交大大物第四章习题答案教学文案

合集下载

大学物理学振动与波动习题答案

大学物理学振动与波动习题答案

大学物理学振动与波动习题答案word完美格式大学物理学(上)第四,第五章习题答案第4章振动p174.4.1一物体沿x轴搞四极振动,振幅a=0.12m,周期t=2s.当t=0时,物体的加速度x=0.06m,且向x轴正向运动.谋:(1)此简谐振动的表达式;(2)t=t/4时物体的边线、速度和加速度;(3)物体从x=-0.06m,向x轴负方向运动第一次回到平衡位置所需的时间.[答疑](1)设立物体的四极振动方程为x=acos(ωt+φ),其中a=0.12m,角频率ω=2π/t=π.当t=0时,x=0.06m,所以cosφ=0.5,因此φ=±π/3.物体的速度为v=dx/dt=-ωasin(ωt+φ).当t=0时,v=-ωasinφ,由于v>0,所以sinφ<0,因此φ=-π/3.四极振动的表达式为x=0.12cos(πtcπ/3).(2)当t=t/4时物体的位置为x=0.12cos(π/2cπ/3)=0.12cosπ/6=0.104(m).速度为v=-πasin(π/2cπ/3)=-0.12πsinπ/6=-0.188(ms-1).加速度为a=dv/dt=-ω2acos(ωt+φ)=-π2acos(πt-π/3)=-0.12π2cosπ/6=-1.03(ms-2).(3)方法一:求时间差.当x=-0.06m时,可得精心整理自学泰迪cos(πt1-π/3)=-0.5,因此πt1-π/3=±2π/3.由于物体向x轴正数方向运动,即v<0,所以sin(πt1-π/3)>0,因此πt1-π/3=2π/3,得t1=1s.当物体从x=-0.06m处第一次回到平衡位置时,x=0,v>0,因此cos(πt2-π/3)=0,可得πt2-π/3=-π/2或3π/2等.由于t2>0,所以πt2-π/3=3π/2,只须t2=11/6=1.83(s).所需要的时间为δt=t2-t1=0.83(s).方法二:反向运动.物体从x=-0.06m,向x轴正数方向运动第一次返回平衡位置所需的时间就是它从x=0.06m,即为从起点向x轴正方向运动第一次返回平衡位置所需的时间.在平衡位置时,x=0,v<0,因此cos(πt-π/3)=0,可以得πt-π/3=π/2,Champsaurt=5/6=0.83(s).[注意]根据振动方程x=acos(ωt+φ),当t=0时,可得φ=±arccos(x0/a),(-π<φqπ),初位相的值域由速度同意.由于v=dx/dt=-ωasin(ωt+φ),当t=0时,v=-ωasinφ,当v>0时,sinφ<0,因此φ=-arccos(x0/a);当v<0时,sinφ>0,因此word轻松格式φ=arccos(x0/a).可知:当速度大于零时,初位相取负值;当速度大于零时,初位相取正值.如果速度等于零,当初边线x0=a时,φ=0;当初边线x0=-a时,φ=π.4.2已知一简谐振子的振动曲线如图所示,试由图求:(1)a,b,c,d,e各点的位相,及抵达这些状态的时刻t各就是多少?未知周期为t;(2)振x动表达式;aa(3)画a/2b出旋转矢量oc图.dt[答疑]e方法一:由图6.2十一位说媒时间.(1)设曲线方程为x=acosφ,其中a表示振幅,φ=ωt+φ表示相位.由于xa=a,所以cosφa=1,因此φa=0.由于xb=a/2,所以因此φb=±π/3;由于位相φ随时间t增加,b点位相就应该大于a点的位相,因此φb=π/3.由于xc=0,所以cosφc=0,又由于c点位二者大于b位相,因此φc=π/2.同理可以得其他两点位灵府φd=2π/3,φe=π.c点和a点的增益之高为π/2,时间之高为t/4,而b点和a点的增益之高为π/3,时间之差必须为t/6.因为b点的加速度值与o时刻的加速度值相同,所以抵达a点的时刻为ta=t/6.精心整理自学泰迪到达b点的时刻为tb=2ta=t/3.到达c点的时刻为tc=ta+t/4=5t/12.到达d点的时刻为td=tc+t/12=t/2.到达e点的时刻为te=ta+t/2=2t/3.(2)设立振动表达式为x=acos(ωt+φ),当t=0时,x=a/2时,所以cosφ=0.5,因此φ=±π/3;由于零时刻的位相大于a点的位相,所以因此振动表达式为x?acos(2?tt??3).另外,在o时刻的曲线上作一切线,由于速度是位置对时间的变化率,所以切线代表速度的方向;由于其斜率大于dc零,所以速度小b于零,因此初位ea相取负值,从而oφx可得运动方程.a(3)例如图转动矢量图右图.方法二:由时间x求位二者.将aa曲线反方a/2bf向延长与toc轴相交于fdt点,由于exf=0,根据运动方程,可以得cos(2?tt??3)?0所以2?tft??32.word完美格式似乎f点的速度大于零,所以挑负值,Champsaurtf=-t/12.从f点抵达a点经过的时间为t/4,所以抵达a点的时刻为ta=t/4+tf=t/6,其位灵府taa2t30.由图可以确认其他点的时刻,同理只须各点的位相.4.3如图所示,质量为10g的子弹以速度v=103ms-1水平射入木块,并陷入木块中,使弹簧压缩而作简谐mvmk振动.设弹簧的高傲系数k图4.3=8×103nm-1,木块的质量为4.99kg,数等桌面摩擦,试求:(1)振动的振幅;(2)振动方程.[答疑](1)子弹射入木块时,由于时间很短,木块还顾不上运动,弹簧没被放大,它们的动量动量,即为mv=(m+m)v0.Champsaur子弹射入后的速度为v0=mv/(m+m)=2(ms-1),这也就是它们振动的初速度.子弹和木块压缩弹簧的过程机械能守恒,可得(m+m)v220/2=ka/2,所以振幅为a?vm?m0k=5×10-2(m).(2)振动的圆频率为km?m=40(rads-1).取木块静止的位置为原点、向右的方向为位移x的正方向,振动方程可设为x=acos(ωt+φ).当t=0时,x=0,可得精心整理自学泰迪φ=±π/2;由于速度为也已,所以取负的初位二者,因此振动方程为x=5×10-2cos(40t-π/2)(m).4.4如图所示,在倔强系数为k的弹簧下,摆一质量为km的托盘.质量为mx1x2的物体由距盘底高moh处自由下落与盘h发生完全非弹性碰m撞到,而使其并作珍谐振动,设两物体碰后瞬x时为t=0时刻,谋图4.4振动方程.[答疑]物体落后、相撞前的速度为v?2gh,物体与纸盒搞全然非弹簧相撞后,根据动量守恒定律可以得它们的共同速度为vm0?m?mv?mm?m2gh,这也就是它们振动的初速度.设立振动方程为x=acos(ωt+φ),其中圆频率为km?m.物体没落之前,纸盒均衡时弹簧弯曲为x1,则x1=mg/k.物体与纸盒相撞之后,在代莱平衡位置,弹簧弯曲为x2,则x2=(m+m)g/k.挑代莱平衡位置为原点,价值观念下的方向为也已,则它们振动的初加速度为x0=x1-x2=-mg/k.因此振幅为a?x2?v20mg22ghm20?2?(k)?k(m?m)word轻松格式mgk12kh(mm)g;初位相为arctan?v0?x?2kh.0(m?m)g4.5重量为p的物体用两根弹簧竖直悬挂,如图所示,各弹簧的倔强系数标明在图上.试求在图示两种情况下,系统沿竖直方向振动的固有频率.[答疑](1)可以证明:当两根弹簧串联时,总高傲系数为k=k1k2/(k1+k2),因此固有频率为k1kk2πk2?1k2πm(a)(b)图4.51k1k2g2(k1k2)p.(2)因为当两根弹簧并联时,总倔强系数等于两个弹簧的倔强系数之和,因此固有频率为12k2kg2π?2?m?12?p.4.6一匀质细圆环质量为m,半径为r,绕通过环上一点而与环平面垂直的水平光滑轴在铅垂面内作小幅度摆动,求摆动的周期.[答疑]方法一:用旋转定理.通过质心横向环面存有一个轴,环绕着此轴的转动惯量为ori=mr2c.θc根据平行轴定理,环绕过o精心整理学习帮手mg点的平行轴的转动惯量为i=ic+mr2=2mr2.当环偏离平衡位置时,重力的力矩为m=-mgrsinθ,方向与角度θ增加的方向相反.根据旋转定理得iβ=m,即id2?dt2?mgrsin??0,由于环做小幅度摆动,所以sinθ≈θ,可得微分方程d2?dt2?mgri??0.转动的圆频率为mgri,周期为t?2π??2?i2rmgr?2?.g方法二:用机械能守恒定律.取环的质心在最底点为重力势能零点,当环心转过角度θ时,重力势能为ep=mg(r-rcosθ),拖o点的旋转动能为e1k?2i?2,总机械能为e?12i?2?mg(r?rcos?).环路在旋转时机械能动量,即e为常量,将上式对时间微分,利用ω=dθ/dt,β=dω/dt,得0=iωβ+mgr(sinθ)ω,由于ω≠0,当θ不大存有sinθ≈θ,可以得振动的微分方程d2?dt2?mgri??0,从而可求角频率和周期.[特别注意]角速度和圆频率采用同一字母ω,不要将两者混为一谈.word完美格式(4)图画出来这振动的转动矢量图,并4.7横截面均匀的光在图上指明t为1,2,10s等各时刻的矢滑的u型管中有适量液量位置.yy体如图所示,液体的总[答疑](1)比较四极振动的标准方0y长度为l,求液面上下程y微小曲折的民主自由振动的频率。

大学物理第四章习题答案

大学物理第四章习题答案

大学物理第四章习题答案大学物理第四章习题答案大学物理是一门让许多学生感到头疼的学科,尤其是对于那些对数学和计算不太擅长的学生来说。

而第四章是大学物理中的一个重要章节,涵盖了许多关于力学和运动的基本概念和原理。

在这篇文章中,我将为大家提供一些大学物理第四章习题的答案,希望能够帮助到那些正在学习这门课程的学生。

1. 一个物体以10 m/s的速度沿着水平方向运动,受到一个10 N的水平力的作用,求物体在2秒钟内的位移。

根据牛顿第二定律,物体的加速度可以通过力和质量的比值来计算。

在这个问题中,物体的质量未知,但我们可以通过已知的力和加速度来计算出质量。

由于力和加速度的关系是F = ma,我们可以将已知的力和加速度代入这个公式,解出物体的质量。

然后,我们可以使用物体的质量和已知的力来计算物体的加速度。

最后,我们可以使用物体的初始速度、加速度和时间来计算物体的位移。

2. 一个物体以5 m/s的速度沿着斜坡上升,斜坡的倾角为30度。

求物体在10秒钟内上升的高度。

在这个问题中,我们需要使用三角函数来计算物体在斜坡上升时的垂直位移。

首先,我们可以使用已知的速度和斜坡的倾角来计算物体在斜坡上的水平速度。

然后,我们可以使用已知的时间和水平速度来计算物体在斜坡上的水平位移。

最后,我们可以使用已知的斜坡的倾角和物体在斜坡上的水平位移来计算物体在斜坡上升时的垂直位移。

3. 一个物体以10 m/s的速度竖直向上抛出,求物体在2秒钟内的最大高度和总的飞行时间。

在这个问题中,我们需要使用物体的初速度和重力加速度来计算物体在竖直抛物线运动中的最大高度和总的飞行时间。

首先,我们可以使用已知的初速度和时间来计算物体在竖直方向上的位移。

然后,我们可以使用已知的初速度和重力加速度来计算物体在竖直方向上的最大高度。

最后,我们可以使用已知的重力加速度来计算物体在竖直方向上的总的飞行时间。

这些问题只是大学物理第四章中的一小部分,但它们涵盖了一些基本的概念和原理。

大学物理第四章习题解答PPT演示课件

大学物理第四章习题解答PPT演示课件
注意:最高点处摆锤(刚体)的速度恰好为零 时, 完成一个圆周运动。(区别:3-30)
16
解: 冲击:子弹和摆锤角动量守恒
mlvm2 vl(J1J2)0
J1
1 3
ml 2
J2 ml2
v 0
摆动:摆锤和地球机械能守恒
Ek Ep
1 2(J1J2)0 2mg2lmgl
4m vmin m
2gl
17
解:子弹+杆系统: M外 0
m 22 lv(1 JJ2) J2)(1JJ2)
J1
1 12
m1l
2
J2
m1(
l )2 2
v v r l/2
J2 6m 2v 2.1 9r3a/sd
J1J2 m 1l3m 2l
11
426:一质量 m/、 为半径 R的 为转台,以a角 转速 动度 ,转轴的
不计, 1)( 有一质 m的 量蜘 为蛛垂直地边 落缘 在上 转, 台此时角 ,
解: JJ盘2J柱
J盘 12m盘R盘 2
R盘
3
01 2
02
m
J柱 12m柱R柱 2
10102 R柱 2 m
m盘 V盘
m柱 V柱
J0.13k6gm2
7
413:如图所示m1, 1质 6kg的 量实心圆 A,柱 其体 半r径 15c为 m ,可 绕其固定水平 阻轴 力转 忽动 略, 不计 的。 柔一 绳条 绕轻 在圆 其柱 一
(A) 角速度从小到大,角加速度不变 O
A
(B) 角速度从小到大,角加速度从小 到大
(C) 角速度从小到大,角加速度从 大到小
(D) 角速度不变,角加速度为零
2
绕过O点的轴做定轴转动。求:运动过程中角速度和角 加速度的变化情况

西安交通大学大学物理ppt第四章 (1)

西安交通大学大学物理ppt第四章  (1)

2 m v b
Img
2 m v 2 v2 tg Img π Rg

IT
§4.2 质点系动量定理
P 表示质点系在时刻 t 的动量
i d( m v ) ( F f ) d t 1 1 1 12 f f 0一对内力 12 21 d( m v ) ( F f ) d t f12 2 2 2 21 F1
d E P F i d x
EP C
E
E k F
EP
x1
x2
F F
x
B
3
F
x4
做往复振动
X
质点运动范围:
E E E 0 ( x x )( x ) x )( k p 2 3 4 1 B点: 稳定平衡位置 A、C点:非稳定平衡位置 F 0
四. 功能原理和机械能守恒定律
F ( m m ) g 1 2
( F m g ) k ( x x ) 2 0 1
应用功能原理或机械能守恒定律解题步骤 (1) 选取研究对象。 (2) 分析受力和守恒条件。
判断是否满足机械能守恒条件,如不满足,则应用功能 原理求解。
(3) 明确过程的始、末状态。
需要选定势能的零势能位置。
s1
s2 Βιβλιοθήκη v 和 为下滑过程中 m1和 v 1 2
m2相对于地面的速度 水平方向系统动量守恒
y
v1
m2 v2x
0 m v m ( v ) 2 2 x 1 1
O
v2 m1
R
m v m v 2 2 x 1 1 设t = 0时m2在圆弧顶点,t 时刻滑到最低点,对上式积分,有

大学物理学课后习题4第四章答案

大学物理学课后习题4第四章答案
(A)它的动能转化为势能. (B)它的势能转化为动能. (C)它从相邻的一段质元获得能量其能量逐渐增大. (D)它把自己的能量传给相邻的一段质元,其能量逐渐减小.
[答案:D]
4.2 填空题 (1)一质点在 X 轴上作简谐振动,振幅 A=4cm,周期 T=2s,其平衡位置
取作坐标原点。若 t=0 时质点第一次通过 x=-2cm 处且向 x 轴负方向运动,则 质点第二次通过 x=-2cm 处的时刻为__ __s。
(3) t2 5s 与 t1 1s 两个时刻的位相差;
解:(1)设谐振动的标准方程为 x Acos(t 0 ) ,相比较厚则有:
A 0.1m,
8 ,T
2
1 4
s,
0
2
/3

vm A 0.8 m s1 2.51 m s1
am 2 A 63.2 m s2
(2)
Fm mam 0.63N
(1) x0 A ;
(2)过平衡位置向正向运动; (3)过 x A 处向负向运动;
2
(4)过 x A 处向正向运动. 2
试求出相应的初位相,并写出振动方程.
解:因为
v
x0 A cos0 0 Asin
0
将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相.故有
1
x Acos( 2 t ) T
103
(
)2
0.17
4.2
103
N
2
方向指向坐标原点,即沿 x 轴负向.
(2)由题知, t 0 时,0 0 ,
t t时
x0
A ,且v 2
0, 故 t
3

t
3
/
2
2s 3

《大学物理教程习题答案》上海交通大学出版社

《大学物理教程习题答案》上海交通大学出版社

习题11-1.已知质点位矢随时间变化的函数形式为(cos sin )r =R ωt i ωt j + 其中ω为常量.求:(1)质点的轨道;(2)速度和速率。

解:(1) 由(cos sin )r =R ωt i ωt j +,知:cos x R t ω= ,sin y R t ω=消去t 可得轨道方程:222x y R +=∴质点的轨道为圆心在(0,0)处,半径为R 的圆;(2)由d rv dt=,有速度:sin Rcos v R t i t j ωωωω=-+ 而v v =,有速率:1222[(sin )(cos )]v R t R t R ωωωωω=-+=。

1-2.已知质点位矢随时间变化的函数形式为24(32)r t i t j =++,式中r 的单位为m ,t 的单位为s 。

求:(1)质点的轨道;(2)从0=t 到1=t 秒的位移;(3)0=t 和1=t 秒两时刻的速度。

解:(1)由24(32)r t i t j =++,可知24x t = ,32y t =+消去t 得轨道方程为:x =2(3)y -,∴质点的轨道为抛物线。

(2)由d rv dt=,有速度:82v t i j =+ 从0=t 到1=t 秒的位移为:11(82)42r v d t t i j d t i j ∆==+=+⎰⎰(3)0=t 和1=t 秒两时刻的速度为:(0)2v j =,(1)82v i j =+ 。

1-3.已知质点位矢随时间变化的函数形式为22r t i t j =+,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。

解:(1)由d r v dt =,有:22v t i j =+,d va dt=,有:2a i =; (2)而v v =,有速率:12222[(2)2]21v t t =+=+∴t dva dt==222t n a a a =+有:n a ==1-4.一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间。

西安交通大学大学物理ppt第四章++(2)

西安交通大学大学物理ppt第四章++(2)
Fdt mdv (v u)dm vr u v
Fdt mdv vrdm
dm 与 m 合并前 相对于m 的速度
F
vr
dm dt

m dv (变质量动力学基本方程) dt
• 变质量动力学的应用 —— 火箭的运动方程
t 时刻,火箭质量为 m,速度为 v
v
dt 内火箭喷出速度为u,质量为 – dm 的高温气体
参 考


速度与角速度的矢量关系式
v

dr

ω
r
dt
加速度与角加速度的矢量关系式
z ω,v
a

dv

d(ω
r)

dt dω

r
dt ω
dr
dt
dt

β

r
ω
v
r' P

刚体 r

×基点O
考 方

瞬时轴
定轴





r
i1
m

rdm m
xO
r1m1
y
讨论:• 质心矢量与参照系的选取有关,但质心相对于系统内各质
点的相对位置与参照系选取无关
一般形状对称的匀质物体,其质心位于它的几何对称中心
例 已知一半圆环半径为 R,质量为M
求 它的质心位置
解 建坐标系如图 取 dl
dl Rd dm M Rd
πR
x Rcos y Rsin

设 t 时刻(地面上有
l 长的绳子)
ml
l m l
L
h
此时绳的速度为

大学物理学第三版上海交大上册习题答案

大学物理学第三版上海交大上册习题答案

第一章习 题1-1. 已知质点位矢随时间变化的函数形式为)ωt sin ωt (cos j i +=R r其中ω为常量.求:(1)质点的轨道;(2)速度和速率。

解:1) 由)ωt sin ωt (cos j i +=R r 知 t cos R x ω= t sin R y ω=消去t 可得轨道方程 222R y x =+2) j rv t Rcos sin ωωt ωR ωdtd +-==i R ωt ωR ωt ωR ωv =+-=2122])c o s ()s i n [(1-2. 已知质点位矢随时间变化的函数形式为j i r )t 23(t 42++=,式中r 的单位为m ,t 的单位为s .求:(1)质点的轨道;(2)从0=t 到1=t 秒的位移;(3)0=t 和1=t 秒两时刻的速度。

解:1)由j i r )t 23(t 42++=可知2t 4x =t 23y +=消去t 得轨道方程为:2)3y (x -=2)j i rv 2t 8dtd +==j i j i v r 24)dt 2t 8(dt 11+=+==⎰⎰Δ3) j v 2(0)= j i v 28(1)+=1-3. 已知质点位矢随时间变化的函数形式为j i r t t 22+=,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。

解:1)j i rv 2t 2dt d +== i va 2dtd ==2)212212)1t (2]4)t 2[(v +=+= 1t t 2dtdv a 2t +==n a ==1-4. 一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间。

解:以地面为参照系,坐标如图,升降机与螺丝的运动方程分别为20121at t v y += (1) 图 1-420221gt t v h y -+= (2)21y y = (3)解之t =1-5. 一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程;(2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的t d d r ,t d d v ,tv d d . 解:(1) t v x 0= 式(1)2gt 21h y -= 式(2)j i r )gt 21-h (t v (t)20+=(2)联立式(1)、式(2)得 22v 2gx h y -=(3)j i rgt -v t d d 0= 而 落地所用时间 gh 2t = 所以j i r 2gh -v t d d 0= j v g td d -= 2202y 2x )gt (v v v v -+=+=212220[()]g t dv dt v gt ==+1-6. 路灯距地面的高度为1h ,一身高为2h 的人在路灯下以匀速1v 沿直线行走。

上海交大版物理第四章答案

上海交大版物理第四章答案

)s 习题44-1.如图所示的圆锥摆,绳长为l ,绳子一端固定,另一端系一质量为m 的质点,以匀角速ω绕铅直线作圆周运动,绳子与铅直线的夹角为θ。

在质点旋转一周的过程中,试求:(1)质点所受合外力的冲量I;(2)质点所受张力T 的冲量T I。

解:(1)设周期为τ,因质点转动一周的过程中,速度没有变化,12v v =,由I mv =∆ ,∴旋转一周的冲量0I =;(2)如图该质点受的外力有重力和拉力,且cos T mg θ=,∴张力T 旋转一周的冲量:2cos T I T j mg j πθτω=⋅=⋅所以拉力产生的冲量为2mgπω,方向竖直向上。

4-2.一物体在多个外力作用下作匀速直线运动,速度4/v m s =。

已知其中一力F方向恒与运动方向一致,大小随时间变化内关系曲线为半个椭圆,如图。

求:(1)力F在1s 到3s 间所做的功;(2)其他力在1s 到3s 间所做的功。

解:(1)半椭圆面积⋅====⋅=⎰⎰⎰⎰v t F v t Fv x F x F A d d d dJ 6.12540201214==⨯⨯⨯=ππ(2)由动能定理可知,当物体速度不变时,外力做的总功为零,所以当该F做的功为125.6J 时,其他的力 的功为-125.6J 。

4-3.质量为m 的质点在Oxy 平面内运动,运动学方程为cos sin r a t i b t j ωω=+,求:(1)质点在任一时刻的动量;(2)从0=t 到ωπ/2=t 的时间内质点受到的冲量。

解:(1)根据动量的定义:P mv = ,而drv dt== sin cos a t i b t j ωωωω-+ ,∴()(sin cos )P t m a t i b t j ωωω=-- ;(2)由2()(0)0I mv P P m b j m b j πωωω=∆=-=-= , 所以冲量为零。

4-4.质量为M =2.0kg 的物体(不考虑体积),用一根长为l =1.0m 的细绳悬挂在天花板上。

大学物理第四章课后思考题详解

大学物理第四章课后思考题详解
--- Bernara Shaw
谐振动:
X. J. Feng,
1. 力学特征: 线性恢复力(力矩)
F kx
F mg
2.动力学方程:
d 2x dt 2
02 x

0
M mgb 思考: 拍皮球时球的往
3.运动学方程: x Acos(0t ) 复运动是否是谐振动?
v 0 Asin( 0t )
m

Px
X. J. Feng,
M 0t
Px
X. J. Feng,
M
P
x
M P
Xபைடு நூலகம் J. Feng,
x
X. J. Feng,
M
P
x
X. J. Feng,
P x
M
X. J. Feng,
P x
M
X. J. Feng,
P x
M
X. J. Feng,
P x
M
X. J. Feng,
M Px
突然速度为0的质点m0轻粘在m上,求:m0粘上后振动系统
周期和振幅
m0
解: 两弹簧的等效系数:2k
km k
(请同学们课后自己证明)
m0粘上前系统振动的圆频率: 0
2k m
v 2l0
m0粘上后系统振动的圆频率:
2k
m m0
T 2 m m0
2k
A
x0

v02
2
x0 0
x
M
M nm
l0
·m
(2).t Tn 2
Tn

2 n
n
k M nm
MO
l0

大学物理下册(上海交大第四版)课后习题解答

大学物理下册(上海交大第四版)课后习题解答
大学物理课程(下册)课后习题选解
12-4. 将一“无限长”带电细线弯成图示形状,设电荷均匀分布,电荷线密度为 ,四分之 一圆弧 AB 的半径为 R ,试求圆心 O 点的场强. 解:设 O 为坐标原点,水平方向为 x 轴,竖直方向为 y 轴 半无限长导线 A 在 O 点的场强 E 1
(i j ) 4 0 R
U1
则内球电荷:
4 0 R1
q1

4 0 R2
q1

Q q1 0 4 0 R3
q1
外球电势:
R1 R2 Q R1 R3 R3 R2 R1 R2
U2
电势差:
Q q1 Q( R1 R2 ) 4 0 R3 4 0 ( R1 R3 R3 R2 R1 R2 ) Q( R1 R2 ) 4 0 ( R1 R3 R3 R2 R1 R2 )
B0
B2

L2
由于两段圆弧电流对 O 的磁感应强度方向相反,所以
14-10. 在 半径 R 1cm 的 无 限 长 半 圆 柱 形 金 属 片 中 , 有 电 流 I 5A 自下而上通过,如图所示。试求圆柱轴线上一点 P 处的磁 感应强度的大小。 解:将半圆柱形无限长载流薄板细分成宽为 dl Rdθ 的长直电流
根据安培环路定理
B dL
0
I
B
0
2
(R 2 r 2 )
(2) 带电长直圆柱体旋转相当于螺线管, 端面的磁感应强度是中间磁感应强度的一半, 所以端面的磁感应强度
B
0 R 2
4
14-16. 如图所示的空心柱形导体,柱的半径分别为 a 和 b ,导体内载有电 流 I ,设电流 I 均匀分布在导体横截面上。证明导体内部各点( a < r < b ) 的磁感应强度 B 由下式给出:

大学物理第四章课后答案

大学物理第四章课后答案

υ2 l
9. 解: m 下降到斜面瞬间满足机械能守恒: 1 则 mgh = mυ 0 2 2 M 与 m 碰撞后无机械能损失: 1 1 1 mυ 0 2 = Mυ 2 + mυ ′ 2 2 2 2 水平方向 M 与 m 组成的系统动量守恒, 总动量 为 0, Mυ = m υ ′ 解得: υ = 2m 2 gh M ( M + m)
如图所示在一铅直面内有一光滑的轨道左边是一个上升的曲线右边是足够长的水平直线两者平滑连接现有b两个质点b在水平轨道上静止a在曲线部分高h处由静止滑下与b发生完全弹性碰撞碰后a仍可返回上升到曲线轨道某处并再度滑下已知ab两质点的质量a分别为和
自治区精品课程—大学物理学
题库
第四章 动量定理
一、 填空 1. 2. 3. 4. 是表示力在空间上累积作用的物理量, 是表示力在时间上累 积作用的物理量。 质点动量定理的微分形式是 。 质点动量定理的积分形式是 。 对于质点系来说,内力 ( “改变”或“不改变” )质点系中各个质点 的动量,但 ( “改变”或“不改变” )质点系的总动量。 若质点系沿某坐标方向所受的合外力为零,则 守恒。 如果两物体碰撞过程中,动能完全没有损失,这种碰撞称为 ,否则 就称为 ;如果碰撞后两物体以相同的速度运动,这种碰撞称 为 。 , 其中 υ10 ,υ1 是某一物
-1-
自治区精品课程—大学物理学
题库
上,如图所示。求链条下落在地面的长度为 l 瞬时,地面所受链条的作用力的大 小。 4. 质量为 M 的人,手里拿着一个质量为 m 的物体,此人以与地平面成 α 角的速 度 υ0 向前方跳起,当他达到最高点时,将物体以相对速度 µ 水平向后抛出,由 于物体的抛出,人跳的距离增加多少?假设空气阻力不计。 5. 速度为 υ0 的物体甲和一个质量为甲的 2 倍的静止物体乙作对心碰撞,碰撞后 1 甲物体以 υ 0 的速度沿原路径弹回,求: 3 (1)乙物体碰撞后的速度,问这碰撞是完全弹性碰撞吗? (2) 如果碰撞是完全非弹性碰撞, 碰撞后两物体的速度为多大?动能损失多少? 6. 如图所示,质量为 m 的物体从斜面上高度为 h 的 A 点处由静止开始下滑,滑至水平段 B 点 停止,今有一质量 m 的子弹射入物体中,使物 体恰好能返回到斜面上的 A 点处。求子弹的速 度( AB 段摩擦因数为恒量) 。 7. 如图所示,劲度系数 k = 100 N m 的弹簧, 一 段固 定于 O 点, 另一端 与一 质量 为

大学物理上海交大参考答案

大学物理上海交大参考答案

大学物理上海交大参考答案大学物理上海交大参考答案在大学物理课程中,上海交通大学一直以来都是备受关注的学府。

其严谨的教学体系和扎实的学术研究基础,使得上海交大的物理学科在国内外享有盛誉。

学生们在学习物理课程时,常常会遇到各种难题,而参考答案则成为他们解决问题的重要依据。

本文将为大家提供一些大学物理上海交大参考答案,希望对广大学子有所帮助。

第一章:力学1. 一个物体以初速度v0沿着直线做匀加速运动,经过时间t后速度变为v,求物体的加速度a。

答案:根据物体匀加速运动的公式v = v0 + at,可以得到a = (v - v0) / t。

2. 一个质量为m的物体在水平面上受到一个恒力F作用,已知物体在受力方向上的加速度为a,求恒力F的大小。

答案:根据牛顿第二定律F = ma,可以得到F = ma。

第二章:热学1. 一个理想气体在等温过程中,体积从V1变为V2,求气体对外界所做的功。

答案:由于等温过程中气体的温度不变,根据理想气体的状态方程PV = nRT,可以得到P1V1 = P2V2。

所以气体对外界所做的功为W = P1(V1 - V2)。

2. 一个理想气体在绝热过程中,体积从V1变为V2,求气体对外界所做的功。

答案:由于绝热过程中气体与外界不发生热交换,根据理想气体的状态方程PV^γ = 常数,可以得到P1V1^γ = P2V2^γ。

所以气体对外界所做的功为W = P1(V1 - V2) / (γ - 1)。

第三章:电磁学1. 一个电容器由两块平行金属板组成,两板间的电容为C,电压为U,求电容器储存的电能。

答案:电容器储存的电能为E = (1/2)CU^2。

2. 一个电感器的感抗为X,通过的电流为I,求电感器的电压。

答案:电感器的电压为U = IX。

第四章:光学1. 一束光线从空气射入玻璃中,入射角为θ1,折射角为θ2,求光线的折射率。

答案:光线的折射率为n = sinθ1 / sinθ2。

2. 一束平行光通过一个凸透镜后,光线会汇聚于焦点处,求凸透镜的焦距。

交大大物第四章习题答案

交大大物第四章习题答案
所以:
(2)假设碰撞是完全弹性的,
两球交换速度,
(3)假设碰撞的恢复系数 ,也就是
所以: ,
4-10.如图,光滑斜面与水平面的夹角为 ,轻质弹簧上端固定.今在弹簧的另一端轻轻地挂上质量为 的木块,木块沿斜面从静止开始向下滑动.当木块向下滑 时,恰好有一质量 的子弹,沿水平方向以速度 射中木块并陷在其中。设弹簧的劲度系数为 。求子弹打入木块后它们的共同速度。
(2)由冲量定义:
(3)由动量定理:
4-7.有质量为 的弹丸,从地面斜抛出去,它的落地点为 。如果它在飞行到最高点处爆炸成质量相等的两碎片。其中一碎片铅直自由下落,另一碎片水平抛出,它们同时落地。问第二块碎片落在何处。
解:在爆炸的前后,质心始终只受重力的作用,因此,质心的轨迹为一抛物线,它的落地点为xc。
习题
4-1.如图所示的圆锥摆,绳长为l,绳子一端固定,另一端系一质量为m的质点,以匀角速ω绕铅直线作圆周运动,绳子与铅直线的夹角为θ。在质点旋转一周的过程中,试求:
(1)质点所受合外力的冲量I;
(2)质点所受张力T的冲量IT。
解:
(1)根据冲量定理:
其中动量的变化:
在本题中,小球转动一周的过程中,速度没有变化,动量的变化就为0,冲量之和也为0,所以本题中质点所受合外力的冲量I为零
(1)求子弹的速度;(2)若子弹射入木块的深度为 ,求子弹所受的平均阻力。
解:(1)碰撞过程中子弹和木块动量守恒,碰撞结束后的运动由机械能守恒条件可得,
计算得到:
(2)子弹射入木快所受的阻力做功使子弹动能减小,木块动能增加,两次作功的位移差为s,所以:
其中
所以:
4-13.质量为 、长为 的船浮在静止的水面上,船上有一质量为 的人,开始时人与船也相对静止,然后人以相对于船的速度 从船尾走到船头,当人走到船头后人就站在船头上,经长时间后,人与船又都静止下来了。设船在运动过程中受到的阻力与船相对水的速度成正比,即 .求在整个过程中船的位移 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题4-1. 如图所示的圆锥摆,绳长为l ,绳子一端固定,另一端系一质量为m 的质点,以匀角速ω绕铅直线作圆周运动,绳子与铅直线的夹角为θ。

在质点旋转一周的过程中,试求:(1)质点所受合外力的冲量I ;(2)质点所受张力T 的冲量I T 。

解:(1)根据冲量定理:⎰⎰∆==tt P P d dt 00ϖϖP P F 其中动量的变化:0v v m m -在本题中,小球转动一周的过程中,速度没有变化,动量的变化就为0,冲量之和也为0,所以本题中质点所受合外力的冲量I 为零(2)该质点受的外力有重力和拉力,且两者产生的冲量大小相等,方向相反。

重力产生的冲量=mgT=2πmg /ω;所以拉力产生的冲量=2πmg /ω,方向为竖直向上。

4-2.一物体在多个外力作用下作匀速直线运动,速度=4m/s 。

已知其中一力F 方向恒与运动方向一致,大小随时间变化内关系曲线为半个椭圆,如图。

求:(1)力F 在1s 到3s 间所做的功;(2)其他力在1s 到s 间所做的功。

解:(1)由做功的定义可知:J S v Fdt v Fvdt Fdx W x 6.1253131x 21=⨯====⎰⎰⎰椭圆 (2)由动能定理可知,当物体速度不变时,外力做的总功为零,所以当该F 做的功为125.6J 时,其他的力的功为-125.6J 。

4-3.质量为m 的质点在Oxy 平面内运动,运动学方程为j i r t b t a ωωsin cos +=,求:(1)质点在任一时刻的动量;(2)从0=t 到ωπ/2=t 的时间内质点受到的冲量。

解:(1)根据动量的定义:(sin cos )P mv m a t b t ωωωω==-+i j(2)从0=t 到ωπ/2=t 的时间内质点受到的冲量等于它在这段时间内动量的变化,因为动量没变,所以冲量为零。

4-4.质量为M =2.0kg 的物体(不考虑体积),用一根长为l =1.0m 的细绳悬挂在天花板上。

今有一质量为m =20g 的子弹以0v =600m/s 的水平速度射穿物体。

刚射出物体时子弹的速度大小v =30m/s ,设穿透时间极短。

求:(1)子弹刚穿出时绳中张力的大小;(2)子弹在穿透过程中所受的冲量。

解:(1)解:由碰撞过程动量守恒可得: 10Mv mv mv +=代入数据 123002.060002.0v +⨯=⨯ 可得:s m v /7.51=根据圆周运动的规律:T-G=2v M R2184.6v T Mg M N R =+= (2)根据冲量定理可得: s N mv mv I •-=⨯-=-=4.1157002.004-5. 一静止的原子核经放射性衰变产生出一个电子和一个中微子,巳知电子的动量为m /s kg 102.122⋅⨯-,中微子的动量为236.410kg m/s -⨯⋅,两动量方向彼此垂直。

(1)求核反冲动量的大小和方向;(2)已知衰变后原子核的质量为kg 108.526-⨯,求其反冲动能。

由碰撞时,动量守恒,分析示意图,可写成分量式:ααcos sin 21m m =ααsin cos 21m m P +=所以221.410/P kg m s -=⨯• ο9.151=-=απθ(2)反冲的动能为:2180.17102k P E J m-==⨯4-6. 一颗子弹在枪筒里前进时所受的合力大小为3/1044005t F ⨯-=,子弹从枪口射出时的速率为m/s 300。

设子弹离开枪口处合力刚好为零。

求:(1)子弹走完枪筒全长所用的时间t ;(2)子弹在枪筒中所受力的冲量I ;(3)子弹的质量。

解:(1)由3/1044005t F ⨯-=和子弹离开枪口处合力刚好为零,则可以得到:03/1044005=⨯-=t F 算出t=0.003s 。

(2)由冲量定义:0.0030.0030.003552000400410/3400210/30.6I Fdt t dt t t N s==-⨯=-⨯=•⎰⎰()(3)由动量定理:0.00300.60.6/3000.002I Fdt P mv N s m kg ==∆==•==⎰所以: 4-7. 有质量为m 2的弹丸,从地面斜抛出去,它的落地点为c x 。

如果它在飞行到最高点处爆炸成质量相等的两碎片。

其中一碎片铅直自由下落,另一碎片水平抛出,它们同时落地。

问第二块碎片落在何处。

解:在爆炸的前后,质心始终只受重力的作用,因此,质心的轨迹为一抛物线,它的落地点为x c 。

112212c m x m x x m m +=+ 因为12m m m ==,12c x x = 故 2223,42c c c mx mx x x x m +==4-8. 两个质量分别为1m 和2m 的木块B A 、,用一劲度系数为k 的轻弹簧连接,放在光滑的水平面上。

A 紧靠墙。

今用力推B 块,使弹簧压缩0x 然后释放。

(已知m m =1,m m 32=)求:(1)释放后B A 、两滑块速度相等时的瞬时速度的大小;(2)弹簧的最大伸长量。

解:分析题意,可知在弹簧由压缩状态回到原长时,是弹簧的弹性势能转换为B 木块的动能,然后B 带动A 一起运动,此时动量守恒,可得到两者相同的速度v ,并且此时就是弹簧伸长最大的位置,由机械能守恒可算出其量值。

2020222121kx v m = v v 2)(2102m m m += 所以mk x v 3430= (2)22122022212121v m m kx v m )(++= 那么计算可得:021x x = 4-9. 二质量相同的小球,一个静止,一个以速度0与另一个小球作对心碰撞,求碰撞后两球的速度。

(1)假设碰撞是完全非弹性的;(2)假设碰撞是完全弹性的;(3)假设碰撞的恢复系数5.0=e .解:由碰撞过程动量守恒以及附加条件,可得(1)假设碰撞是完全非弹性的,即两者将以共同的速度前行:mv mv 20= 所以:021v v = (2)假设碰撞是完全弹性的,210mv mv mv +=222120212121mv mv mv += 两球交换速度, 01=v 02v v =(3)假设碰撞的恢复系数5.0=e ,也就是210mv mv mv +=5.0201012=--v v v v 所以:0141v v = , 0243v v = 4-10. 如图,光滑斜面与水平面的夹角为ο30=α,轻质弹簧上端固定.今在弹簧的另一端轻轻地挂上质量为kg 0.1=M 的木块,木块沿斜面从静止开始向下滑动.当木块向下滑cm 30=x 时,恰好有一质量kg 01.0=m 的子弹,沿水平方向以速度m/s 200=v 射中木块并陷在其中。

设弹簧的劲度系数为N/m 25=k 。

求子弹打入木块后它们的共同速度。

解:由机械能守恒条件可得到碰撞前木快的速度,碰撞过程中子弹和木快沿斜面方向动量守恒,可得:22111sin 22Mv kx Mgx α+= 10.83v ⇒= (碰撞前木快的速度) 1cos Mv mv m M v α'-=+() 0.89v '⇒=-4-11. 水平路面上有一质量kg 51=m 的无动力小车以匀速率0m/s 2=运动。

小车由不可伸长的轻绳与另一质量为kg 252=m 的车厢连接,车厢前端有一质量为kg 203=m 的物体,物体与车厢间摩擦系数为2.0=μ。

开始时车厢静止,绳未拉紧。

求:(1)当小车、车厢、物体以共同速度运动时,物体相对车厢的位移;(2)从绳绷紧到三者达到共同速度所需要的时间。

(车与路面间摩擦不计,取g =10m/s 2)解:(1)由碰撞过程动量守恒,可得v m m m v m '++=)(32101 2.0='⇒v m sv m m v m )(2101+= s m v m m m v 31255250211=+⨯=+= 2321221321)(21v m m m v m m gs m '++-+=)(μm g m v m m m v m m s 60121)(213321221='++-+=μ)( (2)t g m μv m 33=' s g μv t 1.0102.02.0=⨯='=4-12. 一质量为M 千克的木块,系在一固定于墙壁的弹簧的末端,静止在光滑水平面上,弹簧的劲度系数为k .一质量为m 的子弹射入木块后,弹簧长度被压缩了L .(1)求子弹的速度;(2)若子弹射入木块的深度为s ,求子弹所受的平均阻力。

解:(1)碰撞过程中子弹和木块动量守恒,碰撞结束后的运动由机械能守恒条件可得,v M m mv '+=)(0222121kL v M m ='+)( 计算得到:)(M m k mL v +=0 (2)子弹射入木快所受的阻力做功使子弹动能减小,木块动能增加,两次作功的位移差为s ,所以:)(22021v v m fx '-=221v M x f '=' 其中s x x ='- 所以:msMkL f 22= 4-13. 质量为M 、长为l 的船浮在静止的水面上,船上有一质量为m 的人,开始时人与船也相对静止,然后人以相对于船的速度u 从船尾走到船头,当人走到船头后人就站在船头上,经长时间后,人与船又都静止下来了。

设船在运动过程中受到的阻力与船相对水的速度成正比,即kv f -=.求在整个过程中船的位移x ∆.4-14. 以初速度0将质量为m 的质点以倾角θ从坐标原点处抛出。

设质点在Oxy 平面内运动,不计空气阻力,以坐标原点为参考点,计算任一时刻:(1)作用在质点上的力矩M ;(2)质点的角动量L 解:(1)k t mgv F r M ϖϖϖϖθcos 0-=⨯=(2)k t mgv dt M v m r L t ϖϖϖϖϖ200cos 2θ-==⨯=⎰4-15. 人造地球卫星近地点离地心r 1=2R ,(R 为地球半径),远地点离地心r 2=4R 。

求:(1)卫星在近地点及远地点处的速率1和2(用地球半径R 以及地球表面附近的重力加速度g 来表示);(2)卫星运行轨道在近地点处的轨迹的曲率半径ρ。

解:利用角动量守恒:2211mv r mv r L == 2142v v =⇒同时利用卫星的机械能守恒,所以: R Mm G mv R Mm G mv 421221022021-=-mg R Mm G =20 所以: 321Rg v = 62Rg v = (2)ρρ220v m Mm G = 可得到:R 38=ρ 4-16火箭以第二宇宙速度22v Rg =沿地球表面切向飞出,如图所示。

在飞离地球过程中,火箭发动机停止工作,不计空气阻力,求火箭在距地心4R 的A 处的速度。

相关文档
最新文档