十字交叉法

合集下载

十字交叉法

十字交叉法
• 例:实验测得CO与氧气的混合气体的密度 是氢气的14.5倍。可知其中CO的质量分数 为( ) • A.25.0% B.27.6% C.72.4% D.75.0% CO 28 3 • 29 • O2 32 1 •
所得为物质的量之比
n n
质量分数:
28 3 100 % 72 .4% 28 3 32 1
0.78 192.22
1.22
• 0.78:1.22 = 39:61 • 答案选A
两种溶液(同溶质)相混合,已知两溶液及混合 溶液中溶质的质量分数,求两溶液的质量比: • 例4.将密度为1.84g/cm3,质量分数为98%的浓 硫酸与水配制成30%的稀溶液,应怎么配制? 浓硫酸 98
30 水 0 68 即取15份质量的浓硫酸与34份质量的水混 合得此稀硫酸。
十字交叉法
.已知氢气和氮气的混合气体其平均相
对分子质量为24,求氮气和氢气的体积 比。
解: N2 H2 28 24 22 11 2
4 V(N2 ) : V(H2) = n(N2 ) : n(H2)= 11 : 2
2
答:混合气体中N2 和H2的体积比11 :2 。
十字交叉法的应用与例析:
• 例1:实验测得乙烯与氧气的混合气体的密度 是氢气的14.5倍。可知其中乙烯的质量分数为 ( ) • A.25.0% B.27.6% C.72.4% D.75.0% • C2H4 28 3 • 29 • O2 32 1 • 再求质量分数即可得C选项
90 80
86
6
4
所以得90分的人数和得80分人数 比为3:2
.十字交叉法的常见形式:
• 组分1 a • 混合物 • 组分2 b
c-b
C

十字交叉法

十字交叉法

1 是混合物中NaCl和MgCl2 达到题给所述要求所含Cl 物质的量之比,要想迅 2 1 速求出混合物中NaCl和MgCl2的物质的量之比,需在2之前乘以 ,把NaCl 2 和MgCl2 所含Cl 物质的量之比转化为NaCl和MgCl2的物质的量之比,则: n( NaCl) n( MgCl2 ) 1 ,据此求出原混合物中氯化钠质量为58 .5克。 1 1 2 2 1
解析:此题涉及反应:
CO2 NaOH NaHCO3 CO2 2 NaOH Na2 CO3 H2 O
(1)若以与 1 mol NaOH反应为前提,NaOH即为基准物质。与1 mol NaOH
反应生成NaHCO3 需CO2 1 mol;与1 mol NaOH反应生成Na 2 CO3 需CO2 0.5 mol; 与1 mol NaOH反应生成混合物消耗CO2 0.8 mol,则有:
2、实验测得乙烯与氧气混合气体的密度是氢气 的14.5倍,可知其中乙烯的质量百分比为( ) A、25.0% B、27.6% C、72.4% D、75.0%
3、已知白磷和氧气可发生如下反应:P4 +3O2 = P4O6 , P4 +5O2 = P4O10 在某一密闭容器中加入62g白磷和 50.4L氧气(标准状况), 使之恰好完全反应, 所得到的 P4O10 与P4O6 的物质的量之比为( ) A、1∶3 B、3∶2 C、3∶1 D、1∶1 4、由CO2、H2和CO 组成的混合气在同温同压下与氮 气的密度相同。则该混合气体中CO2、H2和CO的体积 比为( ) A、29∶8∶13 B、22∶1∶14 C、13∶8∶29 D、26∶16∶57
FeO 7/9
1/2 FeBr2 7/27 5/18 15 Nhomakorabea13/54

溶液的十字交叉法解释

溶液的十字交叉法解释

溶液的十字交叉法解释
溶液的十字交叉法解释:
十字交叉法是进行二组混合物平均量与组分计算的一种简便方法。

凡可按M1·n1+M2·n2=M·n计算的问题,均可按十字交叉法计算。

式中,M表示某混合物的平均量,M1,M2则表示两组分对应的量。

如M表示平均相对分子质量,M1,M2则表示两组分各自的相对分子质量,n1,n2表示两组分在混合物中所占的份额,n1:n2在大多数情况下表示两组分的物质的量之比;
有时也可以是两组分的质量之比,判断时关键看n1,n2表示混合物中什么物理量的份额,如物质的量、物质的量分数、体积分数,则n1:n2表示两组分的物质的量之比;如质量、质量分数、元素质量百分含量,则n1:n2表示两组分的质量之比。

十字交叉法的原理及其应用

十字交叉法的原理及其应用

十字交叉法的原理及其应用一、原理介绍十字交叉法(Cross Impact Matrix)是一种定量分析方法,用于评估不同事件或因素之间的相互影响关系。

该方法通过构建矩阵模型来量化不同变量之间的交叉影响,从而帮助决策者更好地理解复杂系统中的相互作用和潜在结果。

在十字交叉法中,我们将需要考虑的因素或事件定义为行和列,通过一个交叉矩阵来展现它们之间的关系。

交叉矩阵中的每个单元格都代表着相应行和列代表的因素之间的交叉影响程度,常用数字来表示。

通过分析交叉矩阵,我们可以评估每个因素对于其他因素的影响程度,并最终得出相互作用的影响结构。

二、应用场景十字交叉法可以应用于各个领域的决策分析和预测,下面列举了几个主要应用场景:1.风险管理:在风险管理过程中,我们可以使用十字交叉法来评估不同的风险因素之间的相互影响。

通过分析交叉矩阵,我们可以了解不同风险因素之间的潜在关联,并根据这些关联来制定相应的风险管理策略。

2.市场分析:在市场分析中,我们可以利用十字交叉法来评估市场因素对于产品或服务销售的潜在影响。

通过分析交叉矩阵,我们可以了解到不同市场因素之间的交互作用,从而更好地了解市场发展趋势,并制定相应的市场推广策略。

3.项目管理:在项目管理中,我们可以使用十字交叉法来评估项目中的不同因素之间的相互关系。

通过分析交叉矩阵,我们可以了解到不同因素之间的关联,从而更好地规划和管理项目,降低风险。

4.政策制定:在政策制定过程中,我们可以使用十字交叉法来评估不同政策因素之间的相互影响。

通过分析交叉矩阵,我们可以了解到不同政策因素之间的潜在关系,并制定更有效的政策。

三、具体步骤使用十字交叉法进行分析时,可以按照以下步骤进行:1.确定需要评估的因素或事件:首先,确定需要评估的因素或事件,并明确它们之间的关系。

2.构建交叉矩阵:在纸上或电子表格中,构建一个交叉矩阵。

将需要评估的因素或事件作为行和列,并在每个单元格中留出空间。

3.评估交叉影响程度:对于每个单元格,评估行和列代表的因素之间的交叉影响程度。

数学之十字交叉法

数学之十字交叉法

如果题目中给出两个平行的情况A, B, 满足条件a, b ; 然后A和B 按照某种条件混合在一起形成的情况C, 满足条件c. 而且可以表示成如下的表达式. 那么这个时候就可以用十字交叉法.判断式: A*a+B*b=(A+B)*c=C*c用十字交叉法表示:A a c-bc A/B=(c-b)/(a-c).B b a-c我们常见利用十字交叉法的情形有: 溶液混合问题, 增长率问题, 收益率问题, 平均数问题等.【例1】一杯含盐15%的盐水200克,要使盐水含盐20%,应加盐()克。

A.14.5B.10C.12.5D.15【解析】假设加盐x克, 15%的盐水200克, 100%的盐x克, 混合成20%的200+x.满足:15%*200+100%*x=20%*(200+x),所以可以用十字交叉法.20015% 100%-20%20% , 200/x= (100%-20%)/(20%-15%)=80/5x 100% 20%-15%解出x=12.5克.【例2】一块试验田,以前这块地所种植的是普通水稻。

现在将该试验田的1/3种上超级水稻,收割时发现该试验田水稻总产量是以前总产量的1. 5倍。

如果普通水稻的产量不变,则超级水稻的平均产量与普通水稻的平均产量之比是()。

A.5∶2B. 4∶3C. 3∶1D. 2∶1【解析】假设超级水稻的产量是x, 普通水稻的产量是1; 超级水稻是1/3,普通水稻是2/3; 产量分别是x, 1; 那么混合就是1,产量是1.5,满足1/3* x+2/3*1=(1/3+2/3)*1.5, 所以可以利用十字交叉法.1/3 x 1.5-11.5 , (1/3)/ (2/3)=(1.5-1)/(x-1.5). 解出x=2.5, 比是2.5: 1=5:2.2/3 1 x-1.5【例3】在一次法律知识竞赛中,甲机关20人参加,平均80分,乙机关30人参加,平均70分,问两个机关参加竞赛的人总平均分是多少?A.76 B.75 C.74 D.73【解析】假设总平均成绩是x, 满足20*80+30*70=(20+30)*x,所以可以用十字交叉法做.20 80 x-70x , 20/ 30=( x-70)/ 80-x). 解出x=74分.30 70 80-x【例4】某市现有人口70万, 如果5年后城镇人口增加4%, 农村人口增加5.4%, 则全市人口将增加4.8%, 那么这个市现有城镇人口多少万?A.30万B.31.2万C.40万D.41.6万【解析】假设现有城镇人口x万, 农村人口70-x万,满足: 4%*x+5.4%*(7 0-x)=(x+70-x)*4.8%所以可以用十字交叉法.x 4% 5.4% -4.8%4.8% , x/ (70-x)=(5.4% -4.8%)/ (4.8%-4%). 解出x=30.70-x 5.4% 4.8%-4%公务员行测判断推理机械推理精选练习题作者:公务员考试信息网来源: 发布时间:2010-12-29 09:28:00 1.一个木块放在水平地面上,在恒力F的作用下,以速度v匀速运动,下列关于摩擦力的说法正确的是( )A.木块受到的滑动摩擦力的大小等于FB.地面受到的静摩擦力的大小为FC.若木块的速度增加n倍,则它受到的摩擦力为nFD.若木块受到的力增加n倍,则它受到的摩擦力为nF2.A、B两物叠放在水平地面上,用力F水平拉B,使A、B一起匀速运动,则( )A.AB系统受的合力方向跟速度方向相同B.A物体受重力,B对它的支持力和摩擦力C. A物体受重力,B对它的支持力D.B物体受重力,拉力F,地面的支持力和A的压力3.一根轻质弹簧上端固定在电梯的顶上,下端悬挂一个物体,在电梯做下列哪种运动时,弹簧最长( )A.以6m/s的速度上升B.以(6m/s)2的加速度上升C.以(1.5m/s)2的加速度减速上升D.以2.5 m/s2的加速度加速下降4.质量分别为M和m的大、小两个物块紧靠着放在水平地面上,不计摩擦,它们在水平外力F作用下运动,第一次F作用在大物块上,第二次F作用在小物块上,这两种情况下,两物块之间相互作用力的比值是( )A.m:MB.M:mC.(M-m)(M+m)D.1:15.在光滑的水平桌面上,放一物体B,B上再放一物体A,A与B间有摩擦,现对A 施加一水平力F,使它相对于桌面向右运动,这时物体B相对于桌面的运动情况为( )A.向左运动B.向右运动C.不动D.无法判断6.质量为10kg的物体放在光滑的水平地面上,同时受到3N和12N的两个共同点力的作用,这两个力的作用线均在该光滑水平面内,则该物体的加速度可能为( )A.1m/s2B.2m/ s2C.3m/ s2D.4m/ s27.一个物体从静止开始作匀加速直线运动。

十字交叉法

十字交叉法

十字交叉法十字交叉法是进行二组分混合物平均量与组分计算的一种简便方法。

凡可按M1n1+M2n2=Mn计算的问题,均可按十字交叉法计算。

式中,M表示某混合物的平均量,M1.M2则表示两组分对应的量。

如M表示平均相对分子质量,M1.M2则表示两组分各自的相对分子质量,n1.n2表示两组分在混合物中所占的份额,n1:n2在大多数情况下表示两组分的物质的量之比,有时也可以是两组分的质量之比,判断时关键看n1.n2表示混合物中什么物理量的份额,如物质的量、物质的量分数、体积分数,则n1:n2表示两组分的物质的量之比;如质量、质量分数、元素质量百分含量,则n1:n2表示两组分的质量之比。

十字交叉法常用于求算:(1)有关质量分数的计算;(2)有关平均相对分子质量的计算;(3)有关平均相对原子质量的计算;(4)有关平均分子式的计算;(5)有关反应热的计算;(6)有关混合物反应的计算。

目录1相乘法2相比法3适用范围4例题详解1相乘法这是利用化合价书写物质化学式的方法它适用于两种元素或两种基团组成的化合物,其根据的原理是化合价法则:正价总数与负价总数的代数和为0或正价总数与负价总数的绝对值相等。

2相比法我们常说的十字交叉法实际上是十字交叉相比法,它是一种图示方法。

十字交叉图示法实际上十字交叉法是代替求和公式的一种简捷算法,它特别适合于两总量、两关系的混合物的计算(即2—2型混合物计算),用来计算混合物中两种组成成分的比值。

同一物质的甲、乙两溶液的百分比浓度分别为a%、b%(a%>b%),现用这两种溶液配制百分比浓度为c%的溶液。

问取这两种溶液的质量比应是多少?同一物质的溶液,配制前后溶质的质量相等,利用这一原理可列式求解。

设甲、乙两溶液各取m1、m2克,两溶液混合后的溶液质量是(m1+m2)。

列式mm1a%+m2b%=(m1+m2)c%把此式整理得:m1:m2=(c-b)/(a-c),m1m2就是所取甲、乙两溶液的质量比。

化学--十字交叉法

化学--十字交叉法

十字交叉法十字交叉法是进行二组分混和物平均量与组分量计算的一种简便方法。

凡是一般的二元一次方程组(a1X + a2Y = a3( X +Y )关系式)的习题,均可用十字交叉法,但受我们所学知识的条件限制,这里只介绍其中的几种。

一、用组分的式量与混合气的平均式量做十字交叉,求组分体积比或含量。

例1:已知H2和CO 的混合气,其平均式量是20,求混合气中H2和CO 的体积比。

(4∶9)解:H2 2 28-20 4╲╱——20 ——╱╲CO 28 20-2 9例2:已知CO、CO2混合气的平均式量是32,耱混合气中CO 的体积百分数。

(75%)解:CO 28 12 3╲╱——32 ——╱╲CO228 4 1二、用同位素的原子量或质量数与元素原子量作交叉,求原子个数比或同位素百分数。

例3:已知铜有63Cu 和65Cu 两种同位素,铜元素的原子量是63.5,求63Cu 和65Cu的原子个数比。

(3∶1)解:63Cu 63 1.5 3╲╱——63.5 ——╱╲65Cu 65 0.5 1三、用组分的气体密度与混合气的密度作十字交叉,求组分的体积比或体积分数。

例4:标况下,氮气的密度为1.25 g·L-1,乙烷的密度为1.34 g·L-1,两种气体混合后,其密度为1.30 g·L-1,求混合气中氮气和乙烷的体积比(4∶5)解:氮气 1.25 0.04 4╲╱—— 1.30 ——╱╲乙烷 1.34 0.05 5四、用两种不同浓度溶液的质量分数与混合溶液的质量分数作十字交叉,求两种溶液的质量比例5:用60%和20%的两种NaOH 溶液混合配成30%的NaOH 溶液,则所用两种NaOH 溶液的质量比为多少(1∶3)解:60% 60% 10% 1╲╱——30% ——╱╲20% 20% 30% 3五、用两种物质中同一元素的质量分数求两物质的质量比例6:FeO 中和FeBr2的混合物中Fe 的质量百分率为50%,求两物质的质量比(13∶15)解:FeO 7/9 13/54 13╲╱——1/2 ——╱╲FeBr27/27 5/18 15练习:1、实验室用密度为1.84 g·cm-398%的浓硫酸与密度为1.1 g·cm-3 15%的稀硫酸混和配制密度为1.4 g·cm-3 59%的硫酸溶液, 取浓、稀硫酸的体积比最接近的值是( )A、1:2B、2:1C、3:2D、2:32、实验测得乙烯与氧气混合气体的密度是氢气的14.5倍,可知其中乙烯的质量百分比为( )A、25.0%B、27.6%C、72.4%D、75.0%3、已知白磷和氧气可发生如下反应:P4 +3O2 = P4O6 ,P4 +5O2 = P4O10在某一密闭容器中加入62克白磷和50.4升氧气(标准状况), 使之恰好完全反应, 所得到的P4O10与P4O6的物质的量之比为( )A、1∶3B、3∶2C、3∶1D、1∶14、由CO 2、H 2和CO 组成的混合气在同温同压下与氮气的密度相同。

十字交叉法的原理及其在化学计算中的应用

十字交叉法的原理及其在化学计算中的应用

十字交叉法的原理及其在化学计算中的应用1 十字交叉法的原理[4]:A×a%+B×b%=(A+B)×c%整理变形得:A/B=(c-b)/(a-c )①如果我们以100 g溶液所含的溶质为基准上式表示溶液混合时它们的质量比与有关质量分数比的关系.可得如下十字交叉形式a c-bc ②b a-c对比①,②两式不难看出:十字交叉关系中(c-b)/(a-c)为组分A和组分B混合时的质量比.推广到二组分混合体系中,当以一定质量的混合体系为基准所得十字交叉关系,其比值为质量比(例如,质量分数是以质量为基准);若有c-b比a-c的化学意义由平均值c决定,则比值就表示组分A中c-b和组分B中a-c所表示的量的比值.如c为质量或质量分数,则(c-b)/(a-c)表示组分A和组分B溶液的质量之比.若c 为密度,则(c-b)/(a-c)就表示组分A和组分B的溶液体积之比.若c为摩尔质量,则(c-b)/(a-c)就表示组分A和组分B的物质的量比;此时可用十字交叉法求混合物中各组分的含量.2 十字交叉法的应用例析:2.1 用于混合物中质量比的计算例1将铝铁合金18.5克溶于足量的盐酸中产生标准状况下的氢气11.2升,求合金中铝铁的质量之比是多少?解:在标准状况下,求出氢气的质量M=1g,以混合物总质量18.5g作为基准物再根据镁铝与盐酸的关系列出十字交叉式如下:Al 37 / 18 19/561Fe 37/56 19/18求得铝与铁质量的比是9/28例2镁和铝的混合物10g,与足量的稀硫酸充分反应,生成1.0g氢气,混合物中镁和铝的质量比为多少?解:在标准状况下,以混合物总质量10g作为基准物再根据镁铝与盐酸的关交叉式如下:Mg 5/6 1/91Al 10/9 1/6求得镁与铝的质量比是2/3例3KHCO3和CaCO3的混合物和等质量的NaHCO3分别与盐酸完全反应时,所消耗的酸的量相等,则混合物中KHCO3与CaCO3的质量比是多少?解析:由化学反应方程式:KHCO3+HCl=KCl+H2O+CO2↑CaCO3+2HCl=CaCl2+H2O+CO2↑以消耗HCl物质的量1mol作为基准物, 求出反应掉KHCO3、CaCO3、NaHCO3的质量的数值分别为100g、50g、84g,依题意KHCO3和CaCO3的混合物84g与NaHCO384g均消耗1molHCl,即两个分量值分别为100和50,平均值为84, 用十字交叉法图解如下:KHCO3100 3484CaCO3 50 16因为是以物质消耗HCl的物质的量1mol为基准物,所以比值34/16=17/8为碳酸氢钾与碳酸钙消耗HCl的物质的量之比,故原混合物中碳酸氢钾与碳酸钙的物质的量之比为17/4,即质量比也为17/4(因它们的相对分子质量相等).2.2 用于混合物中物质的量比的计算例4在标准状况下,测得空气和HCl混合气体对氢气的相对密度为17,求空气和HCl气体的物质的量之比解:混合气体的平均式量为17×2=34 ,以1 mol混合物为基准物则十字交叉法如下:空气29 2.534HCl 36.5 5求出空气与HCl气体的物质的量比是1/2例5某Na2SO3已部分氧化成Na2SO4,经测定该混合物中硫的质量分数为25%,求混合物中Na2SO3和Na2SO4的物质的量之比 (整数比)?解:由平均质量分数25%,列出十字交叉法如下:Na2SO3中S % 25.397 % 2.465 %25%Na2SO4 中S % 22.535 % 0.397 %求得Na2SO3与Na2SO4的物质的量比是6/12.3 用于混合物中体积比的计算例6已知CH4, C2H4及其混合气体在同温同压下分别为0.71 g / L 、1.25 g / L 、1.16 g / L.求混合气体CH4和C2H4的体积比是多少?解:以1mol混合气体密度1.16 g / L作为基准物则十字交叉法如下:CH40.71 0.091.16C2H4 1.25 0.45求得CH4与C2H4的体积比是1/3例7已经2H2(g)+O2(g)=2H2O(g);△H=-571.6千焦C3H8 (g)+5 O2(g)=3CO2(g)+4H2O(1); △H=-2220千焦求H2和C3H8的体积比.解析:lmol C3H8完全燃烧放热为:571.6/2=285.8千焦lmol C3H8完全燃烧放热为:2220千焦lmol混合气体完全燃烧放热为:3847/5=769.4千焦列出十字交叉法如下:H2 285.5 1460.6769.4C3H8 2220 483.6求得H2和C3H8的体积比为3/1例8一种气态烷烃和一种气态烯烃,它们的分子式中所含碳原子数相同,若l体积这种混合烃在O2中充分燃烧,能生成2体积的和2.4体积的水蒸气,则混合中烷烃和烯烃的体积比是多少?解:设混合烃分子式为CxHy、烷烃与烯烃的体积比为CxHy + 3.2 O2= 2 CO2+ 2.4 H2O1 3.2 2 2.4根据原子守衡定理得混合烃分子式为C2H4.8即氢的原子数是 4.8.十字交叉法如下:C2H6 6 0.84.8C2H4 4 1.2求得混合物中C2H6和C2H4的体积比是2/32.4 用于混合物中原子个数比的计算例9已知自然界中铱有两种质量数分别为191和193的同位素,而铱的相对分子质量为192.22,求这两种同位素原子个数比.解:以1 mol铱的相对分子质量为192.22为基准则十字交叉法如下:191Ir 1910.78199.2 191Ir / 193Ir = 0.78 / 1.22193Ir 193 1.22求得191Ir 与193Ir 物质的量比39/61 也是它们原子个数比.2.5 用于混合物中质量分数和体积分数的计算例10 把0.200gNaCl和KI混和物溶于水后加入过量AgN03溶液析出0.449 g,求原混和物中NaCl和KI的质量百分数.解:分别计算产生沉淀物的质量,根据化学方程式得:0.200 g NaCl生成0.490 g AgCl0.200 g NaI生成0.283 g AgI则十字交叉法如下:NaCl 0.490 / 0.200 0.1660.449/0.200 m( NaCl ) / m(KI) =0.166/ 0.041KI 0.283 / 0.200 0.041求得NaCl 和 KI 的质量比是4/1,即他们的质量分数分别为80% ,20%例11在标准状况下氢气和一氧化碳的混合气体7L,质量为2.25g,求H2和CO 的体积分数?解:设混合气体的摩尔质量为M2.25 / M = 7 / 22.4 L / mol M=7.29列出十字交叉法如下:CO 28 5.27.2 V( CO ) / V( H2 )=5.2 / 20.8H2 2 20.8求得CO与H2体积比是1/4即它们体积分数分别是25% ,75%例12 已知Fe2O3在高炉中发生反应Fe2O3+CO = 2FeO+CO2,反应形成的固体混合物Fe2O3、FeO中,元素铁和氧的质量之比用m(Fe)∶m(O)表示.若m(Fe)∶m(O)=21∶8,计算Fe2O3被CO还原的质量分数.解析:此题用方程式法甚为烦琐,用十字交叉法则非常简单.即:若Fe2O3全部被还原,则m(Fe)∶m(O)=21∶6;若Fe2O3未被还原,则m(Fe)∶m(O)=21∶9.列出十字交叉法如下:未被还原Fe2O39 / 21 2 / 218/21被还原Fe2O3 6 / 21 1 / 21则未被还原的氧化铁与被还原的氧化铁的物质的量之比为2∶1,所以被还原的氧化铁的质量分数为13×100%=33.3%.例13将20%NaCl溶液与60%NaCl溶液按质量比1:3混合,计算NaCl溶液的质量分数.解:设20%NaCl溶液为mg,则60%NaCl溶液质量就为3mg,所得NaCl溶液的质量为x%列出十字交叉法如下:m 20% x%-60%x%3m 60 % 20%-x%则m / 3m = ( x % - 60% ) / ( 20% - x % )求出x=50既NaCl质量分数50%。

十字交叉法

十字交叉法

由此可得:(1)混合气态烃中一定有CH4 ,
(2)另一种气态烃为CnH4,可能是C2H4或C3H4等,但 一定没有C2H6, 故正确答案为C
60 30

2 1
【例题4】用1L1mol/L的NaOH溶液吸收 0.8molCO2,求所得的溶液中CO23-和HCO3-的 物质的量之比为 【解析】依题意,反应产物为Na2CO3和NaHCO3 的混合物, 若只生成为Na2CO3,需NaOH 1.6mol, 若只生成为NaHCO3,需NaOH 0.8mol。
? ?801 1来自=1 23、溶液配制计算中的十字交叉法
【例题3】某同学欲配制40%的NaOH溶液100克, 实验室中现有10%的NaOH溶液和NaOH固体,问 此同学应各取上述物质多少克? 【解析】10%NaOH溶液,NaOH固体为100%,平 均为40%NaOH溶液 利用十字交叉法得: 需10%NaOH溶液为2/3×100=66.7克, 需NaOH固体为1/3 ×100=33.3克 10 40 100
2、同位素原子百分含量计算的十字叉法 【例题2】溴有两种同位素,在自然界中这两种同位 素大约各占一半,已知溴的原子序数是35,相对原 子量是80,则溴的两种同位素的中子数分别等于。 A 79、81 B 45、46 C 44、45 D 44、46 【解析】两种同位素大约各占一半,根据十字交叉 法可知,两种同位素相对原子量与溴元素的相对原 子量的差值相等, 那么它们的中子数应相差2,所以答案为D
设n(CO2)=x,n(CO)=y, 则有x+y=0.4 mol
m(CO2) + m(CO)=16.8 g, 28 42 44 mol-1 M=42 g·
__
44 g· mol-1x+28 g· mol-1y=42(x+y)

第三课时 十字交叉法

第三课时 十字交叉法

第三课时 十字交叉法十字交叉法是进行二组分混和物平均量与组分量计算的一种简便方法。

凡可按M 1n 1 + M 2n 2 = M --(n 1 + n 2)计算的问题,均可用十字交叉法计算的问题,均可按十字交叉法计算,算式如右图为: 式中,M --表示混和物的某平均量,M 1、M 2则表示两组分对应的量。

如M --表示平均分子量,M 1、M 2则表示两组分各自的分子量,n 1、n 2表示两组分在混和物中所占的份额,n 1:n 2在大多数情况下表示两组分物质的量之比,有时也可以是两组分的质量比,如在进行有关溶液质量百分比浓度的计算。

十字交叉法常用于求算:混和气体平均分子量及组成、混和烃平均分子式及组成、同位素原子百分含量、溶液的配制、混和物的反应等。

(一)混和气体计算中的十字交叉法【例题1-1】在常温下,将1体积乙烯和一定量的某气态未知烃混和,测得混和气体对氢气的相对密度为12,求这种烃所占的体积。

【例题1-2】在相同的条件下,将H 2(密度为0.0899g/L )与CO 2(密度为1.977g/L )以何体积比混合,才能使混合气体的密度为1.429g/L ?(二)同位素原子百分含量计算的十字叉法【例题2-1】溴有两种同位素,在自然界中这两种同位素大约各占一半,已知溴的原子序数是35,原子量是80,则溴的两种同位素的中子数分别等于。

(A )79 、81 (B )45 、46 (C )44 、45 (D )44 、46(三)溶液配制计算中的十字交叉法【例题3-1】某同学欲配制40%的NaOH 溶液100克,实验室中现有10%的NaOH 溶液和NaOH 固体,问此同学应各取上述物质多少克?【例题3-2】有Ag 质量分数为15%的NaNO 3溶液,若将其质量分数变为30%,可采取的方法的是( )(A )蒸发掉溶剂的1/2 (B )蒸发掉A/2g 溶剂(C )加入3A/14g NaNO 3 (D )加入3A/20g NaNO 3【例题3-3】配制20%的硫酸溶液460g ,需要98%的硫酸(密度为1.84g/mL )多少毫升?(四)混和物反应计算中的十字交叉法【例题4-1】现有100克碳酸锂和碳酸钡的混和物,它们和一定浓度的盐酸反应时所消耗盐酸跟100克碳酸钙和该浓度盐酸反应时消耗盐酸量相同。

十字交叉法

十字交叉法

1、十字交叉法的原理:A×a%+B×b%=(A+B)×c% 整理变形得: A/B=(c-b)/(a-c )① 如果我们以100g溶液所含的溶质为基准,上式表示溶液混合时它们的质量比与有关质量分数比的关系。

可得如下十字交叉形式 a c-b cb a-c ② 对比①、②两式可以看出:十字交叉关系中(c-b)/(a-c)为组分A和组分B混合时的质量比,推广到二组分混合体系中,当以一定质量的混合体系为基准所得十字交叉关系,其比值为质量比(例如质量分数是以质量为基准);若有c-b比a-c 的化学意义由平均值c决定,则比值就表示组分A中c-b和组分B中a-c所表示的量的比值。

如c为质量或质量分数,则(c-b)/(a-c)表示组分A和组分B溶液的质量之比;若c为密度,则(c-b)/(a-c)就表示组分A和组分B的溶液体积之比;若c为摩尔质量,则(c-b)/(a-c) 就表示组分A和组分B的物质的量比。

此时可用十字交叉法求混合物中各组分的含量. 2、十字交叉法的应用例题: 2.1 用于混合物中质量比的计算 例1 将铝铁合金18.5克溶于足量的盐酸中产生标准状况下的氢气11.2升,求合金中铝铁的质量之比是多少? 解:在标准状况下,求出氢气的质量m=1g,以混合物总质量18.5g作为基准物再根据镁铝与盐酸的关系列出十字交叉式如下: Al 37 / 18 19/56 1 Fe 37/56 19/18 求得铝与铁质量的比是9/28 例2 镁和铝的混合物10g,与足量的稀硫酸充分反应,生成1.0g氢气,求混合物中镁和铝的质量比为多少? 解:在标准状况下,以混合物总质量10g作为基准物再根据镁铝与盐酸的关交叉式如下: Mg 5/6 1/9 1 Al 10/9 1/6 求得镁与铝的质量比是2/3 例3 KHCO3和CaCO3的混合物和等质量的NaHCO3分别与盐酸完全反应时,所消耗的酸的量相等,则混合物中KHCO3与CaCO3的质量比是多少? 解:由化学反应方程式:KHCO3+HCl=KCl+H2O+CO2↑ CaCO3+2HCl=CaCl2+H2O+CO2↑ 以消耗HCl物质的量1mol作为基准物, 求出反应掉KHCO3、CaCO3、NaHCO3的质量的数值分别为100g、50g、84g,依题意KHCO3和CaCO3的混合物84g与NaHCO384g均消耗1molHCl,即两个分量值分别为100和50,平均值为84,用十字交叉法图解如下: KHCO3 100 3484 CaCO3 50 16 因为是以物质消耗HCl的物质的量1mol为基准物,所以比值34/16=17/8为碳酸氢钾与碳酸钙消耗HCl的物质的量之比,故原混合物中碳酸氢钾与碳酸钙的物质的量之比为17/4,即质量比也为17/4(因它们的相对分子质量相等)。

十字交叉法

十字交叉法

十字交叉法1. 概述十字交叉法,又称为十字交错法,是一种常用于解决问题的思维方法。

它通过将问题划分为多个交叉的维度来分析和解决,从而帮助人们更全面地考虑问题,找到更优的解决方案。

本文将介绍十字交叉法的原理、步骤以及应用场景。

2. 原理十字交叉法的原理是基于多维度思考的理念。

在传统的解决问题过程中,我们往往只关注问题的一个维度,而忽略了其他可能的影响因素。

十字交叉法通过将问题划分为多个交叉的维度,将不同因素进行综合考虑,从而能够更全面地分析和解决问题。

3. 步骤使用十字交叉法解决问题通常需要以下几个步骤:步骤一:明确问题首先,我们需要明确待解决的问题。

问题可以是一个具体的情况,也可以是一个抽象的概念。

明确问题是解决问题的第一步,需要准确而清晰地描述问题。

步骤二:确定交叉维度确定交叉维度是指将问题划分为多个维度来进行分析。

维度可以是空间上的方向,也可以是时间上的序列。

通过确定交叉维度,我们能够将问题从不同的角度进行思考,更加全面地了解问题的本质。

步骤三:填充交叉维度在确定了交叉维度后,我们需要填充每个维度的具体内容。

这包括了分析每个维度的特点、影响因素等。

通过填充交叉维度,我们可以更深入地了解问题,并找到解决问题的可能路径。

步骤四:交叉分析在填充交叉维度后,我们需要将不同维度进行交叉分析。

这意味着我们将不同维度的内容进行对比、联系。

通过交叉分析,我们能够找到问题的关联性、相互影响的因素,并分析它们之间的关系。

步骤五:解决方案选择最后,在进行了交叉分析后,我们可以根据不同维度的评估结果,选择最优的解决方案。

在选择解决方案时,我们需要考虑各个维度的权重、优先级等因素,并综合考虑各个维度的影响。

4. 应用场景十字交叉法可以应用于各种问题的解决过程中。

以下是一些常见的应用场景:产品设计在产品设计过程中,需要考虑多个维度,例如功能、用户体验、成本等。

使用十字交叉法可以帮助团队更全面地考虑这些维度,从而设计出更好的产品。

十字交叉法

十字交叉法

14
3、CH4与C3H8的混合气体密度与同温同压下 C2H6的密度相等,混合气体中CH4与C3H8的体积 比是( ) A. 2:1 B. 3:1 C. 1:3 D. 1:1
解析:平均摩尔质量为
4、氧气和二氧化硫的混合气体的质量为17.2g, 在标况下占体积11.2L,则其中含二氧化硫气体为 ( ) A、1.68L B、0.84L C、1.12L D、0.56L
4
如果用A和B表示十字交叉的二个分量,用AB表 示二个分量合成的平均量,用xA和xB分别表示A 和B所占量(百分含量或体积分数或物质的量分 数等),且xA+xB=1 ,则有:
若把AB放在十字交叉的中心,用A,B与其交 叉相减,用二者差的绝对值相比即可得到上 式。 分量 平均值 差值
十字交叉法一般步骤是: 先确定交叉点上的平均数, 再写出合成平均数的两个分量, 最后按斜线作差取绝对值,得出相应物质的 配比关系。
17
2.同一溶质的不同质量分数“交叉” ——求溶液的质量比 【练习2】15%的CuSO4溶液与35%的CuSO4溶液混合 配比成20%的溶液,则两溶液的质量比为( ) (A)1∶1 (B)2∶1 (C)2∶3 (D)3∶1 〖解析〗以100克溶液为基准:
15%CuSO4 15 35%CuSO4 35
12
十字交叉法ቤተ መጻሕፍቲ ባይዱ
❖ 常见应用范围 ❖ 相对分子质量→物质的量 ❖ 同位素相对原子质量→同位素原子个数比
❖ 平均燃烧热→可燃物物质的量之比
❖ 溶液质量分数→溶液质量之比 ❖ 气体平均密度→气体体积比 ❖ 有机烃分子碳或氢原子个数十字交叉→物质的量
之比
二、十字交叉法的应用
1.已知二组分混合物的平均分子量和各组分的分 子量,求两个组分物质的量之比。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

某机关共有干部职工350人,其中55岁以上共有70人。

现拟进行机构改革,总体规模压缩为180人,并规定55岁以上的人裁减比例为70%。

请问55岁以下的人裁减比例约是多少?()A.51%B.43%C.40%D.34%裁人后比例为50%—55以下 280(4)50%-X55以上70 (1)50%+20%十字交叉 4 对应20% 1对应X 即5% 裁人后比例为50%—所以选43% 不是十字相乘应该为十字交叉法不过我研究的时候给他起的名字叫权重法自己起的名字,感觉这个更恰当十字相乘法用来解决一些比例问题特别方便。

但是,如果使用不对,就会犯错。

(一)原理介绍通过一个例题来说明原理。

某班学生的平均成绩是80分,其中男生的平均成绩是75,女生的平均成绩是85。

求该班男生和女生的比例。

方法一:搞笑(也是高效)的方法。

男生一人,女生一人,总分160分,平均分80分。

男生和女生的比例是1:1。

方法二:假设男生有A,女生有B。

(A*75+B85)/(A+B)=80整理后A=B,因此男生和女生的比例是1:1。

方法三:男生:75 580女生:85 5男生:女生=1:1。

一个集合中的个体,只有2个不同的取值,部分个体取值为A,剩余部分取值为B。

平均值为C。

求取值为A的个体与取值为B的个体的比例。

假设A有X,B有(1-X)。

AX+B(1-X)=CX=(C-B)/(A-B)1-X=(A-C)/A-B因此:X:(1-X)=(C-B):(A-C)上面的计算过程可以抽象为:A C-BCB A-C这就是所谓的十字相乘法。

十字相乘法使用时要注意几点:第一点:用来解决两者之间的比例关系问题。

第二点:得出的比例关系是基数的比例关系。

第三点:总均值放中央,对角线上,大数减小数,结果放对角线上。

1.(2006年江苏省考)某体育训练中心,教练员中男占90%,运动员中男占80%,在教练员和运动员中男占82%,教练员与运动员人数之比是A.2:5 B.1:3 C.1:4 D.1:5答案:C分析:男教练:90% 2%82%男运动员:80% 8%男教练:男运动员=2%:8%=1:42.(2006年江苏省考)某公司职员25人,每季度共发放劳保费用15000元,已知每个男职必每季度发580元,每个女职员比每个男职员每季度多发50元,该公司男女职员之比是多少A.2∶1B.3∶2C. 2∶3D.1∶2答案:B分析:职工平均工资15000/25=600男职工工资:580 30600女职工工资:630 20男职工:女职工=30:20=3:23.(2005年国考)某城市现在有70万人口,如果5年后城镇人口增加4%,农村人口增加5.4%,则全市人口将增加4.8%。

现在城镇人口有()万。

A30B 31.2C 40D41.6答案A分析:城镇人口:4% 0.6%4.8%农村人口:5.4% 0.8%城镇人口:农村人口=0.6%;0.8%=3:470*(3/7)=304.(2006年国考)某市居民生活用电每月标准用电价格为每度0.50元,若每月用电超过规定的标准用电,超标部分按照基本价格的80%收费。

某用户九月份用电84度,共交电费39.6元,则该市每月标准用电为()度。

A60B 65C70D755.(2007年国考)某班男生比女生人数多80%,一次考试后,全班平均成级为75 分,而女生的平均分比男生的平均分高20% ,则此班女生的平均分是:A.84 分B.85 分C.86 分D.87 分答案:A分析:假设女生的平均成绩为X,男生的平均Y。

男生与女生的比例是9:5。

男生:Y 975女生:X 5根据十字相乘法原理可以知道X=846. (2007年国考).某高校2006 年度毕业学生7650 名,比上年度增长2 %.其中本科毕业生比上年度减少2 %.而研究生毕业数量比上年度增加10 % , 那么,这所高校今年毕业的本科生有:A.3920 人B.4410 人C.4900人D.5490 人答案:A分析:去年毕业生一共7500人。

7650/(1+2%)=7500人。

本科生:-2% 8%2%研究生:10% 4%本科生:研究生=8%:4%=2:1。

7500*(2/3)=50005000*0.98=4900这个是坛子里的朋友发的一)问题描述:一个集合中的个体,只有2个不同的取值,一个部分取值为A,剩余部分取值为B。

平均值为C。

求取值为A的个体与取值为B的个体的比例。

M: A C-B 则 M/N=(C-B)/(A-C)CN: B A-C(二)例题:某高校2006 年度毕业学生7650 名,比上年度增长2 % . 其中本科毕业生比上年度减少2 % . 而研究生毕业数量比上年度增加10 % , 那么,这所高校今年毕业的本科生有:A .3920 人B .4410 人C .4900人D .5490 人【答案】C分析:去年毕业生一共7500人。

7650/(1+2%)=7500人。

本科生:-2% 8%2%研究生:10% 4%故有:本科生:研究生=8%:4%=2:1去年本科生=7500*(2/3)=5000今年本科生=5000*0.98=4900注:用十字交叉法算出来的比例为基期的比例。

此外,此题也可用倍数法,直接根据条件“其中本科毕业生比上年度减少2 %”得出,今年毕业生人数应为98%的倍数,只有C项符合。

数学运算—十字交叉法应用全攻略(一)本文来自: 光华公务员考试论坛作者: jxghjy日期: 2010-7-14 15:07 阅读:229人打印收藏大中小大部分人最早接触十字交叉法,是在化学课上,有关质量分数、平均分子量、平均原子量等的计算都可以用十字交叉法解决。

而十字交叉法的应用不仅限于此,实际上,十字交叉法在行测考试中有着十分广泛的应用,凡是涉及同种物质加权平均的问题,都可以用十字交叉法来解。

一、十字交叉法的数学原理很多人都用过十字交叉法,却不是所有人都知道它的由来或者它的数学原理是什么。

下面以两种不同浓度的溶液混合为例,进行讲解。

将两种不同浓度的同种溶液(浓度分别为a、b,质量分别为A、B)混合,得到的混合溶液浓度为r=(Aa+Bb)/(A+B),化简该式得到(r-b)/(a-r)=A/B,即将各部分的“平均值”和总体的“平均值”交叉做差后得到的比值与这两种溶液的质量之比相等。

用十字交叉法表示如下:质量浓度交叉做差第一种溶液 A a r-br第二种溶液 B b a-r交叉做差后得到A/B=(r-b)/(a-r)。

二、十字交叉法在溶液混合问题中应用最多,可多次使用例1:有浓度为4%的盐水若干克,蒸发了一些水分后浓度变成10%,再加入300克4%的盐水后,变为浓度6.4%的盐水,则最初的盐水是:A.200克 B.300克 C.400克 D.500克(2007年广东省公务员考试真题)解析:设x克10%的盐水与300克4%的盐水混合,得到6.4%的盐水,则有:10%的盐水 x克 10% 2.4%6.4%4%盐水 300克 4% 3.6%故有x/300=2.4%/3.6%,解得x=200,即10%的盐水质量为200克。

200克10%的盐水与y克的水混合,得到4%的盐水,则有:10%的盐水 200克 10% 4%4%水 y克 0% 6%故有200/y=4%/6%,解得y=300,即水的质量为300克。

因此4%的盐水质量为200+300=500克,选D。

例2:一种溶液,蒸发掉一定量的水后,溶液的浓度变为10%,再蒸发掉同样多的水后,溶液的浓度变为12%,第三次蒸发掉同样多的水后,溶液的浓度将变为多少?A.14% B.17% C.16% D.15%(2009年国家公务员考试真题)解析:10%的溶液蒸发掉一定量的水浓度变为12%,可以看成12%的溶液与一定量的水混合得到10%的溶液,则有:12%的溶液 12% 10%10%水 0% 2%故12%的溶液与一次蒸发的水质量之比为10%∶2%=5∶1。

5份浓度为12%的溶液蒸发掉1份水,浓度变为12%×5/4=15%。

【注释】与水或纯溶质混合是溶液混合中的特殊情况,用十字交叉法时,只需将水的浓度写为0%,将纯溶质的浓度写为100%即可。

三、交叉做差一定要遵循“大减小”的原则a、b中一定有一个大的,减去r,有一个小的,被r减。

在这三个量都已知时不易犯错,但当这三个量中有未知数时,一定要注意分析谁大谁小,遵循“大减小”的原则交叉做差。

例:一批手机,商店按期望获得100%的利润来定价,结果只销售掉70%。

为了尽早销售掉剩下的手机,商店决定打折出售,为了获得的全部利润是原来期望利润的91%,则商店所打的折是:A.六折 B.七折 C.八五折 D.九折(2009年江苏省公务员考试真题)解析:设打折后的利润率为x,则有:第一部分手机 70% 100% 91%-x91%第二部分手机 30% x 9%故有(91%-x)/9%=70%/30%,解得x=70%,所以商店所打的折扣为(1+70%)÷(1+100%)=85%,故选C。

【注释】此处,91%与x交叉做差时如果写成x-90%,会导致结果错误。

务员考试中的行测科目题量大、时间紧,是大家公认的难点。

因此如何运用技巧来加快解题速度是行测备考的重点。

十字交叉法在解决数量关系提的“加权平均问题”时非常简便,因此深受广大考生青睐。

本文将结合真题对十字交叉法进行全面介绍,使各位考生能熟练掌握此法。

公务员考试中的行测科目题量大、时间紧,是大家公认的难点。

因此如何运用技巧来加快解题速度是行测备考的重点。

十字交叉法在解决数量关系提的“加权平均问题”时非常简便,因此深受广大考生青睐。

本文将结合真题对十字交叉法进行全面介绍,使各位考生能熟练掌握此法。

一、基本内容十字交叉法是一种简化计算的方法,即通过列出十字图对Aa+Bb=(A+B)r一式进行简化运算,快速得到结果。

原计算式:Aa+Bb=(A+B)r,可以推出A/B=(r-b)/(a-r)①。

对形如①式来的题目运用十字交叉法,可以简化运算。

即:A: a r-b\ /r =>A/B=(r-b)/(a-r)/ \B: b a-r二、适用题型十字交叉法多适用于数量关系题中的“加权平均问题”,但大多数考生对“加权平均问题”并没有直观的概念。

一般而言,十字交叉法在类似以下几种问题中可以运用:1. 重量分别为A与B的溶液,其浓度分别为a与b,混合后浓度为r。

2. 数量分别为A与B的人口,分别增长a与b,总体增长率为r。

3. A个男生平均分为a,B个女生平均分为b,总体平均分为r……类似问题可以列出下列式子:Aa+Bb=(A+B)r,再运用十字交叉法,就可快速有效的解题。

三、真题示例【例1】一个袋子里放着各种颜色的小球,其中红球占,后来又往袋子里放了10个红球,这时红球占总数的,问原来袋子里有多少个球?A. 8B. 12C. 16D. 20【答案】A【解析】此题可看作是两个袋子的小球混合在一起,其中一个袋子的红球占,另一个袋子的红球占满全部,即为1,从而可以运用十字交叉法:一号袋子: 1/4 1-2/3=1/3\ / 1/3 (一号袋子球数)2/3 —— = ———————/ \ 5/12 10(二号袋子球数)二号袋子: 1 2/3-1/4=5/12从而解得一号袋子球数为8。

相关文档
最新文档