2−2x−1)为减函数.②当0<a<1时,若x>1,则f(x)=log a(3x2−2x−1)为减函数,若x<13-,则f(x)=log a(3x2−2x−1)为增函数.【名师点睛】求复合函数单调性的具体步骤是:(1)求定义域;(2)拆分函数;(3)分别求y=f(u),u=φ(x)的单调性;(4)按“同增异减”得出复合函数的单调性.【变式训练1】(2018秋•宜宾期末)函数y=的定义域是()A.(,+∞)B.(,1] C.(﹣∞,1] D.[1,+∞)【分析】首先由根式有意义得到log0.5(4x﹣3)≥0,然后求解对数不等式得到原函数的定义域.【答案】解:要使原函数有意义,则log0.5(4x﹣3)≥0,即0<4x﹣3≤1,解得.所以原函数的定义域为(].故选:B.【点睛】本题考查了对数函数定义域,训练了对数不等式的解法,是基础的计算题.【变式训练2】(2018春•连城县校级月考)函数y=的定义域是()A.[1,+∞)B.(,+∞)C.(1,+∞)D.(,1]【分析】利用对数的性质求解.【答案】解:函数y=的定义域满足:,解得.故选:D.【点睛】本题考查对数函数的定义域的求法,解题时要注意对数性质的灵活运用,是基础题.【变式训练3】(2019秋•南昌校级期中)函数y=log4(2x+3﹣x2)值域为.【分析】运用复合函数的单调性分析函数最值,再通过配方求得值域.【答案】解:设u(x)=2x+3﹣x2=﹣(x﹣1)2+4,当x=1时,u(x)取得最大值4,∵函数y =log 4x 为(0,+∞)上的增函数, ∴当u (x )取得最大值时,原函数取得最大值, 即y max =log 4u (x )max =log 44=1,因此,函数y =log 4(2x +3﹣x 2)的值域为(﹣∞,1], 故填:(﹣∞,1].【点睛】本题主要考查了函数值域的求法,涉及对数函数的单调性,用到配方法和二次函数的性质,属于基础题.【变式训练4】函数y =(x )2﹣x 2+5 在 2≤x ≤4时的值域为 .【分析】利用换元法,令t =由2≤x ≤4 可得﹣1≤t ≤﹣,由题意可得y ==(t ﹣1)2+4,又因为函数在[﹣1,﹣]单调递减,从而可求函数的值域. 【答案】解:令t =,因为2≤x ≤4,所以﹣1≤t ≤﹣,则y ==(t ﹣1)2+4,又因为函数在[﹣1,﹣]单调递减,当t =﹣是函数有最小值,当t =﹣1时函数有最大值8;故答案为:{y |}【点睛】本题主要考查了对数的运算性质,换元法的应用,二次函数性质的应用及函数的单调性的应用,属于基础知识的简单综合试题. 9.忽略真数大于0【例9】已知()lg lg 2lg 23x y x y +=-,求32log xy的值. 【错解】因为lg lg 2lg(23)x y x y +=-,所以2(23)xy x y =-,即2241390x xy y -+=,即()(49)0x y x y --=,解得x y =或94x y =. 所以3322log log 10x y ==或233322293log log log ()242x y ===. 【错因分析】错解中,()lg lg 2lg 23x y x y +=-与2(23)xy x y =-对,x y 的取值范围要求是不同的,即求解过程不等价,因此,得出解后要代入原方程验证.【正解】同错解,得到x y =或94x y =. 由()lg lg 2lg 23x y x y +=-知,0,0,230x y x y >>->, 当x y =时,230x y -<,此时()lg 23x y -无意义,所以x y =, 即3322log log 10xy ==应舍去; 当94x y =时,233322293log log log ()242x y ===. 【名师点睛】求解有关对数恒等式或不等式的过程中,经常需要将对数符号“脱掉”,此时很容易忽略原式中对数的真数大于0这一隐性限制条件,从而导致求出的最终结果中产生增根或范围扩大,因此要求我们对于此类题,一定要将求出的结果代入原式中进行检验. 10.忽略对底数的讨论【例10】不等式1log (4)log a ax x ->-的解集是_______.【错解】∵1log log a ax x -=,∴原不等式等价于log (4)log a a x x ->,∴4x x ->,解得x <2.∴不等式1log (4)log a ax x ->-的解集为(,2)-∞.【错因分析】错解中的底数a 的值不确定,因此要分类讨论.另外,求解时要保证真数大于0.【名师点睛】解对数不等式时,要防止定义域扩大,途径有两种:一是不同解变形,最后一定要检验;二是解的过程中加上限制条件,如正解,使定义域保持不变,即进行同解变形,最后通过解不等式组得到原不等式的解,这样得出的解就不用检验了.三.课后作业1.222log log 63+等于 A .1B .2C .5D .6【答案】B【解析】原式=2222log 6log 23⎛⎫⨯=⎪⎝⎭=2.故选B . 2.实数01()lg42lg52-++的值为 A .1B .2C .3D .4【答案】C【解析】01()lg42lg52-++=1+lg4+lg25=1+lg100=3.故选C . 3.已知函数f (x )=log 2(3+x )+log 2(3–x ),则f (1)= A .1 B .log 26C .3D .log 29【答案】C【解析】f (1)=log 24+log 22=2+1=3.故选C . 4.若212log log 2a b +=,则有A .a =2bB .b =2aC .a =4bD .b =4a【答案】C【解析】212log log 2a b +=,得2log 2a b ⎛⎫=⎪⎝⎭,即a =4b .故选C . 5.设()()2log 20xf x x =>,则f (3)的值是A .128B .256C .512D .8【答案】B【解析】设log 2x =t ,则x =2t ,所以f (t )=22t ,即f (x )=22x .则f (3)=32822256==.故选B .6.log 513+log 53等于 A .0 B .1C .–1D .log 5103【答案】A【解析】原式=51log 33⎛⎫⨯ ⎪⎝⎭=log 51=0.故选A .7.若a =3412(),b =1234(),c =log 23,则a ,b ,c 大小关系是 A .a <b <c B .b <a <cC .b <c <aD .c <b <a【答案】A【解析】∵a =314211()22<()<b =1234(),c =log 23>1,则a <b <c ,故选A . 8.若a =30.4,b =0.43,c =log 0.43,则 A .b <a <c B .c <a <bC .a <c <bD .c <b <a【答案】D【解析】a =30.4>1,b =0.43∈(0,1),c =log 0.43<0,则c <b <a .故选D . 9.若25210cab==且abc ≠0,则c c a b+= A .2B .1C .3D .4【答案】A10.已知1122log log a b <,则下列不等式一定成立的是A .11()()43a b < B .11a b> C .ln (a –b )>0D .3a –b <1【答案】A【解析】∵1122log log a b <,∴a >b >0,∴111()()()433a a b <<,11a b<,ln (a –b )与0的大小关系不确定,3a –b >1.因此只有A 正确.故选A . 11.函数()lg 2y x =+的定义域为__________.【答案】(–1,+∞)【解析】应该满足()20lg 20x x +>⎧⎨+>⎩,即2+x >1,解得x >–1,所以函数的定义域为(–1,+∞).故答案为:(–1,+∞).12.函数y =lg x 的反函数是__________. 【答案】y =10x【解析】函数y =lg x ,可得x =10y ,所以函数y =lg x 的反函数是y =10x .故答案为:y =10x . 13.函数f (x )=1ln x -的定义域为__________. 【答案】(0,e]【解析】函数()1ln f x x =-的定义域为:{x |01ln 0x x >⎧⎨-≥⎩},解得0<x ≤e .故答案为:(0,e].14.设2x =5y =m ,且11x y+=2,则m 的值是__________. 【答案】10【解析】由2x =5y =m ,得x =log 2m ,y =log 5m ,由11x y+=2,得25112log log m m +=,即log m 2+log m 5=2,∴log m 10=2,∴m =10.故答案为:10.15.方程log 2(2–x )+log 2(3–x )=log 212的解x =__________. 【答案】–116.已知f (x )=lg (10+x )+lg (10–x ),则f (x )是 A .f (x )是奇函数,且在(0,10)是增函数 B .f (x )是偶函数,且在(0,10)是增函数 C .f (x )是奇函数,且在(0,10)是减函数 D .f (x )是偶函数,且在(0,10)是减函数 【答案】D 【解析】由100100x x +>⎧⎨->⎩得:x ∈(–10,10),故函数f (x )的定义域为(–10,10),关于原点对称,又由f (–x )=lg (10–x )+lg (10+x )=f (x ),故函数f (x )为偶函数,而f (x )=lg (10+x )+lg (10–x )=lg (100–x 2),y =100–x 2在(0,10)递减,y =lg x 在(0,10)递增,故函数f (x )在(0,10)递减,故选D . 17.设正实数a ,b 满足6a =2b ,则A .01ba << B .12ba <<C .23ba<<D .34b a<<【答案】C【解析】∵6a =2b ,∴a ln6=b ln2,∴ln6ln2ln3ln2ln2b a +===1+ln3ln2=1+log 23,∵1<log 23<2,∴2<ba<3,故选C .18.根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 为1080,则下列各数中与MN最接近的是 A .1033 B .1053C .1073D .1093【答案】D【解析】由题意:M ≈3361,N ≈1080,根据对数性质有:3=10lg3≈100.48,∴M ≈3361≈(100.48)361≈10173,∴M N ≈173801010=1093.故选D . 19.若log 2(log 3a )=log 3(log 4b )=log 4(log 2c )=1,则a ,b ,c 的大小关系是 A .a >b >c B .b >a >cC .a >c >bD .b >c >a【答案】D【解析】由log2(log3a)=1,可得log3a=2,lg a=2lg3,故a=32=9,由log3(log4b)=1,可得log4b=3,lg b=3lg4,故b=43=64,由log4(log2c)=1,可得log2c=4,lg c=4lg2,故c=24=16,∴b>c>a.故选D.20.若正实数x,y满足log2(x+3y)=log4x2+log2(2y),则x+3y的最小值是A.12 B.10C.8 D.6【答案】D【解析】∵log2(x+3y)=log4x2+log2(2y),∴log2(x+3y)=log2x+log2(2y),即x+3y=2yx.可得:x+3y=23•3yx.∴3 2(x+3y)23()2x y+≤,当且仅当x=3y时取等.令x+3y=t,(t>0),则6t≤t2,解得:t≥6,即x+3y≥6.故选D.21.对任意的正实数x,y,下列等式不成立的是A.lg y–lg x=lg yxB.lg(x+y)=lg x+lg yC.lg x3=3lg x D.lg x=ln ln10 x【答案】B22.设函数y=f(x)的图象与y=log2(x+a)的图象关于直线y=–x对称,且f(–2)+f(–1)=2,则a= A.3 B.1 C.2 D.4【答案】D【解析】函数y=f(x)的图象与y=log2(x+a)的图象关于直线y=–x对称,设f(x)上任意一点为(x,y),则(x,y)关于直线y=–x对称的点为(–y,–x),把(–y,–x)代入y=log2(x+a),得–x=log2(–y+a),∴f(x)=–2–x+a,∵f(–2)+f(–1)=2,∴–22+a–2+a=2,解得a=4.故选D.23.已知函数f(x)=ln(–x2–2x+3),则f(x)的增区间为A.(–∞,–1)B.(–3,–1)C.[–1,+∞)D.[–1,1)【答案】B【解析】由–x2–2x+3>0,解得:–3<x<1,而y=–x2–2x+3的对称轴是x=–1,开口向下,故y=–x2–2x+3在(–3,–1)递增,在(–1,1)递减,由y =ln x 递增,根据复合函数同增异减的原则,得f (x )在(–3,–1)递增,故选B .24.已知函数()()212log 45f x x x =--,则函数f (x )的减区间是A .(–∞,2)B .(2,+∞)C .(5,+∞)D .(–∞,–1)【答案】C【解析】设t =x 2–4x –5,由t >0可得x >5或x <–1,则y =12log t 在(0,+∞)递减,由t =x 2–4x –5在(5,+∞)递增,可得函数f (x )的减区间为(5,+∞).故选C .25.已知R 上的奇函数f (x )满足当x <0时,f (x )=log 2(1–x ),则f (f (1))= A .–1 B .–2C .1D .2【答案】C【解析】设x >0,–x <0,f (x )为R 上的奇函数,且x <0时,f (x )=log 2(1–x ),则f (–x )=log 2(1+x )=–f (x ),∴f (x )=–log 2(1+x ),∴f (1)=–1,∴f (f (1))=f (–1)=log 22=1.故选C .26.若实数a ,b 满足a >b >1,m =log a (log a b ),2(log )a n b =,2log a l b =,则m ,n ,l 的大小关系为A .m >l >nB .l >n >mC .n >l >mD .l >m >n【答案】B【解析】∵实数a ,b 满足a >b >1,m =log a (log a b ),2(log )a n b =,2log a l b =,∴0=log a 1<log a b <log a a =1,∴m =log a (log a b )<log a 1=0,0<2(log )a n b =<1,1>2log a l b ==2log a b >2(log )a n b =.∴m ,n ,l 的大小关系为l >n >m .故选B .27.函数f (x )=log a (3–ax )(a >0且a ≠1)在区间(a –2,a )上单调递减,则a 的取值范围为__________.【答案】{a |1<a 【解析】∵函数f (x )=log a (3–ax )(a >0且a ≠1)在区间(a –2,a )上单调递减,∴2130a a >⎧⎨-≥⎩,求得1<a ,故答案为:{a |1<a .28.已知函数f (x )=a •2x +3–a (a ∈R )的反函数为y =f –1(x ),则函数y =f –1(x )的图象经过的定点的坐标为__________. 【答案】(3,0)【解析】∵f (x )=a •2x +3–a =a (2x –1)+3过定点(0,3),∴f (x ),的反函数y =f –1(x )的图象经过定点(3,0).故答案为:(3,0).29.若函数f (x )=log a (x 2–ax +1)(a >0且a ≠1)没有最小值,则a 的取值范围是__________. 【答案】(0,1)∪[2,+∞)30.(1)5log 3333322log 2log log 8259-+-; (2)74log 2327log lg 25lg 47++. 【答案】(1)–7;(2)154. 【解析】(1)原式=25log 933332log 4log log 8259-+-39log 48932⎛⎫=⨯⨯- ⎪⎝⎭=log 39–9=2–9=–7;(2)74log 2327log lg 25lg 47++()31424333115log lg 2542log 3lg10222344-=+⨯+=++=-++=.31.求函数f (x )=log 13(x 2–3)的单调区间.3+∞),单增区间是(–∞,3). 【解析】要使函数有意义,当且仅当u =x 2–3>0, 即x 3x <3又x 3+∞)时,u 是x 的增函数; x ∈(–∞,3)时,u 是x 的减函数. 而u >0时,y =log 13u 是减函数, 故函数y =log13(x 2–33+∞),单增区间是(–∞,3 32.已知函数f (x )=lg (x +1)–lg (1–x ).(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性.【答案】(1)(–1,1);(2)f(x)为奇函数.【解析】(1)要使原函数有意义,需满足10 10 xx+>⎧⎨->⎩,解得–1<x<1,故函数的定义域为(–1,1);(2)∵f(–x)=lg(1–x)–lg(1+x)=–f(x)∴f(x)为奇函数.33.已知函数f(x)=log a(1+x)–log a(1–x),其中a>0且a≠1.(1)求函数f(x)的定义域;(2)判断f(x)的奇偶性,并说明理由;(3)若f(35)=2,求使f(x)>0成立的x的集合.【答案】(1)(–1,1)(2)奇函数,理由详见解析;(3)(0,1).(3)若f(35)=2,∴log a(1+35)–log a(1–35)=log a4=2,解得a=2,∴f(x)=log2(1+x)–log2(1–x),若f(x)>0,则log2(x+1)>log2(1–x),∴x+1>1–x>0,解得0<x<1,故不等式的解集为(0,1).34.(2018•天津)已知a=log2e,b=ln2,c=121log3,则a,b,c的大小关系为A.a>b>c B.b>a>cC.c>b>a D.c>a>b【答案】D【解析】a=log2e>1,0<b=ln2<1,c=log1213=log23>log2e=a,则a,b,c的大小关系c>a>b,故选D.35.(2018•天津)已知a=log372,b=1314(),c=131log5,则a,b,c的大小关系为A.a>b>c B.b>a>c C.c>b>a D.c>a>b 【答案】D【解析】∵a=log372,c=131log5=log35,且5732>>,∴337512log log>>,则b=1311()144<=(),∴c>a>b.故选D.36.(2018•新课标Ⅲ)设a=log0.20.3,b=log20.3,则A.a+b<ab<0 B.ab<a+b<0C.a+b<0<ab D.ab<0<a+b【答案】B37.(2018•上海)设常数a∈R,函数f(x)=1og2(x+a).若f(x)的反函数的图象经过点(3,1),则a=__________.【答案】7【解析】∵常数a ∈R ,函数f (x )=1og 2(x +a ).f (x )的反函数的图象经过点(3,1),∴函数f (x )=1og 2(x +a )的图象经过点(1,3),∴log 2(1+a )=3,解得a =7.故答案为:7.38.【2018年全国卷Ⅲ文】已知函数())ln 1f x x =+,()4f a =,则()f a -=__________.【答案】2-【解析】()()))ln1ln1f x f x x x +-=+++()22ln 12x x =+-+2=,∴()()2f a f a +-=,则()2f a -=-,故答案为:–2.。

专题10 对数与对数函数 (学生版)高中数学53个题型归纳与方法技巧总结篇

专题10 对数与对数函数 (学生版)高中数学53个题型归纳与方法技巧总结篇

【考点预测】1.高中数学53个题型归纳与方法技巧总结篇专题10对数与对数函数对数式的运算(1)对数的定义:一般地,如果(0x a N a =>且1)a ≠,那么数x 叫做以a 为底N 的对数,记作log a x N =,读作以a 为底N 的对数,其中a 叫做对数的底数,N 叫做真数.(2)常见对数:①一般对数:以(0a a >且1)a ≠为底,记为log Na ,读作以a 为底N 的对数;②常用对数:以10为底,记为lg N ;③自然对数:以e 为底,记为ln N ;(3)对数的性质和运算法则:①1log 0a =;log 1a a =;其中0a >且1a ≠;②log Na a N =(其中0a >且1a ≠,0N >);③对数换底公式:log log log c a c bb a=;④log ()log log a a a MN M N =+;⑤log log log aa a MM N N=-;⑥log log (m na a nb b m m=,)n R ∈;⑦log a b a b =和log b a a b =;⑧1log log a b b a=;2.对数函数的定义及图像(1)对数函数的定义:函数log a y x =(0a >且1)a ≠叫做对数函数.对数函数的图象过定点(10),,即1x =时,0y =在(0)+∞,上增函数在(0)+∞,上是减函数当01x <<时,0y <,当1x ≥时,y≥当01x <<时,0y >,当1x ≥时,0y≤【方法技巧与总结】1.对数函数常用技巧在同一坐标系内,当1a >时,随a 的增大,对数函数的图象愈靠近x 轴;当01a <<时,对数函数的图象随a 的增大而远离x 轴.(见下图)a 增大a 增大【题型归纳目录】题型一:对数运算及对数方程、对数不等式题型二:对数函数的图像题型三:对数函数的性质(单调性、最值(值域))题型四:对数函数中的恒成立问题题型五:对数函数的综合问题【典例例题】题型一:对数运算及对数方程、对数不等式例1.(2022·全国·高三专题练习)(1)计算331log 2327lg 50lg 2+++;(2)已知()23log log lg 1x ⎡⎤=⎣⎦,求实数x 的值;(3)若185a =,18log 9b =,用a ,b ,表示36log 45.例2.(2022·全国·高三专题练习)(1)求23151log log 8log 2725⋅⋅的值.(2)已知9log 5=a ,37b =,试用a ,b 表示21log 35例3.(2022·全国·高三专题练习)(1)已知a ,b ,c 均为正数,且3a =4b =6c ,求证:212a b c +=;(2)若60a =3,60b =5,求12(1)12a b b ---的值.例4.(2022·全国·模拟预测)若e 4a =,e 25b =,则()A .a +b =100B .b -a =eC .28ln 2ab <D .ln 6b a ->例5.(2022·全国·模拟预测)已知实数x ,y 满足0x >,0y >,1x ≠,1y ≠,y x x y =,log 4y xx y+=,则x y +=()A .2B .4C .6D .8例6.(2022·北京昌平·二模)已知函数2()42(0)f x ax ax a =-+<,则关于x 的不等式2()log f x x >的解集是()A .(,4)-∞B .(0,1)C .(0,4)D .(4,)+∞例7.(2022·全国·江西师大附中模拟预测(文))已知函数()122log ,1,1,1,x x f x x x >⎧⎪=⎨⎪-≤⎩则不等式()(1)f x f x <-的解集为______.例8.(2022·辽宁·东北育才学校二模)若函数()f x 满足:(1)1x ∀,()20,x ∈+∞且12x x ≠,都有()()21210f x f x x x -<-;(2)()()1122x f f x f x x ⎛⎫=- ⎪⎝⎭,则()f x =___________.(写出满足这些条件的一个函数即可)例9.(2022·全国·高三专题练习)设函数()log m f x x =(0m >且1m ≠)的图像经过点()3,1.(1)解关于x 的方程()()22(1)10f x m f x m +-+-=;(2)不等式()()10f x a f x +⋅->⎡⎤⎡⎤⎣⎦⎣⎦的解集是1,93⎛⎫⎪⎝⎭,试求实数a 的值.【方法技巧与总结】对数的有关运算问题要注意公式的顺用、逆用、变形用等.对数方程或对数不等式问题是要将其化为同底,利用对数单调性去掉对数符号,转化为不含对数的问题,但这里必须注意对数的真数为正.题型二:对数函数的图像例10.(2022·山东潍坊·二模)已知函数()()log a f x x b =-(0a >且1a ≠)的图像如图所示,则以下说法正确的是()A .0a b +<B .1ab <-C .01b a <<D .log 0a b >例11.(2022·江苏省高邮中学高三阶段练习)函数log (3)1(0a y x a =+->且1)a ≠的图象恒过定点A ,若点A 在直线10mx ny ++=上,其中0mn >,则11+m n的最小值为()A .3-B .1C . 3+D .2+(多选题)例12.(2022·福建·莆田二中模拟预测)已知函数()()log a g x x k =+(0a >且1a ≠)的图象如下所示.函数()()1x xf x k a a -=--的图象上有两个不同的点()11,A x y ,()22,B x y ,则()A .1a >,2k >B .()f x 在R 上是奇函数C .()f x 在R 上是单调递增函数D .当0x ≥时,()()22f x f x ≤例13.(2022·全国·高三专题练习)已知223,20(){1ln ,021x x x f x x x -+-≤<=≤≤+,若()()g x f x ax a =--的图象与x 轴有3个不同的交点,则实数a 的取值范围为______.【方法技巧与总结】研究和讨论题中所涉及的函数图像是解决有关函数问题最重要的思路和方法.图像问题是数和形结合的护体解释.它为研究函数问题提供了思维方向.题型三:对数函数的性质(单调性、最值(值域))例14.(2022·陕西·榆林市第十中学高二期中(文))函数()22log 43y x x =+-的一个单调增区间是()A .3,2⎛⎫-∞ ⎪⎝⎭B .3,2 ⎡⎫+⎪⎢⎣⎭C .31,2⎛⎫- ⎪⎝⎭D .3,42⎡⎫⎪⎢⎣⎭例15.(2022·天津·南开中学二模)已知函数()21,14log 1,1a ax x x f x x x ⎧--≤⎪=⎨⎪->⎩是R 上的单调函数,则实数a 的取值范围为()A .11,42⎡⎫⎪⎢⎣⎭B .11,42⎡⎤⎢⎥⎣⎦C .10,2⎛⎤ ⎥⎝⎦D .1,12⎛⎫ ⎪⎝⎭例16.(2022·浙江·模拟预测)己知实数,(1,)∈+∞a b ,且33log log 3log log 4b a a b +=+,则()Ab a<<B.b a<<Ca b<<D.a b <例17.(2022·全国·高三专题练习(理))函数f (x )=log ax (0<a <1)在[a 2,a ]上的最大值是()A .0B .1C .2D .a例18.(2022·重庆·模拟预测)若函数()2()log 341a f x x ax =-+-有最小值,则实数a 的取值范围是()A.⎫⎪⎪⎝⎭B.C.⎛ ⎝⎭D.)+∞【方法技巧与总结】研究和讨论题中所涉及的函数性质是解决有关函数问题最重要的思路和方法.性质问题是数和形结合的护体解释.它为研究函数问题提供了思维方向.题型四:对数函数中的恒成立问题例19.(2022·北京·高三专题练习)若不等式2log 0a x x -<在10,2⎛⎫ ⎪⎝⎭内恒成立,则a 的取值范围是()A .1116a ≤<B .1116a <<C .1016a <≤D .1016a <<例20.(2022·江苏·高三专题练习)已知函数22414ax x y -+⎛⎫= ⎪⎝⎭的值域为10,16⎛⎤⎥⎝⎦,若不等式()()log 4log 2x a x a t t ⋅<-在[]1,2x ∈上恒成立,则t 的取值范围是()A .2,25⎛⎫ ⎪⎝⎭B .2,5⎛⎫+∞ ⎪⎝⎭C .(,2)-∞D .()0,2例21.(2022·浙江·高三阶段练习)已知函数()29x f x x+=,()2log g x x a =+,若存在[]13,4x ∈,任意[]24,8x ∈,使得()()12f x g x ≥,则实数a 的取值范围是___________.例22.(2022·全国·高三专题练习)已知函数()ln f x x x =-,已知实数0a >,若2()e ln 0x f x a a ++≥在()0+∞,上恒成立,求实数a 的取值范围.例23.(2022·全国·高三专题练习)已知函数()log (0,1)x a f x a x a a =+>≠在[1,2]上的最大值与最小值之和为6log 2a +.(1)求实数a 的值;(2)对于任意的[2,)x ∈+∞,不等式()10kf x -≥恒成立,求实数k 的取值范围.例24.(2022·陕西安康·高三期末(文))已知函数()()()2log 2log 30,1a a f x x x a a =++>≠.(1)若()32f =,求a 的值;(2)若对任意的[]8,12x ∈,()6f x >恒成立,求a 的取值范围.例25.(2022·上海·高三专题练习)已知2()32log f x x =-,2()log g x x =.(1)当[]1,4x ∈时,求函数[]()1()y f x g x =+⋅的值域;(2)对任意12,2n n x +⎡⎤∈⎣⎦,其中常数n N ∈,不等式()2()f x f kg x ⋅>恒成立,求实数k的取值范围.【方法技巧与总结】(1)利用数形结合思想,结合对数函数的图像求解;(2)分离自变量与参变量,利用等价转化思想,转化为函数的最值问题.(3)涉及不等式恒成立问题,将给定不等式等价转化,借助同构思想构造函数,利用导数探求函数单调性、最值是解决问题的关键.题型五:对数函数的综合问题例26.(2022·河北·张家口市第一中学高三阶段练习)已知定义域为()0, +的单调递增函数()f x 满足:()0,x ∀∈+∞,有()()ln 1f f x x -=,则方程()242f x x x =-+-的解的个数为()A .3B .2C .1D .0例27.(2022·四川雅安·三模(文))设()f x 是定义在R 上的偶函数,对任意R x ∈,都有()()4f x f x +=,且当[]2,0x ∈-时,()163xf x ⎛⎫=- ⎪⎝⎭.若在区间(]2,6-内关于x 的方程()()()log 201a f x x a -+=>恰有3个不同的实数根,则a 的取值范围是().A .()1,2B .()2,+∞C .(D .)2例28.(2022·广西柳州·高一期中)已知0a b >>,且1a b +=,则()A .sin sin a b>B .11a b>C .22a b +>D .lg lg 0a b +=例29.(2022·河北保定·二模)已知函数2332xxy =-在()0,∞+上先增后减,函数3443xxy =-在()0,∞+上先增后减.若()231log log x =()321log log 0x a =>,()()242422log log log log x x b ==,()()343433log log log log 0x x c ==>,则()A .a c<B .b a<C .c a<D .a b<例30.(2022·广东·三模)已知,R a b ∈,e 是自然对数的底,若e ln b b a a +=+,则ab的取值可以是()A .1B .2C .3D .4例31.(2022·全国·高三专题练习)已知0x 是函数()22e ln 2xf x x x -=+-的零点,则020e ln x x -+=_______.【过关测试】一、单选题1.(2022·辽宁辽阳·二模)区块链作为一种新型的技术,被应用于许多领域.在区块链技术中,某个密码的长度设定为512B ,则密码一共有5122种可能,为了破解该密码,在最坏的情况下,需要进行5122次运算.现在有一台计算机,每秒能进行142.510⨯次运算,那么在最坏的情况下,这台计算机破译该密码所需的时间大约为(参考数据lg20.3≈ 1.58≈)()A .1393.1610s ⨯B .1391.5810s ⨯C .1401.5810s⨯D .1403.1610s⨯2.(2022·山东·肥城市教学研究中心模拟预测)已知1log 3m p =,9p n =,其中0m >且1m ≠,0n >且1n ≠,若20m n -=,则p 的值为()A .3log 2B .2log 3C .2D .33.(2022·河南安阳·模拟预测(文))已知正实数x ,y ,z 满足(34zx y ==,则()A .111x y z+=B .111y z x+=C .112x y z +=D .112x z y+=4.(2022·河南·南阳中学高三阶段练习(文))已知函数()()()ln 22ln 33f x x x =++-,则()f x ()A .是奇函数,且在()0,1上单调递增B .是奇函数,且在()0,1上单调递减C .是偶函数,且在()0,1上单调递增D .是偶函数,且在()0,1上单调递减5.(2022·全国·高三专题练习)函数()log (1)2a f x x =-+的图象恒过定点A .(2,2)B .(2,1)C .(3,2)D .(2,0)6.(2022·安徽六安·一模(文))设函数()2f x =,()()2ln 41g x ax x =-+,若对任意的1R x ∈,都存在实数2x ,使得()()12f x g x =成立,则实数a 的取值范围为()A .(],4-∞B .(]0,4C .[]0,4D .(]0,27.(2022·湖北·荆门市龙泉中学二模)设0a >且1a ≠,sin cos a x x x >+对(0,)4x π∈恒成立,则a 的取值范围是()A .(0,)4πB .(0,]4πC .(,1)(1,)42ππ⋃D .[,1)4π8.(2022·浙江·模拟预测)己知实数,(1,)∈+∞a b ,且33log log 3log log 4b a a b +=+,则()A b a<<B .b a<<C a b<<D .a b <二、多选题9.(2022·重庆市天星桥中学一模)已知0,0a b >>,且1a b +=,则下列结论正确的是()A .11a b+的最小值是4B .1ab ab+的最小值是2C .22a b +的最小值是D .22log log a b +的最小值是2-10.(2022·广东汕头·二模)设a ,b ,c 都是正数,且469a b c ==,则下列结论正确的是()A .2ab bc ac+=B .ab bc ac+=C .4949b b a c⋅=⋅D .121c b a=-11.(2022·河北·高三阶段练习)下列函数中,存在实数a ,使函数()f x 为奇函数的是()A .()(lg f x x =B .()2f x x ax=+C .()21xaf x e =--D .()()2ln 2xx f x x e a =+-12.(2022·江苏·南京师大附中高三开学考试)当102x <≤时,4log xa x ≤,则a 的值可以为()ABCD三、填空题13.(2022·天津·二模)已知()42log 41log x y +=+,则2x y +的最小值为__________.14.(2022·全国·高三专题练习)已知23e ln 3x x x -+=,则3e ln x x -+=__________.15.(2022·河南·模拟预测(文))已知函数()241,1log ,1x x f x x x ⎧-≤=⎨>⎩,若1()2f a <≤,则实数a的取值范围为___________.16.(2022·河南·开封高中模拟预测(文))已知函数()y f x =为奇函数,且对定义域内的任意x 都有()()11f x f x +=--.当()1,2x ∈时,()21log f x x =-.给出以下4个结论:①函数()y f x =的图象关于点()(),0k k ∈Z 成中心对称;②函数()y f x =是以2为周期的周期函数;③当()0,1x ∈时,()()2log 21f x x =--;④函数()y f x =在()(),1k k k +∈Z 上单调递减.其中所有正确结论的序号为______.四、解答题17.(2022·北京·高三专题练习)已知函数()log (0),1)a f x x a a =>≠且,设1a >,函数log a y x =的定义域为[m ,n ](m <n ),值域为[0,1],定义“区间[m ,n ]的长度等于n -m ”,若区间[m ,n ]长度的最小值...为5,6求实数a 的值;18.(2022·全国·高三专题练习(理))已知函数f (x )=log a (x +1)-log a (1-x ),a >0且a ≠1.(1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明;(3)当a >1时,求使f (x )>0的x 的解集.19.(2022·北京·高三专题练习)已知函数()log (0)1)a f x x a a =>≠且,作出|()|y f x =的大致图像并写出它的单调性;20.(2022·全国·高三专题练习)已知函数()()44log 3log 4f x x x =-⋅.当1,164x ⎡⎤∈⎢⎥⎣⎦时,求该函数的值域;21.(2022·全国·高三专题练习)已知:函数()0.51log 1ax f x x -=-在其定义域上是奇函数,a 为常数.(1)求a 的值.(2)证明:()f x 在()1,+∞上是增函数.(3)若对于[]3,4上的每一个x 的值,不等式()12xf x m ⎛⎫>+ ⎪⎝⎭恒成立,求实数m 的取值范围.22.(2022·北京东城·高三期末)曲线ln y x =在点(,ln )A t t 处的切线l 交x 轴于点M .(1)当t e =时,求切线l 的方程;(2)O 为坐标原点,记AMO 的面积为S ,求面积S 以t 为自变量的函数解析式,写出其定义域,并求单调增区间.。

对数及对数函数知识点总结及题型分析

对数及对数函数知识点总结及题型分析

对数及对数函数1、对数的基本概念(1)一般地,如果a (1,0≠>a a )的b 次幂等于N ,就是N a b =,那么数b 叫做以a 为底N 的对数, 记作b N a=log ,其中a 叫做对数的底数,N 叫做真数,式子N a log 叫做对数式(2)常用对数:N 10log ,记作N lg ; 自然对数N e log (e =2.71828…),记作N ln .(3)指数式与对数式的关系:log xa a N x N =⇔=(0>a ,且1≠a ,0N >)(4)对数恒等式:2、对数的性质(1)负数和零没有对数,即0>N ; (2)1的对数是零,即01log =a ; (3)底的对数等于1,即1log =a a3、对数的运算性质(1)如果a >0,a ≠1,M >0,N >0,那么①N M MN a a a log log )(log +=; ②N M NMa a alog log log -=; ③M n M a n alog log =(2)换底公式: 推论:① b N N b log 1log =; ② ; ③ 1log log =⋅a b b a4、对数函数的定义:函数 叫做对数函数,其中x 是自变量(1)研究对数函数的图象与性质:由于对数函数 与指数函数 互为反函数,所以 的图像和 的图像关于直线 对称。

(2)复习)10(≠>=a a a y x且的图象和性质()010log >≠>=N a a N aNa ,且bNN a a b log log log =b mn b a na m log log =a y log x =(a 0a 1)>≠且a y log x =x y a =a y log x=xy a =y x =2.对数函数的图像:3.对数函数的性质:【回顾一下】① 定义:函数 称为对数函数,1) 函数的定义域为 ;2) 函数的值域为 ; 3) 当____ __时,函数为减函数,当_________时为增函数; 4) 函数与函数 ______ 互为反函数.① 1) 图象经过点( ),图象在 ;2) 对数函数以 为渐近线(当时,图象向上无限接近y 轴;当时,图象向下无限接近y 轴); 4) 函数y =log a x 与 的图象关于x 轴对称. ① 函数值的变化特征:题型一、对数式的运算 例题1:填空(1)[])81(log loglog 346=_____ ___; (2)19lg 3lg 2+-= ;(3)04.0log 10log 222+=_____ ___; (4)3log 28log 316161+=_____ ___; (5)=⋅⋅⋅4log 5log 7log 3log 7352例题2:若a y x =-lg lg ,则=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛332lg 2lg y x ( ).A a 3 .Ba 23 .C a .D 2a 题型二 变式、对数运算性质运用 变式1:计算变式2:3128x y ==,则11x y-= .xy a log =)1,0(≠>=a a a y x 且10<<a 1>a 2(lg 2)lg 2lg 50lg 25+⋅+题型三、解对数式方程例题1:已知216log =x ,则=x ( ).A 2 .B 4 .C 8 .D 32例题2:已知 ① 3log 1log 266-=x ,求x 的值 ; ② 2)25(log 22=--x x ,求x 的值。

对数与对数函数知识点及题型归纳总结

对数与对数函数知识点及题型归纳总结

对数与对数函数知识点及题型归纳总结对数与对数函数知识点及题型归纳总结知识点精讲⼀、对数概念a xN(N 0) n log a N(a 0且a 1) ,叫做以 a 为底 N 的对数. 注:① N 0,负数和零没有对数;② log a 1 0,log a a 1 ;③lg N log 10 N,ln N log e N .⼆、对数的运算性质(1) log a (MN) log a M log a N(M,N R ); (2)log a M log a M log a N(M,N R );N(3) log a M nnlog a M(M R ); (4) log a b log cb (a 0且a 1,b 0,c 0且c 1() 换底公式) log c a(5) log a mb nn log a b(a,b 0,m 0,a 1,n R); am (6) a loga NN(N 0,a 0且a 1);(6)log a a NN(N R,a 0且a 1). 化常数为指数、对数值常⽤这两个恒等式 .三、对数函数1)般地,形如 y log a x(a 0且a1) 的函数叫对数函数特殊地 log a b1 log b a题型归纳及思路提⽰题型 1 对数运算及对数⽅程、对数不等式思路提⽰对数的有关运算问题要注意公式的顺⽤、逆⽤、变形⽤等 .对数⽅程或对数不等式问题是要将其化为同底,利⽤对数单调性去掉对数符号,转化为不含对数的问题,但这⾥必须注意对数的真数为正 . ⼀、对数运算例 2.56 2log 510 log 5 0.25 (解析 2log 510 log 5 0.25 log 5 102 log 5 0.25 log 5 (100 0.25) 故选 C .评注熟记对数的各种运算性质是求解本类问题的前提变式 1 已知 x, y 为正实数,则(A.2lg x lg y 2lg x 2lgyB.2lg( x y)解析 5lg30 (1)lg0.5 x,3A.0B.1C.2D.4分析 nlog a x mlog a y log a x nlog am n mymlog a (x ny m).log 5 5222lg x 2lgy 2lgx 2lg y变式 2 (lg 2)2lg4变式 32lg83 例 2.57log2781log 48解析log 27 81 log 33 34所以原式 4 3 17.(lg 2)243,log 4 8 log 22 2332log2 2变式 1log 2 ( 6 4 2 6 4 2)例 2.58 5lg30 (1)lg0.53分析 a b(a,b 0) log c a log c b.lg5 lg 20264 3log 33lg5 (lg5) 2C.2lg x lgy 2lgx 2lg yD.2lg(xy) 32)若 a 4,求函数 f(x)的零点 .三、对数不等式log a a 2x2a x2 ,则使 f(x) 0的 x 的取值范围是()C.( ,log a 3)D.(log a 3, )分析先将对数不等式化为同底的形式,再利⽤单调性转化为指数不等式求解 . 解析 f(x) log a a 2x 2a x 2 0 log a 1,⼜ 0 a 1,函数 y log a x 在 (0, )上单调递减,得则lg x lg 5lg30 ( 1)lg0.5lg 5lg30lg13lg0.5lg30 lg5 lg 0.5 lg 1(lg30 lg3) lg5 (lg5 lg10)(lg1 lg3) lg5 lg3 lg5 lg 3 lg5 lg3lg15所以 x ⼆、对数⽅程例 2.59 解下列⽅151(1) (lg x lg3) lg5 2 2 (2)log x 2 1(2x 23x 1)1lg(x 10); 2 1.分析利⽤对数的运算性质化简后求解 .11解析(1) (lg x lg3) lg5 lg(x22xlgx lg3 2lg5 lg(x 10) ,即lg10) lg ,⾸先⽅程中的 x 应满⾜x 10,原⽅程可变形为 25 x 2525 ,得 x 25 ,从⽽ x 15或 x 5(舍),经检验,x 10 3 x 10x 15 是原⽅程的解 .1(2x 3x1) 1 ,x 21 0且 x 212x 23x 1 x 21,解得 x 2.1经检验 x 2 是⽅程的解 . 评注解对数⽅程⼀定要注意对数⽅程成⽴条件下 x 的取值范围,是检验求出的解是否为增根的主要依据变式 1 函数 f (x) log 2(4x 1)ax.1)若函数 f (x) 是R 上的偶函数,求实数a 的值;例 2.60 设 0 a 1,函数 f (x)所以 x log a 3. 故选 C.的解集为 .例 2.61 设 a log 5 4,b (log 5 3)2,c log 45,则()A.a c bB.b c aC.a b c Db. a c分析利⽤对数函数的单调性来⽐较对数的⼤⼩,通常借助 0和 1作为分界点解析因为y log 5 x 在(0, )上单调递增,所以log 5 3 log 54 1,且 log 4 5 1 (log 5 3)2log 53 log 54 1 log 45 b a c故选 D .变式1设a lg e,b (lg e)2,c lg e ,则( )C.c a b Dc. b alog 3 0.3变式 2 设 a 5log 23.4,b 5log 43.6,c1 5,则()A.a b cB.b a cC.a c bD.ca b1, y log 5 2,z e 2,则()变式4(2012 ⼤纲全国理 9)已知x lnA.x yz B.z xyC.z y xD.y z x题型 2 对数函数的图像与性质思路提⽰研究和讨论题中所涉及的函数图像与性质是解决有关函数问题最重要的思路和⽅法问题是数和形结合的护体解释 .它为研究函数问题提供了思维⽅向、对数函数的图像例 2.62如图 2-15所⽰,曲线 C 1,C 2,C 3,C 4是底数分别为 a,b,c,d 的对数函数的图像,对应的底数 a, b, c, d 的取值依次为()a 2x2a x2 1即a 2x2a x3 0 (a x3)(a x1) 0,因为 a x1 0 ,故 a x变式 1 已知函数 f (x )为R 上的偶函数,且在 0, 上为增函数,10 ,则不等式 3log 1 x 0.图像与性质则曲线 C 1,C 2,C 3,C 4分析给出曲线的图像,判定 C 1,C 2,C 3,C 4所对应的 a,b,c,d 的值,可令 y 1求解.解析如图 2-16所⽰,作直线 y 1交C 1,C 2,C 3,C 4于A,B,C,D ,其横坐标⼤⼩为 0 c d 1 a b , 11 那么C 1,C 2,C 3,C 4所对应的底数 a,b,c,d 的值可能⼀次为 2,3, , .故选 B .32评注对数函数在同⼀直⾓坐标系中的图像的相对位置与底数⼤⼩的关系如图 2-16 所⽰,则 0 c d 1 a b .ylog a x(a 0且a 1)在第⼀象限的图像, a 越⼤,图像越靠近 x 轴; a 越⼩,图像越靠近 y 轴.变式 1 若函数 f(x) a x (a 0且a 1)是定义域为 R 的增函数,则函数 f (x) log a (x 1)的图像⼤致是( )11A.3, 2, ,32 11C.2,3, 1 , 123 B.2,3, 1,13,2D.3, 2, 21 , 1323y log a (x 1) 2恒过顶点 (0, 2) .变式 1 函数 y log a (x 2) 2x 1 的图像过定点⼆、对数函数的性质(单调性、最值(值域) )分析本题考查对数函数的单调性和最值变式 2 设 a,b,c 均为正数,且 2alog 1 a, 2log 1 b, 21log 2 c,则解析因为 y log a x(a 0且a 1) 恒过点 (1,0) ,故令 x 1 1,即 x 0 时, y log a (x 1) 0 ,故例 2.64 设 a 1,函数 f (x) log a x 在区间 a,2a 上的最⼤值与最⼩值之差为1,则 a ( ) 2令t log 2 x12,3,则 f (x)2g(t) t 23t 2当t 3 ,即 x 222时, f ( x) min 11;当t 3,即 x48时, f ( x)max 2.变式 1 已知f (x) 2 log 3 x(x1,9 ) ,求函数 22g(x) f (x) f (x 2) 的最⼤值与最⼩值⼜ f (x) (log 2 x 1)(log 2 x 2) 3log 2 x 2. (log 2 x)2解析因为对数函数的底 a 1 ,所以函数f (x) log a x 在区间a,2a 上单调递增,故 f (x)minlog a a1,log a 2a1,即 log a 2 1 解得 22a 4 故选 D .变式 1若函数 f (x)log a x(0 a1)在区间 a,2a 上的最⼤值是最⼩值的 3倍,则 a 等于( )A. 2 4B. 22C.14D.12例 2.65 设 2(log 1 x)2 27log 1 x20,求f(x)log 2 x log 2 x 24的最⼤值和最⼩值 .解析 2(log 1 x)227log 1 x2(2log 1 x 21) (log 1 x 3) 023 log 1 x22解得8.3xxx xlog 2 x(x 0)log ( x)(x 0),且f(a) f( a) 则实数 a 的取值范围是 .2C.(3, )D. 3,0,2 ,则区间 a,b 的长度的最⼤值与最⼩值的差为题型 3 对数函数中的恒成⽴问题思路提⽰ (1)利⽤数形结合思想,结合对数函数的图像求解; (2)分离⾃变量与参变量,利⽤等价转化思想,转化为函数的最值问题,1 上恒成⽴ .解析依题意,函数 f (x)的图像如图 2-17所⽰,知 f (x)为奇函数,由 f(a) f( a) 的得 f(a) 0 ,解得A.(2 2, )B. 3 2,a b ,且 f (a) f (b) ,则2b 的取值范围是(例 2.67 已知函数 f(x) lg 1 2 a 4 ,若 x ,1 时有意义,a 得取值范围 .解析因为f(x) lgxx 1 2x a 4x 在x340 在 ,1 上恒成⽴ .令g(x),x ,1 .例 2.66 若函数 f (x)变式 2 定义区间x 1,x 2 (x 1 x 2) 的长度为 x 2 x 1 ,已知函数 f(x) log 1 x 的定义域为 a,b 2,值域为所以 a。

对数及对数函数要点及解题技巧讲解

对数及对数函数要点及解题技巧讲解

考 情

(2)若函数f(x)的定义域关于坐标原点对称,试讨论它的
验 · 明 考
基 础
=1-2log63+(log63)2+1-(log63)2

log64
=2(12-lolgo6g263)=log6l6o-g6l2og63=lloogg6622=1.
典 例 探 究
(3)原式=(llgg 23+llgg 29)·(llgg 34+llgg 38)
课 后 作
· 提 知
1 4
-lg
25)÷100-
1 2

考 体 验
实 ·
________.
· 明
固 基 础
(2)(2013·大连模拟)设2a=5b=m,且
1 a

1 b
=2,则m=
考 情
________.







·




菜单
新课标 ·文科数学(安徽专用)

【解析】 (1)原式=(lg 1100)÷110=-20.
新课标 ·文科数学(安徽专用)
第六节 对数与对数函数








·
·













·




菜单
新课标 ·文科数学(安徽专用)







1.对数的概念
验 ·
·

对数与对数函数知识点与例题讲解

对数与对数函数知识点与例题讲解

对数与对数函数知识点与例题讲解知识梳理: 一、对数1、定义:一般地,如果()0,1x a N a a =>≠,那么实数x 叫做以a 为底N 的对数,记作a x log N =,其中a 叫做对数的底数,N 叫做对数的真数.2、特殊对数⑴通常以10为底的对数叫做常用对数,并把10log N 记为lgN ; ⑵通常以e 为底的对数叫做自然对数,并把e log N 记为lnN . 3、对数的运算⑴运算性质:如果0,1,0,0a a M N >≠>>且,那么:①()a a a log MN log M log N =+;②a a a Mlog log M log N N=-;③()n a a log M nlog M n R =∈;④(),0m na a n log M log M n R m m=∈≠;⑤1a b log b log a =;⑥a log N a N =.⑵换底公式:c a c log blog b log a=.二、对数函数 1、定义:一般地,函数()01a y log x a a =>≠,且叫做对数函数,其中x 是自变量,函数的定义域是()0,+∞.1>a10<<a图像性质定义域: 值域:过定点 ,即当1=x 时,0=y在R 上是在R 上是非奇非偶函数a y =与对数函数x y a log =互为反函数,它们的图像关于直线x y =对称.【课前小测】1、2193-⎛⎫= ⎪⎝⎭写成对数式,正确的是( )A 、9123log =- B 、1392log =- C 、()1329log -= D 、()9123log -= 2、函数()0,1a y log x a a =>≠的图像过定点( )A 、()1,1B 、()1,0C 、()0,1D 、()0,0 3、49343log 等于( ) A 、7 B 、2 C 、23 D 、324、函数()()31f x lg x =+的定义域是( )A 、1,3⎛⎫-+∞ ⎪⎝⎭ B 、()0,+∞ C 、(),0-∞ D 、1,3⎛⎫-∞- ⎪⎝⎭5、函数()21f x log x =+的定义域是( )A 、(),-∞+∞B 、()0,+∞C 、1,2⎡⎫+∞⎪⎢⎣⎭D 、10,2⎛⎤ ⎥⎝⎦考点一、化简和求值例1、⑴552log 10log 0.25+=( ) A 、0 B 、1 C 、2 D 、4解析:2log 510+log 50.25=log 5100+log 50.25=log 525=2⑵计算:3948(log 2log 2)(log 3log 3)+⋅+. 解:原式lg 2lg 2lg3lg3lg 2lg 2lg3lg3()()()()lg3lg9lg 4lg8lg32lg32lg 23lg 2=+⋅+=+⋅+3lg 25lg 352lg 36lg 24=⋅=. 变式、⑴(辽宁卷文10)设25abm +=,且112a b+=,则m =( ) A 、10 B 、10 C 、20 D 、100⑵已知32a =,用a 表示33log 4log 6-;⑶已知3log 2a =,35b=,用a 、b 表示 30log 3.考点二、比较大小例2、较下列比较下列各组数中两个值的大小:⑴6log 7,7log 6; ⑵3log π,2log 0.8; ⑶0.91.1, 1.1log 0.9,0.7log 0.8; ⑷5log 3,6log 3,7log 3. 答案:⑴>;⑵>;⑶>,>;⑷>,>. 变式、⑴已知函数()|lg |f x x =,若11a b c>>>,则()f a 、()f b 、()f c 从小到大依次为 ;a c b <<⑵已知log 4log 4m n <,比较m ,n 的大小. 解:∵log 4log 4m n <, ∴4411log log m n <,当1m >,1n >时,得44110log log m n<<,∴44log log n m <, ∴1m n >>.当01m <<,01n <<时,得44110log log m n<<,∴44log log n m <, ∴01n m <<<.当01m <<,1n >时,得4log 0m <,40log n <, ∴01m <<,1n >, ∴01m n <<<.综上所述,m ,n 的大小关系为1m n >>或01n m <<<或01m n <<<. 考点三、解与对数相关的不等式 例3、⑴解不等式2)1(log 3≥--x x .解:原不等式等价于⎪⎩⎪⎨⎧-≥->->-2)3(11301x x x x 或⎪⎩⎪⎨⎧-≤-<-<>-2)3(113001x x x x解之得:4<x ≤5 ∴原不等式的解集为{x |4<x ≤5}⑵解关于x 的不等式:)1,0(,2log )12(log )34(log 2≠>>---+a a x x x a a a . 解:原不等式可化为)12(2log )34(log 2->-+x x x a a当a >1时有221234121)12(23403401222<<⇒⎪⎪⎩⎪⎪⎨⎧<<-<<->⇒⎪⎩⎪⎨⎧->-+>-+>-x x x x x x x x x x(其实中间一个不等式可省,为什么?让学生思考)当0<a <1时有42234121)12(23403401222<<⇒⎪⎪⎩⎪⎪⎨⎧>-<<<->⇒⎪⎩⎪⎨⎧-<-+>-+>-x x x x x x x x x x x 或∴当a >1时不等式的解集为221<<x ;当0<a <1时不等式的解集为42<<x ⑶解不等式24log a x x xxa >解:两边取以a 为底的对数:当0<a <1时原不等式化为:2log 29)(log 2-<x x a a ∴0)1log 2)(4(log <--x x a a ,4log 21<<x a , ∴a x a <<4 当a >1时原不等式化为:2log 29)(log 2->x x a a ∴0)1log 2)(4(log >--x x a a ,∴ 21log 4log <>x x a a 或 ,∴a x a x <<>04或 ∴原不等式的解集为}10,|{4<<<<a a x a x 或}1,0|{4><<>a a x a x x 或考点四、对数型函数的性质 ① 定义域、值域例4、⑴函数2()lg(31)f x x =++的定义域是( )A 、1(,)3-+∞B 、1(,1)3-C 、11(,)33-D 、1(,)3-∞-⑵函数(21)log x y -= )A 、()2,11,3⎛⎫+∞⎪⎝⎭U B 、()1,11,2⎛⎫+∞ ⎪⎝⎭U C 、2,3⎛⎫+∞ ⎪⎝⎭ D 、1,2⎛⎫+∞ ⎪⎝⎭⑶函数()()2log 31x f x =+的值域为( )A 、()0,+∞B 、[)0,+∞C 、()1,+∞D 、[)1,+∞ 变式、求函数y =.② 单调性、奇偶性例5、⑴函数y =log 3(x 2-2x )的单调减区间是________. 解: 令u =x 2-2x ,则y =log 3u . ∵y =log 3u 是增函数,u =x 2-2x >0的减区间是(-∞,0),∴y =log 3(x 2-2x )的减区间是(-∞,0). ⑵设0<a <1,函数f (x )=log a (a 2x -2a x -2),则使f (x )<0的x 的取值范围是( ) A 、(-∞,0)B 、(0,+∞)C 、(-∞,log a 3)D 、(log a 3,+∞)解:由f (x )<0,即a 2x -2a x -2>1,整理得(a x -3)(a x +1)>0,则a x >3.∴x <log a 3. ⑶函数y =log 22-x2+x 的图象( )A 、关于原点对称B 、关于直线y =-x 对称C 、关于y 轴对称D 、关于直线y =x 对称解:∵f (x )=log 22-x 2+x,∴f (-x )=log 22+x 2-x=-log 22-x 2+x∴f (-x )=-f (x ),∴f (x )是奇函数.故选A.变式、⑴若011log 22<++aa a,则a 的取值范围是( ) A 、),21(+∞ B 、),1(+∞ C 、)1,21( D 、)21,0(⑵若02log )1(log 2<<+a a a a ,则a 的取值范围是 .⑶若函数)2(log )(22a x x x f a ++= 是奇函数,则a = .③综合应用例6、设函数f (x )=log a ⎝ ⎛⎭⎪⎫1-a x ,其中0<a <1.⑴证明:f (x )是(a ,+∞)上的减函数; ⑵解不等式f (x )>1.解析:⑴证明:设0<a <x 1<x 2,g (x )=1-a x,则g (x 1)-g (x 2)=1-a x 1-1+a x 2=a (x 1-x 2)x 1x 2<0,∴g (x 1)<g (x 2).又∵0<a <1,∴f (x 1)>f (x 2). ∴f (x )在(a ,+∞)上是减函数.⑵∵log a ⎝ ⎛⎭⎪⎫1-a x >1,∴0<1-ax <a ,解得:⎩⎪⎨⎪⎧x >a ,x <a1-a,∴不等式的解集为:{x |a <x <a1-a}.变式、已知函数22()log (32)f x x x =+-.⑴求函数()f x 的定义域;⑵求证()f x 在(1,3)x ∈上是减函数;⑶求函数()f x 的值域.随堂巩固1、6632log log +等于( )A 、6B 、5C 、1D 、65log 2、在()23a b log -=中,实数a 的取值范围是( )A 、2a <B 、2a >C 、23,3a a <<>或D 、3a > 3、下列格式中成立的是( )A 、22a a log b log b = B 、a a a log xy log x log y =+ C 、()()()a a a log xy log x log y =• D 、a a a xlog log y log x y=- 4、213alog > ,则a 的取值范围是( ) A 、312a <<B 、30112a a <<<<或C 、213a <<D 、2013a a <<>或 5、已知ab M =()0,0,1a b M >>≠,且log M b x =,则log M a 等于( ) A 、1x - B 、1x + C 、1xD 、1x - 6、(08山东济宁)已知8log 9a =,2log 5b =,则lg 3等于( ) A 、1ab - B 、()321a b - C 、()321a b + D 、()312a b -7、已知函数()()32f x lg x =+的定义域为F ,函数()()()12g x lg x lg x =-+-的定义域为G ,那么( )A 、G F ≠⊂B 、G F =C 、F G ⊆D 、F G =∅I8、(08山东)已知函数()2300x x f x log x x ⎧≤=⎨>⎩,,,12f f ⎡⎤⎛⎫ ⎪⎢⎥⎝⎭⎣⎦( ) A 、1- B、log CD 、139、若()6430log log log x =⎡⎤⎣⎦,则12x -等于( )A 、9B 、91C 、3D 、3310、若M =⋅32log 4log 3log 3132ΛΛ,则M 的值是( ) A 、5 B 、6 C 、7 D 、8 11、已知3log 2a =,那么33log 82log 6-用a 表示是( )A 、2a -B 、5a -C 、23(1)a a -+ D 、231a a --12、已知偶函数()x f 在[]4,2上单调递减,那么)8(log 21f 与)(π-f 的大小关系是( )A 、)8(log 21f >)(π-f B 、)8(log 21f =)(π-fC 、)8(log 21f < )(π-f D 、不能确定13、若312log 19x-=,则x = ; 14、已知:lg 21.3a =,则lg0.213=___________;15、()2211log log 1a a x x -->+,则a 的取值范围为________________; 16、比较大小⑴8.1log 3 7.2log 3;⑵5log 6 7log 6; 17、若14log 3=x ,则=+-xx44___________;18、已知log 1a x =,log 2b x =,log 4c x =,则log abc x =____________; 19、(08山东) 知()lg lg 2lg 2x y x y +=-,求xy的值.20、⑴已知a =2lg ,b =3lg ,试用b a 、表示5log 12;⑵已知a =3log 2,b =7log 3,试用b a 、表示56log 14.21、已知())lgf x x =.⑴求()f x 的定义域; ⑵求证:()f x 是奇函数.22、解关于x 的不等式:)1,0(,2log )12(log )34(log 2≠>>---+a a x x x a a a 解:原不等式可化为)12(2log )34(log 2->-+x x x a a当a >1时有221234121)12(23403401222<<⇒⎪⎪⎩⎪⎪⎨⎧<<-<<->⇒⎪⎩⎪⎨⎧->-+>-+>-x x x x x x x x x x当0<a <1时有42234121)12(23403401222<<⇒⎪⎪⎩⎪⎪⎨⎧>-<<<->⇒⎪⎩⎪⎨⎧-<-+>-+>-x x x x x x x x x x x 或∴ 当a >1时不等式的解集为221<<x ; 当0<a <1时不等式的解集为42<<x课后巩固1、()0,1,0log >≠>=N b b a N b 对应的指数式是( ) A 、N a b= B 、N b a= C 、b aN= D 、a b N =2、设255lg =x,则x 的值等于( )A 、10B 、0.01C 、100D 、10003、()[]0log log log 234=x ,那么21-x 等于( )A 、2B 、21 C 、4 D 、41 4、化简9log 8log 5log 4log 8543•••的结果是( ) A 、1 B 、23C 、2D 、3 5、函数()1log 21-=x y 的定义域是( )A 、()+∞,1B 、()2,∞-C 、()+∞,2D 、(]2,1 6、若09log 9log <<n m ,那么n m ,满足的条件是( )A 、1>>n mB 、1>>m nC 、10<<<m nD 、10<<<n m 7、若132log <a,则a 的取值范围是( ) A 、()+∞⎪⎭⎫ ⎝⎛,132,0Y B 、⎪⎭⎫⎝⎛+∞,32 C 、⎪⎭⎫⎝⎛1,32 D 、⎪⎭⎫ ⎝⎛+∞⎪⎭⎫ ⎝⎛,3232,0Y8、函数()176log 221+-=x x y 的值域是( )A 、RB 、[)+∞,8C 、()3,-∞-D 、[)+∞,3 9、函数⎪⎭⎫⎝⎛--=112lg x y 的图像关于( ) A 、y 轴对称 B 、x 轴对称 C 、原点对称 D 、直线x y =对称10、图中的曲线是x y a log =的图像,已知a 的值为51,103,34,2,则相应曲线4321,,,C C C C 的a 依次为( )A 、103,51,34,2 B 、51,103,34,2 C 、2,34,103,51 D 、51,103,2,3411、比较两个对数值的大小:7ln 12ln ;7.0log 5.0 8.0log 5.0. 12、计算()=•+50lg 2lg 5lg 2.13、函数()()x xx f -+=1lg2是 函数.(填“奇”、“偶”或“非奇非偶”).14、函数xa y =的反函数的图像经过点()2,9,则a 的值为 . 15、已知函数()()1log +=x x f a ,()()x x g a -=1log ()10≠>a a ,且 ⑴求函数()()x g x f +的定义域;(10分) ⑵判断函数()()x g x f +的奇偶性.(10分)16、已知log 4log 4m n <,比较m ,n 的大小。

备战高考数学复习考点知识与题型讲解14---对数与对数函数

备战高考数学复习考点知识与题型讲解14---对数与对数函数

备战高考数学复习考点知识与题型讲解第14讲对数与对数函数考向预测核心素养以比较对数函数值大小的形式考查函数的单调性;以复合函数的形式考查对数函数的图象与性质,各种题型均可能出现,中档难度.数学抽象、数学运算一、知识梳理1.对数的概念(1)定义:一般地,如果a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=log a N,其中a叫做对数的底数,N叫做真数.(2)常用对数与自然对数2.对数的运算性质如果a>0,且a≠1,M>0,N>0,那么:(1)log a(MN)=log a M+log a N.(2)log a MN=log a M-log a N.(3)log a M n =n log a M(n∈R).3.换底公式log a b=log c blog c a(a>0,且a≠1;c>0,且c≠1;b>0).4.对数函数的概念一般地,函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).5.对数函数的图象及性质a的范围0<a<1a>1图象性质定义域(0,+∞)值域R定点过定点(1,0),即x=1时,y=0单调性在(0,+∞)上是减函数在(0,+∞)上是增函数常用结论1.换底公式的三个重要结论(1)log a b=1log b a;(2)log a m b n=nmlog a b;(3)log a b·log b c·log c d=log a d. 2.对数函数的图象与底数大小的关系如图,作直线y =1,则该直线与四个函数图象交点的横坐标为相应的底数. 故0<c <d <1<a <b .由此我们可得到此规律:在第一象限内与y =1相交的对数函数从左到右底数逐渐增大.二、教材衍化1.(人A 必修第一册P 126练习T 3(2)改编)(log 43+log 83)·log 32=________. 解析:(log 43+log 83)·log 32=⎝ ⎛⎭⎪⎫lg 32lg 2+lg 33lg 2·lg 2lg 3=56. 答案:562.(人A 必修第一册P 131练习T 1改编)函数y =log 711-3x的定义域为________. 答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x <133.(人A 必修第一册P 135练习T 2改编)比较下列两个值的大小: (1)log 0.56________log 0.54; (2)log 213________log 123.答案:(1)< (2)=一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)若MN >0,则log a (MN )=log a M +log a N .( )(2)对数函数y =log a x (a >0且a ≠1)在(0,+∞)上是增函数.( ) (3)函数y =log a x 2与函数y =2log a x 是同一个函数.( ) (4)若M >N >0,则log a M >log a N .( )(5)对数函数y =log a x (a >0且a ≠1)的图象过定点(1,0),且过点(a ,1),⎝ ⎛⎭⎪⎫1a ,-1.( ) 答案:(1)× (2)× (3)× (4)× (5)√ 二、易错纠偏1.(对数函数图象不清致误)函数f (x )=log a |x |+1(0<a <1)的图象大致为( )解析:选A.由函数f (x )的解析式可确定该函数为偶函数,图象关于y 轴对称.设g (x )=log a |x |,先画出当x >0时,g (x )的图象,然后根据g (x )的图象关于y 轴对称画出x <0时g (x )的图象,最后由函数g (x )的图象向上整体平移一个单位长度即得f (x )的图象,结合图象知选A.2.(对数函数单调性不清致误)函数y =log 23(2x -1)的定义域是________________.解析:由log 23(2x -1)≥0,得0<2x -1≤1.所以12<x ≤1.所以函数y =log 23(2x -1)的定义域是⎝ ⎛⎦⎥⎤12,1.答案:⎝ ⎛⎦⎥⎤12,13.(忽视对底数的讨论致误)若log a 34<1(a >0且a ≠1),则实数a 的取值范围是________.解析:当0<a <1时,log a 34<log a a =1,所以0<a <34;当a >1时,log a 34<log a a =1,所以a >1.综上所述,实数a 的取值范围是⎝⎛⎭⎪⎫0,34∪(1,+∞). 答案:⎝ ⎛⎭⎪⎫0,34∪(1,+∞)考点一 对数式的化简与求值(自主练透)复习指导:理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数.1.计算:lg 427-lg 823+lg 75=________.解析:原式=lg 4+12lg 2-lg 7-23lg 8+lg 7+12lg 5=2lg 2+12(lg 2+lg 5)-2lg 2=12.答案:122.计算:(lg 2)2+lg 2·lg 50+lg 25=________.解析:原式=lg 2(lg 2+lg 50)+lg 25=2lg 2+lg 25=lg 4+lg 25=2. 答案:23.(2022·德州高三期中)声音大小(单位:分贝)取决于声波通过介质时,所产生的压力变化(简称声压,单位:N/m 2).已知声音大小y 与声压x 的关系式为y =10×lg ⎝ ⎛⎭⎪⎫x 2×10-52,且根据我国《城市区域环境噪音标准》规定,在居民区内,户外白昼噪声容许标准为50分贝,夜间噪声容许标准为40分贝,则在居民区内,户外白昼噪声容许标准的声压是户外夜间噪声容许标准的声压的________倍.解析:当y =50时,lg ⎝ ⎛⎭⎪⎫x 2×10-52=5,即⎝ ⎛⎭⎪⎫x 2×10-52=105,解得x =2×10-52,当y =40时,lg ⎝ ⎛⎭⎪⎫x 2×10-52=4,即⎝ ⎛⎭⎪⎫x 2×10-52=104,解得x =2×10-3,所以户外白昼噪声容许标准的声压是户外夜间噪声容许标准的声压的2×10-522×10-3=1012=10倍.答案:104.设2a =5b =m ,且1a +1b=2,则m =________.解析:由2a =5b =m 得a =log 2m ,b =log 5m , 所以1a +1b=log m 2+log m 5=log m 10.因为1a +1b=2,所以log m 10=2.所以m 2=10,所以m =10.答案:10对数式化简与求值的基本原则和方法(1)基本原则对数式的化简求值一般是正用或逆用公式,对真数进行处理,选哪种策略化简,取决于问题的实际情况,一般本着便于真数化简的原则进行.(2)两种常用的方法①“收”:将同底的两对数的和(差)收成积(商)的对数; ②“拆”:将积(商)的对数拆成同底的两对数的和(差).考点二 对数函数的图象及应用(思维发散)复习指导:理解对数函数概念,掌握对数函数图象的特征并求解有关问题.(1)(链接常用结论2)已知函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图象如图,则下列结论成立的是( )A .a >1,c >1 B.a >1,0<c <1 C .0<a <1,c >1D.0<a <1,0<c <1(2)方程4x=log a x 在⎝⎛⎦⎥⎤0,12上有解,则实数a 的取值范围为________.【解析】 (1)由该函数的图象通过第一、二、四象限知该函数为减函数,所以0<a <1;因为图象与x 轴的交点在区间(0,1)之间,所以该函数的图象是由函数y =log a x的图象向左平移不到1个单位长度后得到的,所以0<c <1.(2)若方程4x =log a x 在⎝ ⎛⎦⎥⎤0,12上有解,则函数y =4x 和函数y =log a x 在⎝ ⎛⎦⎥⎤0,12上有交点,由图象知⎩⎨⎧0<a <1,log a12≤2,解得0<a ≤22. 【答案】 (1)D (2)⎝⎛⎦⎥⎤0,22本例(2)改为若4x <log a x 在⎝⎛⎦⎥⎤0,12上恒成立,则实数a 的取值范围是________.解析:当0<x ≤12时,函数y =4x的图象在函数y =log a x 图象的下方.又当x =12时,412=2,即函数y =4x 的图象过点⎝ ⎛⎭⎪⎫12,2.把点⎝ ⎛⎭⎪⎫12,2代入y =log a x ,得a =22.若函数y =4x 的图象在函数y =log a x 图象的下方,则需22<a <1(如图所示). 当a >1时,不符合题意,舍去. 所以实数a 的取值范围是⎝ ⎛⎭⎪⎫22,1.答案:⎝ ⎛⎭⎪⎫22,1对数函数图象的识别及应用方法(1)在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.|跟踪训练|1.(2022·河北高三考试)函数y =1ln (x +1)的大致图象为( )解析:选A.当x =1时,y =1ln 2>0,排除C ,D. 当x =-12时,y =1ln12=1-ln 2<0,排除B.故选A.2.已知函数f (x )=⎩⎨⎧log 2x ,x >0,3x ,x ≤0,关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a 的取值范围是________.解析:问题等价于函数y =f (x )与y =-x +a 的图象有且只有一个交点,结合函数图象可知a >1.答案:(1,+∞)考点三 对数函数的性质及应用(多维探究)复习指导:利用对数函数的图象,探索并了解对数函数的单调性,知道指数函数y =a x 与对数函数y =log a x 互为反函数(a >0,a ≠1).角度1 单调性的应用(1)(2020·高考全国卷Ⅲ)设a =log 32,b =log 53,c =23,则( )A .a <c <b B.a <b <c C .b <c <aD.c <a <b(2)若log a (a 2+1)<log a 2a <0,则a 的取值范围是( ) A .(0,1) B.⎝⎛⎭⎪⎫0,12C.⎝ ⎛⎭⎪⎫12,1 D.(0,1)∪(1,+∞)(3)已知m =⎝ ⎛⎭⎪⎫1223,n =4x ,则log 4m =________;满足log n m >1的实数x 的取值范围是________.【解析】 (1)因为a =13log 323<13log 39=23=c ,b =13log 533>13log 525=23=c ,所以a <c <b .(2)由题意得a >0且a ≠1,故必有a 2+1>2a ,又log a (a 2+1)<log a 2a <0,所以0<a <1,同时2a >1,得a >12,所以12<a <1.(3)由于m =⎝ ⎛⎭⎪⎫1223,则log 4m =12log 2m =12log 22-23=12×⎝ ⎛⎭⎪⎫-23=-13;由于m =⎝ ⎛⎭⎪⎫1223=2-23<1,由log n m >1可得m <n <1,则⎝ ⎛⎭⎪⎫1223=2-23<22x <1,则-23<2x <0,解得-13<x <0.【答案】 (1)A (2)C (3)-13⎝ ⎛⎭⎪⎫-13,0角度2 和对数函数有关的复合函数已知函数f (x )=log 4(ax 2+2x +3). (1)若f (1)=1,求f (x )的单调区间; (2)若f (x )的最小值为0,求a 的值.【解】 (1)因为f (1)=1,所以log 4(a +5)=1,因此a +5=4,即a =-1, 所以f (x )=log 4(-x 2+2x +3).由-x 2+2x +3>0得-1<x <3,即函数f (x )的定义域为(-1,3). 令g (x )=-x 2+2x +3.则g (x )在(-1,1]上单调递增,在[1,3)上单调递减. 又y =log 4x 在(0,+∞)上单调递增,所以f (x )的单调递增区间是(-1,1],单调递减区间是[1,3).(2)若f (x )的最小值为0,则h (x )=ax 2+2x +3应有最小值1,因此应有⎩⎨⎧a >0,3a -1a=1,解得a =12.故实数a 的值为12.对数函数性质的应用利用对数函数的性质,必须弄清三方面的问题:一是定义域,所有问题都必须在定义域内讨论;二是底数与1的大小关系;三是复合函数的构成,即它是由哪些基本初等函数复合而成的.另外,解题时要注意数形结合、分类讨论、转化与化归思想的应用.|跟踪训练|1.(2022·宁夏月考)已知函数f (x )=lg(x 2-2x -3)在(a ,+∞)上单调递增,则a 的取值范围是( )A .(-∞,-1] B.(-∞,2] C .[5,+∞)D.[3,+∞)解析:选D.由题意,得x <-1或x >3,设g (x )=x 2-2x -3,根据二次函数的性质,可得函数g (x )在(3,+∞)上单调递增,根据复合函数的单调性的判定方法,可得函数f (x )的单调递增区间为(3,+∞),又由函数f (x )=lg(x 2-2x -3)在(a ,+∞)上单调递增,可得a ≥3,即实数a 的取值范围是[3,+∞).2.不等式log 2(2x +3)>log 2(5x -6)的解集为________.解析:由⎩⎨⎧2x +3>0,5x -6>0,2x +3>5x -6,解得65<x <3,故不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪65<x <3.答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪65<x <3 3.函数f (x )=log a (ax -3)在[1,3]上单调递增,则a 的取值范围是________. 解析:由于a >0,且a ≠1, 所以u =ax -3为增函数,所以若函数f (x )为增函数,则y =log a u 必为增函数, 所以a >1.又u =ax -3在[1,3]上恒为正, 所以a -3>0,即a >3. 答案:(3,+∞)4.已知函数f (x )=|log 12x |,若m <n ,有f (m )=f (n ),则m +3n 的取值范围是________.解析:因为f (x )=|log 12x |,若m <n ,有f (m )=f (n ),则0<m <1,n >1,所以log 12m=-log 12n ,所以mn =1,所以m +3n =m +3m .令h (m )=m +3m,则易知h (m )在(0,1)上单调递减.当m =1时,m +3n =4,所以m +3n >4.答案:(4,+∞)[A 基础达标]1.设a =30.7,b =⎝ ⎛⎭⎪⎫13-0.8,c =log 0.70.8,则a ,b ,c 的大小关系为( )A .a <b <c B.b <a <c C .b <c <aD.c <a <b解析:选D.由题知c =log 0.70.8<1,b =(13)-0.8=30.8,易知函数y =3x 在R 上单调递增,所以b =30.8>30.7=a >1,所以c <a <b ,故选D.2.函数y =ln1|2x -3|的图象为( )解析:选A.易知2x -3≠0,即x ≠32,排除C ,D.当x >32时,函数为减函数;当x <32时,函数为增函数,故选A.3.函数f (x )=log 12(x 2-4)的单调递增区间为( )A .(0,+∞) B.(-∞,0) C .(2,+∞)D.(-∞,-2)解析:选D.函数y =f (x )的定义域为(-∞,-2)∪(2,+∞),因为函数y =f (x )由y =log 12t 与t =g (x )=x 2-4复合而成,又y =log 12t 在(0,+∞)上单调递减,g (x )在(-∞,-2)上单调递减,所以函数y =f (x )在(-∞,-2)上单调递增.4.(2021·高考全国卷甲)青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L 和小数记录法的数据V 满足L =5+lg V .已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据约为(1010≈1.259)( )A .1.5 B.1.2 C.0.8D.0.6解析:选C.由题意知4.9=5+lg V ,得lg V =-0.1,得V =10-110≈0.8,所以该同学视力的小数记录法的数据约为0.8.5.已知函数f (x )=⎝⎛⎭⎪⎫log 12x 2+a log 12x +4,若对任意的x ∈⎣⎢⎡⎭⎪⎫14,1,f (x )≤6恒成立,则实数a 的最大值为( )A .-1 B.1 C.-2D.2解析:选A.令t =log 12x ,因为x ∈⎣⎢⎡⎭⎪⎫14,1,所以t ∈(0,2],则问题可转化为对任意的t ∈(0,2],t 2+at +4≤6恒成立,即a ≤2-t 2t=2t-t 对任意的t ∈(0,2]恒成立.因为y =2t-t 在t ∈(0,2]上单调递减,所以y min =1-2=-1,所以a ≤-1,即实数a 的最大值为-1.6.(2022·四川南充月考)已知a =213,b =⎝ ⎛⎭⎪⎫1223,则log 2(ab )=________.解析:由题意,得log 2(ab )=log 2(213·2-23)=log 22-13=-13.答案:-137.已知函数f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则m =________,n =________.解析:因为f (x )=|log 3x |=⎩⎨⎧-log 3x ,0<x <1,log 3x ,x ≥1,所以f (x )在(0,1)上单调递减,在(1,+∞)上单调递增,由0<m <n 且f (m )=f (n ),可得⎩⎨⎧0<m <1,n >1,log 3n =-log 3m ,则⎩⎨⎧0<m <1,n >1,mn =1,所以0<m 2<m <1,则f (x )在[m 2,1)上单调递减,在(1,n ]上单调递增,所以f (m 2)>f (m )=f (n ),则f (x )在[m 2,n ]上的最大值为f (m 2)=-log 3m 2=2,解得m =13,则n =3.答案:1338.(2022·甘肃平凉月考)已知a >0且a ≠1,若函数f (x )=log a (ax 2-x )在[3,4]上是减函数,则a 的取值范围是________.解析:令g (x )=ax 2-x ,当a >1时,由题意得⎩⎨⎧12a ≥4,g (4)=16a -4>0,无解,当0<a <1时,由题意得⎩⎨⎧12a ≤3,g (3)=9a -3>0,解得13<a <1,综上,实数a 的取值范围是⎝ ⎛⎭⎪⎫13,1.答案:⎝ ⎛⎭⎪⎫13,19.已知f (x )是定义在R 上的偶函数,且当x ≥0时,f (x )=log a (x +1)(a >0,且a ≠1).(1)求函数f (x )的解析式;(2)若-1<f (1)<1,求实数a 的取值范围.解:(1)当x <0时,-x >0,由题意知f (-x )=log a (-x +1),又f (x )是定义在R 上的偶函数,所以f (-x )=f (x ).所以当x <0时,f (x )=log a (-x +1),所以函数f (x )的解析式为f (x )=⎩⎨⎧log a (x +1),x ≥0,log a (-x +1),x <0.(2)因为-1<f (1)<1,所以-1<log a 2<1,所以log a1a<log a2<log aa .①当a >1时,原不等式等价于⎩⎨⎧1a <2,a >2,解得a >2;②当0<a <1时,原不等式等价于⎩⎨⎧1a >2,a <2,解得0<a <12.综上,实数a 的取值范围为⎝⎛⎭⎪⎫0,12∪(2,+∞).10.设f (x )=log a (1+x )+log a (3-x )(a >0且a ≠1),且f (1)=2. (1)求实数a 的值及f (x )的定义域; (2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,32上的最大值.解:(1)因为f (1)=2,所以log a 4=2(a >0,a ≠1),所以a =2. 由⎩⎨⎧1+x >0,3-x >0,解得-1<x <3, 所以函数f (x )的定义域为(-1,3).(2)f (x )=log 2(1+x )+log 2(3-x )=log 2[(1+x )(3-x )]=log 2[-(x -1)2+4], 所以当x ∈(-1,1]时,f (x )是增函数;当x ∈[1,3)时,f (x )是减函数,故函数f (x )在⎣⎢⎡⎦⎥⎤0,32上的最大值是f (1)=log 24=2.[B 综合应用]11.(多选)(2022·湖南长沙期末)设函数f (x )=log 12x ,下列四个命题正确的是( )A .函数f (x )为偶函数B .若f (a )=|f (b )|,其中a >0,b >0,a ≠b ,则ab =1C .函数f (-x 2+2x )在(1,2)上为单调递增函数D .若0<a <1,则|f (1+a )|>|f (1-a )|解析:选BC.A 选项,f (x )的定义域为(0,+∞),所以f (x )是非奇非偶函数,A 错误.B 选项,由于f (a )=|f (b )|,a ≠b ,a >0,b >0,所以log 12a =-log 12b ,log 12a +log 12b =0,log 12ab =0,ab =1,B 正确.C 选项,f (-x 2+2x )=log 12(-x 2+2x ),由-x 2+2x >0,解得0<x <2,又y =-x 2+2x 的开口向下,对称轴为x =1, 根据复合函数单调性同增异减可知函数f (-x 2+2x )在(1,2)上为单调递增函数,C 正确.D 选项,由于0<a <1,所以1+a >1>1-a ,所以|f (1+a )|>|f (1-a )|,则-log 12(1+a )>log 12(1-a ),即log 12(1-a )(1+a )=log 12(1-a 2)<0,由于1-a2∈(0,1),所以log1(1-a2)>0,所以|f(1+a)|>|f(1-a)|不成立,D错2误.12.(多选)已知函数f(x)=log1(2-x)-log2(x+4),则下列结论中正确的是2( )A.函数f(x)的定义域是[-4,2]B.函数y=f(x-1)是偶函数C.函数f(x)在区间[-1,2)上是减函数D.函数f(x)的图象关于直线x=-1对称解析:选BD.函数f(x)=log1(2-x)-log2(x+4)=-log2(2-x)-log2(x+4)=-2[(2-x)(4+x)],由2-x>0,x+4>0,可得-4<x<2,即函数f(x)的定义域为(-log24,2),故A错误;由y=f(x-1)=-log2[(3-x)(3+x)]=-log2(9-x2),定义域为(-3,3),显然y=f(x-1)为偶函数,B正确;由x∈[-1,2),f(-1)=-log29,f(0)=-log8知f(-1)<f(0),故C错误;y=f(x-1)为偶函数,y=f(x-1)向左平移1个2单位得y=f(x),故y=f(x)的图象关于x=-1对称,D正确,故选BD.13.若函数y=log a(x2-ax+1)有最小值,则a的取值范围是( )A.0<a<1 B.0<a<2,a≠1C.1<a<2 D.a≥2解析:选C.当a>1时,y有最小值,则说明x2-ax+1有最小值,故x2-ax+1>0中Δ<0,即a2-4<0,所以1<a<2.当0<a<1时,y有最小值,则说明x2-ax+1有最大值,与二次函数性质相互矛盾,舍去.综上可知,故选C.14.已知函数f(x)=x2+ln(|x|+1),若对于x∈[1,2],f(ax2)<f(3)恒成立,则实数a 的取值范围是________.解析:易知f (x )=x 2+ln(|x |+1)是R 上的偶函数,且在[0,+∞)上为增函数,故原问题等价于|ax 2|<3对x ∈[1,2]恒成立,即|a |<3x 2对x ∈[1,2]恒成立,所以|a |<34,解得-34<a <34.答案:⎝ ⎛⎭⎪⎫-34,34[C 素养提升]15.(2022·日照高三联考)函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x <-12,log a(2x +3),x ≥-12的值域为R ,则f ⎝ ⎛⎭⎪⎫12的取值范围是________.解析:当x <-12时,f (x )=x 2+2x =(x +1)2-1≥-1,而f (x )的值域是R ,所以当x ≥-12时,f (x )=log a (2x +3)的取值范围应包含(-∞,-1),又x ≥-12时,2x +3≥2,所以0<a ≤12.此时f ⎝ ⎛⎭⎪⎫12=log a 4∈[-2,0).答案:[-2,0)16.已知奇函数f (x )=log a b +ax1-ax (a >0且a ≠1).(1)求b 的值,并求出f (x )的定义域;(2)若存在区间[m ,n ],使得当x ∈[m ,n ]时,f (x )的取值范围为[log a 6m ,log a 6n ],求a 的取值范围.解:(1)由已知f (x )+f (-x )=0,得b =±1, 当b =-1时,f (x )=log a -1+ax 1-ax=log a (-1),舍去, 当b =1时,f (x )=log a 1+ax 1-ax ,定义域为⎝ ⎛⎭⎪⎫-1a ,1a . 故f (x )的定义域为⎝ ⎛⎭⎪⎫-1a ,1a .(2)当0<a <1时,f (x )=log a 1+ax1-ax =log a ⎝ ⎛⎭⎪⎫21-ax -1在⎝ ⎛⎭⎪⎫-1a ,1a 上单调递减.故有⎩⎪⎨⎪⎧f (m )=log a 1+am1-am =log a6n ,f (n )=log a 1+an 1-an =log a 6m ,而y =1+ax1-ax =21-ax -1在⎝ ⎛⎭⎪⎫-1a ,1a 上单调递增,所以1+am1-am <1+an1-an ,又6m <6n 与⎩⎪⎨⎪⎧1+am1-am =6n ,1+an1-an =6m矛盾,故a >1,所以⎩⎪⎨⎪⎧f (m )=log a 1+am1-am=log a 6m ,f (n )=log a 1+an 1-an =log a 6n .故方程1+ax1-ax =6x 在⎝ ⎛⎭⎪⎫-1a ,1a 上有两个不等实根,即6ax 2+(a -6)x +1=0在⎝ ⎛⎭⎪⎫-1a ,1a 上有两个不等实根. 设g (x )=6ax 2+(a -6)x +1(a >1),则⎩⎪⎪⎨⎪⎪⎧Δ=(a -6)2-24a >0,-1a <-a -612a <1a,g ⎝ ⎛⎭⎪⎫-1a =12a >0,g ⎝ ⎛⎭⎪⎫1a =2>0,化简得⎩⎨⎧a 2-36a +36>0,0<a <18, 解得0<a <18-122,又a >1,故1<a <18-12 2. 所以a 的取值范围是(1,18-122).。

对数与对数运算知识点及例题解析

对数与对数运算知识点及例题解析

对数与对数运算知识点及例题解析1、对数的定义①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>. 2、以10为底的对数叫做常用对数,log 10N 记作lg N .3、以无理数e=2.718 28…为底的对数称为自然对数,logeN 记作ln N4、对数的性质: (1)log 10,log 1a a a ==(2)对数恒等式①a log aN =N ;②log a a N =N (a >0,且a ≠1).5、对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN +=②减法:log log log a a a M M N N-= ③数乘:log log ()na a n M M n R =∈⑤log a m M n =n mlog a M . ⑥换底公式:log log (0,1)log b a b NN b b a=>≠且特殊情形:log a b =1log b a,推广log a b ·log b c ·log c d =log a d .类型一、指数式与对数式互化及其应用例1、将下列指数式与对数式互化:(1);(2);(3);(4);(5);(6).思路点拨:运用对数的定义进行互化. 解:(1);(2);(3);(4);(5);(6).例2、求下列各式中x 的值:(1) (2) (3)lg100=x (4)思路点拨:将对数式化为指数式,再利用指数幂的运算性质求出x.解:(1);(2);(3)10x =100=102,于是x=2; (4)由例3、若x=log43,则(2x-2-x)2等于( )A.94B.54C.103D.43解由x=log43,得4x=3,即2x=3,2-x=33,所以(2x-2-x)2=⎝⎛⎭⎪⎫2332=43.类型二、利用对数恒等式化简求值例4、求值:解:.总结升华:对数恒等式中要注意格式:①它们是同底的;②指数中含有对数形式;③其值为真数例5、求的值(a,b,c∈R+,且不等于1,N>0)思路点拨:将幂指数中的乘积关系转化为幂的幂,再进行运算.解:.类型三、积、商、幂的对数例6、已知lg2=a,lg3=b,用a、b表示下列各式.(1)lg9 (2)lg64 (3)lg6 (4)lg12 (5)lg5 (6) lg15解:(1)原式=lg32=2lg3=2b(2)原式=lg26=6lg2=6a(3)原式=lg2+lg3=a+b(4)原式=lg22+lg3=2a+b(5)原式=1-lg2=1-a(6)原式=lg3+lg5=lg3+1-lg2=1+b-a例7、(1) (2)lg2·lg50+(lg5)2 (3)lg25+lg2·lg50+(lg2)2解:(1)(2)原式=lg2(1+lg5)+(lg5)2=lg2+lg2lg5+(lg5)2=lg2+lg5(lg2+lg5)=lg2+lg5=1(3)原式=2lg5+lg2(1+lg5)+(lg2)2=2lg5+lg2+lg2lg5+(lg2)2=1+lg5+lg2(lg5+lg2)=1+lg5+lg2=2.例8、已知3a=5b=c,,求c的值.解:由3a=c得:同理可得.例9、设a、b、c为正数,且满足a2+b2=c2.求证:.证明:.例10、已知:a2+b2=7ab,a>0,b>0. 求证:.证明:∵a2+b2=7ab,∴a2+2ab+b2=9ab,即(a+b)2=9ab,∴lg(a+b)2=lg(9ab),∵a>0,b>0,∴2lg(a+b)=lg9+lga+lgb ∴2[lg(a+b)-lg3]=lga+lgb即 .类型四、换底公式的运用例11、(1)已知log x y=a,用a表示;(2)已知log a x=m,log b x=n,log c x=p,求log abc x.解:(1)原式=;(2)思路点拨:将条件和结论中的底化为同底.方法一:a m=x,b n=x,c p=x,;方法二:.例12、求值:(1);(2);(3).解:(1)(2);(3)法一:法二:.总结升华:运用换底公式时,理论上换成以大于0不为1任意数为底均可,但具体到每一个题,一般以题中某个对数的底为标准,或都换成以10为底的常用对数也可.类型五、对数运算法则的应用例13、求值(1) log89·log2732(2)(3)(4)(log2125+log425+log85)(log1258+log254+log52)解:(1)原式=.(2)原式=(3)原式=(4)原式=(log2125+log425+log85)(log1258+log254+log52)例14、已知:log23=a,log37=b,求:log4256=?解:∵∴,。

对数与对数函数知识点与例题讲解

对数与对数函数知识点与例题讲解

对数与对数函数知识点与例题讲解知识梳理: 一、对数1、定义:一般地,如果()0,1x a N a a =>≠,那么实数x 叫做以a 为底N 的对数,记作a x log N =,其中a 叫做对数的底数,N 叫做对数的真数.2、特殊对数⑴通常以10为底的对数叫做常用对数,并把10log N 记为lgN ; ⑵通常以e 为底的对数叫做自然对数,并把e log N 记为lnN . 3、对数的运算⑴运算性质:如果0,1,0,0a a M N >≠>>且,那么:①()a a a log MN log M log N =+;②a a a Mlog log M log N N=-;③()n a a log M nlog M n R =∈;④(),0m na a n log M log M n R m m=∈≠;⑤1a b log b log a =;⑥a log N a N =.⑵换底公式:c a c log blog b log a=.二、对数函数1、定义:一般地,函数()01a y log x a a =>≠,且叫做对数函数,其中x 是自变量,函数的定义域是()0,+∞.2、图像和性质1>a10<<a图像性质定义域: 值域:过定点 ,即当1=x 时,0=y在R 上是在R 上是非奇非偶函数3、同底的指数函数xa y =与对数函数x y a log =互为反函数,它们的图像关于直线x y =对称.【课前小测】1、2193-⎛⎫= ⎪⎝⎭写成对数式,正确的是( )A 、9123log =- B 、1392log =- C 、()1329log -= D 、()9123log -= 2、函数()0,1a y log x a a =>≠的图像过定点( )A 、()1,1B 、()1,0C 、()0,1D 、()0,0 3、49343log 等于( ) A 、7 B 、2 C 、23 D 、324、函数()()31f x lg x =+的定义域是( )A 、1,3⎛⎫-+∞ ⎪⎝⎭ B 、()0,+∞ C 、(),0-∞ D 、1,3⎛⎫-∞- ⎪⎝⎭5、函数()21f x log x =+的定义域是( )A 、(),-∞+∞B 、()0,+∞C 、1,2⎡⎫+∞⎪⎢⎣⎭D 、10,2⎛⎤ ⎥⎝⎦考点一、化简和求值例1、⑴552log 10log 0.25+=( ) A 、0 B 、1 C 、2 D 、4 解析:2log 510+log 50.25=log 5100+log 50.25=log 525=2 ⑵计算:3948(log 2log 2)(log 3log 3)+⋅+. 解:原式lg 2lg 2lg3lg3lg 2lg 2lg3lg3()()()()lg3lg9lg 4lg8lg32lg32lg 23lg 2=+⋅+=+⋅+3lg 25lg 352lg 36lg 24=⋅=. 变式、⑴(辽宁卷文10)设25abm +=,且112a b+=,则m =( ) A 、10 B 、10 C 、20 D 、100 ⑵已知32a=,用a 表示33log 4log 6-;⑶已知3log 2a =,35b=,用a 、b 表示 30log 3.考点二、比较大小例2、较下列比较下列各组数中两个值的大小:⑴6log 7,7log 6; ⑵3log π,2log 0.8; ⑶0.91.1, 1.1log 0.9,0.7log 0.8; ⑷5log 3,6log 3,7log 3. 答案:⑴>;⑵>;⑶>,>;⑷>,>.变式、⑴已知函数()|lg |f x x =,若11a b c>>>,则()f a 、()f b 、()f c 从小到大依次为 ;a c b <<⑵已知log 4log 4m n <,比较m ,n 的大小. 解:∵log 4log 4m n <, ∴4411log log m n <,当1m >,1n >时,得44110log log m n<<,∴44log log n m <, ∴1m n >>.当01m <<,01n <<时,得44110log log m n<<,∴44log log n m <, ∴01n m <<<.当01m <<,1n >时,得4log 0m <,40log n <, ∴01m <<,1n >, ∴01m n <<<.综上所述,m ,n 的大小关系为1m n >>或01n m <<<或01m n <<<. 考点三、解与对数相关的不等式 例3、⑴解不等式2)1(log 3≥--x x .解:原不等式等价于⎪⎩⎪⎨⎧-≥->->-2)3(11301x x x x 或⎪⎩⎪⎨⎧-≤-<-<>-2)3(113001x x x x解之得:4<x ≤5 ∴原不等式的解集为{x |4<x ≤5}⑵解关于x 的不等式:)1,0(,2log )12(log )34(log 2≠>>---+a a x x x a a a . 解:原不等式可化为)12(2log )34(log 2->-+x x x a a当a >1时有221234121)12(23403401222<<⇒⎪⎪⎩⎪⎪⎨⎧<<-<<->⇒⎪⎩⎪⎨⎧->-+>-+>-x x x x x x x x x x(其实中间一个不等式可省,为什么?让学生思考)当0<a <1时有42234121)12(23403401222<<⇒⎪⎪⎩⎪⎪⎨⎧>-<<<->⇒⎪⎩⎪⎨⎧-<-+>-+>-x x x x x x x x x x x 或∴当a >1时不等式的解集为221<<x ;当0<a <1时不等式的解集为42<<x ⑶解不等式24log ax x xxa > 解:两边取以a 为底的对数:当0<a <1时原不等式化为:2log 29)(log 2-<x x a a ∴0)1log 2)(4(log <--x x a a ,4log 21<<x a , ∴a x a <<4 当a >1时原不等式化为:2log 29)(log 2->x x a a ∴0)1log 2)(4(log >--x x a a ,∴ 21log 4log <>x x a a 或 ,∴a x a x <<>04或 ∴原不等式的解集为}10,|{4<<<<a a x a x 或}1,0|{4><<>a a x a x x 或考点四、对数型函数的性质 ① 定义域、值域例4、⑴函数2()lg(31)f x x ++的定义域是( ) A 、1(,)3-+∞ B 、1(,1)3- C 、11(,)33- D 、1(,)3-∞-⑵函数(21)log x y -= )A 、()2,11,3⎛⎫+∞⎪⎝⎭B 、()1,11,2⎛⎫+∞ ⎪⎝⎭C 、2,3⎛⎫+∞⎪⎝⎭ D 、1,2⎛⎫+∞ ⎪⎝⎭⑶函数()()2log 31xf x =+的值域为( )A 、()0,+∞B 、[)0,+∞C 、()1,+∞D 、[)1,+∞ 变式、求函数y =的定义域.② 单调性、奇偶性例5、⑴函数y =log 3(x 2-2x )的单调减区间是________. 解: 令u =x 2-2x ,则y =log 3u . ∵y =log 3u是增函数,u =x 2-2x >0的减区间是(-∞,0),∴y =log 3(x 2-2x )的减区间是(-∞,0).⑵设0<a <1,函数f (x )=log a (a 2x -2a x -2),则使f (x )<0的x 的取值范围是( ) A 、(-∞,0) B 、(0,+∞) C 、(-∞,log a 3)D 、(log a 3,+∞)解:由f (x )<0,即a 2x -2a x -2>1,整理得(a x -3)(a x +1)>0,则a x >3.∴x <log a 3. ⑶函数y =log 22-x2+x 的图象( )A 、关于原点对称B 、关于直线y =-x 对称C 、关于y 轴对称D 、关于直线y =x 对称解:∵f (x )=log 22-x 2+x ,∴f (-x )=log 22+x 2-x =-log 22-x2+x∴f (-x )=-f (x ),∴f (x )是奇函数.故选A .变式、⑴若011log 22<++aa a,则a 的取值范围是( ) A 、),21(+∞ B 、),1(+∞ C 、)1,21( D 、)21,0(⑵若02log )1(log 2<<+a a a a ,则a 的取值范围是 .⑶若函数)2(log )(22a x x x f a ++= 是奇函数,则a = .③综合应用例6、设函数f (x )=log a ⎝⎛⎭⎫1-ax ,其中0<a <1. ⑴证明:f (x )是(a ,+∞)上的减函数; ⑵解不等式f (x )>1.解析:⑴证明:设0<a <x 1<x 2,g (x )=1-ax ,则g (x 1)-g (x 2)=1-a x 1-1+a x 2=a (x 1-x 2)x 1x 2<0,∴g (x 1)<g (x 2).又∵0<a <1,∴f (x 1)>f (x 2). ∴f (x )在(a ,+∞)上是减函数.⑵∵log a ⎝⎛⎭⎫1-a x >1,∴0<1-ax <a ,解得:⎩⎪⎨⎪⎧x >a ,x <a 1-a ,∴不等式的解集为:{x |a <x <a1-a}.变式、已知函数22()log (32)f x x x =+-.⑴求函数()f x 的定义域;⑵求证()f x 在(1,3)x ∈上是减函数;⑶求函数()f x 的值域. 随堂巩固1、6632log log +等于( )A 、6B 、5C 、1D 、65log 2、在()23a b log -=中,实数a 的取值范围是( )A 、2a <B 、2a >C 、23,3a a <<>或D 、3a > 3、下列格式中成立的是( )A 、22a a log b log b = B 、a a a log xy log x log y =+C 、()()()a a a log xy log x log y =•D 、a a a xlog log y log x y=- 4、213alog > ,则a 的取值范围是( ) A 、312a <<B 、30112a a <<<<或C 、213a <<D 、2013a a <<>或 5、已知ab M =()0,0,1a b M >>≠,且log M b x =,则log M a 等于( ) A 、1x - B 、1x + C 、1xD 、1x - 6、(08山东济宁)已知8log 9a =,2log 5b =,则lg 3等于( ) A 、1ab - B 、()321a b - C 、()321a b + D 、()312a b -7、已知函数()()32f x lg x =+的定义域为F ,函数()()()12g x lg x lg x =-+-的定义域为G ,那么( )A 、G F ≠⊂B 、G F =C 、F G ⊆D 、FG =∅8、(08山东)已知函数()2300x x f x log x x ⎧≤=⎨>⎩,,,12f f ⎡⎤⎛⎫ ⎪⎢⎥⎝⎭⎣⎦( ) A 、1- B、log CD 、139、若()6430log log log x =⎡⎤⎣⎦,则12x -等于( )A 、9B 、91C 、3D 、3310、若M =⋅32log 4log 3log 3132 ,则M 的值是( ) A 、5 B 、6 C 、7 D 、8 11、已知3log 2a =,那么33log 82log 6-用a 表示是( )A 、2a -B 、5a -C 、23(1)a a -+ D 、231a a -- 12、已知偶函数()x f 在[]4,2上单调递减,那么)8(log 21f 与)(π-f 的大小关系是( )A 、)8(log 21f >)(π-f B 、)8(log 21f =)(π-fC 、)8(log 21f < )(π-f D 、不能确定13、若312log 19x-=,则x = ; 14、已知:lg 21.3a =,则lg0.213=___________;15、()2211log log 1a a x x -->+,则a 的取值范围为________________; 16、比较大小⑴8.1log 3 7.2log 3;⑵5log 6 7log 6; 17、若14log 3=x ,则=+-xx44___________;18、已知log 1a x =,log 2b x =,log 4c x =,则log abc x =____________; 19、(08山东) 知()lg lg 2lg 2x y x y +=-,求的值.20、⑴已知a =2lg ,b =3lg ,试用b a 、表示5log 12;⑵已知a =3log 2,b =7log 3,试用b a 、表示56log 14.21、已知())lgf x x =.⑴求()f x 的定义域; ⑵求证:()f x 是奇函数.22、解关于x 的不等式:)1,0(,2log )12(log )34(log 2≠>>---+a a x x x a a a 解:原不等式可化为)12(2log )34(log 2->-+x x x a a当a >1时有221234121)12(23403401222<<⇒⎪⎪⎩⎪⎪⎨⎧<<-<<->⇒⎪⎩⎪⎨⎧->-+>-+>-x x x x x x x x x x当0<a <1时有42234121)12(23403401222<<⇒⎪⎪⎩⎪⎪⎨⎧>-<<<->⇒⎪⎩⎪⎨⎧-<-+>-+>-x x x x x x x x x x x 或∴ 当a >1时不等式的解集为221<<x ; 当0<a <1时不等式的解集为42<<x课后巩固1、()0,1,0log >≠>=N b b a N b 对应的指数式是( )A 、N a b =B 、N b a =C 、b a N= D 、a b N =2、设255lg =x,则x 的值等于( )A 、10B 、0.01C 、100D 、1000 3、()[]0log log log 234=x ,那么21-x等于( )A 、2B 、21C 、4D 、414、化简9log 8log 5log 4log 8543•••的结果是( ) A 、1 B 、23C 、2D 、3 5、函数()1log 21-=x y 的定义域是( )A 、()+∞,1B 、()2,∞-C 、()+∞,2D 、(]2,1 6、若09log 9log <<n m ,那么n m ,满足的条件是( )A 、1>>n mB 、1>>m nC 、10<<<m nD 、10<<<n m7、若132log <a ,则a 的取值范围是( )A 、()+∞⎪⎭⎫ ⎝⎛,132,0B 、⎪⎭⎫ ⎝⎛+∞,32C 、⎪⎭⎫⎝⎛1,32 D 、⎪⎭⎫ ⎝⎛+∞⎪⎭⎫ ⎝⎛,3232,08、函数()176log 221+-=x x y 的值域是( )A 、RB 、[)+∞,8C 、()3,-∞-D 、[)+∞,39、函数⎪⎭⎫⎝⎛--=112lg x y 的图像关于( ) A 、y 轴对称 B 、x 轴对称 C 、原点对称 D 、直线x y =对称 10、图中的曲线是x y a log =的图像,已知a 的值为51,103,34,2,则相应曲线4321,,,C C C C 的a 依次为( )A 、103,51,34,2B 、51,103,34,2C 、2,34,103,51D 、51,103,2,3411、比较两个对数值的大小:7ln 12ln ;7.0log 5.0 8.0log 5.0. 12、计算()=•+50lg 2lg 5lg 2.13、函数()()x xx f -+=1lg2是 函数.(填“奇”、“偶”或“非奇非偶”).14、函数xa y =的反函数的图像经过点()2,9,则a 的值为 . 15、已知函数()()1log +=x x f a ,()()x x g a -=1log ()10≠>a a ,且 ⑴求函数()()x g x f +的定义域;(10分) ⑵判断函数()()x g x f +的奇偶性.(10分)16、已知log 4log 4m n <,比较m ,n 的大小。

专题09 对数与对数函数(重难点突破)原卷版附答案.pdf

专题09 对数与对数函数(重难点突破)原卷版附答案.pdf

ab 2b
2
.
11
(2). 求下列函数的定义域: 1
(1)f(x)=lg(x-2)+x-3;(2)f(x)=log(x+1)(16-4x). 【解析】 (1)要使函数有意义,需满足Error!解得 x>2 且 x≠3, 所以函数定义域为(2,3)∪(3,+∞). (2)要使函数有意义,需满足Error!解得-1<x<0 或 0<x<4, 所以函数定义域为(-1,0)∪(0,4).
底数,N 叫做真数.
重难点二 对数的性质、换底公式与运算性质
(1)对数的性质:①alogaN=N;②logaab=b(a>0,且 a≠1). (2)对数的运算法则
如果 a>0 且 a≠1,M>0,N>0,那么 ①loga(MN)=logaM+logaN;
M ②loga N =logaM-logaN;
B. y ln(2 x) C. y ln(1 x)
D.
3
y ln(2 x)
(3).函数 f(x)=ax-b 的图象如图所示,其中 a,b 为常数,则下列结论正确的是( )
A.a>1,b<0
B.a>1,b>0
C.0<a<1,b>0
D.0<a<1,b<0
(4).当 a>1 时,在同一坐标系中,函数 y=a-x 与 y=logax 的图象为( )
例 2 求下列函数的定义域:
1
1
(1)f(x)=
;(2)f(x)= +ln(x+1);
1
2-x
log x+1
2
1
1
【解析】(1)要使函数 f(x)有意义,则 log x+1>0,即 log x>-1,解得 0<x<2,即函数 f(x)的定义

对数与对数函数知识点及例题讲解

对数与对数函数知识点及例题讲解

对数与对数函数1.对数(1)对数的定义:如果a b =N (a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作log a N =b . (2)指数式与对数式的关系:a b =N log a N =b (a >0,a ≠1,N >0).两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化. (3)对数运算性质: ①log a (MN )=log a M +log a N . ②log a NM =log a M -log a N .③log a M n =n log a M .(M >0,N >0,a >0,a ≠1) ④对数换底公式:log b N =bNa a log log (a >0,a ≠1,b >0,b ≠1,N >0).2.对数函数(1)对数函数的定义函数y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1对数函数的底数为什么要大于0且不为1呢?在一个普通对数式里 a<0,或=1 的时候是会有相应b 的值的。

但是,根据对数定义: log a a=1;如果a=1或=0那么log a a 就可以等于一切实数(比如log 1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:log a M^n = nlog a M 如果a<0,那么这个等式两边就不会成立 (比如,log (-2) 4^(-2) 就不等于(-2)*log (-2) 4;一个等于1/16,另一个等于-1/16) (2)对数函数的图象x y> Oxy<a <y = l o g x a 111()) x 轴对称.(3)对数函数的性质: ①定义域:(0,+∞). ②值域:R .③过点(1,0),即当x =1时,y =0.④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数.基础例题1.函数f (x )=|log 2x |的图象是11xy y y y OA BC D解析:f (x )=⎩⎨⎧<<-≥.10,log ,1,log 22x x x x答案:A2.若f -1(x )为函数f (x )=lg (x +1)的反函数,则f -1(x )的值域为___________________.解析:f -1(x )的值域为f (x )=lg (x +1)的定义域.由f (x )=lg (x +1)的定义域为(-1,+∞),∴f -1(x )的值域为(-1,+∞). 答案:(-1,+∞)3.已知f (x )的定义域为[0,1],则函数y =f [log 21(3-x )]的定义域是__________.解析:由0≤log 21(3-x )≤1⇒log 211≤log 21(3-x )≤log 2121⇒21≤3-x ≤1⇒2≤x ≤25. 答案:[2,25]4.若log x 7y =z ,则x 、y 、z 之间满足A.y 7=x zB.y =x 7zC.y =7x zD.y =z x解析:由log x 7y =z ⇒x z =7y ⇒x 7z=y ,即y =x 7z . 答案:B5.已知1<m <n ,令a =(log n m )2,b =log n m 2,c =log n (log n m ),则A.a <b <cB.a <c <bC.b <a <cD.c <a <b解析:∵1<m <n ,∴0<log n m <1. ∴log n (log n m )<0. 答案:D6.若函数f (x )=log a x (0<a <1)在区间[a ,2a ]上的最大值是最小值的3倍,则a 等于 A.42B.22C.41D.21解析:∵0<a <1,∴f (x )=log a x 是减函数.∴log a a =3·log a 2a . ∴log a 2a =31.∴1+log a 2=31.∴log a 2=-32.∴a =42. 答案:A7.函数y =log 2|ax -1|(a ≠0)的对称轴方程是x =-2,那么a 等于A.21B.-21C.2D.-2解析:y =log 2|ax -1|=log 2|a (x -a1)|,对称轴为x =a1,由a1=-2 得a =-21. 答案:B注意:此题还可用特殊值法解决,如利用f (0)=f (-4), 可得0=log 2|-4a -1|.∴|4a +1|=1.∴4a +1=1或4a +1=-1. ∵a ≠0,∴a =-21.8.函数f (x )=log 2|x |,g (x )=-x 2+2,则f (x )·g (x )的图象只可能是xyxyx yxyABC D解析:∵f (x )与g (x )都是偶函数,∴f (x )·g (x )也是偶函数,由此可排除A 、D.又由x →+∞时,f (x )·g (x )→-∞,可排除B. 答案:C9.设f -1(x )是f (x )=log 2(x +1)的反函数,若[1+ f -1(a )][1+ f -1(b )]=8,则f (a +b )的值为 A.1B.2C.3D.log 23解析:∵f -1(x )=2x -1,∴[1+ f -1(a )][1+ f -1(b )]=2a ·2b =2a +b .由已知2a +b =8,∴a +b =3. 答案:C10.方程lg x +lg (x +3)=1的解x =___________________. 解析:由lg x +lg (x +3)=1,得x (x +3)=10,x 2+3x -10=0. ∴x =-5或x =2.∵x >0,∴x =2. 答案:2典型例题【例1】 已知函数f (x )=⎪⎩⎪⎨⎧<+≥,4),1(,4,)21(x x f x x则f (2+log 23)的值为 A.31B.61C.121D.241剖析:∵3<2+log 23<4,3+log 23>4, ∴f (2+log 23)=f (3+log 23)=(21)3+log 23=241. 答案:D【例2】 求函数y =log 2|x |的定义域,并画出它的图象,指出它的单调区间. 解:∵|x |>0,∴函数的定义域是{x |x ∈R 且x ≠0}.显然y =log 2|x |是偶函数,它的图象关于y 轴对称.又知当x >0时,y =log 2|x |⇔y =log 2x .故可画出y =log 2|x |的图象如下图.由图象易见,其递减区间是(-∞,0),递增区间是(0,+∞).1-1O xy注意:研究函数的性质时,利用图象会更直观.【例3】 已知f (x )=log 31[3-(x -1)2],求f (x )的值域及单调区间.解:∵真数3-(x -1)2≤3,∴log 31[3-(x -1)2]≥log 313=-1,即f (x )的值域是[-1,+∞).又3-(x-1)2>0,得1-3<x <1+3,∴x ∈(1-3,1]时,3-(x -1)2单调递增,从而f (x )单调递减;x ∈[1,1+3)时,f (x )单调递增.注意:讨论复合函数的单调性要注意定义域.【例4】已知y =log a (3-ax )在[0,2]上是x 的减函数,求a 的取值范围. 解:∵a >0且a ≠1,∴t =3-ax 为减函数.依题意a >1,又t =3-ax 在[0,2]上应有t >0,∴3-2a >0.∴a <23.故1<a <23.【例5】设函数f (x )=lg (1-x ),g (x )=lg (1+x ),在f (x )和 g (x )的公共定义域内比较|f (x )|与|g (x )|的大小. 解:f (x )、g (x )的公共定义域为(-1,1). |f (x )|-|g (x )|=|lg (1-x )|-|lg (1+x )|.(1)当0<x <1时,|lg (1-x )|-|lg (1+x )|=-lg (1-x 2)>0; (2)当x =0时,|lg (1-x )|-|lg (1+x )|=0;(3)当-1<x <0时,|lg (1-x )|-|lg (1+x )|=lg (1-x 2)<0. 综上所述,当0<x <1时,|f (x )|>|g (x )|;当x =0时,|f (x )|=|g (x )|;当-1<x <0时,|f (x )|<|g (x )|. 【例6】 求函数y =2lg (x -2)-lg (x -3)的最小值.解:定义域为x >3,原函数为y =lg 3)2(2--x x .又∵3)2(2--x x =3442-+-x x x =31)3(2)3(2-+-+-x x x =(x -3)+31-x +2≥4,∴当x =4时,y min =lg4.【例7】 (2003年北京宣武第二次模拟考试)在f 1(x )=x 21,f 2(x )=x 2,f 3(x )=2x ,f 4(x )=log 21x 四个函数中,x 1>x 2>1时,能使21[f (x 1)+f (x 2)]<f (221x x +)成立的函数是A.f 1(x )=x 21B.f 2(x )=x 2C.f 3(x )=2xD.f 4(x )=log 21x解析:由图形可直观得到:只有f 1(x )=x 21为“上凸”的函数. 答案:A探究创新1.若f (x )=x 2-x +b ,且f (log 2a )=b ,log 2[f (a )]=2(a ≠1). (1)求f (log 2x )的最小值及对应的x 值;(2)x 取何值时,f (log 2x )>f (1)且log 2[f (x )]<f (1)? 解:(1)∵f (x )=x 2-x +b ,∴f (log 2a )=log 22a -log 2a +b . 由已知有log 22a -log 2a +b =b ,∴(log 2a -1)log 2a =0. ∵a ≠1,∴log 2a =1.∴a =2.又log 2[f (a )]=2,∴f (a )=4. ∴a 2-a +b =4,b =4-a 2+a =2.故f (x )=x 2-x +2, 从而f (log 2x )=log 22x -log 2x +2=(log 2x -21)2+47.∴当log 2x =21即x =2时,f (log 2x )有最小值47. (2)由题意⎪⎩⎪⎨⎧<+->+-2)2(log 22log log 22222x x x x ⇒⎩⎨⎧<<-<<>⇒21102x x x 或0<x <1. 2.已知函数f (x )=3x +k (k 为常数),A (-2k ,2)是函数y = f -1(x )图象上的点.(1)求实数k 的值及函数f -1(x )的解析式;(2)将y = f -1(x )的图象按向量a =(3,0)平移,得到函数 y =g (x )的图象,若2 f -1(x +m -3)-g (x )≥1恒成立,试求实数m 的取值范围.解:(1)∵A (-2k ,2)是函数y = f -1(x )图象上的点, ∴B (2,-2k )是函数y =f (x )上的点.∴-2k =32+k .∴k =-3. ∴f (x )=3x -3.∴y = f -1(x )=log 3(x +3)(x >-3). (2)将y = f -1(x )的图象按向量a =(3,0)平移,得到函数 y =g (x )=log 3x (x >0),要使2 f -1(x +m -3)-g (x )≥1恒成立,即使2log 3(x +m )-log 3x ≥1恒成立,所以有x +xm +2m ≥3在x >0时恒成立,只要(x +xm +2m )min ≥3.又x +xm ≥2m (当且仅当x =xm ,即x =m 时等号成立),∴(x +xm +2m )min =4m ,即4m ≥3.∴m ≥169.小结1.对数的底数和真数应满足的条件是求解对数问题时必须予以特别重视的.2.比较几个数的大小是对数函数性质应用的常见题型.在具体比较时,可以首先将它们与零比较,分出正负;正数通常都再与1比较分出大于1还是小于1,然后在各类中间两两相比较.3.在给定条件下,求字母的取值范围是常见题型,要重视不等式知识及函数单调性在这类问题上的应用.。

对数及对数函数 知识点总结及典例

对数及对数函数 知识点总结及典例

对数及对数函数一.知识梳理 (一).对数的概念①定义:如果)1,0(≠>a a a 且的b 次幂等于N ,就是ba = N ,那么数b 称以a 为底N 的对数,记作log a N = b 其中a 称对数的底,N 称真数。

1)以10为底的对数称常用对数,N 10log 记作N lg ;2)以无理数)71828.2( =e e 为底的对数称自然对数,log e N ,记作N ln ;3)指数式与对数式的互化 ba = N ⇔log a N =b ②基本性质:1)真数N 为正数(负数和零无对数);2)log 10a =;3)1log =a a ;4)对数恒等式:N a Na =log 。

③运算性质:如果,0,0,0,0>>≠>N M a a 则 1)N M MN a a a log log )(log +=; 2)N M N M a a a log log log -=;3)∈=n M n M a na (log log R )。

④换底公式:),0,1,0,0,0(log log log >≠>≠>=N m m a a aNN m m a1)1log log =⋅a b b a ;2)b mnb a na m log log =。

(二)对数函数1、对数函数的概念:函数0(log >=a x y a ,且)1≠a 叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).2三.【例1】比较下列各组数的大小:(1)3log 2与()23log 3x x -+(2) 1.1log 0.7与 1.2log 0.7(3)32log 3与56log 5【变式训练1】比较大小:4.0lg 4.0log 4.0log 4.0log 3211.0【变式训练2】已知01a <<,log log 0a a m n <<,则( ).A 1n m << .B 1m n << .C 1m n << .D 1n m <<【例2】下列指数式与对数式互化不正确的一组是 ( ) A 、0lg11100==与 B 、3131log 31272731-==-与 C 、39921log 213==与 D 、5515log 15==与【变式训练1】.若()125log -=-x,则x 的值为 ( )A 、25-B 、25+C 、2525+-或D 、52- 【变式训练2】.若()log lg ,x ______x ==20则【变式训练3】=-+7log 3log 49log 212121 。

高中数学对数和对数函数知识点与例题讲解

高中数学对数和对数函数知识点与例题讲解

对数与对数函数1.对数(1)对数的定义:如果a b=N(a>0,a≠1),那么b叫做以a为底N的对数,记作logaN=b.(2)指数式与对数式的关系:a b=NlogaN=b(a>0,a≠1,N>0).两个式子表示的a、b、N三个数之间的关系是一样的,并且可以互化.(3)对数运算性质:①log a(MN)=log a M+log a N.②log aMN=log a M-log a N.③logaM n=nlogaM.(M>0,N>0,a>0,a≠1)④对数换底公式:logbN= l oglogaaNb(a>0,a≠1,b>0,b≠1,N>0).2.对数函数(1)对数函数的定义函数y=log a x(a>0,a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1对数函数的底数为什么要大于0且不为1呢?在一个普通对数式里a<0,或=1的时候是会有相应b的值的。

但是,根据对数定义:log a a=1;如果a=1或=0那么log a a就可以等于一切实数(比如log11也可以等于2,3,4,5,等等)第二,根据定义运算公式:log a M^n=nlogaM如果a<0,那么这个等式两边就不会成立(比如,log(-2)4^(-2)就不等于(-2)*log(-2)4;一个等于1/16,另一个等于-1/16)(2)对数函数的图象yyy =l ogxa>(1)a1O1xOxy =l o g a x (<a <1) 0底数互为倒数的两个对数函数的图象关于x 轴对称. (3)对数函数的性质: ①定义域:(0,+∞). ②值域:R.③过点(1,0),即当x=1时,y=0.④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数.基础例题题型1(对数的计算) 1.求下列各式的值. (1)35 log +25log2-1 21 50log - 514 log ;(2)log5 2 1 25 ×lo g 3 1 8 ×lo g 5 1 9. 练习题1.计算:lg 1 2 -lg5 8 +lg12.5-log 89·log 278;3.log535+21log2-log51502 -log514;3.log2125×log318×log519.1loglog4log3 4.399222.5.lg5lg2lg41(6).log24lglog27lg2log33222 7.2lg2lg3111lg0.36lg823例2.已知实数x、y、z满足3x=4y=6z>1.(1)求证:2x+1y=2z;(2)试比较3x、4y、6z的大小.练习题.已知log189=a,18b=5,用a、b表示log3645.题型二:(对数函数定义域值域问题)例1.已知函数fxlog22xx1aax的定义域为集合A,关于x的不等式22 的解集为B,若AB,求实数a的取值范围.2.设函数2ylog(ax2x2)定义域为A.2(1)若AR,求实数a的取值范围;(2)若2log(ax2x2)2在x[1,2]上恒成立,求实数a的取值范围.2练习题1.已知函数2 fxlgax2x1(1)若fx的定义域是R,求实数a的取值范围及fx的值域;(2)若fx的值域是R,求实数a的取值范围及fx的定义域2求函数y=2lg (x -2)-lg (x -3)的最小值.题型三(奇偶性及性) 例题1.已知定义域为R 的函数f (x )为奇函数足f(x +2)=-f(x),当x ∈[0,1]时,f(x)=2x -1.(1)求f(x)在[-1,0)上的解析式; (2)求f(1 log24)的值. 2 4.已知f (x )=l o g 1[3-(x -1)2],求f (x )的值域.3 5.已知y =l o g a (3-a x )在[0,2]上是x 的减函数,求a 的围.4.已知函数f(x)lg(2x)lg(2x).(Ⅰ)求函数yf(x)的定义域;(Ⅱ)判断函数yf(x)的奇偶性;(Ⅲ)若f(m2)f(m),求m的取值范围.练习题1.已知函数f(x)=loga(x+1)-loga(1-x)(a>0,a≠1)(1)求f(x)的定义域;(2)判断f(x)的奇偶性,并给出证明;(3)当a>1时,求使f(x)>0的x的取值范围2.函数f(x)是定义在R上的偶函数,f(0)0,当x0时,1f(x)logx.2 (1)求函数f(x)的解析式;(2)解不等式2f(x1)2;3.已知f(x)是定义在R上的偶函数,且x0时,1f(x)log(x1).2 (Ⅰ)求f(0),f(1);(Ⅱ)求函数f(x)的表达式;(Ⅲ)若f(a1)1,求a的取值范围.题型4(函数图像问题)例题1.函数f(x)=|log2x|的图象是yy111x-11xOOAByy111x1xOOCD6.求函数y=log2|x|的定义域,并画出它的图象,指出它的单调区间.f(x)=|lgx|,a,b为实数,且0<a<b.(1)求方程f(x)=1的解;(2)若a,b满足f(a)=f(b)=2fa b2,求证:a·b=1,a b2 >1.练习题:1.已知a0且a1,函数f(x)log(x1)a,1g(x)log a,记F(x)2f(x)g(x)1x(1)求函数F(x)的定义域及其零点;(2)若关于x的方程2 F2.已知函数f(x)=log4(4x+1)+kx(k∈R)是偶函数.(1)求k的值;(2)设g(x)=log44xa?237.函数y=log2|ax-1|(a≠0)的对称轴方程是x=-2,那么a等于题型五:函数方程1方程lgx+lg(x+3)=1的解x=___________________.5.已知函数f(x)= 1()2x,x4,则f(2+log23)的值为f(x1),x4,4.已知函数f(x)log a(axx)(a0,a1为常数). (Ⅰ)求函数f(x)的定义域;(Ⅱ)若a2,x1,9,求函数f(x)的值域;(Ⅲ)若函数f(x)ya的图像恒在直线y2x1的上方,求实数a的取值范围.1xxyloglog(2x8).5.已知函数22242(Ⅰ)令tlog2x,求y关于t的函数关系式及t的取值范围;(Ⅱ)求函数的值域,并求函数取得最小值时的x的值.8.设函数f(x)=lg(1-x),g(x)=lg(1+x),在f(x)和g(x)的公共定义域内比较|f(x)|与|g(x)|的大小.您好,欢迎您阅读我的文章,本WORD文档可编辑修改,也可以直接打印。

2025高考数学必刷题 第10讲、对数与对数函数(学生版)

2025高考数学必刷题  第10讲、对数与对数函数(学生版)

第10讲对数与对数函数知识梳理1、对数式的运算(1)对数的定义:一般地,如果(0x a N a =>且1)a ≠,那么数x 叫做以a 为底N 的对数,记作log a x N =,读作以a 为底N 的对数,其中a 叫做对数的底数,N 叫做真数.(2)常见对数:①一般对数:以(0a a >且1)a ≠为底,记为log Na ,读作以a 为底N 的对数;②常用对数:以10为底,记为lg N ;③自然对数:以e 为底,记为ln N ;(3)对数的性质和运算法则:①1log 0a =;log 1a a =;其中0a >且1a ≠;②log Na a N =(其中0a >且1a ≠,0N >);③对数换底公式:log log log c a c bb a=;④log ()log log a a a MN M N =+;⑤log log log aa a MM N N=-;⑥log log (m na a nb b m m=,)n R ∈;⑦log a b a b =和log b a a b =;⑧1log log a b b a=;2、对数函数的定义及图像(1)对数函数的定义:函数log a y x =(0a >且1)a ≠叫做对数函数.对数函数的图象1a >01a <<图象性质定义域:(0)+∞,值域:R过定点(10),,即1x =时,0y =在(0)+∞,上增函数在(0)+∞,上是减函数当01x <<时,0y<,当1x≥时,0y ≥当01x <<时,0y >,当1x ≥时,0y ≤【解题方法总结】1、对数函数常用技巧在同一坐标系内,当1a >时,随a 的增大,对数函数的图象愈靠近x 轴;当01a <<时,对数函数的图象随a 的增大而远离x 轴.(见下图)必考题型全归纳题型一:对数运算及对数方程、对数不等式【例1】(2024·四川成都·成都七中校考模拟预测)1ln3411e812-+=______.【对点训练1】(2024·辽宁沈阳·沈阳二中校考模拟预测)已知lg 2a b +=-,10b a =,则=a ______.【对点训练2】(2024·上海徐汇·位育中学校考模拟预测)方程()2lg(2)lg 3x x -=-的解集为________.【对点训练3】(2024·山东淄博·统考二模)设0,0p q >>,满足()469log log log 2p q p q ==+,则pq=__________.【对点训练4】(2024·天津南开·统考二模)计算34223log 32log 9log log 64⋅-+的值为______.【对点训练5】(2024·全国·高三专题练习)若14log 2a =,145b =,用a ,b 表示35log 28=____________【对点训练6】(2024·上海·高三校联考阶段练习)若123==a b m ,且112a b-=,则m =__________.【对点训练7】(2024·全国·高三专题练习)()()()226622lg 3lg 2log 3log 2lg 3lg 2⋅+++=____________;【对点训练8】(2024·全国·高三专题练习)解关于x 的不等式2)l g (o 24x x <-解集为_____.【对点训练9】(2024·上海杨浦·高三上海市杨浦高级中学校考开学考试)已知函数()f x 是定义在R 上的奇函数,当0x >时,()2log f x x =,则()2f x ≥-的解集是__________.【对点训练10】(2024·上海浦东新·高三华师大二附中校考阶段练习)方程42log 17x x +=的解为_________.【解题方法总结】对数的有关运算问题要注意公式的顺用、逆用、变形用等.对数方程或对数不等式问题是要将其化为同底,利用对数单调性去掉对数符号,转化为不含对数的问题,但这里必须注意对数的真数为正.题型二:对数函数的图像【例2】(2024·全国·高三专题练习)已知函数()log a y x b =+(a ,b 为常数,其中0a >且1a ≠)的图象如图所示,则下列结论正确的是()A .0.5a =,2b =B .2a =,2b =C .0.5a =,0.5b =D .2a =,0.5b =【对点训练11】(2024·全国·高三专题练习)函数()log (1)2a f x x =-+的图象恒过定点()A .(2,2)B .(2,1)C .(3,2)D .(2,0)【对点训练12】(2024·北京·统考模拟预测)已知函数()()22log 1f x x x =--,则不等式()0f x <的解集为()A .()(),12,-∞+∞B .()()0,12,⋃+∞C .()1,2D .()1,+∞【对点训练13】(2024·北京·高三统考学业考试)将函数2log y x =的图象向上平移1个单位长度,得到函数()y f x =的图象,则()f x =()A .()2log 1x +B .21log x +C .()2log 1x -D .21log x-+【对点训练14】(2024·北京海淀·清华附中校考模拟预测)不等式32log (1)(2)0x x x --->的解集为__________.【对点训练15】(多选题)(2024·全国·高三专题练习)当102x <≤时,4log xa x ≤,则a 的值可以为()AB .2C D 【解题方法总结】研究和讨论题中所涉及的函数图像是解决有关函数问题最重要的思路和方法.图像问题是数和形结合的护体解释.它为研究函数问题提供了思维方向.题型三:对数函数的性质(单调性、最值(值域))【例3】(2024·全国·高三专题练习)已知函数3()log (1)f x ax =-,若()f x 在(,1]-∞上为减函数,则a 的取值范围为()A .(0,)+∞B .(0,1)C .(1,2)D .(,1)-∞【对点训练16】(2024·新疆阿勒泰·统考三模)正数,a b 满足2224log log a bb a -=-,则a与2b 大小关系为______.【对点训练17】(2024·全国·高三专题练习)已知函数()()log 0,1a f x x a a =>≠在[]1,4上的最大值是2,则a 等于_________【对点训练18】(2024·全国·高三专题练习)若函数()log a f x x =(0a >且1a ≠)在1,42⎡⎤⎢⎥⎣⎦上的最大值为2,最小值为m ,函数()(32g x m =+[0,)+∞上是增函数,则a m -的值是____________.【对点训练19】(2024·全国·高三专题练习)若函数2()log (1)a f x x ax =-+有最小值,则a的取值范围是______.【对点训练20】(2024·河南·校联考模拟预测)写出一个同时具有下列性质①②③的函数:()f x =_____.①()()()1212f x x f x f x =+;②当,()0x ∈+∞时,()f x 单调递减;③()f x 为偶函数.【对点训练21】(2024·重庆渝中·高三重庆巴蜀中学校考阶段练习)函数()214log 2y x x =--的单调递区间为()A .1,2⎛⎫-∞ ⎪⎝⎭B .(),1-∞-C .1,2⎛⎫+∞ ⎪⎝⎭D .()2,+∞【对点训练22】(2024·陕西宝鸡·统考二模)已知函数()()lg lg 2f x x x =+-,则()A .()f x 在()0,1单调递减,在()1,2单调递增B .()f x 在()0,2单调递减C .()f x 的图像关于直线1x =对称D .()f x 有最小值,但无最大值【对点训练23】(2024·全国·高三专题练习)若函数2,1,()2log ,1x a a x f x a x x ⎧+≤=⎨+>⎩在R 上单调,则a 的取值范围是()A .()0,1B .[2,)+∞C .10,(2,)2⎛⎫+∞ ⎪⎝⎭D .()0,1[2,)⋃+∞【解题方法总结】研究和讨论题中所涉及的函数性质是解决有关函数问题最重要的思路和方法.性质问题是数和形结合的护体解释.它为研究函数问题提供了思维方向.题型四:对数函数中的恒成立问题【例4】(2024·全国·高三专题练习)已知函数()29x f x x+=,()2log g x x a =+,若存在[]13,4x ∈,任意[]24,8x ∈,使得()()12f x g x ≥,则实数a 的取值范围是___________.【对点训练24】(2024·全国·高三专题练习)若1,22x ⎡⎤∀∈⎢⎥⎣⎦,不等式2122log 0x x x ax -+<恒成立,则实数a 的取值范围为___________.【对点训练25】(2024·全国·高三专题练习)已知函数2()23=-+f x x x ,2()log g x x m =+,对任意的1x ,2[1x ∈,4]有12()()f x g x >恒成立,则实数m 的取值范围是___________.【对点训练26】(2024·全国·高三专题练习)已知函数()()2223,log f x x x g x x m =-+=+,若对[][]122,4,16,32x x ∀∈∃∈,使得()()12f x g x ,则实数m 的取值范围为___________.【对点训练27】(2024·全国·高三专题练习)已知函数()()()2log 2log 30,1a a f x x x a a =++>≠.(1)若()32f =,求a 的值;(2)若对任意的[]8,12x ∈,()6f x >恒成立,求a 的取值范围.【对点训练28】(2024·全国·高三专题练习)已知2()32log f x x =-,2()log g x x =.(1)当[]1,4x ∈时,求函数[]()1()y f x g x =+⋅的值域;(2)对任意12,2n n x +⎡⎤∈⎣⎦,其中常数n N ∈,不等式()2()f x f kg x ⋅>恒成立,求实数k的取值范围.【解题方法总结】(1)利用数形结合思想,结合对数函数的图像求解;(2)分离自变量与参变量,利用等价转化思想,转化为函数的最值问题.(3)涉及不等式恒成立问题,将给定不等式等价转化,借助同构思想构造函数,利用导数探求函数单调性、最值是解决问题的关键.题型五:对数函数的综合问题【例5】(多选题)(2024·湖北·黄冈中学校联考模拟预测)已知1a >,1b >,21a aa =-,2log 1bb b =-,则以下结论正确的是()A .22log aa b b+=+B .21112log ab+=C .2a b -<-D .4a b +>【对点训练29】(2024·海南海口·统考模拟预测)已知正实数m ,n 满足:ln e ln m n n n m =-,则nm的最小值为______.【对点训练30】(多选题)(2024·广东惠州·统考一模)若62,63a b ==,则()A .1ba>B .14ab <C .2212+<a b D .15b a ->【对点训练31】(2024·河南·高三信阳高中校联考阶段练习)已知1x ,2x 分别是方程e 3x x +=和ln 3x x +=的根,若12x x a b +=+,实数a ,0b >,则271b ab+的最小值为()A .1B .73C .679D .2【对点训练32】(2024·全国·高三专题练习)若1x 满足25x x =-,2x 满足2log 5x x +=,则12x x +等于()A .2B .3C .4D .5【对点训练33】(2024·全国·高三专题练习)已知1x 是方程32x x ⋅=的根,2x 是方程3log 2x x ⋅=的根,则12x x ⋅的值为()A .2B .3C .6D .10。

对数函数知识点及典型例题

对数函数知识点及典型例题
解:先证明 (x)是单调函数.设-1<x <x <1,则
( x )- ( x ) = lg + -lg - = lg + ,
∵-1<x <x <1,∴ x -x >0, 1-x >1-x >0,1 + x >1 + x >0,
∴ >1, >0,即 ( x )- ( x )>0,
∴函数 (x)是单调递减函数.
(3) lg - lg +lg .
解:(1)方法一 利用对数定义求值
设 =x, 则(2+ )x=2- = =(2+ )-1,∴x=-1.
方法二 利用对数的运算性质求解
= = (2+ )-1=-1.
(2)原式=lg (2lg +lg5)+ =lg (lg2+lg5)+|lg -1|
=lg +(1-lg )=1.
⑴当-4<a<0时, <0,恒有g(x)>0,函数y的定义域为R,又y与g(x)单调性一致.所以在(-∞, ]上,y单调递减;在[ ,+∞)上,y单调递增;
⑵当a=-4时, = 0,y = lg(x + 1) ,其定义域为{x | x≠-1,x∈R},
∴在(-∞,-1)上y单调递减;在(-1,+∞)上,y单调递增;
⑶当a= 0时, = 0,y = lg(x-1) ,其定义域为{x | x≠1,x∈R},
∴在(-∞,1)上y单调递减;在(1,+∞)上,y单调递增;
⑷当a<-4或a>0时, >0,函数的定义域为:
(-∞, )∪( ,+∞).
∴在(-∞, )上,y单调递减;在( ,+∞)上,y单调递增.
例7 已知函数 (x) = lg + ,x∈(-1,1 ),问y = (x) 的图象上是否存在两个不同的点A、B,使AB⊥y轴,若存在,求A、B的坐标,若不存在,说明理由.

高中数学对数与对数函数知识点及经典例题讲解

高中数学对数与对数函数知识点及经典例题讲解

对数与对数函数1.对数(1)对数的定义:如果a b =N (a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作log a N =b .(2)指数式与对数式的关系:a b =N log a N =b (a >0,a ≠1,N >0).两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化.(3)对数运算性质:①log a (MN )=log a M +log a N .②log a =log a M -log a N .NM ③log a M n =n log a M .(M >0,N >0,a >0,a ≠1)④对数换底公式:log b N =(a >0,a ≠1,b >0,b ≠1,N >0).bN a a log log 2.对数函数(1)对数函数的定义函数y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1在一个普通对数式里 a<0,或=1 的时候是会有相应b 的值的。

但是,根据对数定义: log a a=1;如果a=1或=0那么log a a 就可以等于一切实数(比如log 1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:log a M^n = nlog a M 如果a<0,那么这个等式两边就不会成立 (比如,log (-2) 4^(-2) 就不等于(-2)*log (-2) 4;一个等于1/16,另一个等于-1/16)(2)对数函数的图象11))底数互为倒数的两个对数函数的图象关于x 轴对称.(3)对数函数的性质:①定义域:(0,+∞).②值域:R .③过点(1,0),即当x =1时,y =0.④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数.基础例题1.函数f (x )=|log 2x |的图象是?2.若f-1(x )为函数f (x )=lg (x +1)的反函数,则f-1(x )的值域为___________________.3.已知f (x )的定义域为[0,1],则函数y =f [log(3-x )]的定21义域是__________.4.若log x =z ,则x 、y 、z 之间满足7y A.y 7=x z B.y =x 7z C.y =7x zD.y =z x5.已知1<m <n ,令a =(log n m )2,b =log n m 2,c =log n (log n m ),则A.a <b <cB.a <c <bC.b <a <cD.c <a <b6.若函数f (x )=log a x (0<a <1)在区间[a ,2a ]上的最大值是最小值的3倍,则a 等于A.B.C. D.422241217.函数y =log 2|ax -1|(a ≠0)的对称轴方程是x =-2,那么a 等于 (x=-2非解)A.B.-C.2D.-221218.函数f (x )=log 2|x |,g (x )=-x 2+2,则f (x )·g (x )的图象只可能是AB9.设f-1(x )是f (x )=log 2(x +1)的反函数,若[1+ f-1(a )][1+ f -1(b )]=8,则f (a +b )的值为A.1B.2C.3D.log 2310.方程lg x +lg (x +3)=1的解x =___________________.典型例题【例1】 已知函数f (x )=则f (2+log 23)的值为⎪⎩⎪⎨⎧<+≥,4),1(,4,21(x x f x xA.B.C.D.3161121241【例2】 求函数y =log 2|x |的定义域,并画出它的图象,指出它的单调区间.【例3】已知f (x )=log [3-(x -1)2],求f (x )的值域及单31调区间.【例4】已知y =log a (3-ax )在[0,2]上是x 的减函数,求a 的取值范围.【例5】设函数f (x )=lg (1-x ),g (x )=lg (1+x ),在f (x )和g (x )的公共定义域内比较|f (x )|与|g (x )|的大小.【例6】 求函数y =2lg (x -2)-lg (x -3)的最小值.【例7】 在f 1(x )=x ,f 2(x )=x 2,f 3(x )=2x ,f 4(x )=log x 四2121个函数中,x 1>x 2>1时,能使[f (x 1)+f (x 2)]<f ()成21221x x 立的函数是A.f 1(x )=x(平方作差比较)B.f 2(x )21=x 2C.f3(x)=2xD.f4(x)=log x12探究创新1.若f(x)=x2-x+b,且f(log2a)=b,log2[f(a)]=2(a≠1).(1)求f(log2x)的最小值及对应的x值;(2)x取何值时,f(log2x)>f(1)且log2[f(x)]<f(1)?2.已知函数f(x)=3x+k(k为常数),A(-2k,2)是函数y=f -1(x)图象上的点.(1)求实数k的值及函数f-1(x)的解析式;(2)将y= f-1(x)的图象按向量a=(3,0)平移,得到函数y=g(x)的图象,若2f-1(x+-3)-g(x)≥1恒成立,试求m实数m的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对数与对数函数1.对数(1)对数的定义:如果a b =N (a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作log a N =b . (2)指数式与对数式的关系:a b =N log a N =b (a >0,a ≠1,N >0).两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化.(3)对数运算性质: ①log a (MN )=log a M +log a N . ②log a NM =log a M -log a N .③log a M n =n log a M .(M >0,N >0,a >0,a ≠1) ④对数换底公式:log b N =bNa a log log (a >0,a ≠1,b >0,b ≠1,N >0).2.对数函数(1)对数函数的定义函数y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1对数函数的底数为什么要大于0且不为1呢?在一个普通对数式里 a<0,或=1 的时候是会有相应b 的值的。

但是,根据对数定义: log a a=1;如果a=1或=0那么log a a 就可以等于一切实数(比如log 1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:log a M^n = nlog a M 如果a<0,那么这个等式两边就不会成立 (比如,log (-2) 4^(-2) 就不等于(-2)*log (-2) 4;一个等于1/16,另一个等于-1/16)(2)对数函数的图象x y> Oxy<a <y = l o g x a 111()) x 轴对称. (3)对数函数的性质: ①定义域:(0,+∞). ②值域:R .③过点(1,0),即当x =1时,y =0.④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数.基础例题1.函数f (x )=|log 2x |的图象是11xy y y y OA BC D解析:f (x )=⎩⎨⎧<<-≥.10,log ,1,log 22x x x x答案:A2.若f -1(x )为函数f (x )=lg (x +1)的反函数,则f -1(x )的值域为___________________.解析:f -1(x )的值域为f (x )=lg (x +1)的定义域.由f (x )=lg (x +1)的定义域为(-1,+∞),∴f -1(x )的值域为(-1,+∞). 答案:(-1,+∞)3.已知f (x )的定义域为[0,1],则函数y =f [log 21(3-x )]的定义域是__________.解析:由0≤log 21(3-x )≤1⇒log 211≤log 21(3-x )≤log 2121⇒21≤3-x ≤1⇒2≤x ≤25. 答案:[2,25]4.若log x 7y =z ,则x 、y 、z 之间满足A.y 7=x zB.y =x 7zC.y =7x zD.y =z x解析:由log x 7y =z ⇒x z =7y ⇒x 7z=y ,即y =x 7z . 答案:B5.已知1<m <n ,令a =(log n m )2,b =log n m 2,c =log n (log n m ),则A.a <b <cB.a <c <bC.b <a <cD.c <a <b解析:∵1<m <n ,∴0<log n m <1. ∴log n (log n m )<0. 答案:D6.若函数f (x )=log a x (0<a <1)在区间[a ,2a ]上的最大值是最小值的3倍,则a 等于 A.42 B.22C.41D.21解析:∵0<a <1,∴f (x )=log a x 是减函数.∴log a a =3·log a 2a . ∴log a 2a =31.∴1+log a 2=31.∴log a 2=-32.∴a =42. 答案:A7.函数y =log 2|ax -1|(a ≠0)的对称轴方程是x =-2,那么a 等于 A.21B.-21C.2D.-2解析:y =log 2|ax -1|=log 2|a (x -a1)|,对称轴为x =a1,由a1=-2 得a =-21. 答案:B注意:此题还可用特殊值法解决,如利用f (0)=f (-4), 可得0=log 2|-4a -1|.∴|4a +1|=1.∴4a +1=1或4a +1=-1. ∵a ≠0,∴a =-21.8.函数f (x )=log 2|x |,g (x )=-x 2+2,则f (x )·g (x )的图象只可能是xyxyx yxyABC D解析:∵f (x )与g (x )都是偶函数,∴f (x )·g (x )也是偶函数,由此可排除A 、D.又由x →+∞时,f (x )·g (x )→-∞,可排除B. 答案:C9.设f -1(x )是f (x )=log 2(x +1)的反函数,若[1+ f -1(a )][1+ f -1(b )]=8,则f (a +b )的值为 A.1B.2C.3D.log 23解析:∵f -1(x )=2x -1,∴[1+ f -1(a )][1+ f -1(b )]=2a ·2b =2a +b .由已知2a +b =8,∴a +b =3. 答案:C 10.方程lg x +lg (x +3)=1的解x =___________________. 解析:由lg x +lg (x +3)=1,得x (x +3)=10,x 2+3x -10=0. ∴x =-5或x =2.∵x >0,∴x =2. 答案:2典型例题【例1】 已知函数f (x )=⎪⎩⎪⎨⎧<+≥,4),1(,4,)21(x x f x x则f (2+log 23)的值为 A.31B.61C.121D.241剖析:∵3<2+log 23<4,3+log 23>4, ∴f (2+log 23)=f (3+log 23)=(21)3+log 23=241. 答案:D【例2】 求函数y =log 2|x |的定义域,并画出它的图象,指出它的单调区间.解:∵|x |>0,∴函数的定义域是{x |x ∈R 且x ≠0}.显然y =log 2|x |是偶函数,它的图象关于y 轴对称.又知当x >0时,y =log 2|x |⇔y =log 2x .故可画出y =log 2|x |的图象如下图.由图象易见,其递减区间是(-∞,0),递增区间是(0,+∞).1-1O xy注意:研究函数的性质时,利用图象会更直观.【例3】 已知f (x )=log 31[3-(x -1)2],求f (x )的值域及单调区间.解:∵真数3-(x -1)2≤3,∴log 31[3-(x -1)2]≥log 313=-1,即f (x )的值域是[-1,+∞).又3-(x -1)2>0,得1-3<x <1+3,∴x ∈(1-3,1]时,3-(x -1)2单调递增,从而f (x )单调递减;x ∈[1,1+3)时,f (x )单调递增.注意:讨论复合函数的单调性要注意定义域.【例4】已知y =log a (3-ax )在[0,2]上是x 的减函数,求a 的取值范围.解:∵a >0且a ≠1,∴t =3-ax 为减函数.依题意a >1,又t =3-ax 在[0,2]上应有t >0,∴3-2a >0.∴a <23.故1<a <23.【例5】设函数f (x )=lg (1-x ),g (x )=lg (1+x ),在f (x )和 g (x )的公共定义域内比较|f (x )|与|g (x )|的大小. 解:f (x )、g (x )的公共定义域为(-1,1). |f (x )|-|g (x )|=|lg (1-x )|-|lg (1+x )|.(1)当0<x <1时,|lg (1-x )|-|lg (1+x )|=-lg (1-x 2)>0; (2)当x =0时,|lg (1-x )|-|lg (1+x )|=0;(3)当-1<x <0时,|lg (1-x )|-|lg (1+x )|=lg (1-x 2)<0. 综上所述,当0<x <1时,|f (x )|>|g (x )|;当x =0时,|f (x )|=|g (x )|;当-1<x <0时,|f (x )|<|g (x )|.【例6】 求函数y =2lg (x -2)-lg (x -3)的最小值.解:定义域为x >3,原函数为y =lg 3)2(2--x x .又∵3)2(2--x x =3442-+-x x x =31)3(2)3(2-+-+-x x x =(x -3)+31-x +2≥4,∴当x =4时,y min =lg4.【例7】 (2003年北京宣武第二次模拟考试)在f 1(x )=x 21,f 2(x )=x 2,f 3(x )=2x ,f 4(x )=log 21x 四个函数中,x 1>x 2>1时,能使21[f(x 1)+f (x 2)]<f (221x x +)成立的函数是 A.f 1(x )=x 21B.f 2(x )=x 2C.f 3(x )=2xD.f 4(x )=log 21x解析:由图形可直观得到:只有f 1(x )=x 21为“上凸”的函数. 答案:A探究创新1.若f (x )=x 2-x +b ,且f (log 2a )=b ,log 2[f (a )]=2(a ≠1). (1)求f (log 2x )的最小值及对应的x 值;(2)x 取何值时,f (log 2x )>f (1)且log 2[f (x )]<f (1)? 解:(1)∵f (x )=x 2-x +b ,∴f (log 2a )=log 22a -log 2a +b . 由已知有log 22a -log 2a +b =b ,∴(log 2a -1)log 2a =0. ∵a ≠1,∴log 2a =1.∴a =2.又log 2[f (a )]=2,∴f (a )=4.∴a 2-a +b =4,b =4-a 2+a =2.故f (x )=x 2-x +2, 从而f (log 2x )=log 22x -log 2x +2=(log 2x -21)2+47.∴当log 2x =21即x =2时,f (log 2x )有最小值47. (2)由题意⎪⎩⎪⎨⎧<+->+-2)2(log 22log log 22222x x x x ⇒⎩⎨⎧<<-<<>⇒21102x x x 或0<x <1. 2.已知函数f (x )=3x +k (k 为常数),A (-2k ,2)是函数y = f -1(x )图象上的点.(1)求实数k 的值及函数f -1(x )的解析式;(2)将y = f -1(x )的图象按向量a =(3,0)平移,得到函数 y =g (x )的图象,若2 f -1(x +m -3)-g (x )≥1恒成立,试求实数m 的取值范围.解:(1)∵A (-2k ,2)是函数y = f -1(x )图象上的点, ∴B (2,-2k )是函数y =f (x )上的点.∴-2k =32+k .∴k =-3. ∴f (x )=3x -3.∴y = f -1(x )=log 3(x +3)(x >-3).(2)将y = f -1(x )的图象按向量a =(3,0)平移,得到函数 y =g (x )=log 3x (x >0),要使2 f -1(x +m -3)-g (x )≥1恒成立,即使2log 3(x +m )-log 3x ≥1恒成立,所以有x +xm +2m ≥3在x >0时恒成立,只要(x +xm +2m )min ≥3.又x +xm ≥2m (当且仅当x =xm ,即x =m 时等号成立),∴(x +xm +2m )min =4m ,即4m ≥3.∴m ≥169.小结1.对数的底数和真数应满足的条件是求解对数问题时必须予以特别重视的.2.比较几个数的大小是对数函数性质应用的常见题型.在具体比较时,可以首先将它们与零比较,分出正负;正数通常都再与1比较分出大于1还是小于1,然后在各类中间两两相比较.3.在给定条件下,求字母的取值范围是常见题型,要重视不等式知识及函数单调性在这类问题上的应用.。

相关文档
最新文档