高中数学教案:1.3.1 二项式定理
2016_2017学年高中数学1.3.1二项式定理学案
1.3.1 二项式定理1.会证明二项式定理.(难点)2.掌握二项式定理及其展开式的通项公式.(重点)[基础·初探]教材整理二项式定理阅读教材P29~P31,完成下列问题.二项式定理及相关的概念判断(正确的打“√”,错误的打“×”)(1)(a+b)n展开式中共有n项.( )(2)在公式中,交换a,b的顺序对各项没有影响.( )(3)C k n a n-k b k是(a+b)n展开式中的第k项.( )(4)(a-b)n与(a+b)n的二项式展开式的二项式系数相同.( )【解析】(1)×因为(a+b)n展开式中共有n+1项.(2)×因为二项式的第k+1项C k n a n-k b k和(b+a)n的展开式的第k+1项C k n b n-k a k是不同的,其中的a,b是不能随便交换的.(3)×因为C k n a n-k b k是(a+b)n展开式中的第k+1项.(4)√因为(a-b)n与(a+b)n的二项式展开式的二项式系数都是C r n.【答案】 (1)× (2)× (3)× (4)√[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1: 解惑: 疑问2: 解惑: 疑问3: 解惑:[小组合作型]二项式定理的正用、逆用(1)用二项式定理展开⎝ ⎛⎭⎪⎫2x -32x 25; (2)化简:C 0n (x +1)n -C 1n (x +1)n -1+C 2n (x +1)n -2-…+(-1)k C k n (x +1)n -k+…+(-1)n C nn .【精彩点拨】 (1)二项式的指数为5,且为两项的和,可直接按二项式定理展开;(2)可先把x +1看成一个整体,分析结构形式,逆用二项式定理求解.【自主解答】 (1)⎝ ⎛⎭⎪⎫2x -32x 25=C 05(2x )5+C 15(2x )4·⎝ ⎛⎭⎪⎫-32x 2+…+C 55⎝ ⎛⎭⎪⎫-32x 25=32x 5-120x 2+180x -135x 4+4058x 7-24332x 10.(2)原式=C 0n (x +1)n +C 1n (x +1)n -1(-1)+C 2n (x +1)n -2(-1)2+…+C k n (x +1)n -k(-1)k+…+C nn (-1)n=[(x +1)+(-1)]n=x n.1.展开二项式可以按照二项式定理进行.展开时注意二项式定理的结构特征,准确理解二项式的特点是展开二项式的前提条件.2.对较复杂的二项式,有时先化简再展开会更简便.3.对于化简多个式子的和时,可以考虑二项式定理的逆用.对于这类问题的求解,要熟悉公式的特点,项数,各项幂指数的规律以及各项的系数.[再练一题]1.(1)求⎝⎛⎭⎪⎫3x +1x 4的展开式;(2)化简:1+2C 1n +4C 2n +…+2n C nn .【解】 (1)法一:⎝⎛⎭⎪⎫3x +1x 4=C 04(3x )4+C 14(3x )3·1x+C 24(3x )2·⎝⎛⎭⎪⎫1x 2+C 34(3x )⎝ ⎛⎭⎪⎫1x 3+C 44⎝ ⎛⎭⎪⎫1x 4=81x 2+108x +54+12x+1x2.法二:⎝⎛⎭⎪⎫3x +1x 4=3x +1 4x 2 =1x2(81x 4+108x 3+54x 2+12x +1)=81x 2+108x +54+12x +1x2.(2)原式=1+2C 1n +22C 2n +…+2n C n n =(1+2)n =3n.二项式系数与项的系数问题(1)求二项式⎝ ⎛⎭⎪⎫2x -1x 6的展开式中第6项的二项式系数和第6项的系数;(2)求⎝⎛⎭⎪⎫x -1x 9的展开式中x 3的系数.【精彩点拨】 利用二项式定理求展开式中的某一项,可以通过二项展开式的通项公式进行求解.【自主解答】 (1)由已知得二项展开式的通项为T r +1 =C r6(2x )6-r·⎝ ⎛⎭⎪⎫-1x r=(-1)r C r6·26-r·x 3-32r ,∴T 6=-12·x -92.∴第6项的二项式系数为C 56=6, 第6项的系数为C 56·(-1)·2=-12. (2)T r +1=C r 9x9-r·⎝ ⎛⎭⎪⎫-1x r =(-1)r ·C r 9·x 9-2r,∴9-2r =3,∴r =3,即展开式中第四项含x 3,其系数为(-1)3·C 39=-84.1.二项式系数都是组合数C kn (k ∈{0,1,2,…,n }),它与二项展开式中某一项的系数不一定相等,要注意区分“二项式系数”与二项式展开式中“项的系数”这两个概念.2.第k +1项的系数是此项字母前的数连同符号,而此项的二项式系数为C kn .例如,在(1+2x )7的展开式中,第四项是T 4=C 3717-3(2x )3,其二项式系数是C 37=35,而第四项的系数是C 3723=280.[再练一题]2.(1+2x )n的展开式中第六项与第七项的系数相等,求展开式中二项式系数最大的项和系数最大的项.【解】 T 6=C 5n (2x )5,T 7=C 6n (2x )6,依题意有C 5n 25=C 6n 26⇒n =8.∴(1+2x )n 的展开式中,二项式系数最大的项为T 5=C 48(2x )4=1 120x 4.设第k +1项系数最大,则有⎩⎪⎨⎪⎧C k 82k≥C k -182k -1,C k 82k ≥C k +182k +1,∴5≤k ≤6.∴k =5或k =6(∵k ∈{0,1,2,…,8}). ∴系数最大的项为T 6=1 792x 5,T 7=1 792x 6.[探究共研型]求展开式中的特定项探究1 如何求⎝⎛⎭⎪⎫x +1x 4展开式中的常数项.【提示】 利用二项展开式的通项C r 4x4-r·1xr =C r 4x 4-2r求解,令4-2r =0,则r =2,所以⎝ ⎛⎭⎪⎫x +1x 4展开式中的常数项为C 24=4×32=6.探究2 (a +b )(c +d )展开式中的每一项是如何得到的?【提示】 (a +b )(c +d )展开式中的各项都是由a +b 中的每一项分别乘以c +d 中的每一项而得到.探究3 如何求⎝⎛⎭⎪⎫x +1x (2x +1)3展开式中含x 的项?【提示】 ⎝ ⎛⎭⎪⎫x +1x(2x +1)3展开式中含x 的项是由x +1x 中的x 与1x分别与(2x +1)3展开式中常数项C 33=1及x 2项C 1322x 2=12x 2分别相乘再把积相加得x ·C 33+1x·C 13(2x )2=x +12x =13x .即⎝⎛⎭⎪⎫x +1x (2x +1)3展开式中含x 的项为13x.已知在⎝⎛⎭⎪⎪⎫3x -33x n的展开式中,第6项为常数项.(1)求n;(2)求含x 2项的系数; (3)求展开式中所有的有理项.【自主解答】 通项公式为:T r +1=C r n xn -r 3(-3)r x -r 3=C r n (-3)r x n -2r 3. (1)∵第6项为常数项, ∴r =5时,有n -2r3=0,即n =10.(2)令10-2r 3=2,得r =12(10-6)=2,∴所求的系数为C 210(-3)2=405. (3)由题意得,⎩⎪⎨⎪⎧10-2r3∈Z ,0≤r ≤10,r ∈Z .令10-2r3=k (k ∈Z ),则10-2r =3k ,即r =5-32k .∵r ∈Z ,∴k 应为偶数,k =2,0,-2即r =2,5,8,所以第3项,第6项与第9项为有理项,它们分别为405x 2,-61 236,295 245x -2.1.求二项展开式的特定项的常见题型 (1)求第k 项,T k =C k -1n an -k +1b k -1;(2)求含x k 的项(或x p y q的项); (3)求常数项; (4)求有理项.2.求二项展开式的特定项的常用方法(1)对于常数项,隐含条件是字母的指数为0(即0次项);(2)对于有理项,一般是先写出通项公式,其所有的字母的指数恰好都是整数的项.解这类问题必须合并通项公式中同一字母的指数,根据具体要求,令其属于整数,再根据数的整除性来求解;(3)对于二项展开式中的整式项,其通项公式中同一字母的指数应是非负整数,求解方式与求有理项一致.[再练一题]3.(1)在(1-x 3)(1+x )10的展开式中,x 5的系数是________. (2)若⎝⎛⎭⎪⎫x -a x 26展开式的常数项为60,则常数a 的值为________. 【导学号:97270021】 【解析】 (1)x 5应是(1+x )10中含x 5项、含x 2项分别与1,-x 3相乘的结果, ∴其系数为C 510+C 210(-1)=207. (2)⎝⎛⎭⎪⎫x -a x 26的展开式的通项是T k +1=C k 6x 6-k· (-a )k x-2k=C k 6x6-3k(-a )k,令6-3k =0,得k =2,即当k =2时,T k +1为常数项,即常数项是C 26a ,根据已知得C 26a =60,解得a =4. 【答案】 (1)207 (2)4[构建·体系]1.在(x -3)10的展开式中,含x 6的项的系数是( ) A .-27C 610 B .27C 410 C .-9C 610D .9C 410【解析】 含x 6的项是T 5=C 410x 6(-3)4=9C 410x 6. 【答案】 D2.在⎝⎛⎭⎪⎪⎫x 2-13x 8的展开式中常数项是( )A .-28B .-7C .7D .28【解析】 T k +1=C k8·⎝ ⎛⎭⎪⎫x 28-k ·⎝⎛⎭⎪⎪⎫-13x k =(-1)k ·C k8·⎝ ⎛⎭⎪⎫128-k ·x 8-43k ,当8-43k =0,即k =6时,T 7=(-1)6·C 68·⎝ ⎛⎭⎪⎫122=7.【答案】 C3.在⎝⎛⎭⎪⎫2x 2-1x 6的展开式中,中间项是________.【解析】 由n =6知中间一项是第4项,因T 4=C 36(2x 2)3·⎝ ⎛⎭⎪⎫-1x 3=C 36·(-1)3·23·x 3,所以T 4=-160x 3.【答案】 -160x 34.在⎝⎛⎭⎪⎫x 2-12x 9的展开式中,第4项的二项式系数是________,第4项的系数是________.【导学号:97270022】【解析】 T k +1=C k 9·(x 2)9-k·⎝ ⎛⎭⎪⎫-12x k =⎝ ⎛⎭⎪⎫-12k ·C k 9·x 18-3k ,当k =3时,T 4=⎝ ⎛⎭⎪⎫-123·C 39·x 9=-212x 9,所以第4项的二项式系数为C 39=84,项的系数为-212.【答案】 84 -2125.求⎝⎛⎭⎪⎫x 3+23x 25的展开式的第三项的系数和常数项.【解】 T 3=C 25(x 3)3⎝ ⎛⎭⎪⎫23x 22=C 25·49x 5,所以第三项的系数为C 25·49=409.通项T k +1=C k 5(x 3)5-k⎝ ⎛⎭⎪⎫23x 2k =⎝ ⎛⎭⎪⎫23k ·C k 5x 15-5k ,令15-5k =0,得k =3,所以常数项为T 4=C 35(x 3)2·⎝ ⎛⎭⎪⎫23x 23=8027.我还有这些不足:(1)(2)我的课下提升方案:(1)(2)学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.设S =(x -1)3+3(x -1)2+3(x -1)+1,则S 等于( ) A .(x -1)3B .(x -2)3C .x 3D .(x +1)3【解析】 S =[(x -1)+1]3=x 3.【答案】 C2.已知⎝⎛⎭⎪⎫x -1x 7的展开式的第4项等于5,则x 等于( )A.17 B .-17C .7D .-7【解析】 T 4=C 37x 4⎝ ⎛⎭⎪⎫-1x 3=5,则x =-17.【答案】 B3.若对于任意实数x ,有x 3=a 0+a 1(x -2)+a 2(x -2)2+a 3(x -2)3,则a 2的值为( ) A .3 B .6 C .9D .12【解析】 x 3=[2+(x -2)]3,a 2=C 23×2=6. 【答案】 B4.使⎝⎛⎭⎪⎫3x +1x x n (n ∈N *)的展开式中含有常数项的最小的n 为( )A .4B .5C .6D .7【解析】 T r +1=C rn(3x )n -r⎝ ⎛⎭⎪⎫1x x r =C r n 3n -rxn -52r ,当T r +1是常数项时,n -52r =0,当r=2,n =5时成立.【答案】 B5.(x 2+2)⎝ ⎛⎭⎪⎫1x2-15的展开式的常数项是( )A .-3B .-2C .2D .3【解析】 二项式⎝ ⎛⎭⎪⎫1x2-15展开式的通项为:T r +1=C r 5⎝ ⎛⎭⎪⎫1x25-r ·(-1)r =C r 5·x 2r -10·(-1)r . 当2r -10=-2,即r =4时,有x 2·C 45x -2·(-1)4=C 45×(-1)4=5; 当2r -10=0,即r =5时,有2·C 55x 0·(-1)5=-2. ∴展开式中的常数项为5-2=3,故选D. 【答案】 D 二、填空题6.(2016·安徽淮南模拟)若⎝⎛⎭⎪⎫x +1x n的展开式中第3项与第7项的二项式系数相等,则该展开式中1x2的系数为________.【解析】 由题意知,C 2n =C 6n ,∴n =8. ∴T k +1=C k8·x8-k·⎝ ⎛⎭⎪⎫1xk =C k 8·x 8-2k ,当8-2k =-2时,k =5,∴1x2的系数为C 58=56. 【答案】 567.设二项式⎝⎛⎭⎪⎫x -a x 6(a >0)的展开式中x 3的系数为A ,常数项为B .若B =4A ,则a 的值是________.【解析】 对于T r +1=C r 6x 6-r(-ax -12)r =C r 6(-a )r ·x 6-32r ,B =C 46(-a )4,A =C 26(-a )2.∵B =4A ,a >0,∴a =2. 【答案】 28.9192被100除所得的余数为________.【解析】 法一:9192=(100-9)92=C 092·10092-C 192·10091·9+C 292·10090·92-…+C 9292992,展开式中前92项均能被100整除,只需求最后一项除以100的余数. ∵992=(10-1)92=C 092·1092-C 192·1091+…+C 9092·102-C 9192·10+1,前91项均能被100整除,后两项和为-919,因余数为正,可从前面的数中分离出1 000,结果为1 000-919=81,故9192被100除可得余数为81.法二:9192=(90+1)92=C 092·9092+C 192·9091+…+C 9092·902+C 9192·90+C 9292.前91项均能被100整除,剩下两项和为92×90+1=8 281,显然8 281除以100所得余数为81.【答案】 81 三、解答题9.化简:S =1-2C 1n +4C 2n -8C 3n +…+(-2)n C n n (n ∈N *).【解】 将S 的表达式改写为:S =C 0n +(-2)C 1n +(-2)2C 2n +(-2)3C 3n +…+(-2)n C nn =[1+(-2)]n=(-1)n.∴S =(-1)n=⎩⎪⎨⎪⎧1,n 为偶数时,-1,n 为奇数时.10.(2016·淄博高二检测)在⎝⎛⎭⎪⎫2x -1x 6的展开式中,求:(1)第3项的二项式系数及系数;(2)含x 2的项.【解】 (1)第3项的二项式系数为C 26=15, 又T 3=C 26(2x )4⎝ ⎛⎭⎪⎫-1x 2=24·C 26x , 所以第3项的系数为24C 26=240.(2)T k +1=C k 6(2x )6-k ⎝ ⎛⎭⎪⎫-1x k =(-1)k 26-k C k 6x 3-k ,令3-k =2,得k =1. 所以含x 2的项为第2项,且T 2=-192x 2.[能力提升]1.(2016·吉林长春期末)若C 1n x +C 2n x 2+…+C n n x n 能被7整除,则x ,n 的值可能为( )A .x =4,n =3B .x =4,n =4C .x =5,n =4D .x =6,n =5 【解析】 C 1n x +C 2n x 2+…+C n n x n =(1+x )n -1,分别将选项A 、B 、C 、D 代入检验知,仅C 适合.【答案】 C2.已知二项式⎝ ⎛⎭⎪⎪⎫x +13x n 的展开式中第4项为常数项,则1+(1-x )2+(1-x )3+…+(1-x )n 中x 2项的系数为( )A .-19B .19C .20D .-20 【解析】 ⎝ ⎛⎭⎪⎪⎫x +13x n 的通项公式为T r +1=C r n (x )n -r ·⎝ ⎛⎭⎪⎪⎫13x r =C r n x n 2-5r 6,由题意知n 2-5×36=0,得n =5,则所求式子中的x 2项的系数为C 22+C 23+C 24+C 25=1+3+6+10=20.故选C.【答案】 C 3.对于二项式⎝ ⎛⎭⎪⎫1x +x 3n (n ∈N *),有以下四种判断: ①存在n ∈N *,展开式中有常数项;②对任意n ∈N *,展开式中没有常数项;③对任意n ∈N *,展开式中没有x 的一次项;④存在n ∈N *,展开式中有x 的一次项.其中正确的是________.【解析】 二项式⎝ ⎛⎭⎪⎫1x +x 3n 的展开式的通项公式为T r +1=C r n x 4r -n ,由通项公式可知,当n =4r (r ∈N *)和n =4r -1(r ∈N *)时,展开式中分别存在常数项和一次项.【答案】 ①与④4.求⎝ ⎛⎭⎪⎫x 2+1x +25的展开式的常数项. 【导学号:97270023】 【解】 法一:由二项式定理得⎝ ⎛⎭⎪⎫x 2+1x +25=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x 2+1x +25=C 05·⎝ ⎛⎭⎪⎫x 2+1x 5+C 15·⎝ ⎛⎭⎪⎫x 2+1x 4·2+C 25·⎝ ⎛⎭⎪⎫x 2+1x 3·(2)2+C 35·⎝ ⎛⎭⎪⎫x 2+1x 2·(2)3+C 45·⎝ ⎛⎭⎪⎫x 2+1x ·(2)4+C 55·(2)5. 其中为常数项的有:C 15⎝ ⎛⎭⎪⎫x 2+1x 4·2中的第3项:C 15C 24·⎝ ⎛⎭⎪⎫122·2; C 35·⎝ ⎛⎭⎪⎫x 2+1x 2·(2)3中的第2项:C 35C 12·12·(2)3;展开式的最后一项C 55·(2)5. 综上可知,常数项为C 15C 24·⎝ ⎛⎭⎪⎫122·2+C 35C 12·12·(2)3+C 55·(2)5=6322. 法二:原式=⎝ ⎛⎭⎪⎫x 2+22x +22x 5 =132x 5·[(x +2)2]5=132x5·(x +2)10.求原式中展开式的常数项,转化为求(x +2)10的展开式中含x 5的项的系数,即C 510·(2)5,所以所求的常数项为C 510· 2 532=6322.。
高二数学 第一章1.3.1 二项式定理
本
解析 依题意 C57a2+C37a4=2C74a3.
课
时 由于 a≠0,整理得 5a2-10a+3=0,
栏
目 开 关
解得
a=1±
10 5.
练一练·当堂检测、目标达成落实处
1.3.1
4.求2
x-
1 6 x
的展开式.
解 先将原式化简,再展开,得
本
2 x- 1x6=2x-x 16=x13(2x-1)6
开 关
(a+b)在相乘时都有两种选择:选 a 或选 b,而且每个(a+b)
中的 a 或 b 都选定后,才能得到展开式的一项.由分步乘法
计数原理,在合并同类项之前,(a+b)2 展开式共有 2×2=
22 项,而且 a2-kbk 相当于从 2 个(a+b)中取 k 个 b 的组合数
Ck2,即 a2-kbk 的系数是 Ck2.
பைடு நூலகம்
当 9-2r=5 时,解得 r=2,所以系数为 36.
所以展开式中,不含 x6 项,含有 x5 项,系数为 36.
研一研·问题探究、课堂更高效
1.3.1
探究点三 综合应用
例3
已知
x- 2
1 4
x
n
的展开式中,前三项系数的绝对值依次
成等差数列.
本
(1)证明:展开式中没有常数项;
课
时
(2)求展开式中所有的有理项.
栏 目 开 关
(即1)证n2-明9n+由8题=意0,得:2Cn1·12=1+Cn2·122,
∴n=8 (n=1 舍去).
∴Tk+1=Ck8(
x)8-k·-241
xk=-12k·Ck8x
8-k 2
·x-4k =
1.3.1二项式定理(教案)
1. 3.1二项式定理教学目标:知识与技能:进一步掌握二项式定理和二项展开式的通项公式 过程与方法:能解决二项展开式有关的简单问题情感、态度与价值观:教学过程中,要让学生充分体验到归纳推理不仅可以猜想到一般性的结果,而且可以启发我们发现一般性问题的解决方法。
教学重点:二项式定理及通项公式的掌握及运用 教学难点:二项式定理及通项公式的掌握及运用 授课类型:新授课教 具:多媒体、实物投影仪第一课时一、复习引入:⑴22202122222()2a b a ab b C a C ab C b +=++=++;⑵3322303122233333()33a b a a b ab b C a C a b C ab C b +=+++=+++⑶4()()()()()a b a b a b a b a b +=++++的各项都是4次式, 即展开式应有下面形式的各项:4a ,3a b ,22a b ,3ab ,4b ,展开式各项的系数:上面4个括号中,每个都不取b 的情况有1种,即04C 种,4a 的系数是04C ;恰有1个取b 的情况有14C 种,3a b 的系数是14C ,恰有2个取b 的情况有24C 种,22a b 的系数是24C ,恰有3个取b 的情况有34C 种,3ab 的系数是34C ,有4都取b 的情况有44C 种,4b 的系数是44C ,∴4413222334444444()a b C a C a b C a b C a b C b +=++++. 二、讲解新课:二项式定理:01()()n n nr n r rn nn n n n a b C a C a b C a b C b n N -*+=+++++∈⑴()n a b +的展开式的各项都是n 次式,即展开式应有下面形式的各项:n a ,n a b ,…,n r r a b -,…,n b ,⑵展开式各项的系数:每个都不取b 的情况有1种,即0n C 种,na 的系数是0n C ; 恰有1个取b 的情况有1n C 种,na b 的系数是1n C ,……,恰有r 个取b 的情况有rn C 种,n rr ab -的系数是rn C ,……,有n 都取b 的情况有n n C 种,nb 的系数是nn C , ∴01()()n n n r n r rn nn n n n a b C a C a b C a b C b n N -*+=+++++∈,这个公式所表示的定理叫二项式定理,右边的多项式叫()n a b +的二项展开式,⑶它有1n +项,各项的系数(0,1,)rn C r n =叫二项式系数,⑷r n r r n C a b -叫二项展开式的通项,用1r T +表示,即通项1r n r r r n T C a b -+=. ⑸二项式定理中,设1,a b x ==,则1(1)1n r rn n x C x C x x +=+++++三、讲解范例:例1.展开41(1)x+.解一: 411233444411111(1)1()()()()C C C x x x x x +=++++23446411x x x x=++++. 解二:4444413123444111(1)()(1)()1x x C x C x C x x x x⎡⎤+=+=++++⎣⎦ 23446411x x x x=++++.例2.展开6.解:6631(21)x x =-61524332216666631[(2)(2)(2)(2)(2)(2)1]x C x C x C x C x C x x=-+-+-+ 32236012164192240160x x x x x x=-+-+-+.例3.求12()x a +的展开式中的倒数第4项解:12()x a +的展开式中共13项,它的倒数第4项是第10项,9129933939911212220T C x a C x a x a -+===.例4.求(1)6(23)a b +,(2)6(32)b a +的展开式中的第3项.解:(1)24242216(2)(3)2160T C a b a b +==, (2)24242216(3)(2)4860T C b a b a +==.点评:6(23)a b +,6(32)b a +的展开后结果相同,但展开式中的第r 项不相同例5.(1)求9(3x+的展开式常数项; (2)求9(3x +的展开式的中间两项 解:∵399292199()33r r r r r r r x T C C x ---+==⋅,∴(1)当390,62r r -==时展开式是常数项,即常数项为637932268T C =⋅=; (2)9(3x +的展开式共10项,它的中间两项分别是第5项、第6项,489912593423T C xx--=⋅=,15951092693T C x --=⋅=例6.(1)求7(12)x +的展开式的第4项的系数;(2)求91()x x-的展开式中3x 的系数及二项式系数解:7(12)x +的展开式的第四项是333317(2)280T C x x +==,∴7(12)x +的展开式的第四项的系数是280. (2)∵91()x x-的展开式的通项是9921991()(1)r rr r r r r T C xC x x--+=-=-, ∴923r -=,3r =,∴3x 的系数339(1)84C -=-,3x 的二项式系数3984C =.例7.求42)43(-+x x 的展开式中x 的系数分析:要把上式展开,必须先把三项中的某两项结合起来,看成一项,才可以用二项式定理展开,然后再用一次二项式定理,,也可以先把三项式分解成两个二项式的积,再用二项式定理展开解:(法一)42)43(-+x x 42]4)3[(-+=x x02412344(3)(3)4C x x C x x =+-+⋅22224(3)4C x x ++⋅3234444(3)44C x x C -+⋅+⋅,显然,上式中只有第四项中含x 的项,∴展开式中含x 的项的系数是76843334-=⋅⋅-C(法二):42)43(-+x x 4)]4)(1[(+-=x x 44)4()1(+-=x x)(4434224314404C x C x C x C x C +-+-=0413222334444444(4444)C x C x C x C x C +⋅+⋅+⋅+⋅ ∴展开式中含x 的项的系数是34C -334444C +768-=.例8.已知()()nmx x x f 4121)(+++= *(,)m n N ∈的展开式中含x 项的系数为36,求展开式中含2x 项的系数最小值分析:展开式中含2x 项的系数是关于n m ,的关系式,由展开式中含x 项的系数为36,可得3642=+n m ,从而转化为关于m 或n 的二次函数求解解:()()1214m nx x +++展开式中含x 的项为1124m n C x C x ⋅+⋅=11(24)m n C C x +∴11(24)36m n C C +=,即218m n +=,()()1214mnx x +++展开式中含2x 的项的系数为t =222224mn C C +222288m m n n =-+-, ∵218m n +=, ∴182m n =-,∴222(182)2(182)88t n n n n =---+-216148612n n =-+23715316()44n n =-+,∴当378n =时,t 取最小值,但*n N ∈, ∴ 5n =时,t 即2x 项的系数最小,最小值为272,此时5,8n m ==.第四课时例9.已知n 的展开式中,前三项系数的绝对值依次成等差数列,(1)证明展开式中没有常数项;(2)求展开式中所有的有理项 解:由题意:1221121()22n n C C ⋅=+⋅,即0892=+-n n ,∴8(1n n ==舍去)∴818(rrrr T C-+=⋅82481()2r r r r C x x --=-⋅⋅()1638412r rr r C x -=-⋅08r r Z ≤≤⎛⎫⎪∈⎝⎭①若1+r T 是常数项,则04316=-r,即0316=-r , ∵r Z ∈,这不可能,∴展开式中没有常数项; ②若1+r T 是有理项,当且仅当4316r-为整数, ∴08,r r Z ≤≤∈,∴ 0,4,8r =,即 展开式中有三项有理项,分别是:41x T =,x T 8355=,292561-=x T 例10.求60.998的近似值,使误差小于0.001.解:66011666660.998(10.002)(0.002)(0.002)C C C =-=+-++-,展开式中第三项为2260.0020.00006C =,小于0.001,以后各项的绝对值更小,可忽略不计,∴66011660.998(10.002)(0.002)0.998C C =-≈+-=,一般地当a 较小时(1)1na na +≈+四、课堂练习:1.求()623a b +的展开式的第3项. 2.求()632b a +的展开式的第3项. 3.写出n 33)x21x (-的展开式的第r+1项.4.求()732x x+的展开式的第4项的二项式系数,并求第4项的系数.5.用二项式定理展开:(1)5(a ;(2)5.6.化简:(1)55)x 1()x 1(-++;(2)4212142121)x 3x 2()x 3x 2(----+7.()5lg xx x +展开式中的第3项为610,求x .8.求nx x 21⎪⎭⎫ ⎝⎛-展开式的中间项答案:1. 262242216(2)(3)2160T C a b a b -+==2. 262224216(3)(2)4860T C b a a b -+==3.2311(2rn rr n rrr r nn T C C x--+⎛⎫==- ⎪⎝⎭4.展开式的第4项的二项式系数3735C =,第4项的系数3372280C = 5. (1)552(510105a a a a a b =++; (2)52315(2040322328x x x x =+-. 6. (1)552(1(122010x x +=++; (2)1111442222432(23)(23)192x x x x x x--+--=+ 7. ()5lg xx x +展开式中的第3项为232lg 632lg 551010x x C xx ++=⇒=22lg 3lg 50x x ⇒+-=5lg 1,lg 2x x ⇒==-10,1000x x ⇒== 8. nx x 21⎪⎭⎫ ⎝⎛-展开式的中间项为2(1)n nn C -五、小结 :二项式定理的探索思路:观察——归纳——猜想——证明;二项式定理及通项公式的特点六、课后作业: P36 习题1.3A 组1. 2. 3.4 七、板书设计(略)八、教学反思:(a+b) n=这个公式表示的定理叫做二项式定理,公式右边的多项式叫做 (a+b)n的 ,其中rn C (r=0,1,2,……,n )叫做 , 叫做二项展开式的通项,它是展开式的第 项,展开式共有 个项.掌握二项式定理和二项展开式的通项公式,并能用它们解决与二项展开式有关的简单问题。
1.3.1二项式定理1-人教A版高中数学选修2-3课件
a4
C
1 4
a
3b
C
2 4
a
2b2
C
3 4
ab3
C
4 4
b
4
猜想 (a b)n ?
探究3:请分析(a+b)n的展开过程,证明猜想.
(a b)n (a b)(ab )(ab)
n
①项: a n a n1b … ankbk … bn
②系数:
C
0 n
C
1 n
C
k n
C
n n
分析a nk b k
k个(a b)中选b n个(a b)相乘 n k个(a b)中选a
b
C
k n
a
nk
b
k
C
n n
b
n
(n
N*)
①项数: 共有n+1项
②次数:各项的次数都等于n, 字母a按降幂排列,次数由n递减到0, 字母b按升幂排列,次数由0递增到n.
③二项式系数:
C
k n
(k {0,1,2,, n})
④二项展开式的通项:
Tk 1
C
k n
a
n
k
b
k
概念理解
(a
b)n
C
0 n
a
作业:P37 4
Cnk
③展开式:
(a b)n
C
0 n
a
n
C
1 n
a
n1
b
C
k n
a
n
k
b
k
C
n n
b
n
(n
N*)
定理的证明
(a+b)n是n个(a+b)相乘,每个(a+b)在相乘时有两种 选择,选a或b. 而且每个(a+b)中的a或b选定后才能 得到展开式的一项。
1.3二项式定理
1.3二项式定理1.3.1二项式定理一、教材分析:1、知识内容:二项式定理及简单应用2、地位及重要性二项式定理是安排在高中数学排列组合内容后的一部分内容,其形成过程是组合知识的应用,同时也是自成体系的知识块,为随后学习的概率知识及高三选修概率与统计,作知识上的铺垫。
二项展开式与多项式乘法有密切的联系,本节知识的学习,必然从更广的视角和更高的层次来审视初中学习的关于多项式变形的知识。
运用二项式定理可以解决一些比较典型的数学问题,例如近似计算、整除问题、不等式的证明等。
3、教学目标A、知识目标:(1)使学生参与并探讨二项式定理的形成过程,掌握二项式系数、字母的幂次、展开式项数的规律(2)能够应用二项式定理对所给出的二项式进行正确的展开B、能力目标:(1)在学生对二项式定理形成过程的参与、探讨过程中,培养学生观察、猜想、归纳的能力及分类讨论解决问题的能力(2)培养学生的化归意识和知识迁移的能力C、情感目标:(1)通过学生自主参与和二项式定理的形成过程培养学生解决数学问题的信心;(2)通过学生自主参与和二项式定理的形成过程培养学生体会到数学内在和谐对称美;(3)培养学生的民族自豪感,在学习知识的过程中进行爱国主义教育。
4、重点难点:重点:(1)使学生参与并深刻体会二项式定理的形成过程,掌握二项式系数、字母的幂次、展开式项数的规律;(2)能够利用二项式定理对给出的二项式进行正确的展开。
难点:二项式定理的发现。
二、教法学法分析为了达到这节课的目标:掌握并能运用二项式定理,让学生主动探索展开式的由来是关键。
“学习任何东西最好的途径是自己去发现”正所谓“学问之道,问而得,不如求而得之深固也”本节课的教法贯穿启发式教学原则,以启发学生主动学习,积极探索为主。
创设一个以学生为主体,师生互动、共同探索的教与学的情境。
通过复习引入,引申设疑,实验猜想,归纳推广等环节进行对此定理的探索。
不仅重视知识的结果,而且重视知识的发生、发现和解决的过程,贯切新课程理念。
人教版高中数学《二项式定理》教学设计(全国一等奖)
人教版高中数学《二项式定理》教学设计(全国一等奖)课题:§1.3.1二项式定理(人教A 版高中课标教材数学选修2-3)《二项式定理》教学设计一、教学内容解析《二项式定理》是人教A 版选修2-3第一章第三节的知识内容,它是初中学习的多项式乘法的继续.在计数原理之后学习二项式定理,一方面是因为它的证明要用到计数原理,可以把它作为计数原理的一个应用,另一方面也是解决整除、近似计算、不等式证明的有力工具,同时也是后面的数学期望等内容的基础知识,二项式定理起着承上启下的作用.另外,由于二项式系数是一些特殊的组合数,利用二项式定理可进一步深化对组合数的认识.总之,二项式定理是综合性较强的、具有联系不同内容作用的知识.二、教学目标设置新课标指出教学目标应体现学生学会知识与技能的过程也同时成为学生学会学习,形成正确价值观的过程.新课标要求:用计数原理分析2()a b +,3()+a b ,4()+a b 的展开式,归纳类比得到二项式定理,并能用计数原理证明.掌握二项展开式的通项公式,解决简单问题;学会讨论二项式系数性质的方法.根据新课标的理念及本节课的教学要求,制定了如下教学目标:1.学生在二项式定理的发现推导过程中,掌握二项式定理及推导方法、二项展开式、通项公式的特点,并能运用二项式定理计算或证明一些简单的问题.2.学生经历二项式定理的探究过程,体验“从特殊到一般发现规律,从一般到特殊指导实践”的思想方法,获得观察、归纳、类比、猜想及证明的理性思维探究能力.3.通过二项展开式的探究,培养学生积极主动、勇于探索、不断创新的精神,感受合作探究的乐趣,感受数学内在的和谐、对称美及数学符号应用的简洁美.结合数学史,激发学生爱国热情和民族自豪感.三、学情分析1.有利因素授课对象是高二的学生,具有一般的归纳推理能力,思维较活跃,初步具备了用联系的观点分析问题的能力.学生刚刚学习了计数原理和排列组合的知识,对本节()+n a b 展开式中各项系数的研究会有很大帮助.2.不利因素本节内容思维量较大,对思维的严谨性和分类讨论、归纳推理等能力有较高要求,学生学习起来有一定难度.在数学学习过程中,大部分学生习惯于重视定理、公式的结论,而不重视其形成过程.四、教法策略分析遵循“以学生为主体、教师是数学课堂活动的组织者、引导者和参与者”的现代教育原则,采用“启发式教学法”,学生主要采用“探究式学习法”, 并利用多媒体辅助教学.本课以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与,通过不断探究、发现,在师生互动、生生互动中,完成二项式定理的探究,让学习过程成为学生心灵愉悦的主动认知过程.(一)创设情境 引入课题引入:通过“牛顿发现二项式定理”的历史引入课题.提出问题:2()+=a b ?3()+=a b ? 4()+=a b ?那么9()?a b +=……n b a )(+的展开式是什么?【设计意图】学生的学习遵循“历史发生原理”,把二项式定理发现的历史融入新课导入,既能引起学生的兴趣,符合新课程理念,还能提升课堂品味.创设有效的数学情景能激发学生的学习兴趣,为学生提供良好的学习环境.数学的来源,一是来自数学外部现实社会的发展需要;二是来自数学内部的矛盾,即数学本身发展的需要.这个问题将“多项式展开有哪些项”包含其中,为后面的研究做好铺垫.(二)体验感知 探究归纳1生:n 次式展开有n +1项生:展开式中每一项都是n 次式生:系数对称相等,第一项系数是1,第二项的系数是n生:杨辉三角师:我们主要从展开式的哪些方面来发现的这些规律?生:项数,项,系数.【设计意图】由特殊到一般的归纳总结,离不开大量特殊实例的观察.只有将大量具体实例进行整体和局部多方面的分析,才能得到接近一般性规律的结论.也只有对得出各种结论进行整合,才能让学生顺畅的抓住展开过程的两个要点,即项的结构和项的系数,才能让学生有目的的进一步进行探讨和分析.2(学生叙述展开过程中各项是如何形成的.如果学生的叙述中没有说明从每个因式中取一个字母相乘得到展开式的项,老师提出预备问题:展开式的各项是由同一个因式中的字母相乘得到的吗?) 师:根据多项式乘法法则,()na b +的展开式就是从每个因式中任取一项相乘得到展开式的项. 【设计意图】多项式乘法法则是展开式的运算基础,同时也为用组合数表示系数创设情境.而学生对于多项式乘法法则的理论叙述不够顺畅.通过教师强调多项式乘法法则,让学生思维建立旧知识与新知识联系,为下面系数的确定做好铺垫.)()(*110N n b C b a C b a C a C b a nn n k k n k n n n n n n ∈+++++=+-- —— 二项式定理 证明:n b a )(+是n 个)(b a +相乘,每个)(b a +在相乘时,有两种选择,选a 或选b ,由分步计数原理可知展开式共有n 2项(包括同类项),其中每一项都是k k n b a -),1,0(n k =的形式,对于每一项k k n b a -,它是由k 个)(b a +选了b ,n -k 个)(b a +选了a 得到的,它出现的次数相当于从n 个)(b a +中取k 个b 的组合数kn C ,将它们合并同类项,就得二项展开式,这就是二项式定理.二项式定理的公式特征:①展开式中每一项的次数都是n ;②展开式共1n +项;③按照字母a 降幂排列,次数由n 递减到0,字母b 升幂排列,次数由0递增到n ;④k n k k n C a b -是展开式的第1k +项; k n k k n C a b -叫二项展开式的通项,用1k T +表示. ⑤各项的系数(0,1,)k n C k n =叫二项式系数.【设计意图】先由学生独立完成,然后组织讨论.完成有特殊到一般的归纳过程,训练学生的类比、联想、归纳的探究能力.在讨论过程中要明确每一项的形式及相应的个数.【设计意图】通过例题让学生熟悉二项展开式及其通项,区分二项式系数和系数,培养学生的运算能力.设计题目考察学生的学习情况,各个题目设计的比较有梯度,逐渐加大难度,符合学生的认知水平.(五)回顾反思 归纳总结知识方面:二项式定理,通项,二项式系数;思想方法:从特殊到一般;观察——归纳——类比——猜想——证明.【设计意图】小结可以锻炼学生的概括能力、语言表达能力,可以使学生加深对本节课的认识,掌握基本数学思维方法. (六)课下作业 思维延伸一、P 36: 1~3二、1.求x x-12()3的展开式的中间一项; 2.求x -101(1)2展开式中含x51的项的系数. 思维延伸: 探究()5a b c ++的展开式中22a b c 的系数. 【设计意图】通过课下作业使学生深入理解知识,培养学生的创新精神、增强主动探究的意识和能力.六、板书设计教学设计说明高中数学的学科价值在于以下三个方面:传递初等数学知识;进行逻辑推理训练;培养学科精神.数学学习的关键在于理解,重视知识的形成过程,而不是死板的公式应用.新课标指出:学生的学习活动不应只限于对概念、结论和技能的记忆、模仿和接受,独立思考、自主探究、动手实践、合作交流、阅读自学等都是学习数学的重要方式.因此,课堂教学中应该是“用教材”,而不是“教教材”,教师要敢于放手,营造宽松的教学氛围,关注学生的主体参与、师生互动、生生互动,着重培养学生研究数学的意识和发展数学的能力,提升学生提出问题、研究问题的能力,竭尽全力培养学生探索创新的意识.在这过程中,要努力把表现的机会让给学生,让学生在直接体验中构建自己的知识体系.本节课堂教学中,遵循“以学生为主体、教师是数学课堂活动的组织者、引导者和参与者”的现代教育原则,采用“启发式教学法”,分为:创设情境、探究归纳、知识建构、巩固新知、归纳总结五个阶段.努力使学生有足够的思维活动体验,教师根据学生的思维特征和认知规律,在学生数学学习经验的基础上去设置问题.例如本节中,由特殊到一般的数学思维方法,需要对特殊情形进行观察归纳.要想提高归纳的准确性,就需要较多的实例进行观察.特别是“组合知识的运用”,当n 较小时,学生意识不到用组合的知识解释项的系数.只有当n 较大时,各项系数的确定才能凸显出组合知识的优势.因此,在题目设置时,准备了2()+a b ,3()+a b ,4()+a b 三个展开式让学生观察归纳,否则关于“组合知识的运用”就成了教师的告知.问题解决是数学教育的核心,课堂教学中,在学生原有认知的基础上,设置“好”的问题串是非常重要的,因为教师对问题设置如何,直接决定了学生的思维方向和思维深度,教学中以问题为主线,由问题驱动,激发学生探究结论的欲望,使学生的思维始终处于“提出问题、解决问题”的状态中.本节课在“多项式乘法法则”“组合知识的运用”两个方面,学生无法自主完成思维方法的提升,教师通过设置恰当的问题引导学生分析思维过程,为学生在理论层面总结提升.在探究的环节,教师的作用是“激活”而不是“告知”,要把隐藏在学生思想深处的思维方法引导出来.教师作为学生数学探究活动的设计者、活动实施的调控者,直接影响和决定了学生的学习热情及课堂效果.本节课中,课遵循学生的认识规律,由特殊到一般,由感性到理性.重视学生的参与过程,问题引导,师生互动.重在培养学生观察问题,发现问题,归纳推理问题的能力.学生能学到很多数学经验:在二项展开式探究过程中,运用组合理解算理、利用数列知识理解通项、运用赋值法得到相关结论等,渗透数学学习的策略与方法,在组织学生数学探究中,积极动手、动脑,实现思维建构、不断积累数学经验,从而形成自主探究的学习习惯,达到理想的教育教学效果.点评《二项式定理》作为一节命题课,更应该重视学生数学素养的培养,良好思维品质的生成.何磊老师深读课标和教材,清晰制定了具体可测的教学目标,深刻挖掘了二项式定理的数学本质;结合学生的认知基础和心理特点,设计了层层递进数学问题;以学生为主体,给学生足够的思考空间和辨析研讨的机会,激发了学生深层次的思考;何老师数学功底扎实,教学功底雄厚,教学有张有弛,当学生需要帮助时,给学生隐性的帮助,在关键时刻又有恰当和明确的概括提升.其教学特色主要体现在:1.突出核心内容,深挖数学本质作为计数原理的应用,提示我们这是挖掘二项式定理数学本质的根源.但在大量的课堂观察中发现,很多老师规避这一教学难点,仅从外在形式上分析和记忆.导致学生在用二项式定理解决问题时,难以有效的迁移.何老师则是充分理解教材和学生的基础上,充分地运用计数原理分步、分类的教学思想,有效的化解了这一重点和难点.2.目标明确具体,问题层层递进高效率的课堂,必须有具体可测的教学目标和具体可操作的数学问题.何老师的这节课主要围绕a b展开式中项的形式和项的系数,展开问题驱动,使学生始终围绕这一核心展开思考,使学生的()n思维始终处于不断的“提出问题、解决问题”的状态中,认知结构和解决问题的能力在潜移默化中得以提升.3.关注学生主体,激发深层思考学生探究意识强烈,学习积极性高.何老师在这节课所设计的问题以及围绕这些问题所进行的铺垫,为学生的数学探究活动营造了浓郁的学习环境和气氛,通过让学生口述、板书、交流讨论等形式使学生成为课堂学习的主人,激发了学生深层次的思考,从而深化对知识的理解.4.高效驾驭课堂,适时概括引领作为课堂的设计者和组织者,既要重视学生的主体,也不能忽视教师的概括引领.何老师的教学设计高观点,教学展开低起点,教学概括明确适时.尤其是数学思想方法渗透到位.何老师十分重视数学思想方法的渗透,以问题为载体,通过观察、归纳、类比、猜想、证明,教给学生运用数学思想方法分析、解决问题的思维策略,使数学思想方法的运用植入学生数学思维体系.思维的升华从有价值的思考开始,学生良好的思维品质的培养,需要教师高水平的预设和高水平的驾驭生成.我觉得何老师很好的诠释了二项式定理,并带学生较好的领悟了二项式定理的本质,是一节好课.。
高中数学选修2-3精品课件:1.3.1 二项式定理
2.二项式系数及通项 (1)(a+b)n展开式共有 n+1 项,其中 各项的系数Ckn (k∈{0, 1,2,…,n}) 叫做二项式系数 . (2)(a+b)n展开式的第 k+1 项叫做二项展开式的通项,记作 Tk+1= Cknan-kbk .
要点一 二项式定理的正用、逆用 例 1 (1)求(3 x+ 1x)4 的展开式; 解 方法一 (3 x+ 1x)4 =C04(3 x)4+C14(3 x)3·1x+C24(3 x)2·( 1x)2+C34(3 x)·( 1x)3+
-1,n为奇数时.
要点二 二项展开式通项的应用 例 2 若( x+ 1 )n 展开式中前三项系数成等差数列,求:
4 2x (1)展开式中含x的一次项; 解 由已知可得 C0n+C2n·212=2C1n·12,即 n2-9n+8=0, 解得n=8,或n=1(舍去).
Tk+1=Ck8(
x)8-k·(
x
(1)求含x2的项的系数;
(2)求展开式中所有的有理项.
解
3
x- 3 3
n
展开式的通项为Tr1
Cnr
nr
x3
(3)r
r
x3
n2r
Crn (3)r x 3 .
x
第6项为常数项,即r=5,
n-2r 且 3 =0,∴n=10.
n-2r (1)令 3 =2,得
r=21(n-6)=2.
故 x2 项的系数为 C210(-3)2=405.
第一章——
1.3 二项式定理
1.3.1 二项式定理
[学习目标] 1.能用计数原理证明二项式定理. 2.掌握二项式定理及其展开式的通项公式. 3.会用二项式定理解决与二项展开式有关的简单问题.
1 预习导学 2 课堂讲义 3 当堂检测
1.3.1二项式定理教案
公主岭第三高级中学数学组——张鹤一.三维目标1.知识与技能:了解二项式定理的形成和过程,掌握二项式定理,会用其展开式的通项求某一项。
2.过程与方法:了解二项式定理的推导过程进行类比,归纳推理推出二项式定理掌握二项式定理说明其应用。
3.情感态度与价值观:体会知识间的递进关系。
二.德育目标1.提高学生的归纳推理能力2.树立由特殊到一般的归纳知识。
三,教学重点与难点1.教学重点:二项式定理及通项公式的掌握及运用2.教学难点:运用多项式乘法及排列组合知识推导二项式定理的形成过程授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪内容分析:二项式定理是初中乘法公式的推广,是排列组合知识的具体运用,是学习概率的重要基础.这部分知识具有较高应用价值和思维训练价值.中学教材中的二项式定理主要包括:定理本身,通项公式,杨辉三角,二项式系数的性质等.通过二项式定理的学习应该让学生掌握有关知识,同时在求展开式、其通项、证恒等式、近似计算等方面形成技能或技巧;进一步体会过程分析与特殊化方法等等的运用;重视学生正确情感、态度和世界观的培养和形成.二项式定理本身是教学重点,因为它是后面一切结果的基础.通项公式,杨辉三角,特殊化方法等意义重大而深远,所以也应该是重点.二项式定理的证明是一个教学难点.这是因为,证明中符号比较抽象、需要恰当地运用组合数的性质2、需要用到不太熟悉的数学归纳法.在教学中,努力把表现的机会让给学生,以发挥他们的自主精神;尽量创造让学生活动的机会,以让学生在直接体验中建构自己的知识体系;尽量引导学生的发展和创造意识,以使他们能在再创造的氛围中学习教学过程:一、复习引入:⑴22202122222()2a b a ab b C a C ab C b +=++=++;⑵33223031222333333()33a b a a b ab b C a C a b C ab C b +=+++=+++⑶4()()()()()a b a b a b a b a b +=++++的各项都是4次式,即展开式应有下面形式的各项:4a ,3a b ,22a b ,3ab ,4b , 展开式各项的系数:上面4个括号中,每个都不取b 的情况有1种,即04C 种,4a 的系数是04C ;恰有1个取b 的情况有14C 种,3a b 的系数是14C ,恰有2个取b 的情况有24C 种,22a b 的系数是24C ,恰有3个取b 的情况有34C 种,3ab 的系数是34C ,有4都取b 的情况有44C 种,4b 的系数是44C ,∴40413222334444444()a b C a C a b C a b C a b C b +=++++.二、讲解新课:二项式定理:01()()n n n r n r r n n n n n n a b C a C a b C a b C b n N -*+=+++++∈⑴()n a b +的展开式的各项都是n 次式,即展开式应有下面形式的各项:n a ,n a b ,…,n r r a b -,…,n b ,⑵展开式各项的系数:每个都不取b 的情况有1种,即0n C 种,n a 的系数是0n C ;恰有1个取b 的情况有1n C 种,n a b 的系数是1n C ,……,恰有r 个取b 的情况有r n C 种,n r r a b -的系数是r n C ,……,有n 都取b 的情况有n n C 种,n b 的系数是n n C ,∴01()()n n n r n r r n n n n n n a b C a C a b C a b C b n N -*+=+++++∈,这个公式所表示的定理叫二项式定理,右边的多项式叫()n a b +的二项展开式,⑶它有1n +项,各项的系数(0,1,)r n C r n =叫二项式系数,⑷r n r r n C a b -叫二项展开式的通项,用1r T +表示,即通项1r n r r r n T C a b -+=. ⑸二项式定理中,设1,a b x ==,则三、讲解范例:例1.(1)展开41(1)x +.(2)展开61(2)x x - 例2.(1)求7)21(x +的展开式的第四项的系数求9)1(xx -的展开式中3x 的系数 练习 (1)5)21(x -展开式的第三项是___________(2)第三项的二项式系数是___________(3) 第三项的系数是___________练习 (1)求6)32(y x +的展开式的第三项(2)求6)23(x y +的展开式的第三项五、小结 :二项式定理的探索思路:观察——归纳——猜想——证明;二项式定理及通项公式的特点六、课后作业:A 层次:习题1.3 T2 、T3 、B 层次 习题T4(1)(2) 若n x x )12(23+的展开式中,若常数项存在,则n 的最小值七、板书设计(1) 01()()n n n r n r r n n n n n n a b C a C a b C a b C b n N -*+=+++++∈(2)二项式系数 r n C (r=0,1,2........n)(3)1r n r r r n T C a b -+=(4)二项式定理中,1,a b x == 1(1)1n r r n n n x C x C x x +=+++++例1。
高三数学教案《二项式定理》四篇
高三数学教案《二项式定理》四篇教学过程篇一1.情景设置问题1:若今天是星期二,再过30天后的那一天是星期几?怎么算?预期回答:星期四,将问题转化为求“30被7除后算余数”是多少?问题2:若今天是星期二,再过810天后的那一天是星期几?问题3:若今天是星期二,再过天后是星期几?怎么算?预期回答:将问题转化为求“被7除后算余数”是多少?在初中,我们已经学过了(a+b)2=a2+2ab+b2(a+b)3=(a+b)2(a+b)=a3+3a2b+3ab2+b3(提问):对于(a+b)4,(a+b)5如何展开?(利用多项式乘法)(再提问):(a+b)100又怎么办?(a+b)n(n?N+)呢?我们知道,事物之间或多或少存在着规律。
也就是研究(a+b)n(n?N+)的展开式是什么?这就是本节课要学的内容。
这节课,我们就来研究(a+b)n的二项展开式的规律性。
学完本课后,此题就不难求解了。
(设计意图:使学生明确学习目的,用悬念来激发他们的学习动机。
奥苏贝尔认为动机是学习的先决条件,而认知驱力,即学生渴望认知、理解和掌握知识,并能正确陈述问题、顺利解决问题的倾向是学生学习的重要动力。
)2.新授第一步:让学生展开;问题1:以的展开式为例,说出各项字母排列的规律;项数与乘方指数的关系;展开式第二项的系数与乘方指数的关系。
预期回答:①展开式每一项的次数按某一字母降幂、另一字母升幂排列,且两个字母幂指数的和等于乘方指数;②展开式的项数比乘方指数多1;③展开式中第二项的系数等于乘方指数。
第二步:继续设疑如何展开以及呢?(设计意图:让学生感到仅掌握杨辉三角形是不够的,激发学生继续学习新的更简捷的方法的欲望。
)继续新授师:为了寻找规律,我们以中为例问题1:以项为例,有几种情况相乘均可得到项?这里的字母各来自哪个括号?问题2:既然以上的字母分别来自4个不同的括号,项的系数你能用组合数来表示吗?问题3:你能将问题2所述的意思改编成一个排列组合的命题吗?(预期答案:有4个括号,每个括号中有两个字母,一个是、一个是。
人教版高中数学选修2-3教案:1.3.1二项式定理
§1.3.1 二项式定理【教学目标】1.理解二项式定理及推导方法,识记二项展开式的有关特征,能对二项式定理进行简单应用;2.通过对二项式定理内容的研究,体验特殊到一般的发现规律,一般到特殊指导实践的认识事物过程。
【教学重难点】教学重点:二项式定理的内容及归纳过程;教学难点:在二项式展开的过程中,发现各项及各项系数的规律。
【教学过程】一、设置情景,引入课题引入:二项式定理研究的是(a+b)n的展开式。
如(a+b)2=a2+2ab+b2, (a+b)3=?,(a+b)4=?,那么(a+b)n的展开式是什么呢?二、引导探究,发现规律1、多项式乘法的再认识问题1:(a1+ b1)(a2+b2) (a3+ b3)展开式中每一项是怎样构成的?展开式有几项?2、(a+b)3展开式的再认识问题2:将上式中,若令a1=a2=a3=a, b1=b2= b3=b,则展开式又是什么?合作探究1:合并同类项后,为什么a2b的系数是3?教师引导:可以发现a2b是从(a+b)(a+b)(a+b)这三个括号中的任意两个中选a,剩下的一个括号中选b;利用组合知识可以得到a2b应该出现了C23· C11=3次,所以a2b的系数是3。
问题3:(a+b)4的展开式又是什么呢?可以对(a+b)4按a或按b进行分类:(1)四个括号中全都取a,得:C44a4(2)四个括号中有3个取a,剩下的1个取b,得:C34a3· C11b(3)四个括号中有2个取a,剩下的2个取b,得:C24a2· C22b2(4)四个括号中有1个取a,剩下的3个取b,得:C14a· C33b3(5)四个括号中全都取b,得:C44b4小结:对于展开式,只要按一个字母分类就可以了,可以按a分类,也可以按b分类,再如:(1)不取b:C04a4;(2)取1个b:C14a3b;(3)取2个b:C24a2b2;(4)取3个b:C34a b3;(5)取4个b:C44b4,然后将上面各式相加得到展开式。
高三数学教案《二项式定理》优秀3篇
高三数学教案《二项式定理》优秀3篇1. 介绍本文档将介绍三篇优秀的高三数学教案,主题为《二项式定理》。
这些教案从不同的角度和方法讲解了二项式定理,帮助学生更好地理解和应用该定理,提高数学解题能力。
2. 教案一:《二项式定理初步认识》2.1 教学目标•了解二项式的定义和性质•掌握二项式展开的基本方法•能够灵活应用二项式定理解决实际问题2.2 教学内容1.二项式的定义和性质–介绍二项式的概念和表达形式–讲解二项式的性质,如二项式系数的对称性等2.二项式展开的基本方法–介绍二项式在展开时的基本方法–给出一些例题进行演示和练习3.实际问题的应用–利用二项式定理解决实际问题,如排列组合问题等–给出一些实际问题的例题和练习2.3 教学方法•讲授与演示相结合:通过讲解二项式的定义和性质,并用例题演示二项式展开的基本方法,加深学生对二项式定理的理解•提问与讨论:引导学生参与讨论,思考问题的解决方法,培养学生的分析和解决问题的能力•练习与巩固:给学生一定数量的练习题,巩固所学知识,并能够应用到实际问题中2.4 教学评价与反馈•教学评价:通过课堂上教师的观察、学生的表现及课后作业的完成情况,进行教学评价•教学反馈:及时给予学生反馈,并指导学生改正错误,提高学习效果3. 教案二:《二项式定理的证明与应用》3.1 教学目标•掌握二项式定理的证明方法•理解二项式定理的应用领域•提高数学推理和证明能力3.2 教学内容1.二项式定理的证明方法–讲解二项式定理的组合证明方法,如二项式系数的递推关系等–通过数学推理,证明二项式定理的正确性2.二项式定理的应用–介绍二项式定理在组合数学、概率论等领域的应用–给出一些应用题进行练习,提高学生的应用能力3.数学推理与证明–培养学生的数学推理和证明能力,通过解答证明题加深学生对二项式定理的理解3.3 教学方法•讲授与演示相结合:通过讲解二项式定理的证明方法,并演示具体的证明过程,加强学生对二项式定理的理解•课堂讨论:引导学生进行证明题的讨论和分析,提高学生的数学推理能力•练习与应用:给学生一些练习题,加深学生对二项式定理的应用理解3.4 教学评价与反馈•教学评价:通过课堂上的表现、学生的参与情况以及课后作业的完成情况综合评价学生的学习情况•教学反馈:及时给予学生反馈,并指导学生改进学习方法,提高学习效果4. 教案三:《二项式定理与三角恒等式》4.1 教学目标•掌握二项式定理与三角恒等式的联系和应用•理解二项式定理与三角恒等式在数学中的重要性•提高学生的综合应用能力4.2 教学内容1.二项式定理与三角恒等式的联系和应用–介绍二项式定理与三角恒等式之间的联系和应用–分析二项式展开式的三角形式及其与三角恒等式的关系2.二项式定理与三角恒等式的具体应用–给出一些具体的二项式展开题目,引导学生将其化简成三角恒等式形式–通过练习题,锻炼学生的综合应用能力4.3 教学方法•讲授与实例演示:通过讲解二项式定理与三角恒等式的联系,并给出具体的例题进行演示,加深学生对二项式定理和三角恒等式的理解•练习与应用:给学生一些练习题,锻炼学生将二项式展开式化简成三角恒等式形式的能力•问题探究与讨论:引导学生思考和探索二项式定理与三角恒等式之间的更多联系4.4 教学评价与反馈•教学评价:通过观察学生的课堂表现、参与讨论的情况以及课后作业的完成情况综合评价学生的学习情况•教学反馈:及时给予学生反馈,并指导学生改进问题解决的方法,提高学习效果5. 总结本文档介绍了三篇优秀的高三数学教案,主题为《二项式定理》。
高中数学教学课例《1.3.1二项式定理》课程思政核心素养教学设计及总结反思
在本节课排列的教学中,准备使用多媒体。因为使
用多媒体,有利于提高教学容量。
一.新授
问题 1:如何利用计数原理得到
的展开式?你能由此猜测一下的展开式是什么?
设计意图:掌握二项式的定理
例 1、展开.
解一:
.
解二:
教学过程
.
变式训练:展开
解:
. 师生活动:(1)在初中,由多项式乘法法则得到
的展开式,展开式中各项的系数分别是什么? (2)由的展开式,写出的展开式 问题 2:由二项式定理,推导二项式定理的通项公
式? 设计意图:掌握二项式定理的通项公式 例 1、求的展开式中的倒数第项 解:的展开式中共项,它的倒数第项是第项, . 变式训练:求(1),(2)的展开式中的第项. 解:(1), (2). 师生活动:(1)的各项系数各为多少? (2)自主分析的各项系数,得出二项式的通项公
式? 二、课堂小结 1、项式定理的探索思路:观察——归纳——猜想
学生学习能
通过复习、推理、分析、归纳的过程总结记忆二项
力分析 式定理
在本节课的教学中,学生可能遇到的问题是对二项
教学策略选 式的展开,产生这一问题的原因是与计数问题连在一起
择与设计 是不容易的。要解决这一问题,就要采用合情推理的方
法,在探究中提出利用两个计数原理得出
⑴
⑵
⑶的各项都是次式的展开问题。
教材分析 的应用有着非常重要的作用,所以在本学科多项式的运
算中有重要的地位,是本学科的核心内容。教学的重点
是二项式定理及通项公式的掌握及运用,解决重点的关
键是要引导分析二项式的展开过程,从而发现二项式展
开成单项式之和是各项系数的规律。
教学目标
1、掌握二项式定理和二项展开式的通项公式 2、能解决二项展开式有关的简单问题
1.3.1二项式定理
《二项式定理》学情分析
山东省文登第一中学崔文
所教班级为普通的教学班(地理、历史、物理组合),由于新课程改革数学不再分文、理科,学生的水平参差不齐,教学的起点不宜太高。
1.知识准备
提前布置学生预习教材,通读教材两遍,标注不理解的地方,旁注不能解决的问题。
课前复习组合相关的知识,进行导学案组合例题的预习,可以提前进行小组合作学习。
2.学情预测
根据教学经验,学生在二项式定理的推导方面理解差,二项展开式的通项公式使用不熟练,因此二项式定理的推导要进行铺垫,符合学生思维的最近发展区,二项展开式的形式特征要解读全面,定理应用要侧重通项公式的使用。
3.操作要领
基于学情,鼓励学生采用观察法、类比法、归纳法学习,让学生小组合作交流、板书练习题答案,采取同伴互相帮助等手段开展学习。
完整版)二项式定理教案
完整版)二项式定理教案1.3.1 二项式定理(第一课时)一、教学目标1.知识与技能1)理解二项式定理,并能简单应用。
2)能够区分二项式系数与项的系数。
2.过程与方法通过学生参与和探究二项式定理的形成过程,培养学生观察、分析、归纳的能力,以及转化化归的意识与知识迁移的能力,体会从特殊到一般的思维方式。
3.情感与态度价值观通过探究问题,归纳假设让学生在研究的过程中养成独立思考的好惯,在自主研究中体验成功,在思索中感受数学的魅力,让学生在体验知识产生的过程中找到乐趣。
二、教学重点难点1.教学重点:二项式定理及二项式定理的应用。
2.教学难点:二项式定理中单项式的系数。
三、教学设计教学过程一、新课讲授引入:让学生回顾多项式乘法法则,利用排列、组合理解,写展开式,设计意图是师生活动展开(a+b)²、(a+b)³。
学生完成:a+b)² = a²+2ab+b²a+b)³ = a³+3a²b+3ab²+b³分析(a+b)的展开式:展开式有3项,a、b的指数分别为2、1、0,各项系数分别为1、2、1.教学过程设计意图是师生活动恰有1个因式选b的情况有C₂¹种,所以ab的系数是C₂¹;2个因式选b的情况有C₂²种,所以b的系数是C₂²;每个因式都不选b的情况有C₂⁰种,所以a的系数是C₂⁰。
思考3个问题:1.项数2.每一项a、b的指数和3.各项的系数是什么?a+b) = C₁aCb类比展开(a+b)³:a+b)³ = C₃¹a²b+C₃²ab²+C₃³b³归纳、类比(a+b)的展开式。
二、二项式定理:a+b)ⁿ = C₀aⁿ+C₁aⁿ⁻¹b+。
+Cₙbⁿ学生完成:按照a的降幂排列,解释ab的系数。
人教版高中数学《二项式定理》教学设计(全国一等奖)
课题:§1.3.1二项式定理(人教A 版高中课标教材数学选修2-3)《二项式定理》教学设计一、教学内容解析《二项式定理》是人教A 版选修2-3第一章第三节的知识内容,它是初中学习的多项式乘法的继续.在计数原理之后学习二项式定理,一方面是因为它的证明要用到计数原理,可以把它作为计数原理的一个应用,另一方面也是解决整除、近似计算、不等式证明的有力工具,同时也是后面的数学期望等内容的基础知识,二项式定理起着承上启下的作用.另外,由于二项式系数是一些特殊的组合数,利用二项式定理可进一步深化对组合数的认识.总之,二项式定理是综合性较强的、具有联系不同内容作用的知识.二、教学目标设置新课标指出教学目标应体现学生学会知识与技能的过程也同时成为学生学会学习,形成正确价值观的过程.新课标要求:用计数原理分析2()a b +,3()+a b ,4()+a b 的展开式,归纳类比得到二项式定理,并能用计数原理证明.掌握二项展开式的通项公式,解决简单问题;学会讨论二项式系数性质的方法.根据新课标的理念及本节课的教学要求,制定了如下教学目标:1.学生在二项式定理的发现推导过程中,掌握二项式定理及推导方法、二项展开式、通项公式的特点,并能运用二项式定理计算或证明一些简单的问题.2.学生经历二项式定理的探究过程,体验“从特殊到一般发现规律,从一般到特殊指导实践”的思想方法,获得观察、归纳、类比、猜想及证明的理性思维探究能力.3.通过二项展开式的探究,培养学生积极主动、勇于探索、不断创新的精神,感受合作探究的乐趣,感受数学内在的和谐、对称美及数学符号应用的简洁美.结合数学史,激发学生爱国热情和民族自豪感.三、学情分析1.有利因素授课对象是高二的学生,具有一般的归纳推理能力,思维较活跃,初步具备了用联系的观点分析问题的能力.学生刚刚学习了计数原理和排列组合的知识,对本节()+n a b 展开式中各项系数的研究会有很大帮助.2.不利因素本节内容思维量较大,对思维的严谨性和分类讨论、归纳推理等能力有较高要求,学生学习起来有一定难度.在数学学习过程中,大部分学生习惯于重视定理、公式的结论,而不重视其形成过程.四、教法策略分析遵循“以学生为主体、教师是数学课堂活动的组织者、引导者和参与者”的现代教育原则,采用“启发式教学法”,学生主要采用“探究式学习法”, 并利用多媒体辅助教学.本课以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与,通过不断探究、发现,在师生互动、生生互动中,完成二项式定理的探究,让学习过程成为学生心灵愉悦的主动认知过程.五、教学过程(一)创设情境 引入课题引入:通过“牛顿发现二项式定理”的历史引入课题.提出问题:2()+=a b ? 3()+=a b ? 4()+=a b 那么9()?a b +=……n b a )(+的展开式是什么?【设计意图】学生的学习遵循“历史发生原理”,把二项式定理发现的历史融入新课导入,既能引起学生的兴趣,符合新课程理念,还能提升课堂品味.创设有效的数学情景能激发学生的学习兴趣,为学生提供良好的学习环境.数学的来源,一是来自数学外部现实社会的发展需要;二是来自数学内部的矛盾,即数学本身发展的需要.这个问题将“多项式展开有哪些项”包含其中,为后面的研究做好铺垫.(二)体验感知 探究归纳1.归纳特点总结规律.【设计意图】由特殊到一般的归纳总结,离不开大量特殊实例的观察.只有将大量具体实例进行整体和局部多方面的分析,才能得到接近一般性规律的结论.也只有对得出各种结论进行整合,才能让学生顺畅的抓住展开过程的两个要点,即项的结构和项的系数,才能让学生有目的的进一步进行探讨和分析.2.项的结构特点.(学生叙述展开过程中各项是如何形成的.如果学生的叙述中没有说明从每个因式中取一个字母相乘得到展开式的项,老师提出预备问题:展开式的各项是由同一个因式中的字母相乘得到的吗?) 师:根据多项式乘法法则,()na b +的展开式就是从每个因式中任取一项相乘得到展开式的项. 【设计意图】多项式乘法法则是展开式的运算基础,同时也为用组合数表示系数创设情境.而学生对于多项式乘法法则的理论叙述不够顺畅.通过教师强调多项式乘法法则,让学生思维建立旧知识与新知识联系,为下面系数的确定做好铺垫.【设计意图】本节课的重点就是利用多项式的乘法法则和计数原理对展开式中各项进行分析.该问题的提出,符合学生的思维发展规律,能准确地检验学生对问题分析能力和解决方法的掌握,突出体现本节课的思维方法.(三)知识建构 形成定理)()(*110N n b C b a C b a C a C b a n n n k k n k n n n n n n ∈+++++=+-- —— 二项式定理 证明:n b a )(+是n 个)(b a +相乘,每个)(b a +在相乘时,有两种选择,选a 或选b ,由分步计数原理可知展开式共有n 2项(包括同类项),其中每一项都是k k n b a -),1,0(n k =的形式,对于每一项k k n b a -,它是由k 个)(b a +选了b ,n -k 个)(b a +选了a 得到的,它出现的次数相当于从n 个)(b a +中取k 个b 的组合数kn C ,将它们合并同类项,就得二项展开式,这就是二项式定理.二项式定理的公式特征:①展开式中每一项的次数都是n ;②展开式共1n +项;③按照字母a 降幂排列,次数由n 递减到0,字母b 升幂排列,次数由0递增到n ;④k n k k n C a b -是展开式的第1k +项; k n k k n C a b -叫二项展开式的通项,用1k T +表示. ⑤各项的系数(0,1,)k n C k n =叫二项式系数.【设计意图】先由学生独立完成,然后组织讨论.完成有特殊到一般的归纳过程,训练学生的类比、联想、归纳的探究能力.在讨论过程中要明确每一项的形式及相应的个数.(四)巩固新知 提升能力【设计意图】通过例题让学生熟悉二项展开式及其通项,区分二项式系数和系数,培养学生的运算能力.设计题目考察学生的学习情况,各个题目设计的比较有梯度,逐渐加大难度,符合学生的认知水平.(五)回顾反思 归纳总结知识方面:二项式定理,通项,二项式系数;思想方法:从特殊到一般;观察——归纳——类比——猜想——证明.【设计意图】小结可以锻炼学生的概括能力、语言表达能力,可以使学生加深对本节课的认识,掌握基本数学思维方法.(六)课下作业 思维延伸一、P 36: 1~3二、1.求x x-123()3的展开式的中间一项; 2.求x -101(1)2展开式中含x51的项的系数. 思维延伸: 探究()5a b c ++的展开式中22a b c 的系数. 【设计意图】通过课下作业使学生深入理解知识,培养学生的创新精神、增强主动探究的意识和能力.六、板书设计练习:请写出91()x x -的展开式中3x 的系数. 例2:求10(1)x -的展开式中第6项的二项式系数.想一想:求展开式第6项的系数.例1:请写出5(12)-x 的展开式.教学设计说明高中数学的学科价值在于以下三个方面:传递初等数学知识;进行逻辑推理训练;培养学科精神.数学学习的关键在于理解,重视知识的形成过程,而不是死板的公式应用.新课标指出:学生的学习活动不应只限于对概念、结论和技能的记忆、模仿和接受,独立思考、自主探究、动手实践、合作交流、阅读自学等都是学习数学的重要方式.因此,课堂教学中应该是“用教材”,而不是“教教材”,教师要敢于放手,营造宽松的教学氛围,关注学生的主体参与、师生互动、生生互动,着重培养学生研究数学的意识和发展数学的能力,提升学生提出问题、研究问题的能力,竭尽全力培养学生探索创新的意识.在这过程中,要努力把表现的机会让给学生,让学生在直接体验中构建自己的知识体系.本节课堂教学中,遵循“以学生为主体、教师是数学课堂活动的组织者、引导者和参与者”的现代教育原则,采用“启发式教学法”,分为:创设情境、探究归纳、知识建构、巩固新知、归纳总结五个阶段.努力使学生有足够的思维活动体验,教师根据学生的思维特征和认知规律,在学生数学学习经验的基础上去设置问题.例如本节中,由特殊到一般的数学思维方法,需要对特殊情形进行观察归纳.要想提高归纳的准确性,就需要较多的实例进行观察.特别是“组合知识的运用”,当n 较小时,学生意识不到用组合的知识解释项的系数.只有当n 较大时,各项系数的确定才能凸显出组合知识的优势.因此,在题目设置时,准备了2()+a b ,3()+a b ,4()+a b 三个展开式让学生观察归纳,否则关于“组合知识的运用”就成了教师的告知.问题解决是数学教育的核心,课堂教学中,在学生原有认知的基础上,设置“好”的问题串是非常重要的,因为教师对问题设置如何,直接决定了学生的思维方向和思维深度,教学中以问题为主线,由问题驱动,激发学生探究结论的欲望,使学生的思维始终处于“提出问题、解决问题”的状态中.本节课在“多项式乘法法则”“组合知识的运用”两个方面,学生无法自主完成思维方法的提升,教师通过设置恰当的问题引导学生分析思维过程,为学生在理论层面总结提升.在探究的环节,教师的作用是“激活”而不是“告知”,要把隐藏在学生思想深处的思维方法引导出来.教师作为学生数学探究活动的设计者、活动实施的调控者,直接影响和决定了学生的学习热情及课堂效果.本节课中,课遵循学生的认识规律,由特殊到一般,由感性到理性.重视学生的参与过程,问题引导,师生互动.重在培养学生观察问题,发现问题,归纳推理问题的能力.学生能学到很多数学经验:在二项展开式探究过程中,运用组合理解算理、利用数列知识理解通项、运用赋值法得到相关结论等,渗透数学学习的策略与方法,在组织学生数学探究中,积极动手、动脑,实现思维建构、不断积累数学经验,从而形成自主探究的学习习惯,达到理想的教育教学效果.点评《二项式定理》作为一节命题课,更应该重视学生数学素养的培养,良好思维品质的生成.何磊老师深读课标和教材,清晰制定了具体可测的教学目标,深刻挖掘了二项式定理的数学本质;结合学生的认知基础和心理特点,设计了层层递进数学问题;以学生为主体,给学生足够的思考空间和辨析研讨的机会,激发了学生深层次的思考;何老师数学功底扎实,教学功底雄厚,教学有张有弛,当学生需要帮助时,给学生隐性的帮助,在关键时刻又有恰当和明确的概括提升.其教学特色主要体现在:1.突出核心内容,深挖数学本质作为计数原理的应用,提示我们这是挖掘二项式定理数学本质的根源.但在大量的课堂观察中发现,很多老师规避这一教学难点,仅从外在形式上分析和记忆.导致学生在用二项式定理解决问题时,难以有效的迁移.何老师则是充分理解教材和学生的基础上,充分地运用计数原理分步、分类的教学思想,有效的化解了这一重点和难点.2.目标明确具体,问题层层递进高效率的课堂,必须有具体可测的教学目标和具体可操作的数学问题.何老师的这节课主要围绕展开式中项的形式和项的系数,展开问题驱动,使学生始终围绕这一核心展开思考,使学生的a b()n思维始终处于不断的“提出问题、解决问题”的状态中,认知结构和解决问题的能力在潜移默化中得以提升.3.关注学生主体,激发深层思考学生探究意识强烈,学习积极性高.何老师在这节课所设计的问题以及围绕这些问题所进行的铺垫,为学生的数学探究活动营造了浓郁的学习环境和气氛,通过让学生口述、板书、交流讨论等形式使学生成为课堂学习的主人,激发了学生深层次的思考,从而深化对知识的理解.4.高效驾驭课堂,适时概括引领作为课堂的设计者和组织者,既要重视学生的主体,也不能忽视教师的概括引领.何老师的教学设计高观点,教学展开低起点,教学概括明确适时.尤其是数学思想方法渗透到位.何老师十分重视数学思想方法的渗透,以问题为载体,通过观察、归纳、类比、猜想、证明,教给学生运用数学思想方法分析、解决问题的思维策略,使数学思想方法的运用植入学生数学思维体系.思维的升华从有价值的思考开始,学生良好的思维品质的培养,需要教师高水平的预设和高水平的驾驭生成.我觉得何老师很好的诠释了二项式定理,并带学生较好的领悟了二项式定理的本质,是一节好课.。
高中数学第一章计数原理1.3.1二项式定理学案含解析
1.3.1 二项式定理问题1:我们在初中学习了(a+b)2=a2+2ab+b2,试用多项式的乘法推导(a+b)3,(a +b)4的展开式.提示:(a+b)3=a3+3a2b+3ab2+b3,(a+b)4=a4+4a3b+6a2b2+4ab3+b4.问题2:上述两个等式的右侧有何特点?提示:(a+b)3的展开式有4项,每项的次数是3;(a+b)4的展开式有5项,每一项的次数为4.问题3:你能用组合的观点说明(a+b)4是如何展开的吗?提示:(a+b)4=(a+b)(a+b)(a+b)(a+b).由多项式的乘法法则知,从每个(a+b)中选a或选b相乘即得展开式中的一项.若都选a,则得C04a4b0;若有一个选b,其余三个选a,则得C14a3b;若有两个选b,其余两个选a,则得C24a2b2;若都选b,则得C44a0b4.问题4:能用类比方法写出(a+b)n(n∈N*)的展开式吗?提示:能,(a+b)n=C0n a n+C1n a n-1b+…+C n n b n.二项式定理及其相关概念1.二项展开式的特点(1)展开式共有n+1项.(2)各项的次数和都等于二项式的幂指数n.(3)字母a的幂指数按降幂排列,从第一项开始,次数由n逐项减1直到为0,字母b 的幂指数按升幂排列,从第一项开始,次数由0逐项加1直到为n.2.二项展开式的通项公式的特点(1)它表示(a +b )n 的展开式的第k +1项,该项的二项式系数为C kn . (2)字母b 的次数与二项式系数的组合数的上标相同. (3)a 和b 的次数之和为n .(1)求(x +(2)化简:C 0n (x +1)n -C 1n (x +1)n -1+C 2n (x +1)n -2-…+(-1)k C k n (x +1)n -k+…+(-1)n C nn .(1)(x +2y )4=C 04x 4+C 14x 3(2y )+C 24x 2(2y )2+C 34x ·(2y )3+C 44(2y )4=x 4+8x 3y +24x 2y 2+32xy 3+16y 4.(2)原式=C 0n (x +1)n +C 1n (x +1)n -1(-1)+C 2n (x +1)n -2(-1)2+…+C k n (x +1)n -k(-1)k+…+C nn (-1)n=n=x n.1.(a +b )n的二项展开式有n +1项,是和的形式,各项的幂指数规律是:①各项的次数等于n ;②字母a 按降幂排列,从第一项起,次数由n 逐项减1直到0;字母b 按升幂排列,从第一项起,次数由0逐项加1直到n .2.逆用二项式定理可以化简多项式,体现的是整体思想.注意分析已知多项式的特点,向二项展开式的形式靠拢.1.求⎝ ⎛⎭⎪⎫2x -32x 24的展开式. 解:法一:⎝⎛⎭⎪⎫2x -32x 24=C 04(2x )4+C 14(2x )3·⎝ ⎛⎭⎪⎫-32x 2+C 24(2x )2⎝ ⎛⎭⎪⎫-32x 22+C 34(2x )⎝ ⎛⎭⎪⎫-32x 23+C 44⎝ ⎛⎭⎪⎫-32x 24=16x 4-48x +54x 2-27x 5+8116x 8.法二:⎝ ⎛⎭⎪⎫2x -32x 24=⎝ ⎛⎭⎪⎫4x 3-32x 24=116x 8(4x 3-3)4=116x 8=16x 4-48x +54x 2-27x 5+8116x 8. 2.化简:(x -1)5+5(x -1)4+10(x -1)3+10(x -1)2+5(x -1).解:原式=C 05(x -1)5+C 15(x -1)4+C 25(x -1)3+C 35(x -1)2+C 45(x -1)+C 55-C 55=5-1=x 5-1.(1)在⎝⎛⎭⎪⎫32x -1220的展开式中,系数是有理数的项共有( )A .4项B .5项C .6项D .7项(2)(浙江高考)设二项式⎝⎛⎭⎪⎪⎫x -13x 5的展开式中常数项为A ,则A =________. (1)T k +1=C k20(32x )20-k⎝⎛⎭⎪⎫-12k=⎝ ⎛⎭⎪⎫-22k ·(32)20-k C k 20·x 20-k. ∵系数为有理数, ∴⎝ ⎛⎭⎪⎫-22k与2203k -均为有理数,∴k 能被2整除,且20-k 能被3整除. 故k 为偶数,20-k 是3的倍数,0≤k ≤20, ∴k =2,8,14,20.(2)T k +1=C k5(x )5-k⎝⎛⎭⎪⎪⎫-13x k=C k 5(-1)kx5526k-,令52-5k 6=0,得k =3,所以A =-C 35=-10. (1)A (2)-101.在通项公式T k +1=C k n an -k b k(n ∈N *,k =0,1,2,3,…,n )中含有a ,b ,n ,k ,T k +1五个量,只要知道其中4个量,便可求出第5个量.在运用二项式定理解决展开式中的项或项的系数的一些问题时,常涉及这5个量的求解问题.这通常是化归为方程的问题来解决.2.对于常数项,隐含条件是字母的指数为0(即0次项);而对于有理项,一般是根据通项公式所得到的项,其所有的未知数的指数恰好是整数的项.已知在⎝⎛⎭⎪⎪⎫3x -33x n 的展开式中,第6项为常数项.(1)求n ;(2)求展开式中所有的有理项.解:通项公式为T k +1=C k n x 3n k - (-3)kx3k -=C k n(-3)kx3n k -.(1)∵第6项为常数项, ∴k =5时,有n -2k3=0,即n =10.(2)根据通项公式,由题意得⎩⎨⎧10-2k3∈Z ,k ≤10,k ∈Z.令10-2k 3=r (r ∈Z),则10-2k =3r ,即k =5-32r .∵k ∈Z ,∴r 应为偶数.于是r 可取2,0,-2,即k 可取2,5,8.故第3项、第6项与第9项为有理项,它们分别为 C 210(-3)2x 2,C 510(-3)5,C 810(-3)8x -2.在⎝⎛⎭⎪⎪⎫2x 2-13x 8的展开式中,求: (1)第5项的二项式系数及第5项的系数; (2)倒数第3项.法一:利用二项式的展开式解决.(1)⎝ ⎛⎭⎪⎪⎫2x 2-13x 8=(2x 2)8-C 18(2x 2)7·13x +C 28(2x 2)6·⎝ ⎛⎭⎪⎪⎫13x 2-C 38(2x 2)5·⎝ ⎛⎭⎪⎪⎫13x 3+C 48(2x 2)4·⎝ ⎛⎭⎪⎪⎫13x 4-C 58(2x 2)3·⎝ ⎛⎭⎪⎪⎫13x 5+C 68(2x 2)2·⎝ ⎛⎭⎪⎪⎫13x 6-C 78(2x 2)·⎝ ⎛⎭⎪⎪⎫13x 7+C 88⎝ ⎛⎭⎪⎪⎫13x 8, 则第5项的二项式系数为C 48=70,第5项的系数为C 48·24=1 120.(2)由(1)中⎝ ⎛⎭⎪⎪⎫2x 2-13x 8的展开式可知倒数第3项为C 68·(2x 2)2·⎝ ⎛⎭⎪⎪⎫13x 6=112x 2. 法二:利用二项展开式的通项公式.(1)T 5=C 48·(2x 2)8-4·⎝⎛⎭⎪⎪⎫-13x 4=C 48·24·x 203,则第5项的二项式系数是C 48=70,第5项的系数是C 48·24=1 120.(2)展开式中的倒数第3项即为第7项,T 7=C 68·(2x 2)8-6·⎝⎛⎭⎪⎪⎫-13x 6=112x 2.1.本例第(2)问也可转化为求另一二项展开式的某些项,即在⎝ ⎛⎭⎪⎪⎫2x 2-13x 8展开式中的倒数第3项就是⎝ ⎛⎭⎪⎪⎫13x -2x 28展开式中第3项,T 3=C 28·⎝ ⎛⎭⎪⎪⎫13x 8-2·(-2x 2)2=112x 2.2.要注意区分二项式系数与指定某一项的系数的差异,前者只与二项式的指数及项数有关,与二项式无关,它是一个组合数C kn ;后者与二项式、二项式的指数及项的字母和系数均有关.1.(全国乙卷)(2x +x )5的展开式中,x 3的系数是________.(用数字填写答案) 解析:(2x +x )5展开式的通项为T r +1=C r 5(2x )5-r (x )r =25-r ·C r5·x 5-r 2. 令5-r2=3,得r =4.故x 3的系数为25-4·C 45=2C 45=10.答案:102.(山东高考)若⎝⎛⎭⎪⎫ax 2+1x 5的展开式中x 5的系数是-80,则实数a =________. 解析:T r +1=C r5·(ax 2)5-r⎝ ⎛⎭⎪⎫1x r =C r 5·a 5-rx 10-52r .令10-52r =5,解得r =2.又展开式中x 5的系数为-80,则有C 25·a 3=-80,解得a =-2.答案:-22.二项式定理破解三项式问题求⎝ ⎛⎭⎪⎫x 2+1x +25的展开式的常数项.法一:由二项式定理得⎝ ⎛⎭⎪⎫x 2+1x +25=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x 2+1x +25 =C 05·⎝ ⎛⎭⎪⎫x 2+1x 5+C 15·⎝ ⎛⎭⎪⎫x 2+1x 4·2+C 25·⎝ ⎛⎭⎪⎫x 2+1x 3·(2)2+C 35·⎝ ⎛⎭⎪⎫x 2+1x 2·(2)3+C 45·⎝ ⎛⎭⎪⎫x 2+1x ·(2)4+C 55·(2)5.其中为常数项的有:C 15⎝ ⎛⎭⎪⎫x 2+1x 4·2中的第3项:C 15C 24·⎝ ⎛⎭⎪⎫122·2; C 35·⎝ ⎛⎭⎪⎫x 2+1x 2·(2)3中的第2项:C 35C 12·12·(2)3;展开式的最后一项C 55·(2)5.综上可知,常数项为C 15C 24·⎝ ⎛⎭⎪⎫122·2+C 35C 12·12·(2)3+C 55·(2)5=6322.法二:原式=⎝ ⎛⎭⎪⎫x 2+22x +22x 5=132x5·5=132x5·(x +2)10. 求原式中展开式的常数项,转化为求(x +2)10的展开式中含x 5的项的系数,即C 510·(2)5.所以所求的常数项为C 5102532=6322.解决三项式问题有两种方法:方法一,反复利用二项式定理,先把三项式中的某两项视为一项,用二项式定理展开,然后再利用二项展开式求解.方法二,转化为二项式.转化为二项式常见的有两种形式:三项式恰好是二项式的平方,则可转化为二项式定理求解,三项式可分解因式,则转化为两个二项式的积的形式.利用二项式定理求特定项,注意下列题型的变化.⎝ ⎛⎭⎪⎫2x +x (1-x )4的展开式中x 的系数是( ) A .1 B .2 C .3D .12解析:选C 根据题意,所给式子的展开式中含x 的项有(1-x )4展开式中的常数项乘⎝ ⎛⎭⎪⎫2x +x 中的x 以及(1-x )4展开式中的含x 2的项乘⎝ ⎛⎭⎪⎫2x +x 中的2x 两部分,所以所求系数为1×2+1=3,故选C.在(x -1)(x -2)(x -3)(x -4)(x -5)的展开式中,含x 4的项的系数是( ) A .-15 B .85 C .-120D .274解析:选A 根据分类加法、分步乘法计数原理,得-5x 4-4x 4-3x 4-2x 4-x 4=-15x 4, 所以原式的展开式中,含x 4的项的系数为-15.在(1+x )+(1+x )2+…+(1+x )6的展开式中,x 2的系数是________.(用数字作答) 解析:法一(转化为二项式定理解决):(1+x )2,(1+x )3,…,(1+x )6中x 2的系数分别为C 22,C 23,…,C 26,所以原式的展开式中,x 2的系数为C 22+C 23+…+C 26=C 33+C 23+…+C 26=C 34+C 24+…+C 26=…=C 37=35.法二(利用数列求和方法解决):由题意知1+x ≠0,原式=+x7-+xx,故只需求(1+x )7中x 3的系数, 即(1+x )7的展开式中第4项的系数, 即C 37=35. 答案:351.在(x -3)10的展开式中,含x 6的项的系数是( ) A .-27C 610 B .27C 410 C .-9C 610D .9C 410解析:选D 含x 6的项是T 5=C 410x 6(-3)4=9C 410x 6. 2.(1+x )8(1+y )4的展开式中x 2y 2的系数是( ) A .56 B .84 C .112D .168解析:选D (1+x )8的展开式中x 2的系数为C 28,(1+y )4的展开式中y 2的系数为C 24,所以x 2y 2的系数为C 28C 24=168.3.在⎝⎛⎭⎪⎫2x 2-1x 6的展开式中,中间项是________.解析:由n =6知中间一项是第4项,因T 4=C 36(2x 2)3·⎝ ⎛⎭⎪⎫-1x 3=C 36·(-1)3·23·x 3,所以T 4=-160x 3.答案:-160x 34.⎝⎛⎭⎪⎫x 2-12x 9的展开式中,第4项的二项式系数是________,第4项的系数是________.解析:T k +1=C k9·(x 2)9-k·⎝ ⎛⎭⎪⎫-12x k =⎝ ⎛⎭⎪⎫-12k ·C k 9·x 18-3k ,当k =3时,T 4=⎝ ⎛⎭⎪⎫-123·C 39·x 9=-212x 9,所以第4项的二项式系数为C 39=84,项的系数为-212.答案:84 -2125.求⎝⎛⎭⎪⎫x 3+23x 25的展开式的第3项的系数和常数项.解:T 3=C 25(x 3)3⎝⎛⎭⎪⎫23x 22=C 25·49x 5,所以第3项的系数为C 25·49=409.通项T k +1=C k 5(x 3)5-k⎝ ⎛⎭⎪⎫23x 2k =⎝ ⎛⎭⎪⎫23k ·C k 5x 15-5k ,令15-5k =0得k =3,所以常数项为T 4=C 35(x 3)2·⎝⎛⎭⎪⎫23x 23=8027.一、选择题1.二项式(a +b )2n的展开式的项数是( ) A .2n B .2n +1 C .2n -1D .2(n +1)解析:选B 根据二项式定理可知,展开式共有2n +1项.2.化简多项式(2x +1)5-5(2x +1)4+10(2x +1)3-10(2x +1)2+5(2x +1)-1的结果是( )A .(2x +2)5B .2x 5C .(2x -1)5D .32x 5解析:选D 原式=5=(2x )5=32x 5.3.在⎝⎛⎭⎪⎪⎫x +13x 24的展开式中,x 的幂指数是整数的项共有( ) A .3项 B .4项 C .5项D .6项解析:选C T k +1=C k24·x 24-k 2·x -k 3=C k 24·x 12-56k ,则k =0,6,12,18,24时,x 的幂指数为整数.4.在⎝⎛⎭⎪⎫2x 3+1x 2n (n ∈N *)的展开式中,若存在常数项,则n 的最小值是( )A .3B .5C .8D .10解析:选B T k +1=C kn (2x 3)n -k⎝ ⎛⎭⎪⎫1x 2k =2n -k ·C k n x 3n -5k .令3n -5k =0,∵0≤k ≤n , ∴n 的最小值为5.5.对于二项式⎝ ⎛⎭⎪⎫1x+x 3n (n ∈N *),有以下四种判断:①存在n ∈N *,展开式中有常数项; ②对任意n ∈N *,展开式中没有常数项; ③对任意n ∈N *,展开式中没有x 的一次项; ④存在n ∈N *,展开式中有x 的一次项. 其中正确的是( ) A .①与③ B .②与③ C .②与④D .①与④解析:选D 二项式⎝ ⎛⎭⎪⎫1x+x 3n 的展开式的通项公式为T k +1=C k n x 4k -n,由通项公式可知,当n =4k (k ∈N *)和n =4k -1(k ∈N *)时,展开式中分别存在常数项和一次项.二、填空题6.若(1+2x )6的展开式中的第2项大于它的相邻两项,则x 的取值范围是________. 解析:由{ T 2>T 1,T 2>T 3,得{ C 162x >1,162x >C 26x2.解得112<x <15.答案:⎝⎛⎭⎪⎫112,157.(1+x +x 2)(1-x )10的展开式中含x 4的项的系数为________.解析:因为(1+x +x 2)(1-x )10=(1+x +x 2)(1-x )·(1-x )9=(1-x 3)(1-x )9, 所以展开式中含x 4的项的系数为1×C 49(-1)4+(-1)×C 19(-1)=135.答案:1358.230+3除以7的余数是________.解析:230+3=(23)10+3=810+3=(7+1)10+3=C 010·710+C 110·79+…+C 910·7+C 1010+3=7×(C 010·79+C 110·78+…+C 910)+4,所以230+3除以7的余数为4.答案:4 三、解答题9.已知在⎝ ⎛⎭⎪⎫x +2x 2n 的展开式中,第5项的系数与第3项的系数之比为56∶3,求展开式中的常数项.解:T 5=C 4n (x )n -424x -8=16C 4n xn -202,T 3=C 2n (x )n -222x -4=4C 2n x n -102.由题意知,16C 4n 4C 2n =563,解得n =10.T k +1=C k 10(x )10-k 2k x -2k =2k C k10x 10-5k2, 令5-5k2=0,解得k =2.∴展开式中的常数项为C 21022=180.10.在⎝⎛⎭⎪⎫2x -1x 6的展开式中,求:(1)第3项的二项式系数及系数; (2)含x 2的项.解:(1)第3项的二项式系数为C 26=15,又T 3=C 26(2x )4⎝⎛⎭⎪⎫-1x 2=24·C 26x ,所以第3项的系数为24C 26=240. (2)T k +1=C k6(2x )6-k⎝⎛⎭⎪⎫-1x k =(-1)k 26-k C k 6x 3-k.令3-k =2,得k =1. 所以含x 2的项为第2项, 且T 2=-192x 2.11.已知在⎝⎛⎭⎪⎫12x 2-1x n 的展开式中,第9项为常数项.求: (1)n 的值;(2)展开式中x 5的系数;(3)含x 的整数次幂的项的个数.解:二项展开式的通项为T k +1=C kn ⎝ ⎛⎭⎪⎫12x 2n -k ·⎝ ⎛⎭⎪⎫-1x k =(-1)k ⎝ ⎛⎭⎪⎫12n -k C k n x 522n k -. (1)因为第9项为常数项,即当k =8时,2n -52k =0,解得n =10. (2)令2n -52k =5,得k =25(2n -5)=6, 所以x 5的系数为(-1)6⎝ ⎛⎭⎪⎫124C 610=1058. (3)要使2n -52k ,即40-5k 2为整数,只需k 为偶数,由于k =0,1,2,3,…,9,10,故符合要求的有6项,分别为展开式的第1,3,5,7,9,11项.。
高中数学人教B版选修2-3第一章《1.3.1 二项式定理》优质课公开课教案教师资格证面试试讲教案
高中数学人教B版选修2-3第一章《1.3.1 二项式定理》优质课公开课教案教师资格证面试试讲教案
1教学目标
1.知识与技能:
学生在探究二项式定理的形成过程中,掌握二项式系数、字母的幂次、展开式项数的规律;能够应用二项式定理对所给出的二项式进行正确的展开
2.过程与方法:
学生在探究二项式定理的形成过程中,发展观察、分析、概括的能力,以及化归的意识与知识迁移的能力,体会从特殊到一般的思维方式
3. 情感、态度与价值观:
在二项式定理中介绍我国古代数学成就“杨辉三角”,丰富学生对数学文化价值的认识
2学情分析
授课对象是高二程年级的学生。
学生具有一般的归纳推理能力,学生思维较活跃,但创新思维能力较弱。
在学习过程中,大部分学生只重视定理、公式的结论,而不重视其形成过程。
3重点难点
重点:二项式定理的推导与简单应用
难点:用组合数表示二项式定理中的系数
4教学过程
4.1第一学时
教学活动
1【导入】创设情境
1、创设情境
今天我们学习的展开式,首先我们看两个学过的二项展开式
那么
观察展开式中的项数、指数变化以及系数变化,你发现了什么?由此猜想的展开式中项数,指数变化及系数变化又如何呢?并试着写出他们的展开式。
1.3.1二项式定理(学、教案)
§1.3.1 二项式定理【教学目标】1.理解二项式定理及推导方法,识记二项展开式的有关特征,能对二项式定理进行简单应用;2.通过对二项式定理内容的研究,体验特殊到一般的发现规律,一般到特殊指导实践的认识事物过程。
【教学重难点】教学重点:二项式定理的内容及归纳过程;教学难点:在二项式展开的过程中,发现各项及各项系数的规律。
【教学过程】一、设置情景,引入课题引入:二项式定理研究的是(a+b)n的展开式。
如(a+b)2=a2+2ab+b2, (a+b)3=?,(a+b)4=?,那么(a+b)n的展开式是什么呢?二、引导探究,发现规律1、多项式乘法的再认识问题1:(a1+ b1)(a2+b2) (a3+ b3)展开式中每一项是怎样构成的?展开式有几项?2、(a+b)3展开式的再认识问题2:将上式中,若令a1=a2=a3=a, b1=b2= b3=b,则展开式又是什么?合作探究1:合并同类项后,为什么a2b的系数是3?教师引导:可以发现a2b是从(a+b)(a+b)(a+b)这三个括号中的任意两个中选a,剩下的一个括号中选b;利用组合知识可以得到a2b应该出现了C23· C11=3次,所以a2b的系数是3。
问题3:(a+b)4的展开式又是什么呢?可以对(a+b)4按a或按b进行分类:(1)四个括号中全都取a,得:C44a4(2)四个括号中有3个取a,剩下的1个取b,得:C34a3· C11b(3)四个括号中有2个取a,剩下的2个取b,得:C24a2· C22b2(4)四个括号中有1个取a,剩下的3个取b,得:C14a· C33b3(5)四个括号中全都取b,得:C44b4小结:对于展开式,只要按一个字母分类就可以了,可以按a分类,也可以按b分类,再如:(1)不取b:C04a4;(2)取1个b:C14a3b;(3)取2个b:C24a2b2;(4)取3个b:C34a b3;(5)取4个b:C44b4,然后将上面各式相加得到展开式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.3.1 二项式定理学习目标:1掌握二项式定理和二项式系数的性质。
2.能灵活运用展开式、通项公式、二项式系数的性质解题学习重点:如何灵活运用展开式、通项公式、二项式系数的性质解题学习难点:如何灵活运用展开式、通项公式、二项式系数的性质解题授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪教学过程: 一、复习引入:1.二项式定理及其特例:(1)01()()n n nr n r r n nn n n n a b C a C a b C a b C b n N -*+=+++++∈,(2)1(1)1n r rn n n x C x C x x +=+++++.2.二项展开式的通项公式:1r n r rr n T C a b -+=3.求常数项、有理项和系数最大的项时,要根据通项公式讨论对r 的限制;求有理项时要注意到指数及项数的整数性4 二项式系数表(杨辉三角)()n a b +展开式的二项式系数,当n 依次取1,2,3…时,二项式系数表,表中每行两端都是1,除1以外的每一个数都等于它肩上两个数的和5.二项式系数的性质:()n a b +展开式的二项式系数是0n C ,1n C ,2n C ,…,n n C .rn C 可以看成以r 为自变量的函数()f r ,定义域是{0,1,2,,}n ,例当6n =时,其图象是7个孤立的点(如图)(1)对称性.与首末两端“等距离”的两个二项式系数相等(∵m n m n n C C -=).直线2nr =是图象的对称轴. (2)增减性与最大值:当n 是偶数时,中间一项2n nC 取得最大值;当n 是奇数时,中间两项12n nC-,12n nC+取得最大值.(3)各二项式系数和:∵1(1)1n r r n n n x C x C x x +=+++++,令1x =,则0122n rnn n n n n C C C C C =++++++二、讲解范例:例1. 设()()()()231111nx x x x ++++++++=2012n n a a x a x a x ++++,当012254n a a a a ++++=时,求n 的值解:令1x =得:230122222nn a a a a ++++=++++2(21)25421n -==-,∴2128,7nn ==,点评:对于101()()()n n n f x a x a a x a a -=-+-++,令1,x a -=即1x a =+可得各项系数的和012n a a a a ++++的值;令1,x a -=-即1x a =-,可得奇数项系数和与偶数项和的关系例2.求证:1231232nn n n n n C C C nC n -++++=⋅.证(法一)倒序相加:设S =12323nn n n n C C C nC ++++ ①又∵S =1221(1)(2)2n n n n n n n n nC n C n C C C --+-+-+++ ②∵r n r n n C C -=,∴011,,n n n n n n C C C C -==,由①+②得:()0122n n n n n S n C C C C =++++,∴11222n n S n n -=⋅⋅=⋅,即1231232nn nn n n C C C nC n -++++=⋅.(法二):左边各组合数的通项为r n rC 11!(1)!!()!(1)!()!r n n n n r nC r n r r n r --⋅-=⋅==---,∴ ()1230121112123n n n n n n n n n n C C C nC n C C C C -----++++=++++12n n -=⋅. 例3.已知:223(3)nx x +的展开式中,各项系数和比它的二项式系数和大992. (1)求展开式中二项式系数最大的项;(2)求展开式中系数最大的项解:令1x =,则展开式中各项系数和为2(13)2n n+=,又展开式中二项式系数和为2n , ∴222992nn -=,5n =.(1)∵5n =,展开式共6项,二项式系数最大的项为第三、四两项, ∴223226335()(3)90T C x x x ==,22232233345()(3)270T C x x x ==, (2)设展开式中第1r +项系数最大,则21045233155()(3)3r rrr rr r T C x x C x+-+==,∴1155115533792233r r r r r r r r C C r C C --++⎧≥⎪⇒≤≤⎨≥⎪⎩,∴4r =, 即展开式中第5项系数最大,2264243355()(3)405T C x x x==.例4.已知)(1222212211+---∈+⋅++++=N n C C C S n n n n n n n n , 求证:当n 为偶数时,14--n S n 能被64整除分析:由二项式定理的逆用化简n S ,再把14--n S n 变形,化为含有因数64的多项式 ∵1122122221(21)n n n n n n n n n S C C C ---=++++⋅+=+3n =,∴14--n S n 341n n =--,∵n 为偶数,∴设2n k =(*k N ∈), ∴14--n S n 2381kk =--(81)81k k =+--0111888181k k k k k k C C C k --=++++-- 011228(88)8k k k k C C C -=+++ (*) ,当k =1时,410n S n --=显然能被64整除, 当2k ≥时,(*)式能被64整除,所以,当n 为偶数时,14--n S n 能被64整除三、课堂练习: 1.)()4511x -展开式中4x 的系数为 ,各项系数之和为 .2.多项式12233()(1)(1)(1)(1)nn n n n n f x C x C x C x C x =-+-+-++-(6n >)的展开式中,6x 的系数为 3.若二项式231(3)2nx x-(n N *∈)的展开式中含有常数项,则n 的最小值为( )A.4B.5C.6D.84.某企业欲实现在今后10年内年产值翻一番的目标,那么该企业年产值的年平均增长率最低应 ( )A.低于5%B.在5%~6%之间C.在6%~8%之间D.在8%以上5.在(1)nx +的展开式中,奇数项之和为p ,偶数项之和为q ,则2(1)nx -等于( ) A.0 B.pq C.22p q + D.22p q -6.求和:()2341012311111111111n nnn n n n n a a a a a C C C C C a a a aa+------+-++------.7.求证:当n N *∈且2n ≥时,()1322n n n ->+.8.求()102x +的展开式中系数最大的项答案:1. 45, 0 2. 0 .提示:()(16nf x x n =->3. B 4. C 5. D 6. ()11n a a ---7. (略) 8. 33115360T x +=四、小结 :二项式定理体现了二项式的正整数幂的展开式的指数、项数、二项式系数等方面的内在联系,涉及到二项展开式中的项和系数的综合问题,只需运用通项公式和二项式系数的性质对条件进行逐个节破,对于与组合数有关的和的问题,赋值法是常用且重要的方法,同时注意二项式定理的逆用五、课后作业:1.已知2(1)na +展开式中的各项系数的和等于52165x ⎛ ⎝的展开式的常数项,而2(1)n a + 展开式的系数的最大的项等于54,求a 的值(a R ∈答案:a =2.设()()()()()591413011314132111x x a x a x a x a -+=+++++++求:① 0114a a a +++ ②1313a a a +++.答案:①9319683=; ②()95332+=3.求值:0123456789999999999922222C C C C C C C C C C -+-+-+-+-.答案:82=4.设296()(1)(21)f x x x x =+-+,试求()f x 的展开式中: (1)所有项的系数和;(2)所有偶次项的系数和及所有奇次项的系数和答案:(1)63729=;(2)所有偶次项的系数和为6313642-=; 所有奇次项的系数和为6312+= 六、板书设计(略) 七、课后记:。