2019高考数学备考研究

合集下载

高考评价体系视角下的高考全国卷数学试题分析及备考建议

高考评价体系视角下的高考全国卷数学试题分析及备考建议

物理学中的拉格朗日点的问题为背景,呈现相关参
数的原始计算方式,创建学习探索问题情境。情境
在这里的作用是:展现我国航天技术的前沿成就,
激发考生的爱国热忱,再现研究物理问题时使用数
学知识的场景,以展现数学的应用性。
数学创新情境试题对应考查考生思维的创新 性。命题者选择与社会实际密切相关、具有现实意 义的开放的问题情境,特别是科学技术的前沿理论 或重大发现等,旨在促使考生主动思考,发现新问 题,探索新方法,积极主动地解决问题。
赛共有 9 位评委分别给出某选手的原始评分袁 评定该选
手的成绩时袁 从 9 个原始评分中去掉 1 个最高分尧 1 个
最低分袁 得到 7 个有效评分遥 7 个有效评分与 9 个原始
评分相比袁 不变的数字特征是 渊

A.中位数 B.平均数 C.方差 D.极差
本题涉及统计中的基本数字特征,主要考查考生
的知识获取能力和基本的数据处理素养。命题者以生
活中常见的打分机制为情境,情境所起的作用是将枯
燥的“解数学题”转变为“解决数学问题”,引导考
生由“学习数学”转变为“学习有用的数学”。
数学综合情境试题大多选择生产生活中的真 实案例,参照考生的实际认知水平进行简化处理。 这类试题渗透数学内部多模块知识之间的问题背 景,或渗透多学科之间的问题背景,强调综合运 用多种知识技能解决问题,体现高考命题的“综 合性”。
高考评价体系最重要的创新之处,是创造性地 将“立德树人”的根本任务融入考试评价的过程之 中。要促使“立德树人”真正在高考评价实践中落 地,必须以问题情境和情境活动为载体来实现,将 核心素养的考查自然地融入问题情境之中。
从试题命制的角度来看,问题情境和情境活动 的选择可以是源于生活生产实践的情境,也可以是 来自真实研究过程和科学探究过程的学习探索情 境。根据数学学科的特点,选择不同层级的情境材 料,发挥数学学科必备知识、关键能力和学科素养 的功能,可以考查出考生不同层级的数学水平。根 据高考评价体系的“四翼”考查要求,相应地可以 设计四种不同情境类型的高考数学试题,分别是数 学基础情境试题、数学综合情境试题、数学应用情 境试题、数学创新情境试题。

2019年高考真题和模拟题分项汇编数学(理):专题03 导数及其应用 (含解析).docx

2019年高考真题和模拟题分项汇编数学(理):专题03 导数及其应用 (含解析).docx

专题03导数及其应用1. [2019年高考全国III 卷理数】已知曲线y = ae x +xlnx 在点(1, ae)处的切线方程为y=2x+b,贝9 A. a = e, b = —1 B. a=e, b=l C. a — e _1, b = lD. a = e"1 > b = -\【答案】D【解析】T y' = ae* + lnx+l,切线的斜率 k = y' |Y=1= ae+1 = 2,a = e _1, 将(1,1)代入 y = 2x + b,得 2 + b = l,b = -l. 故选D.【名师点睛】本题求解的关键是利用导数的几何意义和点在曲线上得到含有a, b 的等式,从而求解,属于常考题 型.了2 O XTTV 2d V* V 12. [2019年高考天津理数】已知tzeR ,设函数/(%)=' _ '若关于X 的不等式/(x)>0在R 上x-alnx, x>l.恒成立,则a 的取值范围为A. [0,1]B. [0,2]C. [0,e]D. [l,e]【答案】C【解析】当兀=1时,/(1) = 1 —2a + 2a = l>0恒成立;当 x<l 时,/(%) = x 2-2ajc + 2a>0^ 2a>^-恒成立,x-1令g(x) =—7x-1(1 —兀―1)2_ (1—兀)2—2(1 —兀)+ 1 1 — X 1 — X当1 —兀=丄,即x = 0时取等号,1-X贝0g(x) = ——1-X2a= 0,则a>0.Y当 x 〉l 时,f(x) = x-a\nx>0,即a< ---------------- 11 成立,lnx当x>e 时,h'(x) >0,函数〃(x)单调递增, 当0<x<e 时,h'(x) <0,函数力(x)单调递减, 则x = e 时,〃(x)取得最小值A(e) = e,•■- a<h(x)nin =e,综上可知,a 的取值范围是[0,e ]. 故选C.【名师点睛】本题考查分段函数的最值问题,分别利用基本不等式和求导的方法研究函数的最值,然后解决恒成 立问题.x,x<03. (2019浙江)已知a,bwR ,函数/(%) = < 1 1 2.若函数f(x)-ax-b 恰有3个零点, —X ——(Q + 1)兀 + ax, X > 0 13 2A. a<-\, b<0 C. tz>—1, Z?<0D. a>—1, Z?>0【答案】C【解析】当 x<0 时,y=f (x) -ax - b=x - ax - b= (1 - a) x - b=0,得 x= 丿丿 l-a则y=f (x) -ax-b 最多有一个零点;当 x>0 时,y=f (兀)-ax - b= -x 3—- (a+1) x^+ax - ax - b= -x 3—- (a+1) x 2 - b, —)J3 2 3 2y = x 2-(€l + l)x,当 a+lwo,即來-1 时,y>0, y=f (x) -ax-b 在[0, +oo)上单调递增, 则y =f -ax-b 最多有一个零点,不合题意;当a+l>0,即°>-1时,令y'>0得兀丘@+1, +oo),此时函数单调递增, 令WVO 得用[0, d+1),此时函数单调递减,则函数最多有2个零点.根据题意,函数y=f (x) -ax-b 恰有3个零点o 函数y=f (x) - ax - b 在(-oo, 0)上有一个零点,在[0, +oo)令〃(x)=—, lnx则 h\x)=lnx-1(In x)2 B. a<-l, b>0上有2个零点,如图:b—b>01-a (a + l)3 - j (a + l)(a + l)2- b<0解得b<0, 1 - a>0, b> -- (a+1) 3,6则a>-l, b<0.故选C・【名师点睛】本题考查函数与方程,导数的应用.当兀V0时,y=f (x) -ax - b=x - ax - b= (l-°) x~ b最多有一个零点;当空0时,y=/(x) -ax-b=^-\ (a+1) - b,利用导数研究函数的单调性,根据单调性画出函数的草图,从而结合题意可列不等式组求解.4.[2019年高考全国I卷理数】曲线y = 3(x2+x)e x在点(0,0)处的切线方程为_________________ .【答案】3x-y-0【解析】y = 3(2x+l)e A + 3(x2 + x)e r = 3(x2 +3x+l)e r,所以切线的斜率k = y' |x=0=3,则曲线y = 3(x2 + x)^在点(0,0)处的切线方程为y = 3x,即3x — y = 0 .【名师点睛】准确求导数是进一步计算的基础,本题易因为导数的运算法则掌握不熟,而导致计算错误•求导要“慢”, 计算要准,是解答此类问题的基本要求._ 45.[2019年高考江苏】在平面直角坐标系xOy中,P是曲线y = x + —(无>0)上的一个动点,则点P到直线x+ y = 0的距离的最小值是一▲•【答案】44 4【解析】由y = x (x〉0),得丁' = 1 ——,X X4 4设斜率为一1的直线与曲线_y = x + -(x>0)切于(x0,x0+—),x 勺由1一一 =一1得x0 = A/2(x0=-A/2舍去),x o曲线y = x + -(x>o)±,点P(V2,3A/2)到直线x+y = o的距离最小,最小值为故答案为4 .【名师点睛】本题考查曲线上任意一点到己知直线的最小距离,渗透了直观想象和数学运算素养.采取导数法,利用数形结合和转化与化归思想解题.6.[2019年高考江苏】在平面直角坐标系中,点A在曲线y=lnr上,且该曲线在点A处的切线经过点(-e, -l)(e 为自然对数的底数),则点A的坐标是▲.【答案】(e, 1)【解析】设出切点坐标,得到切线方程,然后求解方程得到横坐标的值,可得切点坐标.设点A(x0,y0),则y Q =lnx0.又# =丄,X则曲线y = InX在点A处的切线为y - %=丄(X —勺),即yin”。

高考数学复习:题型特点和答题技巧

高考数学复习:题型特点和答题技巧

2019年高考数学复习:题型特点和答题技巧1.选择题——“不择手段”题型特点:(1)概念性强:数学中的每个术语、符号,乃至习惯用语,往往都有明确具体的含义,这个特点反映到选择题中,表现出来的就是试题的概念性强,试题的陈述和信息的传递,都是以数学的学科规定与习惯为依据,决不标新立异。

(2)量化突出:数量关系的研究是数学的一个重要的组成部分,也是数学考试中一项主要的内容,在高考的数学选择题中,定量型的试题所占的比重很大,而且许多从形式上看为计算定量型选择题,其实不是简单或机械的计算问题,其中往往蕴含了对概念、原理、性质和法则的考查,把这种考查与定量计算紧密地结合在一起,形成了量化突出的试题特点。

(3)充满思辨性:这个特点源于数学的高度抽象性、系统性和逻辑性。

作为数学选择题,尤其是用于选择性考试的高考数学试题,只凭简单计算或直观感知便能正确作答的试题不多,几乎可以说并不存在,绝大多数的选择题,为了正确作答,或多或少总是要求考生具备一定的观察、分析和逻辑推断能力。

思辨性的要求充满题目的字里行间。

(4)形数兼备:数学的研究对象不仅是数,还有图形,而且对数和图形的讨论与研究,不是孤立开来分割进行,而是有分有合,将它们辩证统一起来。

这个特色在高中数学中已经得到充分的显露。

因此,在高考的数学选择题中,便反映出形数兼备这一特点,其表现是几何选择题中常常隐藏着代数问题,而代数选择题中往往又寓有几何图形的问题。

因此,数形结合与形数分离的解题方法是高考数学选择题的一种重要且有效的思想方法与解题方法。

(5)解法多样化:以其他学科比较,“一题多解”的现象在数学中表现突出,尤其是数学选择题由于它有备选项,给试题的解答提供了丰富的有用信息,有相当大的提示性,为解题活动展现了广阔的天地,大大地增加了解答的途径和方法。

常常潜藏着极其巧妙的解法,有利于对考生思维深度的考查。

解题策略:(1)注意审题。

把题目多读几遍,弄清这个题目求什么,已知什么,求、知之间有什么关系,把题目搞清楚了再动手答题。

备战2019年高考数学大一轮复习 热点聚焦与扩展 专题29 常见不等式的解法

备战2019年高考数学大一轮复习 热点聚焦与扩展 专题29 常见不等式的解法

专题29 常见不等式的解法【热点聚焦与扩展】高中阶段解不等式大体上分为两类,一类是利用不等式性质直接解出解集(如二次不等式,分式不等式,指对数不等式等);一类是利用函数的性质,尤其是函数的单调性进行运算.相比而言后者往往需要构造函数,利用函数单调性求解,考验学生的观察能力和运用条件能力,难度较大.本专题以一些典型例题来说明处理这类问题的常规思路。

(一)常见不等式的代数解法1、一元二次不等式:()200ax bx c a ++>≠可考虑将左边视为一个二次函数()2f x ax bx c =++,作出图象,再找出x 轴上方的部分即可-—关键点:图象与x 轴的交点 2、高次不等式(1)可考虑采用“数轴穿根法",分为以下步骤:(令关于x 的表达式为()f x ,不等式为()0f x >)①求出()0f x =的根12,,x x② 在数轴上依次标出根③ 从数轴的右上方开始,从右向左画.如同穿针引线穿过每一个根 ④ 观察图象,()0f x >⇒ 寻找x 轴上方的部分 ()0f x <⇒ 寻找x 轴下方的部分(2)高次不等式中的偶次项,由于其非负性在解不等式过程中可以忽略,但是要验证偶次项为零时是否符合不等式 3、分式不等式(1)将分母含有x 的表达式称为分式,即为()()f xg x 的形式(2)分式若成立,则必须满足分母不为零,即()0g x ≠ (3)对形如()()0f x g x >的不等式,可根据符号特征得到只需()(),f x g x 同号即可,所以将分式不等式转化为()()()0f x g x g x ⋅>⎧⎪⎨≠⎪⎩ (化商为积),进而转化为整式不等式求解4、含有绝对值的不等式 (1)绝对值的属性:非负性(2)式子中含有绝对值,通常的处理方法有两种:一是通过对绝对值内部符号进行分类讨论(常用);二是通过平方(3)若不等式满足以下特点,可直接利用公式进行变形求解: ① ()()f x g x >的解集与()()f x g x >或()()f x g x <-的解集相同 ② ()()f x g x <的解集与()()()g x f x g x -<<的解集相同(4)对于其它含绝对值的问题,则要具体问题具体分析,通常可用的手段就是先利用分类讨论去掉绝对值,将其转化为整式不等式,再做处理 5、指对数不等式的解法:(1)先讲一个不等式性质与函数的故事在不等式的基本性质中,有一些性质可从函数的角度分析,例如:a b a c b c >⇒+>+,可发现不等式的两边做了相同的变换(均加上c ),将相同的变换视为一个函数,即设()f x x c =+,则()(),a c f a b c f b +=+=,因为()f x x c =+为增函数,所以可得:()()a b f a f b >⇔>,即a b a c b c >⇒+>+成立,再例如:0,0,c ac bca b c ac bc >>⎧>⇒⎨<<⎩,可设函数()f x cx =,可知0c >时,()f x 为增函数,0c <时,()f x 为减函数,即()()()()0,0,c f a f b a b c f a f b >>⎧⎪>⇒⎨<<⎪⎩由以上两个例子我们可以得出:对于不等式两边作相同变换的性质,可将变换视为一个函数,则在变换时不等号是否发生改变,取决于函数的增减性。

高三数学第一轮复习教学计划(备考)

高三数学第一轮复习教学计划(备考)

高三数学第一轮复习教学计划(2019备考)查字典数学网为大家准备了高三数学第一轮复习教学计划,供大家参考,希望能帮助到大家。

一、夯实基础。

今年高考数学试题的一个显著特点是注重基础。

扎实的数学基础是成功解题的关键,从学生反馈来看,平时学习成绩不错但得分不高的主要原因不在于难题没做好,而在于基本概念不清,基本运算不准,基本方法不熟,解题过程不规范,结果“难题做不了,基础题又没做好”,因此在第一轮复习中,我们将格外突出基本概念、基础运算、基本方法,具体做法如下:1.注重课本的基础作用和考试说明的导向作用;2.加强主干知识的生成,重视知识的交汇点;3.培养逻辑思维能力、直觉思维、规范解题习惯;4.加强反思,完善复习方法。

二、解决好课内课外关系。

课内:(1)例题讲解前,留给学生思考时间;讲解中,让学生陈述不同解题思路,对于解题过程中的闪光之处或不足之处进行褒扬或纠正;讲解后,对解法进行总结。

对题目尽量做到一题多解,一题多用。

一题多解的题目让学生领会不同方法的优劣,一题多用的题目让学生领会知识间的联系。

(2)学生作业和考试中出现的错误,不但指出错误之处,更要引导学生寻根问底,使学生找出错误的真正原因。

(3)每节课留10分钟让学生疏理本节知识,理解本节内容。

课外:除了正常每天布置适量作业外,另外布置一两道中档偏上的题目,判作业时面批面改,指出知识的疏漏。

三、注重师生互动1.多让学生思考回答问题,对于有些章节知识,按难易程度选择六至八道,尽量独自完成,无法独立解决的可以提示思路。

2.让学生自我小结,每一章复习完后,让学生自己建立知识网络结构,包括典型题目、思想方法、解题技巧,易错易做之题;3.每次考试结束后,让学生自己总结:①试题考查了哪些知识点;②怎样审题,怎样打开解题思路;③试题主要运用了哪些方法,技巧,关键步在哪里;④答题中有哪些典型错误,哪些是知识、逻辑心理因素造成,哪些是属于思路上的。

四、精选习题。

1.把握好题目的难度,增强题目针对性,所选题目以小题、中档题为主,且应突出知识重点,体现思想方法、兼顾学生易错之处。

2019届高考数学(理)二轮复习提优导学案(江苏专用):第1部分 二轮课时专题5 解析几何 2 圆锥曲线

2019届高考数学(理)二轮复习提优导学案(江苏专用):第1部分 二轮课时专题5 解析几何 2 圆锥曲线

第2讲圆锥曲线【课前热身】第2讲圆锥曲线(本讲对应学生用书第45~47页)1.(选修2-1 P32练习3改编)已知椭圆的焦点分别为F1(-2,0),F2(2,0),且经过点P53-22⎛⎫⎪⎝⎭,,则椭圆的标准方程为.【答案】210x+26y=1【解析】设椭圆方程为22xa+22yb=1,由题意得2222259144-4a ba b⎧+=⎪⎨⎪=⎩,,解得a2=10,b2=6,所以所求方程为210x+26y=1.2.(选修2-1 P47练习2改编)若双曲线的虚轴长为12,离心率为54,则双曲线的标准方程为.【答案】264x-236y=1或264y-236x=1【解析】由b=6,ca=54,结合a2+b2=c2,解得a=8,c=10,由于对称轴不确定,所以双曲线标准方程为264x-236y=1或264y-236x=1.3.(选修2-1 P47练习3改编)已知双曲线x 2-22y m=1(m>0)的一条渐近线方程为x+0,则实数m= .【答案】3【解析】双曲线x 2-22y m=1(m>0)的渐近线方程为y=±mx ,又因为该双曲线的一条渐近线方程为x+0,所以m=3.4.(选修2-1 P53练习2改编)设抛物线y 2=mx 的准线与直线x=1的距离为3,则抛物线的标准方程为 .【答案】y 2=8x 或y 2=-16x【解析】当m>0时,准线方程为x=-4m=-2,所以m=8,此时抛物线方程为y 2=8x ;当m<0时,准线方程为x=-4m=4,所以m=-16,此时抛物线方程为y 2=-16x. 所以所求抛物线方程为y 2=8x 或y 2=-16x.5.(选修2-1 P37练习6改编)若一个椭圆长轴的长、短轴的长和焦距成等差数列,则该椭圆的离心率是 .【答案】35【解析】由题意知2b=a+c ,又b 2=a 2-c 2, 所以4(a 2-c 2)=a 2+c 2+2ac.所以3a 2-2ac-5c 2=0,所以5c 2+2ac-3a 2=0.所以5e 2+2e-3=0,解得e=35或e=-1(舍去).【课堂导学】求圆锥曲线的标准方程例1(2019·扬州中学)在平面直角坐标系xOy中,已知椭圆C:22xa+22yb=1(a>b>0)的离心率为32,以原点为圆心、椭圆C的短半轴长为半径的圆与直线x-y+2=0相切.(1)求椭圆C的标准方程;(2)已知点P(0,1),Q(0,2),设M,N是椭圆C上关于y轴对称的不同两点,直线PM与QN相交于点T,求证:点T在椭圆C上.【分析】(1)利用直线与圆相切求出b的值,然后利用离心率可求出a的值,从而求出椭圆方程.(2)解出两直线的交点,验证满足椭圆方程即可.【解答】(1)由题意知椭圆C的短半轴长为圆心到切线的距离,即22因为离心率e=ca=32,所以ba21-ca⎛⎫⎪⎝⎭12,所以a=2所以椭圆C的标准方程为28x+22y=1.(2)由题意可设M,N两点的坐标分别为(x0,y0),(-x0,y0),则直线PM的方程为y=-1yxx+1,①直线QN的方程为y=-2-yxx+2. ②设点T的坐标为(x,y).联立①②解得x0=2-3xy,y=3-42-3yy.因为28x+22y=1,所以2182-3xy⎛⎫⎪⎝⎭+213-422-3yy⎛⎫⎪⎝⎭=1,整理得28x+2(3-4)2y=(2y-3)2,所以28x+292y-12y+8=4y2-12y+9,即28x+22y=1,所以点T的坐标满足椭圆C的方程,即点T在椭圆C上.【点评】求椭圆标准方程的基本方法是待定系数法,具体过程是先定形,再定量,即首先确定焦点所在位置,然后再根据条件建立关于a,b的方程组.如果焦点位置不确定,要考虑是否有两解,有时为了解题方便,也可把椭圆方程设为mx2+ny2=1(m>0,n>0,m≠n)的形式.变式已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点.(1)求椭圆C的方程;(2)已知动点P到定点Q(20)的距离与点P到定直线l:x=2222,求动点P的轨迹C'的方程.【分析】本题主要考查椭圆的定义和椭圆的标准方程等基础知识,以及利用直接法和待定系数法求椭圆方程的基本方法.【解答】(1)依题意,可设椭圆C的方程为22xa+22yb=1(a>b>0),且可知左焦点为F'(-2,0),从而有22'358ca AF AF=⎧⎨=+=+=⎩,,解得24.ca=⎧⎨=⎩,又a2=b2+c2,所以b2=12,故椭圆C的方程为216x+212y=1.(2)设点P(x,y),依题意,得22(-2)|-22|x yx+=22,整理,得24x+22y=1,所以动点P的轨迹C'的方程为24x+22y=1.【点评】本题第一问已知焦点即知道了c,再利用椭圆定义先求得2a的值,再利用椭圆中a,b,c的关系,求得b的值,从而得椭圆方程.本题还可以利用待定系数法设椭圆方程为22xa+22-4ya=1,代入已知点求解,显然没有利用定义来得简单.求离心率的值或范围例2(1)(2019·徐州三校调研)如图(1),在平面直角坐标系xOy中,A1,A2,B1,B2分别为椭圆22xa+22yb=1(a>b>0)的四个顶点,F为其右焦点,直线A1B2与直线B1F相交于点T,线段OT与椭圆的交点M恰为线段OT的中点,则该椭圆的离心率为.(例2(1))(2)(2019·临川一中质检)如图(2),已知点A,F分别是2 2 xa-22yb=1(a>0,b>0)的左顶点与右焦点,过A,F作与x轴垂直的直线分别与两条渐近线交于P,Q,R,S,若S△ROS=2S△POQ,则双曲线的离心率为.(例2(2))(3)(2019·金陵中学)已知中心在坐标原点的椭圆与双曲线有公共焦点,且左、右焦点分别为F1,F2,这两条曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形.若PF1=10,椭圆与双曲线的离心率分别为e1,e2,则e1·e2的取值范围是.【点拨】依题设得出关于a,b,c的等式或不等式,再消去b.【答案】75(2)2(3)13∞⎛⎫+⎪⎝⎭,【解析】(1)由题意知直线A1B2的方程为-xa+yb=1,直线B1F的方程为xc+-yb=1.联立方程组解得T2()--ac b a ca c a c+⎛⎫⎪⎝⎭,.又M()-2(-)ac b a ca c a c⎛⎫+⎪⎝⎭,在椭圆22xa+22yb=1(a>b>0)上,故22(-)ca c+22()4(-)a ca c+=1,即e2+10e-3=0,解得e=275.(2)由题意,得A(-a,0),F(c,0),直线PQ,RS的方程分别为x=-a,x=c,与渐近线y=±ba x 联立,可求得P(-a,b),Q(-a,-b),R-bcca⎛⎫⎪⎝⎭,,Sbcca⎛⎫⎪⎝⎭,,则S△ROS=12·2bca·c=2bca,S△POQ =12a·2b=ab,于是由S△ROS=2S△POQ,得2bca=2ab,即22ca=2,所以e=2.(3)设椭圆的长轴长为2a,双曲线的实轴长为2m,则2c=PF2=2a-10,2m=10-2c,a=c+5,m=5-c,所以e1e2=5cc+·5-cc=2225-cc=2125-1c.又由三角形性质知2c+2c>10,又由已知得2c<10,c<5,所以52<c<5,1<225c<4,0<225c-1<3,所以e1e2=2125-1c>13.变式1(2019·苏北四市期末)已知椭圆22xa+22yb=1(a>b>0),点A,B1,B2,F依次为其左顶点、下顶点、上顶点和右焦点,若直线AB2与直线B1F的交点恰好在椭圆的右准线上,则该椭圆的离心率为.(变式1)【答案】12【解析】如图,A(-a,0),B1(0,-b),B2(0,b),F(c,0),设点M2Mayc⎛⎫⎪⎝⎭,.由2ABk=k AM,得ba=2Myaac+,所以y M=b1ac⎛⎫+⎪⎝⎭.由1FBk=k FM,得bc=2-Myacc,所以y M =2-b a c c c ⎛⎫⎪⎝⎭. 从而b 1a c⎛⎫+ ⎪⎝⎭=2-b a c c c ⎛⎫ ⎪⎝⎭, 整理得2e 2+e-1=0,解得e=12.变式2 (2019·泰州期末)若双曲线22x a -22y b=1的右焦点到渐近线的距离是其到左顶点距离的一半,则双曲线的离心率e= .【答案】53【解析】由双曲线的性质“焦点到渐近线的距离等于b ”,得b=2a c+,所以a 2+22a c +⎛⎫ ⎪⎝⎭=c 2,整理得3c 2-2ac-5a 2=0,所以3e 2-2e-5=0,解得e=53.变式3 (2019·泰州中学)如图,椭圆22x a +22y b=1(a>b>0)的右焦点为F ,其右准线l 与x 轴的交点为A ,在椭圆上存在点P 满足线段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是 .(变式3)【答案】112⎡⎫⎪⎢⎣⎭, 【解析】方法一:由题意知椭圆上存在点P ,使得线段AP 的垂直平分线过点F ,所以PF=FA ,而FA=2a c -c ,PF ≤a+c ,所以2a c -c ≤a+c ,即a 2≤ac+2c 2.又e=ca,所以2e 2+e ≥1,所以2e 2+e-1≥0,即(2e-1)(e+1)≥0.又0<e<1,所以12≤e<1.方法二:设点P(x,y).由题意,椭圆上存在点P,使得线段AP的垂直平分线过点F,所以PF=FA.由椭圆第二定义,2-PFaxc=e,所以PF=2ac e-ex=a-ex,而FA=2ac-c,所以a-ex=2ac-c,解得x=21-aa ce c⎛⎫+⎪⎝⎭.由于-a≤x≤a,所以-a≤21-aa ce c⎛⎫+⎪⎝⎭≤a.又e=ca,所以2e2+e-1≥0,即(2e-1)(e+1)≥0.又0<e<1,所以12≤e<1.直线与圆锥曲线问题例3(2019·南通一调)如图,在平面直角坐标系xOy中,已知椭圆22xa+22yb=1(a>b>0)过点A(2,1),离心率为3 2.(1)求椭圆的方程;(2)若直线l:y=kx+m(k≠0)与椭圆相交于B,C两点(异于点A),线段BC被y轴平分,且AB⊥AC,求直线l的方程.(例3)【点拨】联立方程化归为一元二次方程的根与系数问题.【解答】(1)由条件知椭圆22x a +22y b=1(a>b>0)的离心率为e=c a =32,所以b 2=a 2-c 2=14a 2.又点A (2,1)在椭圆上,所以24a +21b =1,解得2282.a b ⎧=⎨=⎩,所以所求椭圆的方程为28x +22y =1.(2)将y=kx+m (k ≠0)代入椭圆方程,得(1+4k 2)x 2+8mkx+4m 2-8=0, ①由线段BC 被y 轴平分,得x B +x C =-2814mkk +=0,因为k ≠0,所以m=0.因为当m=0时,B ,C 关于原点对称,设B (x ,kx ),C (-x ,-kx ),由方程①,得x 2=2814k +,又因为AB ⊥AC ,A (2,1),所以AB uuu r ·A C uuu r =(x-2)(-x-2)+(kx-1)(-kx-1)=5-(1+k 2)x 2=5-228(1)14k k ++=0,所以k=±12,由于k=12时,直线y=12x 过点A (2,1),故k=12不符合题设. 所以直线l 的方程为y=-12x.【点评】解析几何包含两个主要问题,即已知曲线求方程和已知方程研究曲线的性质.对解析几何的复习,要在牢固掌握与解析几何有关的基本概念基础上,把上述两个问题作为复习和研究的重点,把握坐标法思想的精髓.变式 (2019·南通、扬州、泰州、淮安三模)如图,在平面直角坐标系xOy 中,已知椭圆22x a +22y b =1(a>b>0)的离心率为22,长轴长为4,过椭圆的左顶点A 作直线l ,分别交椭圆和圆x 2+y 2=a 2于相异两点P ,Q.(1)若直线l的斜率为12,求APAQ的值;(2)若PQu u u r=λAPuuu r,求实数λ的取值范围.(变式)【解答】(1)由条件知2222422acaa b c=⎧⎪⎪=⎨⎪=+⎪⎩,,解得22.ab=⎧⎪⎨⎪⎩,所以椭圆的方程为24x+22y=1,圆的方程为x2+y2=4.由题知直线l的方程为y=12(x+2),即x=2y-2,联立方程组222-224x yx y=⎧⎨+=⎩,,消去x,得3y2-4y=0,所以y P=4 3.由222-24x yx y=⎧⎨+=⎩,,消去x,得5y2-8y=0,所以y Q=85.所以APAQ=PQyy=43×58=56.(2)因为PQu u u r=λAPuuu r,且APuuu r,PQu u u r同向,则λ=PQAP=-AQ APAP=AQAP-1,设直线l:y=k(x+2),联立方程组224(2)x yy k x⎧+=⎨=+⎩,,消去x,得(k2+1)y2-4ky=0,所以y Q =241k k +,同理y P =2421k k +,λ=AQ AP -1=QP y y -1=2241421k k k k ++-1=1-211k +.因为k 2>0,所以0<λ<1.即实数λ的取值范围是(0,1).【课堂评价】1.(2019·泰州期末)在平面直角坐标系xOy 中,双曲线22x -y 2=1的实轴长为 .【答案】22【解析】根据双曲线的方程知a=22a=22.(2019·镇江期末)以抛物线y 2=4x 的焦点为焦点,以直线y=±x 为渐近线的双曲线的标准方程为 .【答案】212x -212y =1【解析】由题意设双曲线的标准方程为22x a -22y b=1,y 2=4x 的焦点为(1,0),即c=1,则双曲线的焦点为(1,0).因为y=±x 为双曲线的渐近线,则b a =1,又a 2+b 2=c 2,所以a 2=12,b 2=12,故双曲线的标准方程为212x-212y=1.3.(2019·南京、盐城一模)在平面直角坐标系xOy中,已知抛物线C的顶点在坐标原点,焦点在x 轴上,若曲线C经过点P(1,3),则其焦点到准线的距离为.【答案】92【解析】由题意可设抛物线C的方程为y2=2px(p>0),因为曲线C过点P(1,3),所以9=2p,解得p=92,从而其焦点到准线的距离为p=92.4.(2019·苏中三校联考)设椭圆C:22xa+22yb=1(a>b>0)的左、右焦点分别为F1,F2,过F2作x轴的垂线与椭圆C相交于A,B两点,F1B与y轴相交于点D,若AD⊥F1B,则椭圆C的离心率为.(第4题)【答案】33【解析】如图,连接AF1,因为OD∥AB,O为F1F2的中点,所以D为BF1的中点.又AD⊥BF1,所以AF1=AB.所以AF1=2AF2.设AF2=n,则AF1=2n,F1F2=3所以e=ca=1212F FAF AF=33nn=33.温馨提示:趁热打铁,事半功倍.请老师布置同学们完成《配套检测与评估》第23~24页.【检测与评估】第2讲圆锥曲线一、填空题1.(2019·苏锡常镇调研)若双曲线x2+my2=1过点(2),则该双曲线的虚轴长为.2.(2019·苏州调查)已知双曲线2xm-25y=1的右焦点与抛物线y2=12x的焦点相同,则此双曲线的渐近线方程为.3.(2019·徐州、连云港、宿迁三检)已知点F是抛物线y2=4x的焦点,该抛物线上位于第一象限的点A到其准线的距离为5,则直线AF的斜率为.4.(2019·普陀区调研)离为1,则该椭圆的离心率为.5.(2019·西安模拟)已知椭圆24x+22yb=1(0<b<2)的左、右焦点分别为F1,F2,过F1的直线l交椭圆于A,B两点,若BF2+AF2的最大值为5,则b的值是.6.(2019·盐城中学)设椭圆22xm+..=1(m>0,n>0)的右焦点与抛物线y2=8x的焦点相同,离心率为12,则此椭圆的短轴长为 .7.(2019·丹阳中学)设A ,B 分别是椭圆22x a +22y b =1(a>b>0)的左、右顶点,点P 是椭圆C 上异于A ,B 的一点,若直线AP 与BP 的斜率之积为-13,则椭圆C 的离心率为 .8.(2019·淮阴四校调研)已知椭圆C :22x a +22y b =1(a>b>0)的左、右焦点分别为F 1,F 2,若椭圆C 上恰好有6个不同的点P ,使得△F 1F 2P 为等腰三角形,则椭圆C 的离心率的取值范围是 .二、 解答题9.(2019·扬州期末)如图,已知椭圆22x a +22y b =1(a>b>0)的左、右焦点分别为F 1,F 2,P 是椭圆上一点,M 在PF 1上,且满足1F M u u u u r =λMP u u u r(λ∈R ),PO ⊥F 2M ,O 为坐标原点.(1)若椭圆方程为28x +24y =1,且P (2,2),求点M 的横坐标;(2)若λ=2,求椭圆离心率e 的取值范围.(第9题)10.(2019·赣榆中学)如图,椭圆长轴端点为A ,B ,O 为椭圆中心,F 为椭圆的右焦点,且AF u u u r ·FB u u u r=1,|OF u u u r |=1.(1)求椭圆的标准方程.(2)记椭圆的上顶点为M ,直线l 交椭圆于P ,Q 两点,问:是否存在直线l ,使得点F 恰为△PQM的垂心?若存在,求出直线l的方程;若不存在,请说明理由.(第10题)11.如图,椭圆C:2 2 xa+22yb=1(a>b>0)的一个焦点为F(1,0),且过点622⎛⎫⎪⎪⎭,.(1)求椭圆C的方程;(2)已知A,B为椭圆上的点,且直线AB垂直于x轴,直线l:x=4与x轴交于点N,直线AF与BN交于点M,求证:点M恒在椭圆C上.(第11题)【检测与评估答案】第2讲圆锥曲线一、填空题1. 4【解析】将点(22)代入可得2+4m=1,即m=-14,故双曲线的标准方程为21x-24y=1,即虚轴长为4.2.y=±2x3,所以m=4.而双曲线的渐近线方程为x ,即y=±2x.3. 43 【解析】抛物线y 2=4x 的准线方程为x=-1,焦点F (1,0),设点A (x 0,y 0)(x 0>0,y 0>0),由题意得x 0+1=5,所以x 0=4,所以20y=4x 0=16,y 0=4,从而点A (4,4),直线AF 的斜率k=4-04-1=43.4.2 【解析】不妨设椭圆方程为22x a +22y b =1(a>b>0),则有222-1b a a c c ⎧=⎪⎪⎨⎪=⎪⎩,即2221b a b c ⎧=⎪⎪⎨⎪=⎪⎩, ②则①÷②得e=2.5.【解析】由题意知a=2,所以BF 2+AF 2+AB=4a=8,因为BF 2+AF 2的最大值为5,所以AB 的最小值为3,当且仅当AB ⊥x 轴时,取得最小值,此时A 3-2c ⎛⎫ ⎪⎝⎭,,B3--2c ⎛⎫ ⎪⎝⎭,,代入椭圆方程得24c +294b =1.又c 2=a 2-b 2=4-b 2,所以24-4b +294b =1,即1-24b +294b =1,所以24b =294b ,解得b 2=3,所以6.4【解析】由题意可知抛物线y 2=8x 的焦点为(2,0),所以c=2.因为离心率为12,所以a=4,所以47.【解析】由题意知A (-a ,0),B (a ,0),取P (0,b ),则k AP ·k BP =b a×-b a ⎛⎫ ⎪⎝⎭=-13,故a 2=3b 2,所以e 2=222-a b a =23,即e=3.8. 1132⎛⎫ ⎪⎝⎭,∪112⎛⎫⎪⎝⎭,【解析】6个不同的点有两个为短轴的两个端点,另外4个分别在第一、二、三、四象限,且上下对称、左右对称.不妨设P 在第一象限,PF 1>PF 2,当PF 1=F 1F 2=2c 时,PF 2=2a-PF 1=2a-2c ,即2c>2a-2c ,解得e=c a >12.又因为e<1,所以12<e<1.当PF 2=F 1F 2=2c 时,PF 1=2a-PF 2=2a-2c ,即2a-2c>2c ,且2c>a-c ,解得13<e<12.综上可得13<e<12或12<e<1.二、 解答题9. (1) 因为28x +24y =1,所以F 1(-2,0),F 2(2,0),所以k OP=22F Mk1F M k=4,所以直线F 2M 的方程为x-2),直线F 1M 的方程为y=4(x+2).联立-2)(2)4y x y x ⎧=⎪⎨=+⎪⎩,,解得x=65,所以点M 的横坐标为65.(2) 设P (x 0,y 0),M (x M ,y M ).因为1FM u u u u r=2MPuuu r ,所以1FM u u u u r =23(x 0+c ,y 0)=(x M +c ,y M ),所以M 00212-333x c y ⎛⎫⎪⎝⎭,,2F M u u u u r =00242-333x c y ⎛⎫ ⎪⎝⎭,因为PO ⊥F 2M ,O P uuu r=(x 0,y 0),所以2023x -43cx 0+223y =0,即20x +20y =2cx 0.联立方程2200022002221x y cx x y a b ⎧+=⎪⎨+=⎪⎩,,消去y 0,得c 220x -2a 2cx 0+a 2(a 2-c 2)=0,解得x 0=()a a c c +或x 0=(-)a a c c .因为-a<x 0<a ,所以x 0=(-)a a c c ∈(0,a ), 所以0<a 2-ac<ac ,解得e>12.综上,椭圆离心率e 的取值范围为112⎛⎫ ⎪⎝⎭,.10. (1) 设椭圆方程为22x a +22y b=1(a>b>0),则c=1.因为AF uuu r ·F B uuu r=1,即(a+c )(a-c )=1=a 2-c 2,所以a 2=2,故椭圆方程为22x +y 2=1.(2) 假设存在直线l 交椭圆于P ,Q 两点,且F 恰为△PQM 的垂心,则设P (x 1,y 1),Q (x 2,y 2),因为M (0,1),F (1,0),故k PQ =1,于是可设直线l 的方程为y=x+m.联立2222y x m x y =+⎧⎨+=⎩,,得3x 2+4mx+2m 2-2=0,则x 1+x 2=-43m ,x 1x 2=22-23m .因为MP uuu r·FQ u u u r=0=x 1(x 2-1)+y 2(y 1-1),又y i =x i +m (i=1,2),得x 1(x 2-1)+(x 2+m )(x 1+m-1)=0,即2x 1x 2+(x 1+x 2)(m-1)+m 2-m=0,所以2·22-23m -43m(m-1)+m 2-m=0,解得m=-43或m=1(舍去). 经检验m=-43符合条件, 所以直线l 的方程为y=x-43.11. (1) 由题意得2222212312-c a b a b c =⎧⎪⎪+=⎨⎪=⎪⎩,,,解得a 2=4,b 2=3,故椭圆C 的方程为24x +23y =1.(2) 因为F (1,0),N (4,0).设A (m ,n ),M (x 0,y 0),则B (m ,-n ),n ≠0,则直线AF 的方程为y=-1nm (x-1), 直线BN 的方程为y=4-nm (x-4), 解得点M 的坐标为5-832-52-5m n m m ⎛⎫⎪⎝⎭,. 代入椭圆方程中,得204x +203y =25-82-54m m ⎛⎫ ⎪⎝⎭+232-53n m ⎛⎫⎪⎝⎭=222(5-8)124(2-5)m n m +.由24m+23n=1,得n2=321-4m⎛⎫⎪⎝⎭,代入上式得24x+23y=1.所以点M恒在椭圆C上.。

高三数学备考策略-

高三数学备考策略-

月考
2019届高三,年级准备全年进行七次大考: 第一学期举行四次月考: 第1次月考(9月17~18日) ,第2次月考(11月5~6日),
第3次月考(12月17~18日) ,第4次月考(四校联考) (1月25~26日)
第二学期举行三次大考: 第5次广州市一模(3月20日左右) ,第6次广州市二模 (4月20日左右),第7次华附三模(5月20日左右)
点评-----科代表将收回的试卷 清点后交给教师,老师进行清点, 然后交给科代表发回给全班同学, 再由命题的同学在班里公布答案并 行讲解。
概率 统计
立体 几何
科代表
解析 几何
三角、 向量、 其它
数列不 等式
函数 导数
2019
8 下学
月 期5
份 月下

暑 旬到 假 6月
学 补 高考
备课
考到
策 略
下 学 期
极性;从同学中来到同学中去,进行有 效训练。
出题 精选 双日练 点评
操作过程是:
出题-----以数学科代表为组长, 成立了数学命题组,成员由6个人组 成(分成两个小组),全部由学生 自愿参加。提出命题要求(时量控 制在半小时内),进行合理分工 (适当按知识块分),然后由这6名 学生按要求找自己最喜欢的题,并 配有详细解答;

(一轮用书) 1、知识方法技能;

2、习题限时训练.
学 第二轮 优化设计

(二轮用书)
自自 主学


1、看做“知识方法技
自编“纵横 能”内容,与课堂内
料 第三轮 交错训练” 容互补;
与 使 用
及广州市 查漏补缺
2、对训练题,限时完 成,自阅总结; 3、老师课外同步辅导。

圆锥曲线二级结论归纳(2019年高考数学复习备考研究)

圆锥曲线二级结论归纳(2019年高考数学复习备考研究)

圆锥曲线基础知识一、基础延拓(以不变应万变)【即时训练】若A ,B 在x 轴上的射影恰好是双曲线E 的两个焦点,则双曲线E 的离心率为 A.B.C. 2D. 2.(2014年全国卷Ⅱ文理科20题)设F 1、F 2分别是椭圆2222:1(0)x y C a b a b的左、右焦点,M 是C 上一点且M F 2与x 轴垂直,直线M F 1与C 的另一个交点是N .(1)若直线MN 的斜率为34,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN |=5| F 1N |,求a ,b .解:(1)根据c 及题设知22(,23b M c b ac a,将222b a c 代入223b ac ,解得1,22c c a a (舍去),故C 的离心率为12(2)由题意,原点O 为12F F 的中点,2//MF y 轴,所以直线1MF与y 轴的交点(0,2)D 是线段1MF 的中点,故24b a,即24b a .……………………………………①由1||5||MN F N ,得11||2||DFF N .设11(,)N x y ,由题意知10y ,则112()22c x c y 即11321x cy代入C 的方程,得2229114c a b . ……………………②将①及c 代入②得229(4)1144a a a a,解得27,428a b a ,故7,a b (二)特征三角形(常量a ,b ,c ,e 所在的同一个三角形)>0)的一个焦点,则F 到C 的一条渐近线的距离是 (A (B )3 (C m (D )3m2. (2018年全国卷Ⅰ 高考理科11题)已知双曲线C :2213x y ,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若△OMN 为直角三角形,则|MN |= A .32B .3C .D .4答案:B3. (2018年江苏高考8题)若双曲线22221(0,0)x y a b a b的右焦点F (c ,0)到一条渐近线的距离为2c ,则其离心率是_______. 答案:2.4.(2018年天津高考理科7题) 已知双曲线22221(0,0)x y a b a b的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点. 设A ,B 到双曲线同一条渐近线的距离分别为1d 和2d ,且126d d ,则双曲线的方程为A.221412x yB.221124x yC.22139x yD.22193x y 解析:法一,按通经做;法二,按特征三角形做。

2019年高考文科数学题型秘籍【32】数列的综合应用(解析版)

2019年高考文科数学题型秘籍【32】数列的综合应用(解析版)

高考数学精品复习资料2019.5专题三十二数列及其综合应用【高频考点解读】能在具体的问题情境中识别数列的等差关系或等比关系,并能用相关知识解决相应的问题.【热点题型】题型一数列综合应用题例1、已知log2x,log2y,2成等差数列,则M(x,y)的轨迹的图象为()【提分秘籍】数列综合应用题的解题步骤1.审题——弄清题意,分析涉及哪些数学内容,在每个数学内容中,各是什么问题.2.分解——把整个大题分解成几个小题或几个“步骤”,每个小题或每个“步骤”分别是数列问题、函数问题、解析几何问题、不等式问题等.3.求解——分别求解这些小题或这些“步骤”,从而得到整个问题的解答.4.数列的渗透力很强,它和函数、方程、三角形、不等式等知识相互联系,优化组合,无形中加大了综合的力度.解决此类题目,必须对蕴藏在数列概念和方法中的数学思想有所了解.【举一反三】数列1,1+2,1+2+22,1+2+22+23,…,1+2+22+…+2n-1,…的前n项和S n>1 020,那么n的最小值是()A.7B.8C.9D.10【热点题型】题型二常见的数列模型例2、有一种细菌和一种病毒,每个细菌在每秒钟杀死一个病毒的同时将自身分裂为2个,现在有一个这样的细菌和100个这样的病毒,问细菌将病毒全部杀死至少需要() A.6秒钟B.7秒钟C.8秒钟D.9秒钟【提分秘籍】1.等差数列模型:通过读题分析,由题意抽象出等差数列,利用等差数列有关知识解决问题.2.等比数列模型:通过读题分析,由题意抽象出等比数列,利用等比数列有关知识解决问题.3.递推公式模型:通过读题分析,由题意把所给条件用数列递推表达出来,然后通过分析递推关系式求解.4.分期付款模型设贷款总额为a,年利率为r,等额还款数为b,分n期还完,则b=r+r n+r n-1a.【举一反三】等比数列{a n}的前n项和为S n,若a1=1,且4a1,2a2,a3成等差数列,则S4=________.【热点题型】题型三等差与等比数列的综合问题例3、(高考浙江卷)在公差为d 的等差数列{a n }中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列.(1)求d ,a n ;(2)若d <0,求|a 1|+|a 2|+|a 3|+…+|a n |.【提分秘籍】对于等差、等比数列的综合问题,应重点分析等差、等比数列的通项,前n 项和以及等差、等比数列项之间的关系,往往用到转化与化归的思想方法.【举一反三】已知等差数列{a n }的公差和首项都不等于0,且a 2,a 4,a 8成等比数列,则a 1+a 5+a 9a 2+a 3=( )A .2B .3C .5D .6【热点题型】题型四 数列与函数的综合应用例4、已知函数f(x)=ln x的图象是曲线C,点A n(a n,f(a n))(n∈N*)是曲线C上的一系列点,曲线C在点A n(a n,f(a n))处的切线与y轴交于点B n(0,b n).若数列{b n}是公差为2的等差数列,且f(a1)=3.(1)分别求出数列{a n}与数列{b n}的通项公式;(2)设O为坐标原点,S n表示△OA n B n的面积,求数列{a n S n}的前n项和T n.【提分秘籍】解决函数与数列的综合问题应该注意的事项(1)数列是一类特殊的函数,它的图象是一群孤立的点;(2)转化以函数为背景的条件时,应该注意题中的限制条件,如函数的定义域,这往往是很容易被忽视的问题;(3)利用函数的方法研究数列中的相关问题时,应准确构造相应的函数,注意数列中相关限制条件的转化.【举一反三】(高考全国新课标卷Ⅱ)等差数列{a n}的前n项和为S n,已知S10=0,S15=25,则nS n的最小值为________.【热点题型】题型五数列的实际应用例5、某同学利用暑假时间到一家商场勤工俭学,该商场向他提供了三种付酬方案:第一种,每天支付38元;第二种,第一天付4元,第二天付8元,第三天付12元,依此类推;第三种,第一天付0.4元,以后每天支付的薪酬是前一天薪酬的2倍,工作时间为n天.(1)设工作n天,记三种付酬方式薪酬总金额依次为A n,B n,C n,写出A n,B n,C n关于n 的表达式;(2)如果n=10,你会选择哪种方式领取报酬?【提分秘籍】求解数列应用问题,必须明确属于哪种数列模型,是等差数列,还是等比数列;是求通项问题,还是求项数问题,或者是求和问题.然后将题目中的量建立关系,利用数列模型去解决.【举一反三】根据市场调查结果,预测某种家用商品从年初开始的n 个月内累积的需求量S n (单位:万件)近似地满足S n =n90(21n -n 2-5)(n =1,2,…,12).按此预测,在本年度内,需求量超过1.5万件的月份是( )A .5月、6月B .6月、7月C .7月、8月D .8月、9月【高考风向标】1.(20xx·湖南卷) 已知数列{a n }满足a 1=1,|a n +1-a n |=p n ,n ∈N *. (1)若{a n }是递增数列,且a 1,2a 2,3a 3成等差数列,求p 的值;(2)若p =12,且{a 2n -1}是递增数列,{a 2n }是递减数列,求数列{a n }的通项公式.2.(20xx·安徽卷) 设实数c >0,整数p >1,n ∈N *. (1)证明:当x >-1且x ≠0时,(1+x )p >1+px ;(2)数列{a n }满足a 1>c 1p ,a n +1=p -1p a n +c p a 1-p n ,证明:a n >a n +1>c 1p.3.(20xx·湖北卷) 已知等差数列{a n}满足:a1=2,且a1,a2,a5成等比数列.(1)求数列{a n}的通项公式.(2)记S n为数列{a n}的前n项和,是否存在正整数n,使得S n>60n+800?若存在,求n的最小值;若不存在,说明理由.4.(20xx·江西卷) 已知首项都是1的两个数列{a n },{b n }(b n ≠0,n ∈N *)满足a n b n +1-a n +1b n +2b n +1b n =0.(1)令c n =a nb n ,求数列{c n }的通项公式;(2)若b n =3n -1,求数列{a n }的前n 项和S n .5.(20xx·新课标全国卷Ⅱ] 已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明⎩⎨⎧⎭⎬⎫a n +12是等比数列,并求{a n }的通项公式;(2)证明1a 1+1a 2+…+1a n <32.6.(20xx·四川卷) 设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图像上(n ∈N *). (1)若a 1=-2,点(a 8,4b 7)在函数f (x )的图像上,求数列{a n }的前n 项和S n ; (2)若a 1=1,函数f (x )的图像在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列⎩⎨⎧⎭⎬⎫a nb n 的前n 项和T n .7.(20xx·浙江卷) 已知数列{a n}和{b n}满足a1a2a3…a n=(2)b n(n∈N*).若{a n}为等比数列,且a1=2,b3=6+b2.(1)求a n与b n.(2)设c n=1a n-1b n(n∈N *).记数列{cn}的前n项和为S n.(i)求S n;(ii)求正整数k,使得对任意n∈均有S k≥S n.8.(高考辽宁卷)下面是关于公差d >0的等差数列{a n }的四个命题: P 1:数列{a n }是递增数列; P 2:数列{na n }是递增数列; P 3:数列{a nn }是递增数列;P 4:数列{a n +3nd }是递增数列. 其中的真命题为( ) A .p 1,p 2 B .p 3,p 4 C .p 2,p 3 D .p 1,p 49.(高考重庆卷)已知{a n }是等差数列,a 1=1,公差d ≠0,S n 为其前n 项和,若a 1,a 2,a 5成等比数列,则S 8=________.10. (高考广东卷)设数列{a n }的前n 项和为S n .已知a 1=1,2S n n =a n +1-13n 2-n -23,n ∈N *.(1)求a 2的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1+1a 2+…+1a n <74.【随堂巩固】1.已知数列{a n},{b n}满足a1=1,且a n,a n+1是函数f(x)=x2-b n x+2n的两个零点,则b8+a9=()A.24 B.32C.48 D.642.已知数列{a n}为等差数列,数列{b n}是各项为正数的等比数列,其公比q≠1,若a4=b4,a12=b12,则()A.a8=b8B.a8>b8C.a8<b8D.a8>b8或a8<b83.已知正项等差数列{a n}满足:a n+1+a n-1=a2n(n≥2),等比数列{b n}满足:b n+1b n-1=2b n(n≥2),则log2(a2+b2)=()A.-1或2 B.0或2C .2D .14.各项都是正数的等比数列{a n }的公比q ≠1,且a 2,12a 3,a 1成等差数列,则q 的值为( )A.1-52B.5-12C.5+12D.5+12或5-125.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且a cos C ,b cos B ,c cos A 成等差数列,若b =3,则a +c 的最大值为( )A.32B .3C .2 3D .96.若关于x 的方程x 2-x +a =0与x 2-x +b =0(a ≠b )的四个根组成首项为14的等差数列,则a +b 的值是( )A.38B.1124C.1324D.31727.已知数列{a n }满足a n +2-a n +1=a n +1-a n ,n ∈N *,且a 5=π2.若函数f (x )=sin 2x +2cos 2x2,记y n =f (a n ),则数列{y n }的前9项和为( )A .0B .-9C .9D .18.《九章算术》之后,人们进一步用等差数列求和公式来解决更多的问题,《张丘建算经》卷上第22题为:“今有女善织,日益功疾,且从第2天起,每天比前一天多织相同量的布,若第一天织5尺布,现在一月(按30天计),共织390尺布”,则每天比前一天多织________尺布.(不作近似计算)9.已知数列{a n }满足a n a n +1a n +2a n +3=24,且a 1=1,a 2=2,a 3=3,则a 1+a 2+a 3+…+a 2 013=________.10.已知公比为q 的等比数列{a n }的前6项和S 6=21,且4a 1,32a 2,a 2成等差数列.(1)求a n ;(2)设{b n }是首项为2,公差为-a 1的等差数列,其前n 项和为T n ,求不等式T n -b n >0的解集.11.已知单调递增的等比数列{a n }满足a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项. (1)求数列{a n }的通项公式;(2)若b n =a n log 12a n ,S n =b 1+b 2+…+b n ,求使S n +n ·2n +1>50成立的正整数n 的最小值.12.已知数列{a n }的前n 项和为S n ,点(n ,S n )(n ∈N *)在函数f (x )=12x 2+12x 的图象上.(1)求数列{a n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a n a n +2的前n 项和为T n ,不等式T n >13log a (1-a )对任意正整数n 恒成立,求实数a 的取值范围.。

2019年高考数学文真题分项解析:专题04 三角函数与解三角形

2019年高考数学文真题分项解析:专题04 三角函数与解三角形

第四章 三角函数与三角形1.【2019高考新课标Ⅰ,文7】tan255°= A. -2-3 B. -2+3C. 2-3D. 2+3【答案】D 【解析】 【分析】本题首先应用诱导公式,将问题转化成锐角三角函数的计算,进一步应用两角和的正切公式计算求解.题目较易,注重了基础知识、基本计算能力的考查. 【详解】详解:000000tan 255tan(18075)tan 75tan(4530)=+==+=00031tan 45tan 3032 3.1tan 45tan 30313++==+--【点睛】三角函数的诱导公式、两角和与差的三角函数、特殊角的三角函数值、运算求解能力.2.【2019高考新课标Ⅰ,文11】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则b c =A. 6B. 5C. 4D. 3【答案】A 【解析】 【分析】利用余弦定理推论得出a ,b ,c 关系,在结合正弦定理边角互换列出方程,解出结果. 【详解】详解:由已知及正弦定理可得2224a b c -=,由余弦定理推论可得22222141313cos ,,,464224242b c a c c c b A bc bc b c +---==∴=-∴=∴=⨯=,故选A . 【点睛】本题考查正弦定理及余弦定理推论的应用.3.【2019高考新课标Ⅱ,文8】若x 1=4π,x 2=34π是函数f (x )=sin x ω(ω>0)两个相邻的极值点,则ω=A. 2B.32C. 1D.12【答案】A 【解析】 【分析】从极值点可得函数的周期,结合周期公式可得ω. 【详解】由题意知,()sin f x x ω=的周期232()44T ωπππ==-=π,得2ω=.故选A . 【点睛】本题考查三角函数的极值、最值和周期,渗透了直观想象、逻辑推理和数学运算素养.采取公式法,利用方程思想解题.4.【2019高考新课标Ⅱ,文11】已知a ∈(0,π2),2sin2α=cos2α+1,则sinα= A. 15B.55 C.33D.255【答案】B 【解析】 【分析】利用二倍角公式得到正余弦关系,利用角范围及正余弦平方和为1关系得出答案. 【详解】2sin 2cos21α=α+Q ,24sin cos 2cos .0,,cos 02π⎛⎫∴α⋅α=αα∈∴α> ⎪⎝⎭Q . sin 0,2sin cos α>∴α=α,又22sin cos 1αα+=,2215sin 1,sin 5∴α=α=,又sin 0α>,5sin 5α∴=,故选B . 【点睛】本题为三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负,很关键,切记不能凭感觉.5.【2019高考新课标Ⅲ,文5】函数()2sin sin2f x x x =-在[]0,2π的零点个数为( ) A. 2 B. 3C. 4D. 5【答案】B 【解析】 【分析】令()0f x =,得sin 0x =或cos 1x =,再根据x 的取值范围可求得零点.【详解】由()2sin sin 22sin 2sin cos 2sin (1cos )0f x x x x x x x x =-=-=-=, 得sin 0x =或cos 1x =,[]0,2x π∈Q ,02x ππ∴=、或.()f x ∴在[]0,2π的零点个数是3,故选B .【点睛】本题考查在一定范围内的函数的零点个数,渗透了直观想象和数学运算素养.采取特殊值法,利用数形结合和方程思想解题.6.【2019高考北京卷,文6】设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的 A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件【答案】C 【解析】 【分析】根据定义域为R 的函数()f x 为偶函数等价于()=()f x f x -进行判断. 【详解】0b = 时,()cos sin cos f x x b x x =+=, ()f x 为偶函数; ()f x 为偶函数时,()=()f x f x -对任意的x 恒成立,()cos()sin()cos sin f x x b x x b x -=-+-=-cos sin cos sin x b x x b x +=- ,得0bsinx =对任意的x 恒成立,从而0b =.从而“0b =”是“()f x 为偶函数”的充分必要条件,故选C.【点睛】本题较易,注重重要知识、基础知识、逻辑推理能力的考查.7.【2019高考北京卷,文8】如图,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,APB ∠是锐角,大小为β.图中阴影区域的面积的最大值为A. 4β+4cos βB. 4β+4sin βC. 2β+2cos βD. 2β+2sin β【答案】B 【解析】 【分析】由题意首先确定面积最大时点P 的位置,然后结合扇形面积公式和三角形面积公式可得最大的面积值. 【详解】观察图象可知,当P 为弧AB 的中点时,阴影部分的面积S 取最大值,此时∠BOP =∠AOP =π-β, 面积S 的最大值为2222βππ⨯⨯+S △POB + S △POA =4β+1||sin()2OP OB πβ-‖1||sin()2OP OA πβ+-‖ 42sin 2sin 44sin βββββ=++=+⋅.故选:B .【点睛】本题主要考查阅读理解能力、数学应用意识、数形结合思想及数学式子变形和运算求解能力,有一定的难度.关键观察分析区域面积最大时的状态,并将面积用边角等表示.8.【2019高考天津卷,文7】已知函数()sin()(0,0,||)f x A x A ωϕωϕπ=+>><是奇函数,将()y f x =的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图像对应的函数为()g x .若()g x 的最小正周期为2π,且24g π⎛⎫= ⎪⎝⎭,则38f π⎛⎫= ⎪⎝⎭( ) A. 2- B. 2-C.2 D. 2【答案】C 【解析】 【分析】只需根据函数性质逐步得出,,A ωϕ值即可。

高考数学压轴题背景溯源分析及其备考教学研究

高考数学压轴题背景溯源分析及其备考教学研究

!高考数学压轴题背景溯源分析及其备考教学研究#山东省烟台第三中学!杨新萍新课标背景下!数学高考试卷压轴题命题的视角愈发多元!其难易程度以及能力考查位于中等与高等之间!整合了竞赛类数学题目中典型知识点)问题)数学思想!而竞赛数学为高等数学的基础!其在高考试卷压轴题中的渗透是高中数学课改的最新尝试!以加大能力考查力度!对学生智力以及综合能力展开更精准的衡量!从而更好地发挥高考的选拔功能!因此!在高中阶段!溯源高考数学压轴题背景!是把控高考数学热点与方向的重要手段!本文基于此!从知识背景与方法背景两个层面展开高考数学压轴题溯源!并提出针对性备考教学设计方法!以为高中生数学复习提供有益参考!!高考数学压轴题背景溯源!1!知识背景目前高考数学压轴题的难度以及考查的主要内容介于中等与高等数学之间!与竞赛数学在思想)方法方面存在诸多融合之处!其中两者知识点的重合部分有'代数方程)三角函数)平面几何)初等数论等!而高考作为一次选拔性考试!其命题过程中始终遵循以能力意志为基础的原则-且课程标准提倡尊重学生个性差异!从不同角度学习数学!而在高考命题中也充分体现这一特点!压轴题的出现则是加深试卷整体深度!对学生思维品质与综合能力展开更高标准的考查!其中借鉴了诸多竞赛数学题目)思想)理念!因此!从知识背景溯源应考虑高考命题与竞赛数学结合后题型)考点的创新!以函数问题为例'高考试题 %#((%年广东卷&设函数-%"&在%&K !$K &上满足-%#&"&%-%#$"&!-%'&"&%%'$"&!且在闭区间5(!'6上!只有-%!&%-%$&%(!问题'%!&试判断函数#%-%"&的奇偶性-%#&试求方程-%"&%(在闭区间5&#((%!#((%6上的根的个数!并证明结论!竞赛试题 %!3&"年第二节美国数学邀请赛&函数-定义在实数域上!且满足如下条件'对任何实数"!-%#$"&%-%#&"&!-%'$"&%-%'&"&!如果"%(是-%"&%(的一个根!那么-%"&%(在区间&!(((&"&!(((中至少应有几个根$两个题目的条件以及问题都具有相似性!高考试题仅在试题的问题上以及已知条件中做了简单改动!考查学生对函数单调性)周期性等知识点的掌握!主要测试学生的运算能力与思维能力!!1"方法背景除了考查知识点)命题思想等知识层面与竞赛数学试题的关联!在数学方法上也存在直接的联系!例如!对极端原理的考查!通过已知条件对研究对象极端情况的约束!研究数学题目中的某种极端性质!用于解题的思想)方法及研究都被称作极端原理!利用该原理解决数学问题过程中!重点应放在全面讨论问题的极端情况上!如果已知条件发现矛盾或特殊性质!极端情况往往隐藏其中!这是竞赛数学中频繁出现的数学问题解决方法!如最小)最大原理!最短)最长原理等都是竞赛数学的高频考点!而在高考中极端原理题目也经常出现!如'高考试题 %#((%年辽宁卷&已知#%-%"&是定义在*上的单调函数!实数"!5"#!&5!!!%"!$&"#!$&!'%"#$&"!!$&!若-%"!&(-%"#&$-%!&(-%'&!则%!!&!4!&$(J !&%()!($&$!!?!&+!"高考数学压轴题备考教学设计方法高考为一场选拔性考试!其侧重基础知识考查兼能力测试!因此!在试卷的命题上其多以基础数学知识)基础数学思想)基础数学技能为主!主要考查的能力有空间想象能力)运算能力)思维能力等!在保持命题方向基本不变的情况下!借鉴竞赛数学的基础问题提高试卷难度!从更多元的视角考查学生能力!因此!在备考环节可广泛借鉴数学竞赛试题的思想与方法!#"#(##年$月上半月备考指南复习备考Copyright ©博看网. All Rights Reserved.!具体策略如下'"1!借鉴法即将竞赛数学中的基础思想)命题直接移植到备考习题当中'或摘取竞赛数学试题当中的某些设问方法)已知条件)结论片段运用到备考习题设计当中!以上述高考试题!为例!其仅对竞赛试题的已知条件与设问方法做出了简单的调整!更多直接借鉴其条件与结论!但从借鉴问题的具体过程来看!虽然条件做出了改变!但是方法基本不变!而这种大范围借鉴的情况并不多见!小范围借鉴案例颇多!高考试题 %#((&年江西卷&如图!所示!正三棱锥="678的三条侧棱=6)=7)=8两两垂直!且长度均为#!<)3)L分别为67)68)<3的中点!过<3作平面与侧棱=6)=7)=8或其延长线分别交于6!)7!)8!!已知=6!%$#!求证7!8!1平面=6L!求二面角="6!7!"8!的大小!图!图#竞赛试题 %!33%年全国联赛&如图#所示!设=为正三棱锥+"678的底面正@678的中心!过点=的动平面与三条侧棱或其延长线的交点分别是C)A)>!求'!+C$!+A$!+>是定值!(%(为侧棱长&!两道试题在条件上具有相同性!高考试题将设问转变!但仍为相同问题的两种不同表述方式!且所给图形仍然具有一致性!"1"改造法简单理解借鉴法多为直接移用竞赛原试题!容易引发对考试公平性的争议!因此!高考数学压轴题也利用改造法!更改竞赛试题原来的面貌!以竞赛试题为骨架或模型!经过加工与改编使试题重新回到备考试题当中!采用改造法由高考不得不面对的诸多现实问题决定!如新课改背景下!要求高考进行试题创新!不得使用陈题!为确保题目的新颖性!改造法成本最低)效果最佳-且竞赛试题是经由数学专家)学者苦心设计的!其集中反馈出数学研究兴趣!目前常用的改造方法如下'%!&数据变换!高考试题 %#((%年江西卷&已知数列,(1的各项都是正数!且((%!!(0$!%!#(0%"&(0&!0--!证明(0$(0$!$#!0---求解数列,(01的通项公式(0!竞赛试题 %!3&%年加拿大数学奥林匹克竞赛&设!$"!$#!对于0%!!#!$!00!定义"0$!%!$"0&!#"#0!求证对于0+$!有"0&槡#$#&0!%#&化繁为简!高考试题 %#((&年全国卷!&如图$所示!环形花坛被分成四块!有"种花供本次选种!要求每块里种一种花!且相邻两种种类不同!问'共多少种种法$竞赛试题 %#((!年全国高中数学联合竞赛&在正六边形的6)7)8);)<)3六个区域种植观察植物!如图"所示!要求每块种一种植物!相邻两块植物种类不同!现有"种植物可供选择!栽种方案有多少种$图$图""1#渗透法即选择竞赛试题中的定理进行加工)改造!渗透原题目的思想!使试题焕然一新!高考试题 %!330年全国卷&已知(!)!5为实数!函数-%"&%("#$)"$5!G%"&%("$)!当&!&"&!时!-%"&&!!求'%!&5&!-%#&当&!&"&!时!G%"&&#-%$&(,(!当&!&"&!时!G%"&的最大值为#!求-%"&!竞赛试题 %美国第六届普特南竞赛&设()))5-*!-%"&%("#$)"$5!当"&!时!-%"&&!!证明当"&!时!#("$)&"!通过对高考数学压轴题的溯源!了解命题人的意图)命题思维!在备考阶段可逐步渗透所涉及的数学思想)方法!使学生提前了解)适应试题思路!形成应对策略体系!参考文献*!+犹广江!立足教材$全面构思$注重导向!!!命制一道中考模拟压轴题的心路历程*,+!中学数学&下($#(!3&"(!*#+张宁!关注倍角模型$破解中考压轴题!!!等腰三角形中的两个倍角关系模型在解题中的应用*,+!中学数学&下($#(!&&!((!$$"复习备考备考指南#(##年$月上半月Copyright©博看网. All Rights Reserved.。

2019届高考数学学科备考关键问题指导系列五(非主干板块)

2019届高考数学学科备考关键问题指导系列五(非主干板块)

2019届高中毕业班数学学科备考关键问题指导系列五非主干板块非主干板块指的是在整个高中课程内容体系中,由“六大主干”以外的内容组合在一起构成的一个特殊板块(含集合、算法初步、平面向量、不等式、常用逻辑用语、推理与证明、数系的扩充与复数、计数原理等内容).非主干板块在高考考查中,集合着重考查集合的含义与表示、集合间的基本关系、集合的基本运算;算法初步着重考查算法的含义、程序框图、基本算法语句;平面向量着重考查平面向量的基本概念、向量的线性运算、平面向量的基本定理及坐标表示、平面向量的数量积、向量的应用;不等式着重考查—元二次不等式、二元一次不等式组与简单线性规划问题、基本不等式;常用逻辑用语着重考查全称量词与存在量词、命题及其关系、简单的逻辑联结词;推理与证明着重考查合情推理(归纳和类比)与演绎推理、直接证明(分析法和综合法)与间接证明(反证法);数系的扩充与复数着重考查复数的概念、复数的四则运算;计数原理(文科不做要求)着重考查分类加法计数与分步乘法计数原理、排列与组合、二项式定理。

高考试题中,非主干板块显性考查时,一般以选择题或填空题的形式呈现,除常用逻辑用语和推理与证明外,每个模块一般有一道选择题或填空题,每道题分值均为5分。

集合试题在前两题的位置,复数试题在前三题的位置,都为容易题,集合试题常考集合的概念、表示法和集合运算,一般结合考查简单不等式的求解问题.复数试题常考复数基本概念(轭复数、模)和代数形式的四则运算,一般是单独考查本模块内的内容,有时以方程的形式出现.算法初步试题一般以选择题形式呈现,在第七题至第九题的位置,常考程序框图(三种基本逻辑结构)、五种基本算法语句,解答目标的形式主要有:求输出结果、求输入内容、补框图内容等.平面向量试题单独考查时一般是容易题偶为中等难度题,主要考查平面向量的概念、模的运算、向量加法、减法运算、数乘运算及数量积运算的性质及其几何意义、两个向量共线与垂直的含义、平面向量的基本定理及坐标表示;平面向量作为数学工具,也常结合主干模块进行考查,解决某些简单的平面几何问题,简单的力学问题与其他一些实际问题.不等式试题除不等式选讲试题外,一般是容易题或中等难度题,主要考查二元一次不等式组、简单线性规划及最值问题,基本不等式、一元一次、二次不等式与一些简单的不等一般渗透到其它模块中进行考查.常用逻辑用语试题一般考查全称命题与特称命题的概念辨析与命题关系、充要条件的概念辨析、“或”“且”“非”命题运算、命题真假判断、全称量词与存在量词的应用,但理科近三年(文科近五年)高考全国卷Ⅰ没出现考查该模块的试题.推理与证明作为推理的方式与证明的方法,主要是渗透到其它模块中从思维方式和思想方法上进行考查,显性考查时,一般是合情推理试题或纯推理试题,属容易题,但近五年高考全国卷Ⅰ仅2014年对该模块进行考查.计数原理(文科不做要求)试题一般是容易题或中等难度题,一般考查分步与分类计数原理和排列组合的应用(也可能结合到概率中考查)、二项式定理的应用,考查二项式定理的应用时,都以小题的形式呈现,且结合一些多项式的运算,考查项的系数与二项式系数概念、通项公式的应用、用赋值法研究项的系数等.随着高中课程与高考的综合改革,算法初步和线性规划将不作学习要求,而2018年高考全国卷Ⅰ仍然对线性规划进行考查,但没有考查算法初步.应该注意的是,这并不意味着今后也不考查算法初步。

2019届高考理科数学一轮复习学案:第48讲 圆的方程

2019届高考理科数学一轮复习学案:第48讲 圆的方程

考向 3 距离型最值问题
4 (1)[2017·嘉兴一中联考] 已知圆 C:(x-2)2+(y+m-4)2=1,当 m 变化时,圆 C 上的点与原
点 O 的最短距离是
.
(2)若 P 是圆 C:(x+3)2+(y-3)2=1 上任一点,则点 P 到直线 y=kx-1 距离的最大值为 ( )
A.4 B.6
C.3 -1 D.2
[总结反思] 求解形如|PM|+|PN|且与圆 C 有关的折线段的最值问题(其中 M,N 均为动点)的基 本思路:(1)“动化定”,把与圆上的点的距离,转化为与圆心的距离;(2)“曲化直”,即将折 线段之和转化为同一直线上的两线段之和,一般要通过对称性解决. 强化演练
1.【考向 1】设实数 x,y 满足(x+2)2+y2=3,那么 的取值范围是 ( )
(3)几何法:利用圆与圆的几何性质列方程. (4)代入法:找到要求点与已知点的关系,代入已知点满足的关系式列方程.
式题 (1)[2017·广东广雅中学、江西南昌二中联考] 自圆 C:(x-3)2+(y+4)2=4 外一点 P(x,y) 引该圆的一条切线,切点为 Q,切线的长度等于点 P 到原点 O 的距离,则点 P 的轨迹方程为
A.x2+y2=1
B.x2+y2=1
C.x2+y2=1
D.y=
(2)点 P(4,-2)与圆 x2+y2=4 上任一点连线的中点的轨迹方程是 ( ) A.(x-2)2+(y+1)2=1 B.(x-2)2+(y+1)2=4 C.(x+4)2+(y-2)2=4 D.(x+2)2+(y-1)2=1 [总结反思] 与圆有关的轨迹问题的四种常用求解方法: (1)直接法:直接根据题目提供的条件列出方程. (2)定义法:根据圆、直线等的定义列方程.

数学高考运算能力考查研究

数学高考运算能力考查研究

数学高考运算能力考查研究文/庄雅欣摘要:新课程的改革对高考数学产生了一定的影响,本文在鲍建生教授综合难度模型的基础上对近三年高考试卷试题难度进行总体分析,进而对难度变化较大的运算因素从试题数量和试题分值分布进行了剖析,在此基础上为高考试题命制及一线教师教学提出建议。

1 问题提出随着教育的改革,高考也发生了相应的变化,越来越重视学生核心素养的考查。

高中数学核心素养主要包括数学抽象、逻辑推理、数学建模、数学运算、几何直观、数据分析。

核心素养是高中数学教与学过程中主要的发展对象,所以作为高中生的必备技能的运算能力成为数学高考的重要考查内容。

笔者借助综合难度模型对近三年高考理科数学卷进行科学的统计分析,让读者更清楚高考数学试题对数学运算能力的考查。

这一研究能够帮助命题人员明确试题对学生数学运算能力的具体考查,正确把握命题的方向。

同时帮助一线的教育工作者更好地培养学生的运算能力,提高学生的运算思想,以便促进学生的全面发展。

2 研究工具鲍建生在比较研究中英两国初中数学课程综合难度时提出了综合难度模型,他将Noraha提出刻画试题难度的“扩展性问题”的百分比、“实际背景”的题目的百分比、“运算”的题目的百分比、“多步推理”的题目的百分比等四个因素扩展探究、推理、背景、运算和知识含量五个因素建立了综合难度模型。

该模型对五个因素进行了层次等级的划分,对每个层次等级进行赋值,用加权平均的方式对每个因素进行计算得出结果。

计算公式为:其中,分别表示五个难度因素的取值;其中表示第个难度因素的第个水平的题目数量,表示表示第个难度因素的第个水平的权重,他们的和就是题目总的数量。

其中鲍健生教授将运算难度划分为无运算、数值运算、简单符号运算和复杂符号运算四个水平。

高考试卷运算难度的研究能够帮助一线教师明确高考的命题动向,进而更好的培养学生的运算能力。

笔者将利用鲍建生教授在2014年修改后的综合难度模型对近三年高考试卷进行剖析。

3 试题分析根据鲍建生综合难度模型的公式计算出近三年全国Ⅰ卷在综合难度各因素上的加权平均,进而得出近三年全国Ⅰ卷试题综合难度五边形如图1所示。

圆锥曲线多变化透视奇异有法眼——一道2019年高考文科数学北京卷“圆锥曲线”问题的思考探究

圆锥曲线多变化透视奇异有法眼——一道2019年高考文科数学北京卷“圆锥曲线”问题的思考探究

由韦达定理,得
2 kta2

= ~ b2 + a2 k2 ^
a t 1 -a b1 ’ X 2 = b、 a2 k2
题中的条件i c w 卜 i〇yvi= a2,即 a s 2 = o //.〇M . 在 此 ,笔者先证明下面一个结论:(以下线段均为
有向线段)
% + y2 二a:(x 丨 +无2) + 2 z = , 2 2
解 得 t = 0 或 t = fca. 因 为 点 P ,C» 是 双 曲 线 C 上 异 于 顶 点 的 两 个 动
V ,则直线经过定点原点.
点 ,所 以 《=〇.
证 明 当 动 直 线 的 斜 率 不 存 在 时 ,显然
<〇,不符合题意.
所以 动 直 线 P <?的方程 为 7 = & ,过定点原点• 当 点 坐 标 为 4 U ,〇)时 ,N 理可证(1)(2).
在上面的探究中,笔者 得 到 : 性 质 1 在平面直角坐标系x O y 中 ,已 知 楠 圆 C :
\
= l(a > 6 > 0 ) ,点 /!是 椭 圆 C 的顶点,点尸,(?
a0
是 椭 圆 C 上 异 于 点 4 的两个动点.
(1) 若 直 线 的 斜 率 满 足 ^ a为 定
值 ,则 直 线 经 过 +«, 1y = kx + 19
反之 ,得 : 性 质 4 在 平 面 直 角 坐 标 系 * O y 中 ,已知双曲线
7 十 =1’
(b2 - a2k2)x2 - 2kta2x - a212 - a2b2 = 0.
由韦达定理,得
2kta2
a V + a2b2

回归本源,立足教材--2019年数学高考江苏卷第13题解法评析及教学思考

回归本源,立足教材--2019年数学高考江苏卷第13题解法评析及教学思考

38福建中学数学2020年第12期1试题呈现23回归本源,立足教材2019年数学高考江苏卷第13题解法评析及教学思考朱阳帆江苏省扬中高级中学(212200)(2019年高考江苏卷•13、已知求sin(2a+彳)_tan atan(a+n)评析本解法是常规思路,分别用到了和角公式,倍角公式,同角的三角函数关系,计算量较大,而且考后和部分学生交流得知学生对用不同的正切算出了相同的答案有所怀疑,进行二次计算,浪费了时间.该题是对两角和与差的三角函数的考查,解决此类问题,需要用到一系列三角公式与变换:和角公式,倍角公式,同角的三角函数关系进行恒等变换,测试目标是应用公式,但需要整合,且经多个目标完成[1].笔者今年任教高三,考后与学生交流,发现有部分学生写了土寻这个答案,觉得有些可解法2tan atan atan(a+n)22-亍tan(a+—)232tan a+131-tan a /.3tan2a-5tan a-2_0,惜.本文给出第13题填空题的5种解法,并浅析出现土寻这个答案的原因,并就此题谈谈笔者在/.tan a_-1或tan a_2,3-41:.sin(2a+—)_-^-(sin2a+cos2a)高三复习教学时的拙见.2五种解法及评析—•(2sin a cos a+cos2a-sin2a)解法1tan atan(a+n)2322一2血一2一一一一2sin a cos a+cos2a-sin2a2•2cos a+sin atan a_一亍tan(a+—)_2tan a+131-tan a2tan a+1-tan2a1+tan2a1[21°当tan a_一一时,sin(2a+—)_——,3410tan a_2或-一3P2 2°当tan a_2时'sin(2a+4)_I?,sin a_巫5或-sin a2丘5sin(2a+n)cos a_5a/10 sin a_---,10顶cos a_-----10或-cos a10 5a/10sin a_-----103顶cos a_----10sin2a_—,cos2a_35评析解法2和解法1比较少了分类讨论的过程,其实教材必修四第一章练习题后有好几道三角函数化简求值的练习,最好的处理方式都是添加分母sin2a+cos2a然后把整个分式化成正切处理,这样避免讨论,所以无论是平时教学还是高三复习课都要以课本为主,教材是高三复习最好的资料.从代数角度看sin2a_-—5 sin(2a+—c4cos2a_—,5:~~~(sin2a+cos2a)_2102tan a+1-tan2a1+tan2a_-3和tan atan(a+n)2-2同解,所以也解释了为什么tan a算出来是不同值得到的确是同样的结果.2020年第12期福建中学数学39解法 3 •/ tan a =-—tan(a + n )sin a cos(a +—)23,2—,cos a sin(a + —迈.忑.22 sin a cos a 2 sin a即―.+近2 =——cos a sin a +---cos a 2 2dsin2a -1-cos2a 2二 4 2 =—2.宀 1 + cos2a 34 21 sin(2a + n ) -1 ,=2 ' r 2=—21sin(2a + n )+1 3亠 sin(2a + n ) 忑评析本解法是把正切都化成了正弦余弦后用二倍角公式化简后进行合一变形处理,合一变形在教材必修4课后链接上有详细介绍•对学生三角函数各种公式应用熟练程度以及代数变形能力要求较高,相较于解法1和解法2,解法3少掉了解一 元二次方程和分类讨论的过程,最后直接得出要求的代数式值.102t \ + 3t 2 = 0,_a /2t 1— t 2 =T ‘令 sin(a + n )cos a = t 1 , cos(a + )sin a = t 2 ,3迈t 1 =---,1 102近2 10/. t 1 +12 =返,即 sin(2a + —) = ^2 .1 2 10, r \ 4 10n <由①②③得{评析通过解法4发现可以通过代数变形直接得出所求代数式的值,那么可以想到能否对代数式进行拆角处理构造对称式,①和③对一些学生而言 想到并不困难,①展开有a 和a +占,所以对③进4行拆角处理,关键②的构造很难想到•解法5利用万能公式,当tan a = 2时,.tan a 4sin2a =------2—=—,1 + tan a 5- 1 - tan2 a 3cos 2a =---------- =——,1 + tan2 a 5sin(2a + —) = ^2 (sin 2a + cos 2a ) = ^^ ,4 2 10当 tan a = -1 时,sin2a = —tan a 2—=3 1 + tan 2 a 宀 1 - tan 2 a 4cos 2a =----------=—,1 + tan2 a 5sin(2a + —) = ^2 (sin 2a + cos 2a ) = ^24 2 1035• cos(a +—) ,解法 4 叫=-2,cos a sin(a + n )3-3sin a cos(a + —) = cos a sin(a + —),442cos a sin(a + 彳)+ 3sin a cos(a + n ) = 0 ①,匸,•兀 • < it 、 a 乂 sin — = sin(a +---a )= 一 ,4 4 2评析笔者认为三角函数万能公式是解决这道题目的最好解法,教材上也有万能公式的内容,但是局限于很多同行在讲授新课的时候都略过了万能公式或者稍稍一笔带过,或者在平时解题的时候很少讲授利用万能公式解题,所以学生应用万能公sin(a + n ) cos a -sin a cos(a + n ) = ~^~ ②,sin(2a + —) = sin(a +a + —).4 4式解决这道问题的少之又少.3可能出现±春的原因当学生算出tan a = 2或-—后,采取的策略是sin(2a +孑)=sin(a + —) cos a + sin a cos(a + —)③,44算出tan2a-—或 tan2a =3—,tan(2a +彳)=1 或tan(2a +—)=—,4 7sin(2a + n )cos(2a + n )1 sin(2a +=-或-------cos(2a + —)40福建中学数学2020年第12期-1,与同角的三角函数关系联立,并经历复杂的缩角过程,发现两个都可以保留,得到了土春这个答案,凭空多出来-菁•其实用tan a算出tan2a4的过程是不等价转换,因为tan2a_-3,tan2a_-3,用正切的二倍角公式tan2a_半二,可41-tan2a以得出tan a_2或-2或3或-3,产生了增根,所以sin(2a+中)_-春是由增根tan a_-2或-1产生的多余的解.4教学反思4.1教师研究教材,深度挖掘教材习题中的思想方法与三角恒等变化有关的计算问题是历年来江苏高考数学考查的重点,今年的第13题,属于中档题,但是研究本题的5种解法可以发现,好的解法(解法2,解法4)来源于教材习题的解法与章节补充内容,容易想到的解法(解法1)考查学生对公式运用的熟练程度与代数变形能力.所以对于整个高三的数学复习教学,还是要以教材为主,对于一些重要例习题,使用一题多解、一题多变的方式进行串讲,培养求异思维,促进能力形成,强化重点题型、重要方法的理解与领悟,起到触类旁通的作用.最后,对一些解法相同或相近题型,采用多题一解的收敛方式串讲,侧重对通性通法进行归纳总结,真正达到举一反三、事半功倍的教学效果.4.2要让学生重视教材,力求做到真正的师生一起“回归教材”根据笔者近几年的高三教学经验发现,目前高三数学复习往往有个误区,教师很重视教材,学生倒不是很重视,而是沉溺于各种题海无法自拔,注重解题技巧而忽略了对教材上本源题型的研究,对数学学习急功近利,实则高考的试题就是来源于教材习题的改编,教材的编写也汇集了无数数学人的智慧,上面的例题,习题,蕴含着朴实无华的数学思想方法和最本源的数学解题技巧.所以在平时的教学中,要在学生面前强调教材对高三数学复习的重要性,重做教材上的经典题目,领悟其中的数学思想方法与解题技巧,使教材习题与课外习题产生“共鸣,,.参考文献[1]渠东剑.素养视角下的2019年高考数学江苏卷分析[J].中学数学教学参考,2019(9):56-60(本文系镇江市“十三五”教育规划课题《镇江市高中数学老师数学素养的现状与调查》(课题编号:2017jy-128)阶段性研究成果之一)导数中隐零点问题的处理策略朱广智广东省东莞市第六高级中学(523420)在高考数学导数压轴题中,导函数的零点在解题过程中处于“咽喉”位置至关重要.研读近几年高考题,我们发现经常会碰到导函数具有零点但求解相对繁琐甚至无法求解的问题•此类问题我们称之为“隐零点问题”.面对这种问题,我们不必正面强求,可以将这个零点设而不求,然后谋求一种整体的转化和过渡,再结合其他条件,从而获得问题的解决方法.本文结合2018年高考导数压轴题,探究了这类问题的一般处理策略,并且把这种策略应用于往年高考题进行了有效验证.在本文最后对此类问题指出了相应的备考策略.1问题探究案例1(2018年高考全国皿卷•文21)已知函数f(x)_处节1•证明:当a>1时,f(x)+e>e x0.师生互动要证f(x)+e>0,即证ax2+x-1+ e x+1>0.设g(x)_ax2+x-1+e x+1(a>1),只要证[g(x)]mm>0即可.令g'(x)_2ax+1+e x+1_0,g'(x) _ 2ax+1+e x+1_0是一个超越方程,导函数g'(x)_ 2ax+e x+1的零点不可求,是一个隐零点.怎么处理导函数的零点不可求问题?处理此类隐零点问。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档