波形的发生和信号的变换
波形的发生和信号的变换
LM339介绍
8.3 非正弦波振荡电路
矩形波
三角波
锯齿波
尖顶波
阶梯波
非正弦波主要是指三角波和矩形波
8.3.1 矩形波发生电路
电路是一个滞回比较器。
UT R1R 1R2UZ UTR1R 1R2UZ
给电路增加一个RC定时电路。
uC
电路分析:
设:初始时,uC=0,uO=UZ 。
1. R3对C充电。
uO
波形的发生和信号的变换
本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢!
8.1 正弦波振荡电路
一. 概 述
正弦振荡器:不需要任何输入信号,能产生稳定输出、 有一定幅度和频率正弦波的电路。
方法1.热敏电阻(负温度系数〕替换Rf 方法2. Au1Rf rd
热敏电阻(正温度系数〕替换R1
R1
频率可调振荡电路:
R2
K:双联波段开关,
切换R,用于粗调 振荡频率。
R1
R3
Rf
振荡频率:
f0
1
2 RC
R2
R1
K
K
R C
R3 C
_
uo
+
+
R1
C:双联可调电容,改变C, 用于细调振荡频率。
1
电子琴的振荡电路:
〔此时虚短成立!〕
电压传输特性
单限比较器的作用:检测输入的模拟信号是否到达 某一给定电平。 缺点:抗干扰能力差。
解决方法: 采用具有滞回传输特性的比 较器。
波形的发生和信号的转换
2. 基本组成部分
1) 放大电路:放大作用 放大电路: 2) 正反馈网络:满足相位条件 正反馈网络: 3) 选频网络:确定 0,保证电路产生正弦波振荡 选频网络:确定f 4) 非线性环节(稳幅环节):稳幅 非线性环节(稳幅环节): ):稳幅
}
常合二为一
3、分析方法
1) 是否存在主要组成部分; 是否存在主要组成部分; 2) 放大电路能否正常工作,即是否有合适的 点,信号是 放大电路能否正常工作,即是否有合适的Q点 否可能正常传递,没有被短路或断路; 否可能正常传递,没有被短路或断路; 3) 是否满足相位条件,即是否存在 f0,是否可能振荡 ; 是否满足相位条件, 4) 是否满足幅值条件,即是否一定振荡。 是否满足幅值条件,即是否一定振荡。
−
必要吗? 必要吗? 反馈电压取自哪个线圈? 反馈电压取自哪个线圈? 反馈电压的极性? 反馈电压的极性?
电感的三个抽头分别接晶 体管的三个极, 体管的三个极,故称之为电 感三点式电路。 感三点式电路。
3. 电感反馈式电路
特点:耦合紧密,易振, 特点:耦合紧密,易振,振 幅大, 幅大,C 用可调电容可获得 较宽范围的振荡频率。 较宽范围的振荡频率。波形 较差,常含有高次谐波。 较差,常含有高次谐波。
2. 电路组成
+UZ −UZ
滞回比较器 RC 回路
R1 ±UT = ± ⋅U Z R1 + R2
正向充电: 正向充电: uO(+UZ)→R→C→地 地 反向充电: 反向充电: (-U 地→C→ R → uO(- Z)
3. 工作原理:分析方法 工作原理:
方法一: 设电路已振荡,且在某一暂态, 方法一: 设电路已振荡,且在某一暂态,看是否能自动翻 转为另一暂态,并能再回到原暂态。 转为另一暂态,并能再回到原暂态。 方法二: 电路合闸通电,分析电路是否有两个暂态, 方法二: 电路合闸通电,分析电路是否有两个暂态,而无 稳态。 稳态。 设合闸通电时电容上电压为0, 设合闸通电时电容上电压为 , uO上升,则产生正反馈过程: 上升,则产生正反馈过程: uO↑→ uN↑→ uO↑↑ ,直至 uO= UZ, uP=+UT,第一暂态。 第一暂态。
波形的发生和信号的转换
输入电阻小、输出 电阻大,影响f0
可引入电压串联负反馈,使
电压放大倍数大于3,且Ri大、 Ro小,对f0影响小
应为RC 串并联网路配一个电压放大倍数略大于3、输入电 阻趋于无穷大、输出电阻趋于0的放大电路。
整理课件
3. RC桥式正弦波振荡电路(文氏桥振荡器)
用同相比例运算电路作放大电路。
Rf 2R1
整理课件
3. 电感反馈式电路
U f
Ui(f f0)
必要吗?
反馈电压取自哪个线圈? 反馈电压的极性?
电感的三个抽头分别接晶 体管的三个极,故称之为电 感三点式电路。
整理课件
3. 电感反馈式电路
特点:耦合紧密,易振,振 幅大,C 用可调电容可获得 较宽范围的振荡频率。波形 较差,常含有高次谐波。
U OL U Z U OH U Z
uN uI
uP
R1 R1R2
uO,令uN
uP,得UT
R1 R1R2
UZ
整理课件
三、滞回比较器
2. 工作原理及电压传输特性
UT
R1 R1R2
UZ
UO UZ
设uI<-UT,则 uN< uP, uO=+UZ。此时uP= +UT, 增大 uI,直至+UT,再增大, uO才从+UZ跃变为- UZ。
因同相比例运算电路有非常好的线
性度,故R或Rf可用热敏电阻,或加 二极管作为非线性环节。
文氏桥振荡 器的特点?
整理课件
频率可调的文氏桥振荡器
改变电容以粗调,改变电 位器滑动端以微调。
加稳压管可以限制输出电 压的峰-峰值。
同轴 电位器
整理课件
讨论一:合理连接电路,组成文氏桥振荡电路
童诗白《模拟电子技术基础》(第4版)笔记和课后习题(含考研真题)详波形的发生器和信号的转换)【圣才出
第8章 波形的发生器和信号的转换8.1 复习笔记一、正弦波振荡电路1.产生正弦波振荡的条件(1)振幅平衡条件:(2)相位平衡条件:(3)起振条件:2.正弦波振荡电路的组成(1)放大电路:保证电路有从起振到动态平衡的过程,使电路获得一定幅值的输出量,实现能量的控制。
(2)选频网络:确定电路的振荡频率,使电路产生单一频率的振荡,即保证电路产生正弦波振荡。
(3)正反馈网络:引入正反馈,使放大电路的输入信号等于反馈信号。
(4)稳幅环节:也是非线性环节,使输出信号幅值稳定。
在不少实用电路中,常将选频网络和正反馈网络“合二而一”,且对于分立元件放大电路,也不再另加稳幅环节,而依靠晶体管特性的非线性来起到稳幅作用。
3.判断电路能否震荡的方法(1)观察电路是否包含了放大电路、选频网络、正反馈网络和稳幅环节四个组成部分。
(2)判断电路是否有合适的静态工作点且动态信号是否能够输入、输出和放大。
(3)判断电路是否满足振荡的相位条件、幅值条件。
3.RC 正弦波振荡电路(1)振荡条件:反馈系数,电压放大倍数。
(2)起振条件:,即。
12f R R (3)振荡频率:。
(4)典型的RC 正弦波振荡电路:文氏电桥正弦波振荡电路,如图8.1所示。
图8.1 RC 文氏电桥正弦波振荡电路4.LC正弦波振荡电路(1)谐振时,回路等效阻抗为纯阻性,阻值最大,值为:其中,为品质因数;为谐振频率。
(2)如图8.2所示,LC并联谐振回路等效阻抗为:图8.2 LC 并联网络(3)变压器反馈式振荡电路的振荡频率为:(4)三点式LC 正弦波振荡器(1MHz 以上频率),典型电路如图8.3所示。
(a)电感三点式振荡器(b)电容三点式振荡器图8.3 典型三点式LC正弦波振荡器①组成原则:与晶体管发射极相联的电抗是相反性质的,不与发射极相联的另一电抗是相同性质的。
②振荡频率:计算振荡频率时,只需分离出LC总回路求谐振频率即可。
电容式:电感式:5.石英晶体振荡器(1)石英晶体等效电路:R、C、L串联后与Co并联,如图8.4所示。
脉冲波形的产生与变换
脉冲波形的产生与变换脉冲信号是数字电路中最常用的工作信号。
脉冲信号的获得经常采用两种方法:一是利用振荡电路直接产生所需的矩形脉冲。
这一类电路称为多谐振荡电路或多谐振荡器;二是利用整形电路,将已有的脉冲信号变换为所需要的矩形脉冲。
这一类电路包括单稳态触发器和施密特触发器。
这些脉冲单元电路可以由集成逻辑门构成,也可以用集成定时器构成。
下面先来介绍由集成门构成的脉冲信号产生和整形电路。
9.1 多谐振荡器自激多谐振荡器是在接通电源以后,不需外加输入信号,就能自动地产生矩形脉冲波。
由于矩形波中除基波外,还含有丰富的高次谐波,所以习惯上又把矩形波振荡器叫做多谐振荡器。
多谐振荡器通常由门电路和基本的RC电路组成。
多谐振荡器一旦振荡起来后,电路没有稳态,只有两个暂稳态,它们在作交替变化,输出矩形波脉冲信号,因此它又被称作无稳态电路。
9.1.1门电路组成的多谐振荡器多谐振荡器常由TTL门电路和CMOS门电路组成。
由于TTL门电路的速度比CMOS门电路的速度快, 故TTL门电路适用于构成频率较高的多谐振荡器,而CMOS门电路适用于构成频率较低的多谐振荡器。
(1)由TTL门电路组成的多谐振荡器由TTL门电路组成的多谐振荡器有两种形式:一是由奇数个非门组成的简单环形多谐振荡器;二是由非门和RC延迟电路组成的改进环形多谐振荡器。
①简单环形多谐振荡器uo(a) (b)图9-1 由非门构成的简单环形多谐振荡器把奇数个非门首尾相接成环状,就组成了简单环形多谐振荡器。
图9-1(a)为由三个非门构成的多谐振荡器。
若uo的某个随机状态为高电平,经过三级倒相后,uo跳转为低电平,考虑到传输门电路的平均延迟时间tpd,uo输出信号的周期为6tpd。
图9-1(b)为各点波形图。
简单环形多谐振荡器的振荡周期取决于tpd,此值较小且不可调,所以,产生的脉冲信号频率较高且无法控制,因而没有实用价值。
改进方法是通过附加一个RC延迟电路,不仅可以降低振荡频率,并能通过参数 R、C控制振荡频率。
波形产生电路与变换电路
F
可分解为: A F 1
称为振幅平衡条件。 (n = 0 , 1, 2, …)
A F 2n
称为相位平衡条件。
第八章 波形产生电路与变换电路
说明:对相位平衡条件:
A F (o i ) (F o ) F i
FU 即有: Z U Z U Z [F 1]e
1 F 2R 2 T 2T1 2 ln 2RC ln(1 ) 1 F R3
第八章 波形产生电路与变换电路
1 F 2R 2 T 2T1 2 ln 2RC ln(1 ) 1 F R3 1 1 则: f T 2R 2 2RC ln(1 ) R3
即:反馈电压与原输入电压的相位差,也就是信号通过基本放 大器、反馈网络的总相移。所以相位平衡条件就是反馈电压和原输 入电压要同相位,即为正反馈。判断的方法就是瞬时极性法。只有 这两个条件同时满足时,电路才能维持自激振荡。振幅平衡条件可 以通过对电路参数的调节容易满足,所以相位平衡条件是电路能否 产生振荡的关键。 3、自激振荡的建立和起振条件: (1)自激振荡的建立:实际上,振荡器在开始起振时不需要信 号源,靠电路中电路接通时的电扰动,这种电扰动中存在着丰富的 成份,包含频率为fo 正弦信号。 (2)选频网络:为了使频率为fo 正弦信号放大—反馈—再放 大——输出,振荡器中还必须有一个选频网络。
图 8 - 12ICL8038管脚图(顶视图)
第八章 波形产生电路与变换电路
§8.3 正弦波产生电路
一、正弦波振荡器的基本原理
1、自激振荡的基本原理及框图:
如下图:输入信号通过基本放大器得 到输出信号,引入负反馈,调节电路参 数,使之反馈信号等于原输入信号,这 样反馈信号就能代替原输入信号,我们 把这样一个没有输入就有输出的闭环系 统称为自激振荡器。
波形的产生与变换
Q L 1 L
R RC
品质因数,Q值越大,选频特性 越好,谐振时阻抗越大。
23
2、变压器反馈式振荡电路
1)组成
反馈线圈L2。将反馈 信号送入放大器输入
端。交换反馈线圈的
两个线头,可使反馈
极性反相。调整反馈
线圈的匝数可以改变
反馈信号的强度。
阻抗变换
共射放大电路
三极管的负载并 作选频网络
24
2)起振条件和振荡频率
的相位关系。
(3)如果ui和uf在某一频率下相位相同,
则电路满足相位的起振条件。否则不满足相 位起振条件。
11
3.振荡频率的估算 振荡频率由相位平衡条件所决定
令 A F 2n
根据该式即可求得满足该条件的频率fo, 此fo即为振荡频率
12
6.1.2 RC正弦波振荡电路
1、文氏电桥(RC串并联)振荡器
晶体不振动时,视为平 板电容 Co:静态电容,很小, 几pF~几十pF
Q值可达104~106。
振动时用LC振荡电路模拟 L:模拟机械振动的惯性, 几十mH~几百mH C:模拟晶片弹性,0.0002 ~0.1pF R:模拟振动的摩擦损耗, 约100Ω
35
4)阻抗特性
串联谐振频率
fs
2
1 LC
并联谐振频率
缺点:振荡频率不宜太高,一般在100MHz以下。
26
3、电感反馈式振荡电路 (电感三点式)
1)组成
三极管的负载并 作选频网络
共射放大电路
反馈元件
27
2)起振条件和振荡频率
电路在LC并联回路谐振时,满足相位平衡条件。
振荡频率即为谐振频率:
fo
2
1 LC
模拟电子技术基础第四版(童诗白)课后答案第8章 波形的发生和信号的转换
第8章 波形的发生和信号的转换习题8.1判断下列说法是否正确,用“√”和“×”表示判断结果。
(1)在图T8.1所示方框图中,产生正弦波振荡的相位条件是A F ϕϕ=。
( × )(2)因为RC 串并联选频网络作为反馈网络时的0o F ϕ=,单管共集放大电路的0o A ϕ=,满足正弦波振荡电路的相位条件πϕϕn A F2=+,故合理连接它们可以构成正弦波振荡电路。
( × )(3)在RC 桥式正弦波振荡电路中,若RC 串并联选频网络中的电阻均为R ,电容均为C ,则其振荡频率1/o f RC =。
( × )(4)电路只要满足1=F A,就一定会产生正弦波振荡。
( × ) (5)负反馈放大电路不可能产生自激振荡。
( × )(6)在LC 正弦波振荡电路中,不用通用型集成运放作放大电路的原因是其上限截止频率太低。
( √ )8.2判断下列说法是否正确,用“√”和“×”表示判断结果。
(1)为使电压比较器的输出电压不是高电平就是低电平,就应在其电路中使集成运放不是工作在开环状态,就是仅仅引入正反馈。
( √ )(2)如果一个滞回比较器的两个阈值电压和一个窗口比较器的相同,那么当它们的输入电压相同时,它们的输出电压波形也相同。
( × )(3)输入电压在单调变化的过程中,单限比较器和滞回比较器的输出电压均只跃变一次。
( √ ) (4)单限比较器比滞回比较器抗干扰能力强,而滞回比较器比单限比较器灵敏度高。
( × )8.3选择合适答案填入空内。
A.容性 B.阻性 C.感性(1)LC 并联网络在谐振时呈( B );在信号频率大于谐振频率时呈( A );在信号频率小于谐振频率时呈( C )。
(2)当信号频率等于石英晶体的串联谐振频率时,石英晶体呈( B );当信号频率在石英晶体的串联谐振频率和并联谐振频率之间时,石英晶体呈( C );其余情况下,石英晶体呈( A )。
脉冲 波形的产生和变换
第一节佛教
2.佛教的基本教义 (1)四谛说 四谛是佛教各派共同承认的
基础教义。所谓“谛”,有“真理”或“ 实在”,的意思,是印度哲学通用的概念 。“四谛”就是佛教中的四条真理,即苦 谛、集谛、灭谛和道谛。由于这四条是神 圣的真理,所以“四谛”又称为“四圣谛 ”。其核心是宣扬整个世界和全部人生为 无边之苦海。四谛又可分为两部分,苦、 集二谛说明人生的本质及其形成的原因, 灭、道二谛指明人生解脱的归宿和上解一页脱下一之页 返回
部派佛教时期(约前4世纪中叶一1世纪中 叶)公元前4世纪至公元1世纪,即释迎牟 尼去世后的100年到400年间,佛教教团 出现了分裂。最初分为尊崇传统、保守旧 规的上座部和较为进取、强调改革上和一页发下一展页 返回
第一节佛教
大乘佛教时期(约1世纪中叶7世纪)大约在 公元1世纪左右,佛教发生了大的分化, 分出大乘佛教和小乘佛教。从此,佛教发 展进入了一个新的阶段。“乘”,是“承 载”或“道路”的意思,大乘是大道,小 乘即是小道。小乘和大乘两派,对佛教教 义的解释和理解有分歧。小乘保持原来的 教义,以释迎牟尼为教主,以《阿含经》 为主要经典。大乘则对原有的教义有所修 正、有所发展,认为三世十方有无数佛, 并以《般若经》、《维摩经》、《法华经
藏传佛教主要是印度密教与藏区本教融合 形成的具有西藏地方色彩的佛教,俗称喇 嘛教。流传于中国的藏、蒙古、裕固、纳 西等民族地区,以及不丹、锡金、尼泊尔 、蒙古和俄罗斯的布里亚特等国家和地区 。它的经典属于藏语,故亦称藏语上系一页佛下一教页 返回
第一节佛教
3.佛教在中国的传播 佛教自印度传入中国以后,经过流传发展
波形的分析及其应用。 4.了解555定时器内部结构框图、基本原理及典型应用。
返回
第一节 概述
模拟电电子技术基础第8章(第四版)童诗白 华成英
2. RC串并联选频网络的选频特性
FV 32 ( 1
模拟电子技术基础
0 2 ) 0
(
f arctg
RC
0 ) 0
3
当 0 1 或 f f0 幅频响应有最大值
FVmax 1 3
1 2RC
相频响应
f 0
模拟电子技术基础
Rds 1k
模拟电子技术基础
桥式振荡电路如图所示, 设A为理想运放, (1)标出A的极性 (2)场效应管的作用 是什么?其d、s 间的等效电阻的 最大值为多少? (3)电路的振荡频率为 多少?
1 1 f 6 3 1061Hz 2 RC 2 0.003 10 50 10
1. 单门限电压比较器 特点:
开环,虚短和虚断不成立 增益A0大于105
vI
模拟电子技术基础
+VCC + A -VEE vO
VEE vO VCC
运算放大器工作在非线性状态下
8.2 电压比较器
1. 单门限电压比较器
(1)过零比较器
vI
模拟电子技术基础
+VCC + A -VEE vO
假设 V
1. 单门限电压比较器 (2)门限电压不为零的比较器 电压传输特性
vO VOH
模拟电子技术基础
+VCC vI + VREF A -VEE vO
O VOL
VREF
vI
输入为正负对称的正弦波 时,输出波形如图所示。
模拟电子技术基础
模拟电子技术基础
分析任务及方法
求传输特性 方向
输出电平VOH 、VOL
又,放大器为反相比例电路 a = 180° 所以: a + f = 360°或0°
模电波形的发生和信号的转换
放大器用于放大信号,反馈网络 提供正反馈以启动振荡,而选频 网络则确保电路仅产生特定频率
的正弦波。
常见的正弦波产生电路包括RC振 荡器和LC振荡器等。
方波的产生
方波是一种非正弦周期波形,其 特点是信号幅度在两个水平之间
快速切换。
方波的产生通常通过比较器电路 实现,该电路将正弦波输入与参 考电平进行比较,以产生方波输
模电波形的重要性
通信基础
模电波形是通信系统的基础,用 于传输语音、图像、数据等信息。
信号处理
模电波形在信号处理中发挥着重要 作用,如滤波、放大、调制解调等。
测量技术
模电波形在测量技术中用于表示各 种物理量,如电压、电流、温度等。
模电波形的发展历程
模拟信号的起源
数字化时代的到来
可以追溯到19世纪,当时人们开始使 用电话线路传输模拟信号。
程控制。
音频处理领域的应用
音频录制
模拟信号用于音频录制,将声音转换为模拟信号并记录在录音带 上。
音频编辑
模拟信号用于音频编辑,通过音频编辑器对模拟信号进行剪辑、 合成和效果处理。
音频播放
模拟信号用于音频播放,将存储在录音带、CD、DVD等媒体上 的模拟信号还原成声音。
05
模电波形面临的挑战与解决方案
3
温度测量
模拟信号用于测量温度值,通过温度传感器等测 量设备将温度转换为模拟信号进行显示。
控制领域的应用
模拟控制
01
模拟信号用于控制领域的模拟控制,如调节温度、压力、流量
等参数。
伺服系统
02
模拟信号用于伺服系统的控制,通过模拟信号调节伺服电机的
转动角度和速度。
过程控制
03
波形的发生和信号的转换课后习题解答
解: 若 Rf 断路,则集成运放处于开环工作状态,差模增益很大,使输出严重失真,
几乎为方波。 8.11 分析图中所示电路是否满足正弦波振荡的相位条件。
解:因放大电路输入端无耦合电容与反馈网络隔离而是晶体管截止,所以不可能产 生正弦波振荡。
解:电路中放大电路为共基接法,组成三点电容式电路,所以可以产生正弦波振荡 电路。 8.14 试分别求解个电路的电压传输特性。
⑶当信号频率 f = fo 时,RC串并联网络呈B。
8.8 电路如图所示 (1)为使电路产生正弦波振荡,标出集成运放的“+”“—”;并说明电路时那种正 弦波电路。 解:极性如图所示。是 RC 桥式正弦波电路。
(2)若 R1 短路,则电路将产生什么现象? 解:若 R1 短路则集成运放处于开环工作状态,差模增益很大,使输出严重失真,几
波形的发生和信号的转换课后习题解答
8.1 判断下列说法是否正确。
.
.
⑴在图所示方框中,只要 A 和 F 同号,就有可能产生正弦波震荡。
(T)
.
A
.
F
⑵ 因 为 R C 串 并 联 选 频 网 络 作 为 反 馈 网 络 时 ϕ f = 00 , 单 管 共 集 放 大 电 路的
ϕA = 00 ,满足正弦波震荡的相位条件ϕA + ϕF = 2nπ (n为整数),故合理连接他
乎为方波。
(3)若 R1 断路,则电路将产生什么现象? 解:若 R1 断路,则集成运放构成电压跟随器,电压放大倍数为一不满足正弦波震荡
的幅值条件电路不震荡,输出为零。
(4)若 Rf 短路,则电路将产生什么现象? 解:若 Rf 短路,则集成运放构成电压跟随器,电压放大倍数为一不满足正弦波震荡
波形的发生和信号的转换
第8章 信号的发生和信号的转换
C' C1C2 C1 C2
第8章 信号的发生和信号的转换
Rb2 Cb
Rb1
+UCC Rc
-
Re
Ce
C1 L
U f
C2
C
+
图8.1.10 电容三点式改善型正弦波振荡电路
第8章 信号的发生和信号的转换
1 C'
1 C
1 C1
1 C2
在选用电容参数时, 可使C1>>C, C2>>C, 所以
C' C
第8章 信号的发生和信号的转换
当信号频率足够低时,
1
C1
1
R1, C2
R2,
可得到近
似旳低频等效电路, 如图8.1.2(b)所示。它是一种超前网络。
输出电压 相U•位2 超前输入电压
。U• i
当信号频率足够高时,
1
C1
R1,
1
C2
R2
, 其近似旳
高频等效电路如图8.1.2 (c)所示。它是一种滞后网络。 输
第8章 信号的发生和信号的转换
第8章 信号旳发生 和信号旳转换
8.1 正弦波振荡电路 8.2 电压比较器 8.3 非正弦波发生器 8.4 利用集成运放实现旳信号准换电路
第8章 信号的发生和信号的转换
8.1 正弦波振荡电路
波形的发生和信号的转换.
9.1K
- D2 A R 10K
+
o U
R2 R3 // rD | Au | 1 R1 使uo幅值趋于稳定。
1 2RC
1 2 10 10 0.015 10
3 6
p U
R
C
(2) f o
C 0.015μF
1061 Hz
1 uN uP uOM 3
电源接通瞬间,产生冲击干扰、电磁波干扰、人体干扰等; 非正弦量的起始信号含一系列频率不同的正弦分量,一个正 弦波振荡电路只在一个频率下满足相位平衡,故振荡电路必 F 环路 具有选频性,该振荡频率由相位平衡条件决定。即 A 中有选频特性网络。 或 F 选频网络由R、C和L、C等电抗性元件组成,存在于 A
AV FV 1 稳幅
4. RC移相式振荡电路
(1) 一级RC移相网络
V 1 o 1 Vi 1- j RC
1 arctg RC
(2) 二级RC移相网络
=0,=900; ,=00
一级 RC网络可产 生 0~90° 的 相 移 , 二 级 RC 网 络 可 产 生 0~180°的相移,三级 RC 网 络 可 产 生 0~270°的相移。依此 类推。
(3) 三级RC移相网络
RC移相式振荡电路
R1
RF _ C C C
+
+
uo
R R R
RC移相电路 应有F =180°
反相比例电路 A =180°
采用二极管稳幅方法 [例] 图示电路中,A为理想运放,其最大输出电压为±14V。(1) 图中D1 、D2作为稳幅元件,试分析其稳幅原理;(2)设电路已
在一个正弦波振荡电路中只有在一个频率(fo)下满足相位平衡条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
切换R,用于粗调 振荡频率。
R1
R3
Rf
振荡频率:
f0
1
2 RC
2021/1/19
R2
R1
K
K
R C
R3 C
_
uo
+
+
R1
C:双联可调电容,改变C, 用于细调振荡频率。
8
1
R28
2
R27
3
R26
4
R25
5
R24
6
R23
7
R22
1
R21
2021/1/19
电子琴的振荡电路:
R2
RF1 RF2 D1
R1
34
8.3.2 三角波发生电路
方波经过积分电路就可以得到三角波。所以,三角波 发生电路可以用矩形波发生电路+积分电路构成。
基本电路与波形:
由于,三角波发生电路中有2个RC定时电路,可以省去滞回 比较器的RC定时电路。
2021/1/19
35Βιβλιοθήκη 进电路:A1:同相滞回比较器 A2:反相积分电路
阈值电压的计算:
2021/1/19
25
电压传输特性
当 uI UT 时: uO U Z 当 uI UT 时: uO U Z 当 uI UT 时: uO UZ 当 uI UT 时: uO UZ 当 uI UT 时: uO U Z
滞回特性是由于正反馈而产生的!
当
U REF
0 时: UT
R1 R1 R2
分析:
uO uO1 uO2
当 uI U RL 时:U Z 当 uI U RL ~ U RH 时: 0
当 uI U RH 时:U Z
UOL UOL UOH
UOH UOL UOL
传输特性
2021/1/19
28
8.2.5 集成电压比较器
集成电压比较器是专用的电压比较器,具有响应速度快、延迟时间短, 无需限幅电路。但放大性能不如运算放大器。
单限比较器工作在开环状态,当uI~UT时,很小的干扰
,将会使输出状态改变。因此,希望电路具有滞回特性。
iN 0; (虚断成立!)
uP
R2U REF R1 R2
R1U Z R1 R2
叠加原理
当 uI UT 时: uN uP
反相滞回比较器
UT
R2 R1 R2
U REF
R1 R1 R2
UZ
存在2个阈值电压!
按选频网络的组成分为:RC、LC、石英晶体振荡电路
低频 高频
2021/1/19
4
8.1.2 RC 振荡电路
RC选频网络:RC文氏桥(串并联网络)、RC移相、RC双T网络
一、 RC串并联网络的选频特性
定性分析:
f 1
2 RC
U2比较小
f 1
2 RC
U2比较小
f
1
2 RC
U2比较大
2021/1/19
2. 积分到UT-时,开始向上积分。 3. 积分到UT+后,又开始向下积分。
参数计算:
与积分电路无关!
T1 T2
脉冲幅度=2UT+=2UZR1/R2
脉冲周期 T T1 T2 2T1
UT
UT
UZ R3C
T1
T
4
R1 R2
R3C
通过R3C改变频率, 幅度不变!
2021/1/19
37
uO1占空比:
2021/1/19
40
2、折线法
原理 电路
2021/1/19
41
8.3.5 函数发生器
函数发生器是一种可以同时产生方波、三角波和 正弦波的专用集成电路;当调节外部电路参数时,还可获 得占空比可调的矩形波和锯齿波。
D1
_
C
+
+
C Rf
可调
uo 功率放 大器
9
三. LC 振 荡 电
路LC选频网络:通常是采用LC并联谐振回路。
一、 LC并联谐振回路的频率特性
考虑L的电阻 小
1 (R j L)
1 j L
阻抗:Z
jC 1 R j L
RL
jC
R j( L
1
)
jC
C
2021/1/19
10
L
Z
C
R j( L
q
T2 T
1 2
如何改变该占空比?
积分电路的充放电回路用二极管隔离,使二个通路的积分 常数不同。
2021/1/19
38
8.3.3 锯齿波发生电路
当D1通路的电阻很小时,有如图波形:
2021/1/19
39
8.3.4 波形变换电路(自阅)
一. 三角波 锯齿波变换电路
-1
+
1
二. 三角波 正弦波变换电路 1、滤波法
UT
R2 R1
U REF
(此时虚短成立!)
电压传输特性
2021/1/19
22
单限比较器的作用:检测输入的模拟信号是否 达到某一给定电平。
缺点:抗干扰能力差。
解决办法: 采用具有滞回传输特性的比 较器。
2021/1/19
存在干扰时单限比较器的 uI、uO 波形
23
电压比较器分析方法小结
(1)由限幅电路确定电压比较器的输出高电平UOH和输出低 电平UOL 。
uP
R2 R1 R2
uI
R1 R1 R2
uO1
而,uI=UT 时,uP=0
UT
R1 R2
uO1
U Z
2021/1/19
积分运算关系:
uO
uO1 R3C
t
uO (0)
36
工作原理:
UT uO
R1 U uRO21 t
R3C
Z
uO
(0)
设:初始时,uC=0,uO1=UZ 。 1. A2向下积分。
1
振荡频率: f0 2 LC
C C1C2 C1 C2
2021/1/19
13
下列电路能振荡吗?
2021/1/19
14
8.1.4 石英晶体振荡电
路一、石英晶体
是一种利用SiO2晶体压电效应 原理构成的谐振器件。
外形
结构
符号 等效电路
L:模拟晶体机械振
动惯性10-3~10-2H
R:模拟机械振动摩
电路分析:
设:初始时,uC=0,uO=UZ 。
1. R3对C充电。
uO
2. 充到UT+后,R3对C放电。
3. 放到UT-后,R3对C充电。
2021/1/19
UZ UT+ t UTUZ t -UZ
32
波形参数计算:
uC
1. 输出电压
uO U Z 脉冲幅度=2UZ
2. 脉冲周期
uO
UZ UT+ t UTUZ
(2)写出up和uN的电位表达式,令up=uN ,解得输入电压
就是阈值电压UT。
(3) u0在uI 过UT时的跃变方向决定于作用于集成运放的
哪个输入端。
当uI从反向输入端输入时,uI<UT ,u0=U0H ; uI>UT ,u0=U0L 。 反之,结论相反。
2021/1/19
24
8.2.3 滞回比较器-Shmitt触发器
2021/1/19
29
LM339介绍
2021/1/19
30
8.3 非正弦波振荡电路
矩形波
三角波
锯齿波
尖顶波
阶梯波
非正弦波主要是指三角波和矩形波
2021/1/19
31
8.3.1 矩形波发生电路
电路是一个滞回比较器。
UT
R1 R1 R2
UZ
UT
R1 R1 R2
UZ
给电路增加一个RC定时电路。
uC
Max 3 放大电路:
同相放大电路,Au=1+Rf /R1略大于3。
电路连接:
稳幅环节:当Uo较大时,Rf 或R1 ,使Au=3。
方法1.热敏电阻(负温度系数)替换Rf 热敏电阻(正温度系数)替换R1
方法2. Au 1 Rf rd
R1
2021/1/19
7
频率可调振荡电路:
R2
K:双联波段开关,
作为电感用,并接电容CL~ 几十pF,此时 f0 fS。调节CL 可以使f0在fS~fP之间变化。
② 串联式石英晶体正弦振荡器
2021/1/19
16
8.2 电压比较器
8.2.1 概述
1.电压比较器将一个模拟量输入电压与一个参考电压进行比较, 输出只有两种可能的状态:高电平或低电平。
2.比较器中的集成运放一般工作在非线性区;处于开环状态或 引入正反馈。
起振: 改变匝数比可使|AF|>1
稳幅: 利用LC的选频特性
取消C1可以吗?
2021/1/19
12
2、电感三点式 Colpitts Oscillator
正反馈:
考毕茨振荡器
1
振荡频率: f0 2 LC
L L1 L2 2M
3、电容三点式 Hartley Oscillator
正反馈:
哈特莱振荡器
路只有。正反馈电路才能产生自激振荡。
1. 振荡条件
自激振荡时,有:Xo
AX
i
AFXo
即: AF 1 ———自激振荡条件
写成模和相角形式: AF 1
AF 2n
幅值平衡条件 相位平衡条件
2021/1/19
2
2. 起振与稳幅 起振过程:
电源通断/噪声/干扰 f0满足: AF 2n 当此时有: AF 1 则: f0的信号被重复放大