炉膛压力保护和控制的优化
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
422 炉膛压力保护和控制的优化
王庆晋
(华电潍坊发电有限公司 山东 潍坊 261204)
【摘 要】炉膛压力保护和炉膛压力自动是保证锅炉安全稳定运行的最主要的保护和自动,尤其是炉膛压力保护更是FSSS 系统的核心保护之一,对炉膛安全起到至关重要的作用。炉膛压力测量装置的准确性、及时性是保护和自动灵敏可靠的前提条件,而确保炉膛压力取样管的畅通是炉膛压力测量准确的基础,完善的逻辑是炉膛压力保护和控制可靠的保证。
【关键词】取样装置 堵塞 死循环 4选
1 潍坊公司#1、#2机组炉膛压力检测设备运行现状
华电潍坊发电有限公司#1、#2机组 DCS 系统现设计安装炉膛压力模拟量测点6个,开关量测点8个。其中上下层燃烧器之间的前后墙各安装一台量程为-3000 Pa ~+3000Pa 的压力变送器;其余测点均安装在炉膛遮焰角下部的锅炉稳燃区,左右墙各半,分别参与炉膛压力调节、报警和炉膛保护;其中有三只量程为-3000 Pa ~+3000Pa 的变送器3台,量程为-300 Pa ~+300Pa 的变送器1台;动作值+1568 Pa 的炉膛压力高开关3只,动作值-1666 Pa 的炉膛压力低开关3只,动作值分别为±600Pa 的炉膛压力报警开关2只。
2 潍坊公司#1、#2机组炉膛压力检测设备及控制逻辑存在问题
2.1 机组原始设计安装的炉膛压力取样装置内部腐蚀严重,频繁堵塞,吹扫疏通不便,严重影响锅炉的安全稳定运行。原取样装置如图一
图1 原取样装置
423
2.1.1 炉膛压力取样管锈蚀堵塞
炉膛压力取样管材质差(是碳钢管),容易产生锈蚀,而且取样管太细(为Ф12),容易堵塞,因而我们将炉膛压力取样管更换为不锈钢管,减少取样管内锈蚀;同时将取样管加粗,使用Ф20的不锈钢管,确保取样管畅通。
2.1.2 炉膛压力取样母管锈蚀堵塞
炉膛压力取样母管材质差(是碳钢管),容易产生锈蚀,而且取样管太细(为Ф50),同时母管为水平安装,容易积灰,产生堵塞,因而我们将炉膛压力取样管更换为不锈钢管,减少取样管内锈蚀;同时将取样管加粗,使用Ф80的不锈钢管,确保取样管畅通;并且重新设计炉膛压力取样母管的安装方式,改为倾斜安装,便于母管内积灰流入炉膛。
2.1.3 炉膛压力取样管积灰严重
原炉膛压力开关柜安装布置在炉膛压力取样孔的下方,因而炉膛压力取样管走向存在下行段,而且取样管太长,容易造成积灰堵塞。因而我们重新设计炉膛压力开关柜安装位置,将炉膛压力开关柜安装位置上移,布置在炉膛压力取样孔的上方,重新布置取样管走向,尽量简洁,缩短取样管长度,防止取样装置出现积水的现象。
2.2 炉膛压力取样管吹扫不方便
炉膛压力取样管原设计的吹扫效率低下,1台炉子共8根母管,对每根母管吹扫需拆卸4个螺母。现重新设计安装新的取样母管,可通过拆卸取样母管法兰盘中间的一个螺母进行清扫,(如图一)大大节省了劳动强度。
图2 改造后取样装置
2.3 取样母管后端易产生泥浆堵塞
由于炉膛压力取样母管后端盖法兰密封不严,导致取样母管后端盖漏气,内外温差的作用下,取样母管内后端易产生结露现象,与积灰混合产生泥浆,堵塞取样母管。我们对取样母管后端盖法兰增加橡胶密封垫,增强取样母管密封性,并对取样母管进行外部保温,减小温差。保证取样管路畅通。
2.4炉膛压力取样管吹扫制度不合理
因为对炉膛压力取样管积灰堵塞情况估计不足,原制定的吹扫制度为每季度清理一次炉膛压力取样管。现对该制度进行相应修改,规定每月清理一次炉膛压力取样管。
现已改造为∮70mm的取样母管(预留人工手动吹扫设施)和∮20mm的采样支管分送炉膛压力变送器和炉膛压力开关,并配备仪用气源吹扫接口。
2.5炉膛压力取样装置设计简单,无自动防堵功能,炉膛压力开关运行状态难以实时监测
炉膛左右墙设计安装的能够全程检测炉内工况的炉膛压力变送器(量程-3000 Pa~+3000 Pa)数目不均;低量程的炉膛压力变送器和炉膛压力开关由于量程太小,校核精度达不到标准,导致炉膛压力高低报警准确性受限。
现已改造为在#1、#2锅炉左右墙各安装2台炉膛压力变送器(量程为-3000 Pa~+3000 Pa),1、#2锅炉左右墙分别安装3台炉膛压力开关,炉膛压力高开关3只,炉膛压力低开关3只。
参与炉膛压力高/炉膛压力低保护的炉膛压力开布置方式不变:炉膛左墙安装2只炉膛压力高开关,其中1只与炉膛压力变送器共用取样器;炉膛左墙还安装1只与炉膛压力变送器共用取样器炉膛压力低开关。炉膛右墙安装2只炉膛压力低开关,其中1只与炉膛压力变送器共用取样器;炉膛左墙还安装1只与炉膛压力变送器共用取样器的炉膛压力高开关。
3炉膛压力模拟量信号逻辑完善
3.1原测点选择方案存在问题
系统3个信号取中作为自动调节信号控制引风机挡板开度,任一单侧测点信号品质异常或与中值偏差大于600Pa,自动选中值。当炉膛压力3个信号在没有品质异常的情况下同时大幅度瞬间波动,3个SFT功能块同时切中值,如图三,在50号块强置1000后恢复,炉膛压力中值就一直不变,形成死循环,对炉膛压力的调节形成很恶劣的影响。
3.3优化筛选方案
把整个系统左右两侧的4个测点放在一起统一运算,不再单侧运算后取平均。同时对现场采集到
图3 死循环仿真逻辑
424
的4个测量信号分别进行累加、选择最大值、选择最小值;累加值减掉最大值和最小值后再取平均。平均值参与自动调节,如图四所示。
图4 炉膛控制优化逻辑
模拟量1与模拟量2、模拟量2与模拟量3、模拟量3与模拟量4、模拟量4与模拟量1值进行偏差比较,偏差超过限值切除该调节系统自动。
当一个模拟量测点坏时立即切除该调节系统自动,运行人员可通知热工值班人员在逻辑内用模拟量信号人工选择判断功能,即可人工选择选择判断值取代故障的现场信号测量值,才允许该调节系统该调节系统自动。控仪人员进行现场检修。当出现两个测点出现坏质量时,逻辑闭锁该调节系统自动投入,如图五所示。
4炉膛压力监测、报警及炉膛保护完善技术方案
取自锅炉左右墙的各两路炉膛压力测点分送MCS系统四块独立的端子板,其数据采集页面扫描周期由250ms修改为100ms;并通过上网点分别送FSSS系统。
图5 优化后的切手动条件
425