高浓度含盐废水生化处理

合集下载

高盐废水生化处理

高盐废水生化处理

高盐废水生化处理:技术要点与解决方案一、引言随着工业的快速发展,高盐废水已成为重要的环境问题。

高盐废水主要来自化工、印染、食品加工等行业,具有高浓度、高毒性、难以生物降解等特点,对环境和人类健康造成严重影响。

因此,高盐废水的处理成为当前的重要课题。

本文将详细解析高盐废水生化处理的技术要点和解决方案,以提供实用的参考。

二、高盐废水生化处理技术要点1.预处理:高盐废水进入生化系统前,需要进行预处理。

预处理的目的是去除大颗粒物质、降低污染物浓度,为后续生化处理创造有利条件。

常用的预处理方法包括沉淀、过滤、吸附等。

2.微生物选择:在高盐环境下,常规的微生物可能无法适应,因此需要选择耐盐、耐高浓度污染物的微生物。

通过驯化、筛选和培养,可以得到适合高盐废水的微生物种群。

3.生物膜反应器:生物膜反应器是一种有效的生化处理方法,通过在反应器内形成生物膜,提高微生物的附着和降解能力。

在高盐废水处理中,生物膜反应器能够适应高盐环境,保持较高的降解效率。

4.高效分离:生化处理过程中,需要将污染物转化为无害物质或将其从废水中分离出来。

因此,高效分离技术是生化处理的重要环节。

常用的高效分离技术包括活性炭吸附、膜分离、光化学反应等。

三、高盐废水生化处理解决方案1.高效曝气池:高效曝气池是一种常见的生化处理方法,通过增加曝气量、优化曝气方式等手段,提高有机污染物的降解效率。

在高盐废水处理中,高效曝气池可以与其他工艺结合,如活性污泥法、A2O等,实现高效去除污染物。

2.生物膜反应器与高效分离技术结合:将生物膜反应器与高效分离技术结合,可以实现高盐废水的高效处理。

具体流程为:生物膜反应器对废水进行生物降解,然后通过高效分离技术将污染物从废水中分离出来。

这种解决方案具有较高的处理效率和稳定性。

3.光化学氧化法:光化学氧化法是一种新型的污水处理技术,利用光能将有机污染物转化为无害物质。

在高盐废水处理中,光化学氧化法具有较高的降解效率和较强的适应性。

高浓度含盐废水处理工艺

高浓度含盐废水处理工艺

高浓度含盐废水处理工艺一、高浓度含盐废水的定义及危害高浓度含盐废水是指废水中含有较高浓度的盐类(如氯化钠、硫酸盐、碳酸盐等)。

这种废水往往来自于化工、电子、矿业等行业,在生产过程中产生。

高浓度含盐废水假如直接排放到环境中,会造成以下危害:1. 对水体生态环境造成直接破坏,导致水生生物死亡和生态平衡失调。

2. 加重土地污染,对植被生长和土壤质量造成不良影响。

3. 造成大气污染,严重影响四周居民的日常生活。

因此,高浓度含盐废水的处理特别紧要,需要找寻适合的处理技术。

二、高浓度含盐废水处理技术1. 浓缩技术浓缩技术是指将高浓度含盐废水通过蒸发、冷冻结晶、扩散等方式,将废水中的水分蒸发掉,使废水中的盐分达到肯定的浓度。

这种技术可以将高浓度含盐废水中的盐分浓缩到较高的浓度,降低处理的难度和成本。

浓缩后的盐分可以进一步用于回收利用或销售。

2. 离子交换技术离子交换技术是指通过树脂对废水中的离子进行吸附和交换。

通过选择特定的吸附树脂,可以将废水中的高浓度离子快速吸附到树脂上并得到纯洁的水。

这种技术可以有效地去除废水中的高浓度盐分,得到高品质的废水。

3. 反渗透技术反渗透技术是指利用半透膜对废水进行过滤,过滤后的废水中水分较少,离子浓度较高。

通过这种技术,可以将废水中的高浓度离子和溶解物分别出来。

反渗透技术一般需要高压和高能耗,但是可以得到纯洁的废水,是一种特别有效的处理方法。

4. 气浮沉淀技术气浮沉淀技术是指将高浓度含盐废水中的悬浮物通过气浮或沉淀的方式分别出来。

这种技术特别适用于处理含大量悬浮物的高浓度废水,可以有效地去除废水中的物质,得到更纯洁的水。

5. 生物处理技术生物处理技术是指通过生物菌群对废水进行分解、转化和吸附,以去除其中的污染物。

这种技术可以完成一些常规的废水处理,如去除有机物和氨氮等污染物。

但是,对于高浓度含盐废水,生物处理技术往往只能起到辅佑襄助作用。

三、综合处理方案针对高浓度含盐废水的特点,综合采纳多种处理技术是特别有效的。

高含盐废水处理方法

高含盐废水处理方法

高含盐废水处理方法含盐废水的产生途径非常广,水量也逐年增加。

去除含盐废水中的有机污染物对环境造成的影响至关重要。

但是由于高盐对微生物的毒害和抑制作用,生物处理技术实施遇到极大阻碍。

下面介绍含盐废水的生物处理的方法。

生物处理是目前废水处理最常用的方法之一,它具有应用范围广,适应性强等特点。

化工废水如染料、农药、医药中间体等含盐较高的废水则给生物处理带来一定的难度。

这类废水含盐较高,污染严重,必须处理才能排放。

况且,此类废水成分复杂,不具备回收价值,采用其他处理方法成本较高,因此生物处理仍是首选的方法。

机盐类在微生物生长过程中起着促进酶反应,维持膜平衡和调节渗透压的重要作用。

但盐浓度过高,会对微生物的生长产生抑制作用,主要抑制原因在于:①盐浓度过高时渗透压高,使微生物细胞脱水引起细胞原生质分离;②高含盐情况下因盐析作用而使脱氢酶活性降低;③高氯离子浓度对细菌有毒害作用,④由于水的密度增加,活性污泥容易上浮流失。

为此,高含盐废水的生物处理需要进行稀释,通常在低盐浓度下(盐浓度小于1%)运行,造成水资源的浪费,处理设施庞大、投资增加、运行费用提高。

随着水资源的日趋紧张,国家出台的保护水资源各项法规和收费的实施,给高含盐废水处理的企业带来了负担。

许多研究表明,生物方法可以处理高含盐废水。

但由低盐到高盐,微生物有一个适应期。

从淡水环境到高盐环境时,由于盐的变化可能引起微生物代谢途径的改变,菌种选择的结果使适应高盐的菌种较少,只有当微生物经培养驯化后,才能产生适应高盐的菌种,以耐受一定的盐浓度。

我们曾对含CaCl2和NaCl的废水生物处理进行过专门研究,取得了较好的结果,以下介绍高含盐废水生物处理的研究和经验。

1、污泥的来源与驯化微生物按照对盐的耐受程度来分类,一般在含盐1%以下能很好生长的微生物为非好盐微生物,而在1%~2%以上均能生存增殖的微生物为耐盐微生物。

高含盐废水生物处理关键是要驯化出耐盐微生物。

我们分别选用普通污水处理厂的活性污泥和高含盐废水排放沟边土壤中耐盐微生物进行试验。

高盐浓度对工业废水生化处理的影响研究

高盐浓度对工业废水生化处理的影响研究

第6卷第8期环境污染治理技术与设备V o l.6,N o.82005年8月T echn i ques and Equ i p m ent for Env i ron m enta l Po ll uti on Contro l A ug.2005高盐浓度对工业废水生化处理的影响研究康 群1马文臣2许建民2刘光全3付方伟2(1.湖北大学资源环境学院,武汉430062;2.北京晓清环保集团公司,北京100101;3.中国石油天然气集团公司环境工程技术中心,北京100724)摘 要 研究了生物制药废水的不同含盐量对生化处理系统效果的影响,以及对该系统中的生物学变化规律的影响。

在含盐量低于215@104m g /L 时,废水生化处理系统COD 去除率可稳定在92%左右,污泥活性良好;随着进水盐浓度的增加,含盐量达到215@104mg /L 时,污泥活性开始受到抑制,COD 去除率急剧下降至80%左右;当废水含盐量达到315@104m g /L 时,污泥活性明显受到抑制,污泥絮体开始部分解体,COD 去除率下降到60%左右;当废水含盐量达到610@104mg /L 时,污泥活性系统趋于崩溃,原生动物近乎绝迹,污泥絮体细碎分散,可见少量球形游离细菌,COD 去除率仅有45%左右。

关键词 高盐浓度 工业废水 生化处理 生物学变化规律 COD 去除率 活性污泥中图分类号 X70311 文献标识码 A 文章编号 1008-9241(2005)08-0042-04E ffect of hyper -sali ne concentration on the bi oche m ical treat m ent of i ndustri al waste waterKang Q un 1M a W enchen 2Xu Jianm i n 2L i u Guangquan 3Fu Fangw ei2(11S chool of Res ou rces and Environm en t ,Hub eiUn i versit y ,W uhan 430062;2.Beiji ng X i aoqing Env i ronm ental Protecti onC orporati on,B eiji ng 100101;3.E nvironm ental Engi n eeri ng Technol ogy Cen ter ,Ch i na N ati on alPetroleum Corporation ,B eiji ng 100724)Abst ract The effects o f hyper -sa line concentrati o n on the bioche m ical trea t m ent efficiency and on la w s of biologic changes of acti v ated sl u dge i n the phar m acy i n dustria lw aste w ater treat m ent syste m w ere stud ied .W hent h e sa lt concentration w as less than 2.5@104m g /L ,COD re m ova l rate of the phar m acy treat m ent syste m w as a -bout 92%,and the sludge was i n active cond ition ;when the sa lt concen trati o n reached to 2.5@104m g /L ,the sl u dge acti v e cond iti o n began to be restra i n ed ,and the rate shar p l y descended to about 80%;w hen it ra i s ed to3.5@104m g /L,the rate declined to 60%,and the sl u dge active cond ition w as restrained clearl y ;when itcli m bed up to 6.0@104m g /L,and acti v ated sludge syste m began to be broken ,pro tozoa d isappeared a l m os,t t h e sludge floc w asm i n ute and d ispersed and the rate w as only 45%.K ey w ords hyper -sa li n e concentration ;i n dustria lw aste w ater ;b i o che m ica l treat m en t of w aste w ater ;la w s of bio l o g ic changes ;COD re m ova l rate ;acti v ated sl u dge 收稿日期:2004-09-25;修订日期:2005-03-10作者简介:康群(1972~),女,讲师,硕士研究生,研究方向:环境微生物学与水污染控制。

高浓度含盐废水处理

高浓度含盐废水处理

高浓度含盐废水处理高浓度含盐废水怎么处理?高盐度废水中由于含有大量的溶解性物质,无机盐类在微生物生长过程中起着促进酶反应、维持膜平衡和调节渗透压的重要作用,但盐浓度过高,离子强度大,会造成质壁分离、细胞失活,使一般微生物难以在其中生长、繁殖,所以传统的生物法难以处理高盐度废水。

适应于生活在淡水生物处理设施中的微生物在进入一定浓度的含盐环境内,会通过自身的渗透压调节机制来平衡细胞内的渗透压或保护细胞内的原生质,这些调节机制包括聚集低分子量物质来形成新的胞外保护层,调节自身的代谢途径,改变基因组成等,因此,正常活性污泥可以在一定盐度范围内通过一定时间的驯化处理含盐废水。

虽然污泥通过驯化可以提高系统耐盐范围,提高系统的处理效率,但是,驯化污泥中的微生物对盐度的耐受范围有限,而且对环境的变化敏感。

当盐度环境变化时,微生物的适应性会立刻消失。

驯化只是微生物适应环境的暂时生理调整,不具有遗传特性。

这种适应性的敏感对污水处理工程的实施很不利。

研究认为,在盐度小于20g/L条件下,高浓度盐水的处理可以通过盐度驯化。

但是驯化盐度浓度必须逐渐提高,分阶段的将系统驯化到要求盐度水平。

突然高盐环境会造成驯化的失败和启动的延迟。

高浓度盐水的处理对策有以下几种:(1)利用适盐微生物高浓度含盐废水的处理方法:接种或者基因固定化适盐微生物处理是高浓度含盐废水处理的有效方法。

此种方法可以处理超过3%的高盐污水,这是不同驯化法无法实现的。

其筛选出的某些具有特定污染物去除的适盐菌可以具有高的专性降解能力,大大提高处理效果。

筛选接种物来源于海洋或者河口底泥、晒盐场底物和其他高盐环境下的活性物质。

筛选往往有一定的程序和基因化措施。

这种方法的缺点是启动时间长,前期启动费用高。

但是对于高盐污水生物处理而言,是可行的方法。

(2)稀释进水盐度高浓度含盐废水的处理方法:既然高盐成为微生物的抑制和毒害剂,那么将进水进行稀释,使盐度低于毒域值,生物处理就不会收到抑制。

高含盐废水处理方法

高含盐废水处理方法

高含盐废水处理方法生物处理是目前废水处理最常用的方法之一,它具有应用范围广、适应性强等特点。

化工废水如染料、农药、医药中间体等含盐较高的废水则给生物处理带来一定的难度。

这类废水含盐较高,污染严重,必须处理才能排放。

况且,此类废水成分复杂,不具备回收价值,采用其他处理方法成本较高,因此生物处理仍是首选的方法。

无机盐类在微生物生长过程中起着促进酶反应,维持膜平衡和调节渗透压的重要作用。

但盐浓度过高,会对微生物的生长产生抑制作用,主要抑制原因在于①盐浓度过高时渗透压高,使微生物细胞脱水引起细胞原生质分离;②高含盐情况下因盐析作用而使脱氢酶活性降低;③高氯离子浓度对细菌有毒害作用;④由水的密度增加,活性污泥容易上浮流失。

为此,高含盐废水的生物处理需要进行稀释,通常在低浓度下(盐浓度小于1%)运行,造成水资源的浪费,处理设施庞大、投资增加,运行费用提高。

随着水资源的日趋紧张,国家出台的保护水资源各项法规和收费的实施,给高含盐废水处理的企业带来了负担。

许多研究表明,生物方法可以处理高含盐废水。

但由低盐到高盐,微生物有一个适应期。

从淡水环境到高盐环境时,由于盐的变化可能引起微生物代谢途径的改变,菌种选择的结果使适应高盐的菌种较少,只有当微生物经培养驯化后,才能产生适应高盐的菌种,以耐受一定的盐浓度。

我们曾对含CaCl2和NaCl的废水生物处理进行过专门研究,取得了较好的结果,以下介绍高含盐废水生物处理的研究和经验。

1 污泥的来源与驯化盐1%以下能很好生长的微生物为非好盐微生物,而在1%~2%以上均能生存增殖的微生物为耐盐微生物。

高含盐废水生物处理关键是要驯化出耐盐微生物。

我们分别选用普通污水处理厂的活性污泥和高含盐废水排放沟边土壤中耐盐微生物进行试验将普通污泥倒入含CaCl21%左右的曝气池中,经过半个月驯化,镜检微生物菌胶团结构紧密,原生动物有钟虫、豆形虫、浮游虫等,多而活跃。

经逐步驯化至耐盐为3%。

将含盐废水排放的沟边土壤与废水混合搅拌后,取悬浮液倒入曝气池,镜检菌胶团结构良好,色泽透明有大量的豆形虫,非常活跃。

高盐度废水处理资料

高盐度废水处理资料

2010-03-19 11:36:43| 分类:小知识| 标签:|字号大中小订阅在化工、制药、燃料的生产过程中,产生的废水除含有高浓度的有机物外,还含有高浓度的盐类物质,采用生物法进行处理,高浓度的盐类物质对微生物具有抑制作用,采用物化法处理,投资大,运行费用高,且难以达到预期的净化效果。

采用生物法对此类废水进行处理,仍是目前国内外研究的重点。

本文介绍了盐浓度对微生物的抑制作用,嗜盐菌的特性、培驯方法,并介绍了采用生物法处理含盐有机废水的研究及应用现状。

1 盐浓度对生物处理的影响高含盐量有机废水的有机物根据生产过程不同,所含有机物的种类及化学性质差异较大,但所含盐类物质多为Cl-、SO42-、Na+、Ca2+等盐类物质。

虽然这些离子都是微生物生长所必需的营养元素,在微生物的生长过程中起着促进酶反应,维持膜平衡和调节渗透压的重要作用。

但是若这些离子浓度过高,会对微生物产生抑制和毒害作用,主要表现:盐浓度高、渗透压高、微生物细胞脱水引起细胞原生质分离;盐析作用使脱氢酶活性降低;氯离子高对细菌有毒害作用;盐浓度高,废水的密度增加,活性污泥易上浮流失,从而严重影响生物处理系统的净化效果。

高盐环境对生化处理有抑制作用,表现为微生物代谢酶活性受阻,致使生物增长缓慢, 产率系数低。

早在1940年,Ingram[1]对杆菌研究发现,当NaCl 浓度>10 g/L时,能够使微生物的呼吸速率降低。

Lawton[2]研究表明,当NaCl 浓度>20 g/L时,会导致滴滤池BOD去除率降低;在此浓度下,活性污泥法的BOD去除率降低,同时污泥中的絮凝性变坏,出水SS升高,硝化细菌受到抑制。

处理含高浓度卤代有机物废水的实验表明,BOD的去除率随着盐浓度的增加而降低。

Davis[3]采用活性污泥系统,处理含盐浓度高达12%的废水中试实验结果证明,废水中的TOC去除率较低,且实验运行相当困难。

Kargi[4]等利用间歇生物反应器研究了盐的抑制作用及动力学常数,Shim[5]等研究了高盐环境下化工废水的生物处理,Li[6]等讨论了盐度对二阶段接触氧化法处理含盐废水的影响。

高浓度硫酸盐有机废水的生化处理方式小结---苗雨

高浓度硫酸盐有机废水的生化处理方式小结---苗雨

高浓度硫酸盐有机废水的生化处理方式小结1.硫酸盐废水来源、危害及处理对策含硫酸盐的废水主要有采矿废水,制药废水,制革废水,造纸废水,食品加工废水,金属加工废水,化工废水等。

随着工业的飞速发展,硫酸盐废水的排放量越来越大。

大量高浓硫酸盐有机废水排入环境水体中会导致水体酸化,影响水生生物的生长;污染土壤,导致土壤生态系统失衡;还原产生的有毒有害废气H2S会污染大气环境,因此,专家学者对硫酸盐废水的研究由来已久[1]。

综合各种研究成果来看,生化法具有成本低,能耗少,无污染等优点,还可以通过驯化和强化功能细菌,提高处理效率,因此,生化法是厌处理高浓硫酸盐有机废水的首选工艺。

但是,硫酸盐废水还包括无机性硫酸盐废水和难生物降解的有机物性硫酸盐废水,这其中还含有多种重金属离子,氮磷等元素,成分非常复杂,因此对生化处理工艺提出了更高的要求[2]。

2.硫酸盐还原菌与产甲烷菌的竞争机制与硫化物毒性抑制研究废水中的硫元素主要以有机硫、SO42-、和S2-形式存在,其中SO42-是主要形式。

废水中的SO42-的生物处理一般包括还原反应和氧化反应两个过程,分别有硫酸盐还原菌(SRB)和硫化物氧化菌(SOB)完成。

在厌氧条件下,SO42-在SRB的作用下被还原为硫化物,然后在SOB作用下将硫化物氧化为单质硫,再通过剩余污泥进行单质硫回收。

在厌氧过程中,系统中同时存在的产甲烷菌(MPB)和硫酸盐还原菌(SRB)的基质竞争以及硫化物对MPB 和SRB的毒害作用,都会使厌氧降解过程受到抑制。

2.1竞争抑制理论厌氧发酵过程中产生的H2和乙酸是SRB和MPB的共同底物,但是SRB对氧化还原电位(ORP)要求小于-100mV,而MPB则要求小于-330mv,因此硫酸盐还原反应总是优先发生。

Nielson 等[3]通过研究发现,SRB具有较大的比乙酸消耗速率和较低的半速度常数,因而在底物亲和力方面更有优势。

从热力学角度来看,SRB硫酸盐还原作用比产甲烷反应放出更高的能量,反应更容易发生。

高盐浓度有机废水处理技术

高盐浓度有机废水处理技术

高盐浓度有机废水处理技术[摘要] 废水中含盐浓度(so42-, cl-)高会影响废水生物处理效果,采用阴离子交换树脂(r-oh)除去废水中的so42-离子和cl-离子,采用铁碳微电解法处理高盐度有机废水,废水的可生化性得到改善,采用硝化-反硝化(a/o)脱氮工艺,对废水进行有效的处理。

[关键词] 废水处理技术,高盐浓度有机废水,离子交换,铁碳微电解,可生化性,硝化-反硝化(a/o)high salinity organic wastewater treatment techniczhou wen hua(shanghai kaiyinda chemical engineering design and consultant co., ltd)abstract: the high salinity concentration of wastewater influence the effect of wastewater biological treatment. the sulfate ion(so42) and the chlorine ion(cl-) in the wastewater is removed by the anion-exchange resin(r-0h). iron-carbon microelectrolysis process is used in the treatment of high salinity organic wastewater. the biodegradability of treated wastewater is improve. nitrification and denitrification process is used in effective treatment of wastewater.key words: wastewater treatment technic; high salinity organic wasterwater; ion-exchange; biodegradability;nitrification and denitrification(a/o)1. 概述高盐浓度废水是一种较难处理的废水,较高的盐浓度会对废水生物处理系统产生抑制作用,从而会影响基质降解速率,导致有机物去除率下降。

高浓度含盐废水处理

高浓度含盐废水处理

高浓度含盐废水处理处理高盐有机废水的工艺方法有物理法、化学法、生物法,一般都是以降低废水的COD和含盐量为目的。

一、物化法(1)焚烧法:对于热值较高的高盐废水,COD含量高,在800-1000℃的条件下充分与空气中的氧气反应,COD转化为气体和固体残渣,一般适用于COD 值大于100g/L的废水,且能耗较高。

(2)电解法:高盐废水具有较高的导电性,在电解过程中,有机物电解质溶液可以发生一系列氧化还原反应,生成不溶于水的物质,经过沉淀或生成无害气体除去,降低COD。

该方法处理与有机物和无机盐的种类也有关,Cl-存在时可在阳极放电,生成ClO-降解COD。

但也有实验表明苯酚废水通过电解法处理只改变了COD的存在形式并没有减少TOC的存在总量。

(3)膜分离工艺:目前较成熟的常用膜分离工艺有微滤、超滤、纳滤、反渗透、电渗析。

微滤和超滤所用膜的孔径较大,对于COD和悬浮物(SS)的截留作用较好,但不能有效去除污水中的盐分。

纳滤可以截留大部分二价离子。

反渗透(RO)能够截留一价离子,可以除去部分溶解性有机物,但在水处理应用上有一定的限制。

电渗析技术是比较有效和常用的脱盐技术。

根据不同的要求可以选择不同的膜分离工艺处理,但当有机物浓度高时,膜易被污染,且成本较高。

(4)蒸发结晶工艺:蒸发结晶工艺适用于COD值较低的工艺,其主要目的是使高盐废水固液分离。

目前常用的是多效蒸发工艺和机械压缩蒸发工艺,蒸发结晶工艺瓶颈在于能耗大,各企业含盐废水的水质差异较大,处理效果和费用不同,经济效益不好,也会带来二次污染,常被用于预处理阶段。

(5)吸附工艺:活性炭晶格结构独特,表面有很多含氧官能团,可吸附大量无机物和有机物在表面,同时一些有机物进入活性炭内部微孔形成螯合物,从而净化水质。

Fenton氧化工艺可产生强氧化自由基,自由基可使有机物裂解,从而提高生化活性或去除有机物。

在Fenton试剂体系中引入活性炭,可提高氧化基附近的有机物浓度,提高氧化效率。

高盐废水处理工艺方法

高盐废水处理工艺方法

高盐废水处理工艺方法高盐废水是指含盐量较高的废水,通常是由于工业、农业、生活等活动而产生的,其中包含多种无机盐和有机盐。

高盐废水的处理对环境保护和资源利用意义重点。

为了有效地处理高盐废水,需要采纳一系列的处理工艺方法,下面将认真介绍。

一、化学沉淀法化学沉淀法是通过添加沉淀剂将高盐废水中的固体颗粒和溶解物沉淀下来,达到去除污染物的目的。

常用的沉淀剂有氢氧化钙、氯化铁、氯化铝等。

由于高盐废水中含有大量的阳离子,需要选择适合的阴离子沉淀剂,例如硫酸钡、碳酸钙等。

化学沉淀法的优点是处理效果稳定,不受废水中盐的影响,但是会形成大量的沉渣,需要进行后续处理。

二、离子交换法离子交换法是利用离子交换树脂将高盐废水中的有害离子去除,同时将盐类回收利用。

离子交换树脂可以依据需要选择阳离子交换树脂或阴离子交换树脂。

离子交换法的优点是可以实现废水资源化利用,但是需要常常更换树脂并且成本较高。

三、逆渗透法逆渗透法是一种通过压力将高盐废水中的水分强制通过半透膜,将盐类去除的方法。

该方法广泛应用于海水淡化领域,并且在船舶工业、化工、制药等领域也有肯定的应用。

逆渗透法的优点是处理效果好,可以将盐浓度降至10毫克/升以下,但是成本相对较高。

四、气浮法气浮法是一种通过将废水中的溶解气体和固体物质与气泡贴附在一起,使其升上液面并从表面移除的方法。

通常使用压缩空气或氧气供应微小的气泡,并通过气浮池或气浮室来实现废水的处理。

气浮法的优点是对盐的去除效果好,但是处理效率较低,需要加添处理设备。

五、生物方法生物方法包括好氧生物法、厌氧生物法、硝化—反硝化生物法等。

好氧生物法通过在含有氧气的环境中利用微生物将有机物质降解为二氧化碳和水来完成废水处理。

厌氧生物法重要针对高盐和有机物质较多的废水,通过缺氧的环境利用厌氧微生物将有机物质分解并产生甲烷和二氧化碳。

硝化—反硝化生物法是在好氧和厌氧环境交替进行,通过微生物将有机物质转化为硝酸盐和亚硝酸盐,最后转化为氮气和水。

高盐废水生物处理可行性分析

高盐废水生物处理可行性分析

高盐废水生物处理可行性分析随着水资源的短缺,废水(高盐废水)的处理和循环利用受到越来越多的关注。

高盐度废水是指含有有机物和总溶解固体的废水,至少3.5吨。

这些废水主要来自于直接使用海水期间的排放;某些工业工业的排放,如生产化学试剂、石油、印刷和染色等;以及其他含盐废水的排放,如大船上的污水等。

这些流出物除了含有有机污染物外,还含有大量无机盐,如cl-、so2-4、na+、ca2+等离子。

虽然这些离子都是微生物生长所必需的营养素,但高浓度会抑制微生物的生长,使废水无法达到预期的处理效果。

它是目前难处理的废水之一。

目前,含盐有机废水有两种主要的处理方法:非生物方法(物理、化学)和生物法。

由于这种废水中溶解性有机物含量高,一般物理和化学方法难以处理,处理成本高。

然而,由于其经济、高效和无害的特点,生物处理应是首选。

在通过生物处理处理高盐废水中,由于废水中的高盐浓度,传统的生物处理方法受到极大的限制,这将抑制微生物的生长。

因此,特别有必要加强对特殊微生物的研究和讨论,即嗜盐微生物,其在高盐环境下仍能降解污染物。

本文从盐度对生物处理系统中有机物去除率及对氮,磷去除的影响等方面综述了高盐废水生物处理的研究进展。

分析了高盐废水生物处理的可行性。

未来高盐废水生物处理的研究方向,为今后高盐废水的有效处理提供有用的信息。

1。

高盐度对生物处理系统中有机污染物降解效率的影响盐度对有机化合物降解效率的影响并不一致。

大多数人认为高盐环境对生化治疗有抑制作用。

在高盐度的环境中,微生物代谢酶活性受阻,生物生长缓慢,产出系数低。

英格拉姆对杆菌的研究发现,当nacl浓度为10g/l时,微生物呼吸速率降低。

lawtongw的研究表明,当nacl浓度为20g/l时,就会导致滴滤器排污率下降。

实验表明,随着盐浓度的增加,土壤中的bd去除率降低。

daviisem报告说,利用活性污泥系统对含盐量不超过12的废水进行了试验处理。

实验结果表明,废水中的臭素去除率仅为28<lunk;GT;~43&lunk;GT;,试验操作困难。

高盐废水如何生化处理?

高盐废水如何生化处理?

本文摘自再生资源回收-变宝网()高盐废水如何生化处理?生化法盐分的进水指标根据《污水排入城镇下水道水质标准》(CJ-343-2010)中规定,进入污水处理厂进行二级处理时,排入城镇下水道的污水水质应符合B等级(表1)的规定,其中氯化物600mg/L、硫酸盐6000mg/L。

根据《室外排水设计规范》(GBJ14-87)(GB50014-2006及2011年版对盐分没有特别说明)附录三“生物处理构筑物进水中有害物质容许浓度””,氯化钠容许浓度为4000mg/L。

海产品加工园区污水厂根据工程实践经验以及经过理论论证,认为生化处理中为不影响生化系统处理效果,盐度不宜高于6000mg/L,短暂冲击不宜高于8000mg/L,特殊情况不宜高于10000mg/L。

高盐废水对活性污泥微生物的影响1、导致微生物脱水死亡。

盐浓度较高的情况下,渗透压的变化是主因。

细菌的内部是一个半封闭的环境,必须与外部环境发生对其有利的物质与能量的交换才能维持其生命活性,但是也必须阻止绝大部分的外界物质进入,以避免对其内部的生物化学反应的干扰与阻挠。

盐浓度增加,导致细菌内部溶液浓度低于外界,又因为水从低浓度向高浓度移动的特性,导致细菌体内水分大量流失引起其内部生物化学反应环境变化,最终破坏其生物化学反应进程直至中断,菌体死亡。

2、使微生物物质吸收过程受干扰阻断死亡。

细胞膜有选择透过的特性,以过滤对细菌生命活动有害的物质,吸收对其生命活动有益的物质。

而这个吸收过程受外部环境的溶液浓度,物质纯度等情况直接影响,而盐的加入导致细菌的吸收环境受到干扰或者阻断,最终引起细菌生命活性受到抑制甚至死亡。

这种情况因细菌个体情况,品种情况,盐的种类及盐的浓度差异较大。

3、使微生物中毒死亡。

有些盐会随着细菌的生命活动进入细菌内部,破坏其内部的生物化学反应进程,有些会与细菌的细胞膜发生作用,导致其性质转变而不再起到保护作用或者不再能吸收某些对细菌有益的物质,进而导致细菌的生命活性受到抑制或者菌体死亡。

高浓度的含盐废水对微生物的影响

高浓度的含盐废水对微生物的影响

高浓度的含盐废水对微生物的影响一、好氧生化处理及兼氧生化处理生化处理根据微生物生长对氧环境的要求的不同,可分为好氧生化处理与缺氧生化处理两大类,缺氧生化处理又可分为兼氧生化处理和厌氧生化处理。

在好氧生化处理过程中,好氧微生物必须在大量氧的存在下生长繁殖,并降低废水中的有机物质。

而兼氧生化处理过程中,兼氧微生物只需要少量氧即可生长繁殖并对废水中的有机物质进行降解处理,如果水中氧太多,兼氧微生物反而生长不好从而影响它对有机物质的处理效率。

兼氧微生物可适应COD浓度较高的废水,进水COD浓度可提高到2000mg/L以上,COD 去除率一般在50-80%;而好氧微生物只能适应于COD浓度较低的废水,进水COD浓度一般控制在1000-1500mg/L以下,COD去除率一般在50-80%,兼氧生化处理和好氧生化处理的时间都不太长,一般都在12-24小时。

利用兼氧生化和好氧生化之间的差别和相同之长,将兼氧生化处理和好氧生化处理组合起来,让COD浓度较高的废水先进行兼氧生化处理,再让兼氧池的处理出水作为好氧池的进水,这样的组合处理可以减少生化池的容积,既节省了环保投资又减少了日常的运行费用。

厌氧生化处理与兼氧生化处理的原理和作用是一样的。

厌氧生化处理与兼氧生化处理的不同之处是:厌氧微生物繁殖生长及其对有机物质降解处理的过程中不需要任何氧,而且厌氧微生物可适应更高COD浓度的废水(4000-10000mg/L)。

厌氧生化处理的缺点是生化处理时间很长,废水在厌氧生化池内的停留时间一般需要40小时以上。

二、高浓度的含盐废水对微生物的影响微生物在盐水溶液中的情况与渗透压的实验是相似的。

微生物的单位结构是细胞,细胞壁相当于半渗透膜,在氯离子浓度小于等于2000mg/L时,细胞壁可承受的渗透压为0.5-1.0大气压,即使加上细胞壁和细胞质膜有一定的坚韧性和弹性,细胞壁可承受的渗透压也不会大于5-6大气压。

但当水溶液中的氯离子浓度在5000mg/L以上时,渗透压大约将增大至10-30大气压,在这样大的渗透压下,微生物体内的水分子会大量渗透到体外溶液中,造成细胞失水而发生质壁分离,严重者微生物死亡。

高盐高COD废水如何处理?COD废水的常见处理方法

高盐高COD废水如何处理?COD废水的常见处理方法

在现代工业生产中,高盐、高COD废水是常见的工业废水类型,其处理对环保和可持续发展至关重要。

在本文中,我们将探讨高盐、高COD 废水的特点和处理方1、高盐高COD废水的定义高盐废水是指总含盐质量分数至少3.5%的废水,含有Cl-、SO2-、Na+、Ca2+等可溶性无机盐离子,虽然这些离子都是微生物生长所必需的营养元素,在微生物的生长过程中起着重要作用。

但是若这些离子浓度过高,会对微生物产生抑制和毒害作用,严重影响生物处理系统的净化效果。

高COD废水是指在一定条件下,用强氧化剂处理时所消耗的氧量较高的废水。

COD是表示水中还原性物质多少的一个指标。

COD值越高,表明水体受到的污染程度越严重。

高COD废水会造成巨大危害:一方面水体中的还原性物质会破坏水体平衡,造成除微生物外几乎所有生物的死亡,进一步影响周边环境;另一方面水中的有机污染物成分复杂,且某些有机物具有剧毒性(如苯和苯酚等),这些有毒物质对水体环境甚至人体都有巨大的危害。

因此,国内外研究人员一直在不断探索适合高盐高COD废水处理的工艺和方法。

2、高盐高COD废水处理技术进展根据废水的性质不同处理技术不尽相同,主要有物理法、化学法、生物法。

其中物化法包括电解法、焚烧法、多效蒸发浓缩结晶法。

生物法是利用微生物的代谢作用,使水中呈溶解、胶体状态的有机污染物质转化为稳定的无害物质。

2.1电解法含铬废水和含氧废水可采用电解法进行处理。

电解处理法是指应用电解的机理,使废水中可电解物质通过电解过程在阳、阴两极上分别失去电子和得到电子从而发生氧化反应和还原反应,最终转化成为无污染物质以净化废水的方法。

此外,还用于去除废水中的重金属离子、油以及悬浮物。

也可以凝聚吸附废水中呈胶体状态或溶解状态的染料分子,而氧化还原作用可破坏生色基团,取得脱色效果。

2.2、焚烧法废水焚烧,顾名思义,是指通过焚烧技术处理废水。

其不受水质等因素影响,适合处理难挥发难降解的废水。

焚烧法通过高温化学反应使废水中有机物质燃烧生成二氧化碳和水,整个过程随着温度升高经历蒸发、气化、氧化三个阶段。

关于高盐废水的处理方法

关于高盐废水的处理方法

关于高盐废水的处理方法
高盐废水是含有高浓度盐类物质的废水。

处理高盐废水的方法可以分为以下几种:
1. 离子交换:利用离子交换树脂将废水中的盐类物质与水中的其他非盐类物质进行交换,实现盐类物质的去除。

这种方法适用于总盐浓度较高的废水处理。

2. 蒸发结晶:将高盐废水进行蒸发,通过结晶分离出盐类物质,得到淡水。

这种方法适用于盐类浓度极高的废水处理。

3. 逆渗透:利用逆渗透膜对高盐废水进行过滤,通过高压力将盐类物质和其他溶质分离,得到淡水。

逆渗透技术是一种较为常用的高盐废水处理方法。

4. 蒸汽压缩蒸发:通过蒸汽压缩蒸发技术将高盐废水进行加热,使其蒸发浓缩,得到浓缩的盐水和淡水。

这种方法适用于高盐废水处理中废热利用的情况。

5. 冻结结晶:利用冷却的原理将高盐废水冷却至结晶点以下,通过结晶分离出盐类物质,得到淡水。

这是一种常用的高盐废水处理方法。

以上是常见的高盐废水处理方法,具体的选择要根据废水的盐分浓度、处理成本、工艺可行性等因素进行综合考虑。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高浓度含盐废水处理
水处理技术:1 高盐废水产生途径
1.1海水代用排放的废水
所谓海水代用就是将海水不进行淡化处理而直接替代某些场合使用的淡水资源。

在工业上,海水可以广泛的用作锅炉冷却水,应用到热电、核电、石化、冶金、钢铁厂等行业上。

发达国家年海水冷却水用量已经超过了1000亿m3。

目前我国海水的年利用量为60多亿m3。

青岛电厂1936年就开始将海水作为工业冷却水,至今已经有60多年的历史。

目前,青岛市电力、化工、纺织等行业的12家临海企业,年用海水8.37亿m3。

天津年利用海水达到18亿m3。

此外,秦皇岛热电厂、黄道热电厂和上海石化总厂等70多家临海火力发电、核电、化工、石化等企业均已不同的方式直接利用海水。

对于印染、建材、制碱、橡胶以及海产品加工等行业,海水还可以作为工业的生产用水。

城市生活用水。

在城市生活中,海水可以替代淡水作为冲厕水。

目前香港海水冲厕的普及率高达70%以上,未来计划普及率提高到100%,并因此成为世界上唯一以海水作为冲厕水的城市。

而在大连、天津、青岛、烟台等城市的个别单位,也有采用海水冲厕的实践,但规模较小。

1.2工业生产废水
一些行业,如印染、造纸、化工和农药等,在生产中产生高含盐量的有机废水。

1.3 其他高盐废水
船舶压舱水
废水最小化生产中产生的污水
大型船舰上产生的生活污水
2 无机盐对微生物的抑制原理
2.1 抑制原理含盐废水主要毒物是无机毒物,即高浓度的无机盐。

有毒物质对废水生物处理的影响与毒物的类型和浓度有关,一般随着浓度升高可分为刺激作用、抑制作用和毒害作用三大类。

高浓度无机盐对废水生物处理的毒害作用主要是通过升高的环境渗透压而破坏微生物的细胞膜和菌体内的酶,从而破坏微生物的生理活动。

①微生物在等渗透压下生长良好。

微生物在质量为5~8.5g/L的NaCI溶液中,红血球在质量为9g/L的NaCI溶液中形态和大小不变,并生长良好;②在低渗透压(ρ(NaCI)=0.1g/L)下,溶液水分子大量渗入微生物体内,使微生物细胞发生膨胀,严重者破裂,导致微生物死亡;③在高渗透压(ρ(NaCI)=200g/L)下,微生物体内水分子大量渗到体外,使细胞发生质壁分离。

2.2 淡水微生物在不同盐度下的存活率不同生活在淡水环境下或者淡水处理构筑物中的微生物接种到高盐环境下,仅有部分微生物存活。

这是盐度对微生物的一种选择。

将淡水微生物的存活率定义为100%,当盐度超过20g/L,其存活率低于40%。

因此,当盐度超过20g/,一般认为用不同淡水微生物无法进行处理。

3 适盐微生物的分类与利用
耐盐微生物:能耐受一定浓度的盐溶液,但在无盐条件下生长最好,其生长也不需要大量无机盐。

嗜盐微生物:指在高盐条件下可以生长的细菌,其生长离不开高盐环境。

按照最佳生长盐度范围可以分为三类。

海洋菌:最佳生长盐度1~3%
中度嗜盐菌:最佳生长盐度3~15%
极度嗜盐菌:最佳生长盐度15~30%
4 生物处理高盐污水遇到的问题
盐度适应差
传统活性污泥法驯化处理盐度低于2%含盐废水。

当盐度环境变为淡水环境时,污泥的适应性会很快消失。

盐度变化影响大
盐度在0.5~2%变化通常会对处理系统产生严重的干扰。

突然变化盐度比逐渐变化盐度对系统的干扰更大
从高盐变为无盐产生影响比低盐环境变为高盐环境产生的影响要大
降解速率缓慢
随着盐度的升高有机物降解速率下降,因此低F/M更适合含盐废水的处理。

图3.5为SBR 法处理在各盐度下的处理效果。

污泥流失严重
盐度改变污泥中微生物的组成,改变了污泥的沉淀性和出水SS,污泥流失严重
5 高盐污水生物处理工程对策
5.1 驯化淡水微生物
适应于生活在淡水生物处理设施中的微生物在进入一定浓度的含盐环境内,会通过自身的渗透压调节机制来平衡细胞内的渗透压或保护细胞内的原生质,这些调节机制包括聚集低分子量物质来形成新的胞外保护层,调节自身的代谢途径,改变基因组成等,因此,正常活性污泥可以在一定盐度范围内通过一定时间的驯化处理含盐废水。

虽然污泥通过驯化可以提高系统耐盐范围,提高系统的处理效率,但是,驯化污泥中的微生物对盐度的耐受范围有限,而且对环境的变化敏感。

当盐度环境变化时,微生物的适应性会立刻消失。

驯化只是微生物适应环境的暂时生理调整,不具有遗传特性。

这种适应性的敏感对污水处理工程的实施很不利。

研究认为,在盐度小于20g/L条件下,可以通过盐度驯化处理含盐污水。

但是驯化盐度浓度必须逐渐提高,分阶段的将系统驯化到要求盐度水平。

突然高盐环境会造成驯化的失败和启动的延迟。

5.2 稀释进水盐度
既然高盐成为微生物的抑制和毒害剂,那么将进水进行稀释,使盐度低于毒域值,生物处理就不会收到抑制。

这种方法简单,易于操作和管理;其缺点就是增加处理规模,增加基建投资,增加运行费用,浪费水资源。

5.3 利用适盐微生物
接种或者基因固定化适盐微生物处理高盐污水是一种有效的处理方法。

此种方法可以处理超过3%的高盐污水,这是不同驯化法无法实现的。

其筛选出的某些具有特定污染物去除的适盐菌可以具有高的专性降解能力,大大提高处理效果。

筛选接种物来源于海洋或者河口底泥、晒盐场底物和其他高盐环境下的活性物质。

筛选往往有一定的程序和基因化措施。

这种方法的缺点是启动时间长,前期启动费用高。

但是对于高盐污水生物处理而言,是可行的方法。

5.4 添加拮抗剂
拮抗作用是指一种毒物的毒害作用因另一种物质的存在或者增加而降低的情况。

图中可以看出一种毒物的毒害作用随着另一种物质的低浓度增加而减少,并在最佳状态后,随拮抗剂浓度的进一步增加而反应速率下降。

目前研究,发现K会对Na产生拮抗作用,减少Na盐对微生物的毒害作用。

吸钾排钠作用主要原理可能是Na+/K+反向转运功能。

细菌的生长虽然需要高钠的环境,细胞内的Na浓度并不高,如盐杆菌光介导的H+质子泵具有Na+/K+反向转运功能,即具有吸收和浓缩K+和向胞外排放Na+的能力. K+作为一种相容性溶质,可以调节渗透压达到细胞内外平衡,其浓度高达7mol/L,以维持内外同样的水活度.例如嗜盐厌氧菌、嗜盐硫还原菌及嗜盐古菌是采用细胞内积累高浓度K+来对抗胞外的高渗环境.例酵母中的Na+/K+反向载体可以将多余的盐分排出体外,提高酵母的耐盐性.。

相关文档
最新文档