华南理工大学现代控制理论课件-6.1
《现代控制理论》课件
目录
• 引言 • 线性系统理论 • 非线性系统理论 • 最优控制理论 • 自适应控制理论 • 鲁棒控制理论
01
引言
什么是现代控制理论
现代控制理论是一门研究动态系统控制的学科,它利用数学模型和优化方法来分析 和设计控制系统的性能。
它涵盖了线性系统、非线性系统、多变量系统、分布参数系统等多种复杂系统的控 制问题。
20世纪60年代
线性系统理论和最优控制理论得到发展,为现代控制理论的建立奠定 了基础。
20世纪70年代
非线性系统理论和自适应控制理论逐渐发展起来,进一步丰富了现代 控制理论的应用范围。
20世纪80年代至今
现代控制理论在智能控制、鲁棒控制、预测控制等领域取得了重要进 展,为解决复杂系统的控制问题提供了更有效的工具。
01
利用深度学习算法对系统进行建模和学习,实现更高
效和智能的自适应控制。
多变量自适应控制
02 研究多变量系统的自适应控制方法,以提高系统的全
局性能。
非线性自适应控制
03
发展非线性系统的自适应控制方法,以处理更复杂的
控制系统。
06
鲁棒控制理论
鲁棒控制的基本概念
鲁棒控制是一种设计方法,旨在 提高系统的稳定性和性能,使其 在存在不确定性和扰动的情况下
自适应逆控制
一种基于系统逆动态特性的自适应控制方法,通过对系统 逆动态特性的学习和控制,实现系统的自适应控制。
自适应控制系统设计
系统建模
建立被控对象的数学模型,包括线性系统和非线性系统。
控制器设计
根据系统模型和性能指标,设计自适应控制器,包括线性自适应控制器和 非线性自适应控制器。
参数调整
根据系统运行状态和环境变化,调整控制器参数,以实现最优的控制效果 。
《现代控制理论基础》PPT课件
11
20世纪20年代,电子技术得到了迅速发展,促进 了信息处理和自动控制及其理论的发展。
这 个 时 期 的 主 要 代 表 人 物 有 美 国 的 贝 尔 曼 ( R. Bellman)、原苏联的庞特里亚金和美籍匈牙利人卡尔曼 (R.E.Kalman)等人。
23
1965年,贝尔曼发表了“动态规划理论在控制过程中 的应用“一文,提出了寻求最优控制的动态规划法。
1958年,Kalman提出递推估计的自动化控制原理,奠 定了自校正控制器的基础。
5
二 控制理论的产生及其发展
6
自动控制思想及其实践可以说历史悠久。它是人类 在认识世界和改造世界的过程中产生的,并随着社会的 发展和科学水平的进步而不断发展。
人类发明具有“自动”功能的装置的历史可以追溯到 公元前14-11世纪的中国、埃及和巴比伦出现的铜壶滴 漏计时器。
公元前4世纪,希腊柏拉图(Platon,公元前47-公元 前347)首先使用了“控制论”一词。
27
例如,在20世纪70年代以来形成的大系统理论主要 是解决大型工程和社会经济中信号处理、可靠性控制等 综合最优的设计问题。
由于应用范围涉及越来越复杂的工程系统和社会、 经济、管理等非工程的人类活动系统,原有的理论方法 遇到了本质困难,大系统和社会发展逐渐转向“复杂系 统”的概念。
28
智能控制的发展始于20世纪60年代,它是一种能更好地 模仿人类智能的、非传统的控制方法。它突破了传统控制中 对象有明确的数学描述和控制目标是可以数量化的限制。它 所采用的理念方法主要是来自自动控制理论、人工智能、模 糊集和神经网络以及运筹学等学科分支。
现代控制理论(II)-讲稿课件ppt
03
通过具体例子说明最小值原理在最优控制问题中的应
用方法。
06 现代控制理论应用案例
倒立摆系统稳定控制
倒立摆系统模型建立
分析倒立摆系统的物理特性,建立数学模型,包括运动方程和状态 空间表达式。
控制器设计
基于现代控制理论,设计状态反馈控制器,使倒立摆系统实现稳定 控制。
系统仿真与实验
利用MATLAB/Simulink等工具进行系统仿真,验证控制器的有效性; 搭建实际实验平台,进行实时控制实验。
最优控制方法分类
根据性能指标的类型和求解方法, 最优控制可分为线性二次型最优控 制、最小时间控制、最小能量控制 等。
最优控制应用举例
介绍最优控制在航空航天、机器人、 经济管理等领域的应用实例。
05 最优控制理论与方法
最优控制问题描述
控制系统的性能指标
定义控制系统的性能评价标准,如时间最短、能量最小等。
随着网络技术的发展,分布式控制系统逐渐 成为现代控制理论的研究热点,如多智能体 系统、协同控制等。
下一步学习建议
01
02
03
04
深入学习现代控制理论相关知 识,掌握更多先进的控制方法
和技术。
关注现代控制理论在实际系统 中的应用,了解不同领域控制
系统的设计和实现方法。
加强实践环节,通过仿真或实 验验证所学理论知识的正确性
机器人运动学建模
分析机器人的运动学特性, 建立机器人运动学模型, 描述机器人末端执行器的 位置和姿态。
运动规划算法设计
基于现代控制理论,设计 运动规划算法,生成机器 人从起始点到目标点的平 滑运动轨迹。
控制器设计与实现
设计机器人运动控制器, 实现机器人对规划轨迹的 精确跟踪;在实际机器人 平台上进行实验验证。
华南理工大学现代控制理论复习知识点PPT课件
第一章复习要点
1. 建立连续时间系统的状态空间表达式
系统结构图建立
转化为有积分号的模拟图,取状态变量,根据变量 关系写出一阶微分方程组,状态空间表达式
系统机理(电气系统、动力学系统)
取状态变量,建立微分方程,整理,写出状态空间 表达式
传递函数
能控标准I型(直接写出),能观标准II型(B计算系数)
状态反馈:前提:系统完全能控
直接方法: 1) f(I (A+BK)) 2) f*() 3) f()与f*()比较得出K;
间接方法: 1) A变换为能控标I型,Tc1,A’, -> (a’0, … a’n-1 ); 2) 闭环系统新的多项式: f*(); 3) 计算K=K’ Tc1-1, K’i= a’I a*i
1、状态反馈
原理:状态反馈增益矩阵K… 结构图? 特点:改变闭环系统的特征值,可配置极点
2、输出反馈
原理:输出反馈增益矩阵H… 结构图? 特点:
3、闭环系统的能控性、能观性
状态反馈不改变系统的能控性,但不保证能观性不变 输出反馈不改变系统的能控性和能观性
21
第五章复习要点
4、极点配置
17
第四章复习要点
第二方法:平衡状态xe,满足f(xe)=0。 若存在标量函数V(x),满足:
V(x)对所有x都具有连续的一阶偏导 V(x)正定,即当x=0,V(x)=0; x0,V(x) >0; V(x)沿状态轨迹方向计算的时间导数V’(x)满足条件: V’(x)半负定(0):xe李亚普诺夫意义下稳定; V’(x)负定,或V’(x)半负定(0)但除x=0外V’(x)不恒为
12
第三章复习要点
3、标准型及转化 (单输入单输出,系统能控)
现代控制理论ppt
1.1.2 控制系统的状态空间表达式
5.非线性时变系统:
x( t ) f x( t ), u( t ), t y( t ) g x( t ), u( t ), t
但因 uc1+uc2+uc3=0
显然他们是线性相关的,故只有两个变量是独立 的,因此,最小变量组的个数应是二。
一般的: 状态变量个数=系统含有独立储能元件的个数 =系统的阶数 对于n阶系统,有n个状态变量: x1(t), x2(t), … xn(t) ﹡状态变量具有非唯一性的:
1.1.1 状态、状态变量和状态空间
1 控制系统的状态空间模型
我们把这种输入/输出描述的数学模型称为系统 的外部描述,内部若干变量,在建模的中间过程, 被当作中间变量消掉了。 现代理论模型:由状态变量构成的一阶微分方 程组来描述,其中包含了系统全部的独立变量。 特别是在数字计算机上求解一阶微分方程组比 求解与之相应的高阶微分方程要容易得多,而且能 同时给出系统的全部独立变量的响应。此外,在求 解过程中,还可以方便地考虑初始条件产生的影响。 因而能同时确定系统内部的全部运动状态。
数学模型:描述系统动态行为的数学表达式, 称为控制系统的数学模型。 经典理论模型:用一个高阶微分方程或传递函 数描述。系统的动态特性仅仅由一个单输出对给定 输入的响应来表征。
实际上,系统内部还有若干其他变量,他们之 间(包含输出变量在内)是相互独立的。关于他们 对输入的响应是不易相互导出的,必须重新分别建 模求解。由此可见,单一的高阶微分方程,是不能 完全揭示系统内全部运动状态的。
1.1.1 状态、状态变量和状态空间
现代控制理论(1-8讲第1-2章知识点)精品PPT课件
dia dt
Ke
I fD Coபைடு நூலகம்st
n f Const
nDJ , f
其中:Kf 为发电机增益常数;Ke 为电动机反电势常数。
(3).电动机力矩平衡方程:J
d
dt
f
Kmia
(Km
-电动机转矩常数)
以上三式可改写为:
d
dt
f J
Km J
ia
dia dt
Ke Ra
La
La
ia
Kf La
if
试写出其状态空间表达式。
解:选择相变量为系统的状态变量,有
•
•
•• •
x1 y x2 y x1 x3 y x2
故
即
•
x1 x2
•
x2 x3
•
x3
a0 a3
x1
a1 a3
x2
a2 a3
x3
1 a3
u
•
0
x 0
a0
a3
1 0 a1 a3
0
0
1 x 0 u
a2
1
a3 a3
a1 y a0 y
bnu (n)
b u (n1) n 1
b0u
(1)
分为两种情况讨论。
一、输入信号不含有导数项:
此时系统的运动方程为:
•
y(n)
a y(n1) n1
a1 y a0 y b u
故选
x1 y
•
x2 y
..
xn1
y(n2)
xn y(n1)
对左边各式求导一次,即有
18
24
2-3 化系统的频域描述为状态空间描述
现代控制理论与工程课件
另一方面,对于上述复杂控制问题,应用 古典控制理论很难解决。在这种背景下,现代 控制理论应运而生。而且计算机技术和现代数 学的进步也为现代控制理论的发展提供了有力 的支持。庞德里亚金的极大值原理、贝尔曼的 动态规划和卡尔曼滤波的理论成果,奠定了现 代控制理论的基础。
现代控制理论通常用于解决复杂的被控对 象问题,经过几十年的发展, 它不仅在航空航 天技术上取得了惊人成就,而且在电气、机械、 冶金和化工等领域的应用都得到了巨大的成功。
目前,现代控制理论体系已比较完善, 在不断揭示控制本质规律的同时,也解决 了导弹制导、宇宙航行、交通运输、工业 生产和污染治理控制等各个领域的实际问 题。
与古典控制理论相比,现代控制理论主 要用来解决多输入-多出系统的问题,并且被 控对象可以是线性或非线性系统、定常或时 变系统。现代控制理论是基于时域的状态空 间分析方法,主要实现系统最优控制的研究。 现代控制理论的名称是在1960年召开的美国 自动化大会上正式提出来的。
图1-5 电动机闭环控制系统
闭环控制系统有两个明显的特征: (1) 作用信号按闭环传递; (2) 系统的输出对控制作用有直接影响(有负 反馈的作用)。
图1-6 闭环控制系统
反馈作用可以调节反馈环内的所有环节, 提高控制精度。但实际系统一般都具有质量、 惯性或延迟,是一个动态系统。因此,对于一 定的输入,系统相应的响应或输出往往是振荡 的。而系统的反馈功能有可能加剧这种振荡,
所谓闭环控制系统,是在系统的输入端增加 反馈装置,并与输入参考值进行比较,以二者的 差值对系统进行调节。例1-2就是一个简单的闭环
控制系统。
观察电动机转速控制系统,可采用测速发电 机(输出电压与电动机转速成正比)或旋转编码 器(输出频率与电动机转速成正比)得到电动机 的实际转速,然后与参考输入电压相比较(旋转 编码器通常需要经过频压转换),则可保证电动 机的转速平稳。
现代控制理论教学课件
数字仿真软件 介绍常用的数字仿真软件,如 MATLAB/Simulink等,并解释其 基本原理和使用方法。
数字仿真实验设计 详细说明数字仿真实验的设计方 法,包括如何建立系统模型、如 何设计控制器、如何设置仿真参 数等。
该方法能够全面地反映系统的性能,具有较强的适用性和实用 性。同时,该方法可通过实验手段进行验证,可靠性高。
设计过程相对较为复杂,需要一定的专业知识和经验。
适用于高阶系统和多变量系统的控制器设计,广泛应用于工程 实践中。
最优控制设计法
定义
最优控制设计法是一种基于最优化理论进行控制器设计的 方法。
缺点
现代控制理论阶段
自20世纪60年代开始,状态空间 法成为主导,适用于多输入多输 出、非线性、时变系统的分析与 设计。
现代控制理论的特点
状态空间描述
现代控制理论基于状态空间描述 ,通过状态变量全面反映系统内 部状态,提供更深入的系统分析
。
时域分析法
相比古典控制理论的频域分析法, 现代控制理论采用时域分析法,能 够直接反映系统的时间响应特性。
05
现代控制理论进阶知 识
系统的数学模型 ,包括微分方程、差分方程和状态方程等
。
A 非线性现象
介绍系统中的非线性现象,如死区 、饱和、滞后等,并分析其对系统
性能的影响。
B
C
D
非线性系统设计
探讨非线性控制系统的设计方法,如反馈 线性化、滑模变结构控制、反步法等。
稳定性分析
利用状态空间方程的特征值分析系统的稳定性,通过判断 特征值的分布来确定系统的稳定性。
现代控制理论ppt
求解方法
通过利用拉格朗日乘子法或Riccati方程,求 解线性二次调节器问题,得到最优控制输入
。
动态规划与最优控制策略
动态规划的基本思想
将一个多阶段决策问题转化为一系列单 阶段问题,通过求解单阶段问题得到多 阶段的最优解。
பைடு நூலகம்
VS
最优控制策略的确定
根据动态规划的递推关系,逐步求解每个 阶段的优化问题,最终得到最优控制策略 。
总结词
稳定性分析是研究非线性系统的重要方法,主要关注系统在受到扰动后能否恢 复到原始状态或稳定状态。
详细描述
稳定性分析通过分析系统的动态行为,判断系统是否具有抵抗外部干扰的能力。 对于非线性系统,稳定性分析需要考虑系统的初始状态、输入信号以及系统的 非线性特性等因素。
非线性系统的控制设计方法
总结词
要点二
详细描述
线性系统是指在输入和输出之间满足线性关系的系统,即 系统的输出量可以用输入量的线性组合来表示。线性系统 的性质包括叠加性、均匀性和时不变性等。叠加性是指多 个输入信号的响应等于各自输入信号响应的总和;均匀性 是指系统对不同频率信号的响应是一样的;时不变性是指 系统对时间的变化不敏感,即系统在不同时刻的响应是一 样的。
量随时间的变化规律,输出方程描述了输出量与状态变量之间的关系。
线性系统的稳定性分析
• 总结词:稳定性是控制系统的重要性能指标之一,线性系统的稳定性分 析是现代控制理论的重要研究内容。
• 详细描述:稳定性是控制系统的重要性能指标之一,如果一个系统受到 扰动后能够自我恢复到原来的状态,那么这个系统就是稳定的。线性系 统的稳定性分析是现代控制理论的重要研究内容,常用的方法有劳斯赫尔维茨稳定判据和奈奎斯特稳定判据等。劳斯-赫尔维茨稳定判据是 一种基于系统极点的判据,通过判断系统的极点是否都在复平面的左半 部分来判断系统的稳定性;奈奎斯特稳定判据是一种基于频率域的判据, 通过判断系统的频率响应是否在复平面的右半部分来判断系统的稳定性。
现代控制理论课件
图中,I为(n n )单位矩阵,s是拉普拉斯算子,z为单位延时算子。
9
❖ 讨论: 1、状态变量的独立性。
2、由于状态变量的选取不是唯一的,因此状态方程、输出方程、 动态方程也都不是唯一的。但是,用独立变量所描述的系统的维数应该是 唯一的,与状态变量的选取方法无关。
3、动态方程对于系统的描述是充分的和完整的,即系统中的任 何一个变量均可用状态方程和输出方程来描述。 例1-1 试确定图8-5中(a)、(b)所示电路的独立状态变量。图中u、i分别是是输入
y2
up
yq
被控过程
5
典型控制系统由被控对象、传感器、执行器和控制器组成。
被控过程具有若干输入端和输出端。
数学描述方法: 输入-输出描述(外部描述):高阶微分方程、传递函数矩阵。
种完整的描述。
状态空间描述(内部描述):基于系统内部结构,是对系统的一
6
1.2 状态空间描述常用的基本概念
1) 输入:外部对系统的作用(激励); 控制:人为施加的激励;
3) 状态空间:以状态向量的各个分量作为坐标轴所组成的n维空间称为状态空间。 4) 状态轨线:系统在某个时刻的状态,在状态空间可以看作是一个点。随着时间的
推移,系统状态不断变化,并在状态空间中描述出一条轨迹,这种轨迹称为状态 轨线或状态轨迹。
5) 状态方程:描述系统状态变量与输入变量之间关系的一阶向量微分或差分方程称
b2
p
bnp
c11 c12 c1n
C
c21
c22
c2n
cq1 cq2
cqn
d11 d12 L
D
d21
d22
L
d2
p
M
dqp
华南理工大学现代控制理论及系统最优化——步进电机及其驱动技术
步进电机及其驱动技术 (3)三相双六拍
1)通电顺序U → UV → V → VW → W → WU → U顺序通电为正转,反 之为反转; 2)它比三相三拍控制方式步距角小一半,因而精度更高,且转换过程中 始终保证有一个绕组通电,工作稳定,因此这种方式被大量采用。
华南理工大学机械与汽车工程学院 宋 建
电话: 13808864439
邮箱: songjian@
步进电机及其驱动技术
硬件环形分配器:3个P-J触发器组成
环形分配器逻辑真值表 序号 CAJ 0 1 2 3 4 5 6 1 0 0 0 1 1 1 CBJ 1 1 1 0 0 0 1 状态 CCJ QA QB QC 0 0 1 1 1 0 0 1 1 0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 1 1 1 0 A AB B BC C CA A 导电绕组
华南理工大学机械与汽车工程学院
宋 建
电话: 13808864439
邮箱: songjian@
步进电机及其驱动技术
(2)软环分
• 软分配直接由控制装置中的控制软件实现脉冲分配,驱动装置只 进行功率放大。 • 常用的是查表法。例如三相六拍工作方式,如果在A、B、C接口依 次输出100 → 110 → 010 → 011 → 001 → 101 → 100- - • 步进电机正转,反之反转。
华南理工大学机械与汽车工程学院
宋 建
电话: 13808864439
邮箱: songjian@
步进电机及其驱动技术
驱动放大电路
驱动放大电路常使用单电压驱动、高低压切换驱动、恒流斩波 驱动、调频调压等驱动电路,所采用的功率半导体元件可以是大功 率晶体管GTR,也可以是功率场效应管MOSFET。GTR一种工作于导通 和截止两种状态的功率三极管,具有控制方便,开关时间短,高频 特性好,通态压降低等优点;MOSFET开关时间很短,工作频率可达 30kHz以上
《现代控制理论》PPT课件
精选ppt
8
4、控制理论发展趋势
❖ 企业:资源共享、因特网、信息集成、 信息技术+控制技术 (集成控制技术)
❖ 网络控制技术
❖ 计算机集成制造CIMS:(工厂自动化)
பைடு நூலகம்
精选ppt
9
三、现代控制理论与古典控制理论的对比
❖ 共同 对象-系统 主要内容 分析:研究系统的原理和性能 设计:改变系统的可能性(综合性能)
❖ 现代控制理论 哈工大 机械专业硕研
精选ppt
12
精选ppt
7
3.智能控制理论 (60年代末至今)
❖ 1970——1980 大系统理论 控制管理综合 ❖ 1980——1990 智能控制理论 智能自动化 ❖ 1990——21c 集成控制理论 网络控制自动化
(1) 专家系统;(2)模糊控制,人工智能 (3) 神经网络,人脑模型;(4)遗传算法 控制理论与计算机技术相结合→计算机控制技术
现代控制理论
Modern Control Theory
精选ppt
1
绪论
❖ 学习现代控制理论的意义: 1.是所学专业的理论基础 2.是研究生阶段提高理论水平的重要环节。 3. 是许多专业考博士的必考课。
精选ppt
2
一、控制的基本问题
❖ 控制问题:对于受控系统(广义系统)S,
寻求控制规律μ(t),使得闭环系统满足给
现代控制理论发展的主要标志 (1)卡尔曼:状态空间法; (2)卡尔曼:能控性与能观性; (3)庞特里雅金:极大值原理;
精选ppt
6
现代控制理论的主要特点
❖ 研究对象: 线性系统、非线性系统、时变系统、多 变量系统、连续与离散系统
❖ 数学上:状态空间法
现代控制理论教学课件
现代控制理论教学课件现代控制理论教学课件切斯特·巴纳德是西方现代管理理论中社会系统学派的创始人。
他在人群组织这一复杂问题上的奉献和影响,可能比管理思想开展过程中的任何人都更为重要。
下面了现代控制理论教学课件,一起去看看吧!(1)强调系统化,运用系统思想和系统分析方法来指导管理实践,解决和处理管理的实际问题。
(2)重视人的因素,就是要注意人的社会性,对人的需要予以研究和探索,在一定的环境条件下,尽最大可能满足人们的需要,以保证组织中全体成员齐心协力地为完成组织目标而自觉作出奉献。
(3)更视“ 非正式组织”的作用。
非正式组织是人们以感情为根底而结成的集体,这个集体有约定俗成的信念,人们彼此感情融洽。
在不违背组织原那么的前提下,发挥非正式群体在组织中的积极作用,从而有助于组织目标的实现。
(4)广泛地运用先进的管理理论与方法。
先进的科学技术和方法在管理中的应用越来越重要,各级主管人员必须利用现代的科学技术与方法,促进管理水平的提高。
(5)加强信息工作。
主管人员必须利用现代技术,建立信息系统,以便有效、及时、准确地传递信息和使用信息,促进管理的现代化。
(6)把“ 效率”( Efficiency)和“效果”(Effectiveness)结合起来。
管理工作不仅仅是追求效率,更重要的是要从整个组织的角度来考虑组织的整体效果以及对社会的奉献。
因此要把效率和效果有机地结合起来,使管理的目的表达在效率和效果之中,也即通常所说的绩效(Pedonnance)。
(7)重视理论联系实际。
(8)强调“预见”能力。
社会是迅速开展的,客观环境在不断变化,这就要求人们运用科学的方法进展预测,进展前馈控制,从而保证管理活动的顺利进展。
(9)强调不断创新。
在保证“惯性运行”的状态下,不满足现状,利用一切可能的时机进展变革,从而使组织更加适应社会条件的变化。
一一哈洛德·孔茨在1961年12月发表的《管理理论的丛林》一文,19年后又开展《再论管理理论的丛林》,他对管理流派进展分类,指出管理已由6个学派开展形成了11个学派。