最新高中文科数学线性规划部分常见题型整理资料讲解
高中数学线性规划题型总结
高考线性规划归类解析一、已知线性约束条件,探求线性目标关系最值问题例1、设变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥+-≥-≤-1122y x y x y x ,则y x z 32+=的最大值为 。
解析:如图1,画出可行域,得在直线2x-y=2与直线x-y=-1的交点A(3,4)处,目标函数z 最大值为18点评:本题主要考查线性规划问题,由线性约束条件画出可行域,然后求出目标函数的最大值.,是一道较为简单的送分题。
数形结合是数学思想的重要手段之一。
二、已知线性约束条件,探求非线性目标关系最值问题例2、已知1,10,220x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩则22x y +的最小值是 .解析:如图2,只要画出满足约束条件的可行域,而22x y +表示可行域内一点到原点的距离的平方。
由图易知A (1,2)是满足条件的最优解。
22x y +的最小值是为5。
点评:本题属非线性规划最优解问题。
求解关键是在挖掘目标关系几何意义的前提下,作出可行域,寻求最优解。
三、约束条件设计参数形式,考查目标函数最值范围问题。
例3、在约束条件0024x y y x sy x ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩下,当35s ≤≤时,目标函数32z x y =+的最大值的变化范围是()A.[6,15]B. [7,15]C. [6,8]D. [7,8]解析:画出可行域如图3所示,当34s ≤<时, 目标函数32z x y =+在(4,24)B s s --处取得最大值, 即max 3(4)2(24)4[7,8)z s s s =-+-=+∈;当45s ≤≤时, 目标函数32z x y=+在点(0,E 处取得最大值,即max 30248z =⨯+⨯=,故[7,8]z ∈,从而选D; 点评:本题设计有新意,作出可行域,寻求最优解条件,然后转化为目标函数Z 关于S 的函数关系是求解的关键。
四、已知平面区域,逆向考查约束条件。
例4、已知双曲线224x y -=的两条渐近线与直线3x =围成一个三角形区域,表示该区域的不等式组是() (A)0003x y x y x -≥⎧⎪+≥⎨⎪≤≤⎩ (B)0003x y x y x -≥⎧⎪+≤⎨⎪≤≤⎩ (C) 0003x y x y x -≤⎧⎪+≤⎨⎪≤≤⎩ (D) 0003x y x y x -≤⎧⎪+≥⎨⎪≤≤⎩解析:双曲线224x y -=的两条渐近线方程为y x =±,与直线3x =围图 2图1C成一个三角形区域(如图4所示)时有0003x y x y x -≥⎧⎪+≥⎨⎪≤≤⎩。
线性规划问题求解例题和知识点总结
线性规划问题求解例题和知识点总结线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。
在经济管理、交通运输、工农业生产等领域都有着广泛的应用。
下面我们通过一些具体的例题来深入理解线性规划问题,并对相关知识点进行总结。
一、线性规划的基本概念线性规划问题是在一组线性约束条件下,求一个线性目标函数的最大值或最小值的问题。
其数学模型一般可以表示为:目标函数:$Z = c_1x_1 + c_2x_2 +\cdots + c_nx_n$约束条件:$\begin{cases}a_{11}x_1 + a_{12}x_2 +\cdots +a_{1n}x_n \leq b_1 \\ a_{21}x_1 + a_{22}x_2 +\cdots +a_{2n}x_n \leq b_2 \\\cdots \\ a_{m1}x_1 + a_{m2}x_2 +\cdots + a_{mn}x_n \leq b_m \\ x_1, x_2, \cdots, x_n \geq0\end{cases}$其中,$x_1, x_2, \cdots, x_n$是决策变量,$c_1, c_2, \cdots, c_n$是目标函数的系数,$a_{ij}$是约束条件的系数,$b_1, b_2, \cdots, b_m$是约束条件的右端项。
二、线性规划问题的求解方法常见的求解线性规划问题的方法有图解法和单纯形法。
1、图解法适用于只有两个决策变量的线性规划问题。
步骤如下:画出直角坐标系。
画出约束条件所对应的直线。
确定可行域(满足所有约束条件的区域)。
画出目标函数的等值线。
移动等值线,找出最优解。
例如,求解线性规划问题:目标函数:$Z = 2x + 3y$约束条件:$\begin{cases}x + 2y \leq 8 \\ 2x + y \leq 10 \\ x \geq 0, y \geq 0\end{cases}$首先,画出约束条件对应的直线:$x + 2y = 8$,$2x + y =10$,以及$x = 0$,$y = 0$。
高考中线性规划常见题型及解法
型考题
得
x-2
y+3=0,
在线 性 约 束 条 件 下,
。
点 C(
5,
4)
2
求形如 z= (
x-a)+ (
y
故 zmax =5+4=9。
例4
约
2
-b) 的 线 性 目 标 函 数 的
若 x,
y 满足
束
条
件
-4
y 的最小值为
点(
a,
b)到 阴 影 部 分 的 某
图3
例6
。
3
z
x- ,作
4
4
A.
4
y≥0,
最 值 问 题,通 常 转 化 为 求
的点到点 D (
1,
0)的 距 离 的
平方,
作出不等式组对应 的
平面区域,
如图 7 所示。
由图 像 知 D 到 AC 的
距离为最小值。
|
1+0-4
| 3
此时 d=
= 。
2
2
图7
31
解题篇 经典题突破方法
高二使用 2019 年 10 月
则 m =d2 =
中
x|+|
x,
y|≤2 的点(
y)
整点(
横纵坐标都是整数)
有(
A.
9个
C.
1
3个
30
B.
1
0个
D.
1
4个
)
。
例 3
若 x,y
满 足 约 束 条 件
x+2
y-5≥0,
则 z = x +y 的 最 大 值 为
高中数学_线性规划知识复习
高中必修 5 线性规划最快的方法简单的线性规划问题一、知识梳理1.目标函数 : P=2x+y是一个含有两个变量x和y的函数,称为目标函数.2.可行域 :拘束条件所表示的平面地区称为可行域 .3.整点 :坐标为整数的点叫做整点.4.线性规划问题 :求线性目标函数在线性拘束条件下的最大值或最小值的问题,往常称为线性规划问题.只含有两个变量的简单线性规划问题可用图解法来解决.5.整数线性规划 :要求量取整数的线性规划称为整数线性规划.二、疑难知识导析线性规划是一门研究如何使用最少的人力、物力和财力去最优地达成科学研究、工业设计、经济管理中实质问题的特意学科 .主要在以下两类问题中获得应用:一是在人力、物力、财务等资源必定的条件下,如何使用它们来达成最多的任务;二是给一项任务,如何合理安排和规划,能以最少的人力、物力、资本等资源来达成该项任务 .1.关于不含界限的地区,要将界限画成虚线.2.确立二元一次不等式所表示的平面地区有多种方法,常用的一种方法是“选点法”:任选一个不在直线上的点,查验它的坐标能否知足所给的不等式,若合适,则该点所在的一侧即为不等式所表示的平面地区;不然,直线的另一侧为所求的平面地区.若直线不过原点,通常选择原点代入查验.3.平移直线y=- kx+P时,直线一定经过可行域.4.关于有实质背景的线性规划问题,可行域往常是位于第一象限内的一个凸多边形地区,此时改动直线的最正确地点一般经过这个凸多边形的极点.5.简单线性规划问题就是求线性目标函数在线性拘束条件下的最优解,不论此类题目是以什么实质问题提出,其求解的格式与步骤是不变的:(1)找寻线性拘束条件,线性目标函数;(2)由二元一次不等式表示的平面地区做出可行域;( 3)在可行域内求目标函数的最优解 .储蓄知识:一. 1.点 P(x00上,则点 P 坐标合适方程,即Ax 00+C=0,y )在直线 Ax+By+C=0+By+C>0; 当 B<0 时,2. 点 P(x ,y )在直线 Ax+By+C=0上方(左上或右上),则当B>0 时, Ax +By0000Ax 0+By 0+C<0B>0 时, Ax+By +C<0; 当 B<0 时,3. 点 P(x ,y )在直线 Ax+By+C=0下方(左下或右下),当0000Ax 0+By 0+C>0注意:( 1)在直线 Ax+By+C=0同一侧的全部点,把它的坐标(x,y) 代入 Ax+By+C, 所得实数的符号都同样 ,( 2)在直线 Ax+By+C=0的双侧的两点,把它的坐标代入Ax+By+C, 所获得实数的符号相反 ,即: 1.点 P(x11)和点22的同侧,则有(Ax1122+C)>02.点 P(x,y Q(x,y )在直线 Ax+By+C=0+By+C)A( x +By,y)和点 Q(x,y )在直线 Ax+By+C=0的双侧,则有(Ax +By+C)(Ax+By +C)<011221122二 .二元一次不等式表示平面地区 :①二元一次不等式Ax+By+C>0 (或 <0 )在平面直角坐标系中表示直线Ax+By+C=0某一侧全部点构成的平面地区 . 不包含界限 ;.Ax+By+C ≥ 0(或≤ 0)在平面直角坐标系中表示直线Ax+By+C=0②二元一次不等式某一侧全部点组成的平面地区且包含界限;注意:作图时 ,不包含界限画成虚线; 包含界限画成实线 .三、判断二元一次不等式表示哪一侧平面地区的方法:方法一 :取特别点查验 ; “直线定界、特别点定域原由 :因为对在直线 Ax+By+C=0的同一侧的全部点 (x,y), 把它的坐标 (x,y) 代入 Ax+By+C, 所获得的实数的符号都同样 ,因此只要在此直线的某一侧取一个特别点(x000+By0,y ),从 Ax+C 的正负即可判断Ax+By+C>0表示直线哪一侧的平面地区 .特别地 ,当 C≠ 0 时,常把原点作为特别点,当C=0 时,可用( 0, 1)或( 1, 0)当特别点 ,若点坐标代入合适不等式则此点所在的地区为需画的地区,不然是另一侧地区为需画地区。
高中数学必修5:简单的线性规划问题 知识点及经典例题(含答案)
简单的线性规划问题【知识概述】线性规划是不等式应用的一个典型,也是数形结合思想所体现的一个重要侧面.近年的考试中,通常考查二元一次不等式组表示的平面区域的图形形状以及目标函数的最大值或最小值,或求函数的最优解等问题.通过这节课的学习,希望同学们能够掌握线性规划的方法,解决考试中出现的各种问题.解决线性规划的数学问题我们要注意一下几点1.所谓线性规划就是在线性约束条件下求线性目标函数的最值问题;2.解决线性规划问题需要经历两个基本的解题环节(1)作出平面区域;(直线定”界”,特“点”定侧);(2)求目标函数的最值.(3)求目标函数z=ax+by最值的两种类型:①0b>时,截距最大(小),z的值最大(小);②0b>时,截距最大(小),z的值最小(大);【学前诊断】1.[难度] 易满足线性约束条件23,23,0,x yx yxy+≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩的目标函数z x y=+的最大值是()A.1B.32C.2D.32.[难度] 易设变量,x y满足约束条件0,0,220,xx yx y≥⎧⎪-≥⎨⎪--≤⎩则32z x y=-的最大值为( )A.0B.2C.4D.63. [难度] 中设1m >,在约束条件1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z x my =+的最大值小于2,则m 的取值范围为( )A.(1,1 B.(1)+∞ C .(1,3) D .(3,)+∞【经典例题】例1. 设变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =+的最大值为( )A.5B.4C.1D.8例2. 若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为( )A.4B.3C.2D.1例3. 设,x y 满足约束条件2208400,0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,若目标函数(0,0)z abx y a b =+>>的最小值为8,则a b +的最小值为____________.例4. 在约束条件下0,0,,24,x y x y s x y ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩当35s ≤≤时,目标函数32z x y =+的最大值的变化范围是( )A.[]6,15B.[]7,15 C.[]6,8 D.[]7,8例5. 设不等式组1230x x y y x ≥⎧⎪-+≥⎨⎪≥⎩,所表示平面区域是1,Ω平面区域2Ω与1Ω关于直线3490x y --=对称,对于1Ω中任意一点A 与2Ω中的任意一点B ,AB 的最小值等于( )A.285B.4C.125D.2例6.对于实数,x y ,若11,21,x y -≤-≤则21x y -+的最大值为_________.例7.在约束条件22240x y x y +++≤下,函数32z x y =+的最大值是___________.例8. 已知函数2()2(,)f x x ax b a b =++∈R ,且函数()y f x =在区间()0,1与()1,2内各有一个零点,则22(3)z a b =++的取值范围是( ).A.2⎫⎪⎪⎝⎭B.1,42⎛⎫ ⎪⎝⎭C.()1,2D.()1,4 例9. 奇函数()f x 在R 上是减函数,若,s t 满足不等式22(2)(2)f s s f t t -≤--,则当14s ≤≤时,t s的取值范围是( ). A.1,14⎡⎫-⎪⎢⎣⎭ B.1,14⎡⎤-⎢⎥⎣⎦ C.1,12⎡⎫-⎪⎢⎣⎭ D.1,12⎡⎤-⎢⎥⎣⎦例10. 某加工厂用某原料由甲车间加工出A 产品,由乙车间加工出B 产品.车间加工一箱原料需耗费工时10小时可加工出7千克A 产品,每千克 A 产品获利40元.乙车间加工一箱原料需耗费工时6小时可加工出4千克B 产品,每千克B 产品获利50元.甲、乙两车间每天共能完成至多70多箱原料的加工,每天甲、乙车间耗费工时总和不得超过480小时,甲、乙两车间每天获利最大的生产计划为(A )甲车间加工原料10箱,乙车间加工原料60箱(B )甲车间加工原料15箱,乙车间加工原料55箱(C )甲车间加工原料18箱,乙车间加工原料50箱(D )甲车间加工原料40箱,乙车间加工原料30箱【本课总结】线性规划是不等式和直线与方程的综合应用,是数形结合的和谐载体,也是高考中的重要考点,近几年的高考题中考查的频率较高,一般以考查基本知识和方法为主,属于基础类题,难度一般不高.1. 解决线性规划问题有一定的程序性:第一步:确定由二元一次不等式表示的平面区域;第二步:令z=0画直线0:0l ax by +=;第三步:平移直线0l 寻找使直线a z y x b b=-+截距取最值(最大或最小)的位置(最优解).第四步:将最优解坐标代入线性目标函数z ax by =+求出最值2. 解决线性规划问题要特别关注线性目标函数z ax by =+中b 的符号,若b >0,则使函数a z y x b b=-+的截距取最大(小)值的点,可使目标函数z ax by =+取最大(小)值,若b <0,则使函数a z y x b b=-+的截距取最大(小)值的点,可使目标函数z ax by =+取最小(大)值, b <0的情况是很多同学容易出现的盲点.3. 线性规划问题要重视数形结合思想的运用,善于将代数问题和几何问题相互转化,由线性规划问题引申的其它数形结合题目也要灵活掌握,如:将平面区域条件引申为:22240x y x y +++≤表示圆面等,将目标函数引申为:2224z x y x y =+++表示动点到定点的距离的最值问题;21y z x +=-表示动点与定点连线的斜率的最值问题等. 4. 线性规划问题首先作出可行域,若为封闭区域(即几条直线围成的区域)则一般在区域顶点处取得最大或最小值5. 线性规划中易错点提示(1)忽视平面区域是否包括边界.一般最优解都处于平面区域的边界顶点处,若平面区域不包含边界,则可能不存在最值.(2)忽视对线性目标函数z ax by =+中b 的符号的区分.(3)代数问题向其几何意义的转化困难.【活学活用】1. [难度] 中若不等式组⎪⎪⎩⎪⎪⎨⎧≤+≥≤+≥-ay x y y x y x 0220表示的平面区域是一个三角形,则a 的取值范围是( ) A.4,3⎡⎫+∞⎪⎢⎣⎭ B.(]0,1 C.41,3⎡⎤⎢⎥⎣⎦ D.(]40,1,3⎡⎫+∞⎪⎢⎣⎭2. [难度] 中 设变量x y ,满足约束条件1133x y x y x y ⎧--⎪+⎨⎪-<⎩,,.≥≥则目标函数4z x y =+的最大值为( ) A .4B .11C .12D .143. [难度] 中 已知变量x 、y 满足约束条件 20,1,70,x y y x x x y -+≤⎧⎪≥⎨⎪+-≤⎩则的取值范围是( ) A .9,65⎡⎤⎢⎥⎣⎦ B .9,5⎛⎤-∞ ⎥⎝⎦∪[)6,+∞ C .(],3-∞∪[)6,+∞ D .[3,6]。
高中数学线性规划知识总结+练习
(一) 知识内容1.二元一次不等式表示的区域对于直线(A 〉0)当B >0时, 表示直线上方区域; 表示直线的下方区域。
当B <0时, 表示直线下方区域; 表示直线的上方区域。
2.线性规划(1)不等式组是一组对变量x 、y 的约束条件,由于这组约束条件都是关于x 、y 的一次不等式,所以又可称其为线性约束条件。
z =Ax +By 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,我们把它称为目标函数.由于z =Ax +By 又是关于x 、y 的一次解析式,所以又可叫做线性目标函数。
另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示。
(2)一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.(3)那么,满足线性约束条件的解(x ,y )叫做可行解,由所有可行解组成的集合叫做可行域。
在上述问题中,可行域就是阴影部分表示的三角形区域。
其中可行解()和()分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解。
线性目标函数的最值常在可行域的顶点处取得;而求最优整数解必须首先要看它们是否在可行(二)主要方法:用图解法解决简单的线性规划问题的基本步骤:1。
首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域)。
2.设z =0,画出直线l 0.3.观察、分析,平移直线l 0,从而找到最优解。
4。
最后求得目标函数的最大值及最小值.(三)典例分析:1。
二元一次不等式(组)表示的平面区域【例1】 画出下列不等式(或组)表示的平面区域⑴⑵求不等式表示的平面区域的面积。
2.区域弧长、面积问题【例2】 若不等式组所表示的平面区域被直线分为面积相等的两部分,则的值是( )A .B .C .D .【例3】 若,,且当时,恒有,则以,为坐标点所形成的平面区域的面积等于 .例题精讲高考要求板块一:线性规划【例4】已知钝角的最长边为,其余两边的长为、,则集合所表示的平面图形面积等于()A.B.C.D.【例5】如图,在平面直角坐标系中,是一个与轴的正半轴、轴的正半轴分别相切于点、的定圆所围成的区域(含边界),、、、是该圆的四等分点.若点、点满足且,则称优于.如果中的点满足:不存在中的其它点优于,那么所有这样的点组成的集合是劣弧()A.B.C.D.【例6】已知是由不等式组所确定的平面区域,则圆在区域内的弧长为( )A. B.C.D.3.线性规划【例7】设变量,满足约束条件:.则目标函数的最小值为()A.6 B.7 C.8 D.23【变式】已知实数、满足,则的最大值是( )A.B.C.D.【例8】已知点的坐标满足条件,点为坐标原点,那么的最小值等于______,最大值等于______.【例9】设变量,满足约束条件,则函数的最大值为()A.B.C.D.【例10】若实数满足,则的最小值为.4。
线性规划基本题型
例5
(2023年北京-7)设不等式组
3x表x达y旳y平1面13
0 0
区(A域)(1为,D3,] 若(B指)数[2,函3数] y=(aCx旳) (1图,像2上] 存在(D区)[域35D,x上+旳∞3]点y,则9a旳0取值范围是
解:作出可行域如右图所示绿色
区域. 0<a<1 时 , x>0 时 , 0<ax<1 , y=ax
离旳平方旳最值问题.
题型三 求非线性目旳函数旳最值—斜率型
例3
x+y-6≥0, 已知实数 x,y 满足4x-3y+12≥0,
x≤4.
求xy的最大值与最小值.
【解】
x+y-6≥0, 作出不等式组4x-3y+12≥0,
x≤4
平面区域,如图所示.
表示的
(1)令 z=xy,则 y=zx.故求xy的最大值与最小值就是求 不等式组所表示的平面区域内的点与原点连线的斜率的 最大值与最小值,由图易知,kOC 最小,kOA 最大.
联立2x+x+2yy= =4500 ,得xy==2100 , ∴A(10,20). ∴z=3x+2y 的最大值为 z=3×10+2×20=70.
题型二 求非线性目旳函数旳最值—距离型
若目旳函数不是线性函数,我们可先将目旳函数变形找 到它旳几何意义,再利用解析几何知识求最值.
例2
x-y+2≥0 已知x+y-4≥0 ,求:
的交点(4,6)时,目标函数 z=ax+by(a>0,
b>0)取得最大值 12,即 4a+6b=12,即 2a+3b=6,而2a+3b=(2a+3b)2a+6 3b=163+(ba+ab)≥163+2= 265,故2a+3b的最小值为265.
检测:
高考数学线性规划题型总结
高考数学线性规划题型总结文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]线性规划常见题型及解法 一、已知线性约束条件,探求线性目标关系最值问题例1、设变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥+-≥-≤-1122y x y x y x ,则y x z 32+=的最大值为 。
解析:如图1,画出可行域,得在直线2x-y=2与直线x-y=-1的交点A(3,4)处,目标函数z 最大值为18点评:本题主要考查线性规划问题,由线性约束条件画出可行域,然后求出目标函数的最大值.,是一道较为简单的送分题。
数形结合是数学思想的重要手段之一。
习题1、若x 、y 满足约束条件222x y x y ≤⎧⎪≤⎨⎪+≥⎩,则z=x+2y 的取值范围是 ( )A 、[2,6]B 、[2,5]C 、[3,6]D 、(3,5] 解:如图,作出可行域,作直线l :x+2y =0,将l 向右上方平移,过点A (2,0)时,有最小值 2,过点B (2,2)时,有最大值6,故选A二、已知线性约束条件,探求非线性目标关系最值问题例2、已知1,10,220x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩则22x y +的最小值是 .22x y +解析:如图2,只要画出满足约束条件的可行域,而表示可行域内一点到原点的距离的平方。
由图易知A (1,2)是满足条件的最优解。
22x y +的最小值是为5。
点评:本题属非线性规划最优解问题。
求解关键是在挖掘目标关系几何意义的前提下,作出可行域,寻求最优解。
习题2、已知x 、y 满足以下约束条件220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则z=x 2+y 2的最大值和最小值分别是( ) A 、13,1 B 、13,2C 、13,45D 、13,25图2x y O22 x=2y =2 x + y =2BA2x + y - 2= 0x – 2y + 4 = 0 3x – y – 3 = 0OyxA解:如图,作出可行域,x 2+y 2是点(x ,y )到原点的距离的平方,故最大值为点A (2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x +y -2=0的距离的平方,即为45,选C 练习2、已知x ,y 满足⎪⎩⎪⎨⎧≥-+≥≥≤-+0320,1052y x y x y x ,则x y 的最大值为___________,最小值为____________. 2,0三、设计线性规划,探求平面区域的面积问题例3、在平面直角坐标系中,不等式组20200x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩表示的平面区域的面积是()(A)42 (B)4 (C) 22 (D)2 解析:如图6,作出可行域,易知不等式组20200x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩表示的平面区域是一个三角形。
高中数学-线性规划知识复习
高中必修5线性规划简单的线性规划问题一、知识梳理1. 目标函数: P=2x+y是一个含有两个变量x和y的函数,称为目标函数.2.可行域:约束条件所表示的平面区域称为可行域.3. 整点:坐标为整数的点叫做整点.4.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,通常称为线性规划问题.只含有两个变量的简单线性规划问题可用图解法来解决.5. 整数线性规划:要求量取整数的线性规划称为整数线性规划.二、疑难知识导析1.对于不含边界的区域,要将边界画成虚线.2.确定二元一次不等式所表示的平面区域有多种方法,常用的一种方法是“选点法”:任选一个不在直线上的点,检验它的坐标是否满足所给的不等式,若适合,则该点所在的一侧即为不等式所表示的平面区域;否则,直线的另一侧为所求的平面区域.若直线不过原点,通常选择原点代入检验.3. 平移直线y=-kx+P时,直线必须经过可行域.4.对于有实际背景的线性规划问题,可行域通常是位于第一象限内的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的顶点.5.简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解.积储知识:一. 1.点P(x0,y0)在直线Ax+By+C=0上,则点P坐标适合方程,即Ax0+By0+C=02. 点P(x0,y0)在直线Ax+By+C=0上方(左上或右上),则当B>0时,Ax0+By0+C>0;当B<0时,Ax0+By0+C<03. 点P(x0,y0)在直线Ax+By+C=0下方(左下或右下),当B>0时,Ax0+By0+C<0;当B<0时,Ax0+By0+C>0注意:(1)在直线Ax+By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+By+C,所得实数的符号都相同, (2)在直线Ax+By+C=0的两侧的两点,把它的坐标代入Ax+By+C,所得到实数的符号相反, 即:1.点P(x1,y1)和点Q(x2,y2)在直线 Ax+By+C=0的同侧,则有(Ax1+By1+C)(Ax2+By2+C)>02.点P(x1,y1)和点Q(x2,y2)在直线 Ax+By+C=0的两侧,则有(Ax1+By1+C)( Ax2+By2+C)<0二.二元一次不等式表示平面区域:①二元一次不等式Ax+By+C>0(或<0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.不.包括边界;②二元一次不等式Ax+By+C≥0(或≤0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域且包括边界;注意:作图时,不包括边界画成虚线;包括边界画成实线.三、判断二元一次不等式表示哪一侧平面区域的方法:方法一:取特殊点检验; “直线定界、特殊点定域原因:由于对在直线Ax+By+C=0的同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得到的实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x0,y0),从Ax0+By0+C的正负即可判断Ax+By+C>0表示直线哪一侧的平面区域.特殊地,当C≠0时,常把原点作为特殊点,当C=0时,可用(0,1)或(1,0)当特殊点,若点坐标代入适合不等式则此点所在的区域为需画的区域,否则是另一侧区域为需画区域。
高考数学线性规划常见题型及解法[1]
高考数学线性规划常见题型与解法线性规划问题是高考的重点,也是常考题型,属于中等偏简单题,易得分,高考中要求会从实际问题中建立一格二元线性规划的模型,使实际问题得到解决。
现就常见题型与解决方法总结如下: 一、求线性目标函数的最值;例题:(2012年广东文5)已知变量,x y 满足条件1110x y x y x +≤⎧⎪-≤⎨⎪+≥⎩,则2z x y =+的最小值为 A.3 .1 C5 6解析:利用线性规划知识求解。
可行域如图阴影所示,先画出直线01:2l y x =-,平移直线0l ,当直线过点A 时,2z x y =+的值最小,得110,x x y =-⎧⎨--=⎩12,x y =-⎧⎨=-⎩min (1,2),12(2)5A z ∴--∴=-+⨯-=- 探究提高:本题主要考查线性规划求最值,同时考查学生的作图能力,数形结合思想与运算求解能力,难度适中。
二、求目标函数的取值范围;例题:(2012山东文6)设变量,x y 满足约束条件2224,41x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩则目标函数3z x y =-的取值范围是解析:作出不等式组表示的区域,如图阴影部分所示,作直线30x y -=,并向上、向下平移,由图可得,当直线过点C 时,目标函数取得最大值,当直线过点A 是,目标函数取得最小值,由210,(2,0)240x y A x y ++=⎧⎨+-=⎩得;由4101,(,3)2402x y x y -+=⎧⎨+-=⎩得B 探究提高:本题设计有新意,作出可行域,寻求最优解条条件,取得目标函数的最大(小)值,进一步确定取值范围 三、求约束条件中参数的取值;例题:(2012福建文10)若直线2x y =上存在点(,)x y 满足条件-30-2-30,x y x y x m +≥⎧⎪≤⎨⎪≥⎩则实数m 的最大值为( )解析:在同一直角坐标系中函数2x y =的图像与30230x y x y +-≤⎧⎨--≤⎩,所表示的平面区域图阴影部分所示。
高考线性规划必考题型非常全)
线性规划专题一、命题规律讲解1、 求线性(非线性)目标函数最值题2、 求可行域的面积题3、 求目标函数中参数取值范围题4、 求约束条件中参数取值范围题5、 利用线性规划解答应用题一、线性约束条件下线性函数的最值问题线性约束条件下线性函数的最值问题即简单线性规划问题,它的线性约束条件是一个二元一次不等式组,目标函数是一个二元一次函数,可行域就是线性约束条件中不等式所对应的方程所表示的直线所围成的区域,区域内的各点的点坐标(),x y 即简单线性规划的可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标(),x y 即简单线性规划的最优解。
例1 已知4335251x y x y x -≤-⎧⎪+≤⎨⎪≥⎩,2z x y =+,求z 的最大值和最小值例2已知,x y 满足124126x y x y x y +=⎧⎪+≥⎨⎪-≥-⎩,求z=5x y -的最大值和最小值二、非线性约束条件下线性函数的最值问题高中数学中的最值问题很多可以转化为非线性约束条件下线性函数的最值问题。
它们的约束条件是一个二元不等式组,目标函数是一个二元一次函数,可行域是直线或曲线所围成的图形(或一条曲线段),区域内的各点的点坐标(),x y 即可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标(),x y 即最优解。
例3 已知,x y 满足,224x y +=,求32x y +的最大值和最小值例4 求函数4y x x=+[]()1,5x ∈的最大值和最小值。
三、线性约束条件下非线性函数的最值问题这类问题也是高中数学中常见的问题,它也可以用线性规划的思想来进行解决。
它的约束条件是一个二元一次不等式组,目标函数是一个二元函数,可行域是直线所围成的图形(或一条线段),区域内的各点的点坐标(),x y 即可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标(),x y 即最优解。
例5 已知实数,x y 满足不等式组10101x y x y y +-≤⎧⎪-+≥⎨⎪≥-⎩,求22448x y x y +--+的最小值。
高中数学知识点精讲精析 简单线性规划
3.4.2 简单线性规划1. 相关定义:(1)线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。
(2)可行解:满足线性约束条件的解叫做可行解。
(3)可行域:由所有可行解组成的集合叫做可行域。
(4)最优解:分别使目标函数取得最大值和最小值的可行解叫做最优解。
2. 线性规划问题的求解步骤:(1)先设出决策变量,找出约束条件和线性目标函数;(2)作出相应的图象(注意特殊点与边界)(3)利用图象,在线性约束条件下找出决策变量,使线性目标函数达到最大(小)值;在在求线性目标函数的最大(小)值时,直线往右(左)平移则值随之增大(小),这样就可以在可行域中确定最优解。
注:①对线性目标函数中的符号一定要注意:当时,当直线过可行域且在y 轴截距最大时,值最大,在y 轴截距最小时,值最小;当时,当直线过可行域且在y 轴截距最大时,值最小,在y 轴截距最小时,值最大。
②如果可行域是一个多边形,那么一般在其顶点处使目标函数取得最大或最小值,最优解一般就是多边形的某个顶点。
例1:设满足约束条件:,分别求下列目标函数的的最大值与最小值:(1); (2);(3)(是整数); (4); (5) 示中的区域,且【解析】先作可行域,如下图所求得、、),(y x ny mx z +=0=+ny mx By Ax z +=B 0>B z z 0<B z z y x ,⎪⎩⎪⎨⎧≥≤+-≤-1255334x y x y x y x z 106+=y x z -=2y x z -=2y x ,22y x +=ω1+=x y ωABC ∆)2,5(A)1,1(B )522,1(C(1)作出直线,再将直线平移,当的平行线过点B 时,可使达到最小值;当的平行线过点A 时,可使达到最大值。
故,(2)同上,作出直线,再将直线平移,当的平行线过点C 时,可使达到最小值;当的平行线过点A 时,可使达到最大值。
高中数学线性规划练习题及讲解
高中数学线性规划练习题及讲解线性规划是高中数学中的一个重要概念,它涉及到资源的最优分配问题。
以下是一些线性规划的练习题,以及对这些题目的简要讲解。
### 练习题1:资源分配问题某工厂生产两种产品A和B,每生产一件产品A需要3小时的机器时间和2小时的人工时间,每生产一件产品B需要2小时的机器时间和4小时的人工时间。
工厂每天有机器时间100小时和人工时间80小时。
如果产品A的利润是每件50元,产品B的利润是每件80元,工厂应该如何安排生产以获得最大利润?### 解题思路:1. 首先,确定目标函数,即利润最大化。
设生产产品A的数量为x,产品B的数量为y。
2. 目标函数为:\( P = 50x + 80y \)。
3. 根据资源限制,列出约束条件:- 机器时间:\( 3x + 2y \leq 100 \)- 人工时间:\( 2x + 4y \leq 80 \)- 非负条件:\( x \geq 0, y \geq 0 \)4. 画出可行域,找到可行域的顶点。
5. 计算每个顶点的目标函数值,选择最大的一个。
### 练习题2:成本最小化问题一家公司需要生产两种产品,产品1和产品2。
产品1的原材料成本是每单位10元,产品2的原材料成本是每单位15元。
公司每月有原材料预算3000元。
如果公司希望生产的产品总价值达到最大,应该如何分配生产?### 解题思路:1. 设产品1生产x单位,产品2生产y单位。
2. 目标函数为产品总价值最大化,但题目要求成本最小化,所以实际上是求成本最小化条件下的产品组合。
3. 约束条件为原材料成本:\( 10x + 15y \leq 3000 \)4. 非负条件:\( x \geq 0, y \geq 0 \)5. 画出可行域,找到顶点。
6. 根据实际情况,可能需要考虑产品1和产品2的市场价格,以确定最大价值。
### 练习题3:运输问题一个农场有三种作物A、B和C,需要运输到三个市场X、Y和Z。
高中 数学 必修5 线性规划 复习整理
线性规划基础知识:一. 1.点P(x 0,y 0)在直线Ax+By+C=0上,则点P 坐标适合方程,即Ax 0+By 0+C=02. 点P(x 0,y 0)在直线Ax+By+C=0上方(左上或右上),则当B>0时,Ax 0+By 0+C>0;当B<0时,Ax 0+By 0+C<03. 点P(x 0,y 0)在直线Ax+By+C=0下方(左下或右下),当B>0时,Ax 0+By 0+C<0;当B<0时,Ax 0+By 0+C>0注意:(1)在直线Ax+By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+By+C,所得实数的符号都相同,(2)在直线Ax+By+C=0的两侧的两点,把它的坐标代入Ax+By+C,所得到实数的符号相反,二.二元一次不等式表示平面区域:①二元一次不等式Ax+By+C>0(或<0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域. 不.包括边界;②二元一次不等式Ax+By+C ≥0(或≤0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域且包括边界;注意:作图时,不包括边界画成虚线;包括边界画成实线.三、判断二元一次不等式表示哪一侧平面区域的方法:方法一:取特殊点检验; “直线定界、特殊点定域原因:由于对在直线Ax+By+C=0的同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得到的实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断Ax+By+C>0表示直线哪一侧的平面区域.特殊地,当C ≠0时,常把原点作为特殊点,当C=0时,可用(0,1)或(1,0)当特殊点,若点坐标代入适合不等式则此点所在的区域为需画的区域,否则是另一侧区域为需画区域。
方法二:利用规律:1.Ax+By+C>0,当B>0时表示直线Ax+By+C=0上方(左上或右上),当B<0时表示直线Ax+By+C=0下方(左下或右下);2.Ax+By+C<0,当B>0时表示直线Ax+By+C=0下方(左下或右下)当B<0时表示直线Ax+By+C=0上方(左上或右上)。
线性规划的常见题型及其解法(教师版,题型全,归纳好)
之老阳三干创作创作时间:课题 线性规划的罕见题型及其解法谜底线性规划问题是高考的重点,而线性规划问题具有代数和几何的双重形式,多与函数、平面向量、数列、三角、概率、解析几何等问题交叉渗透,自然地融合在一起,使数学问题的解答变得更加新颖新颖.归纳起来罕见的命题探究角度有: 1.求线性目标函数的最值. 2.求非线性目标函数的最值. 3.求线性规划中的参数. 4.线性规划的实际应用.本节主要讲解线性规划的罕见基础类题型.【母题一】已知变量x ,y满足约束条件⎩⎨⎧x +y≥3x -y≥-12x -y≤3则目标函数z =2x +3y 的取值范围为( )A .[7,23]B .[8,23]C .[7,8]D .[7,25]求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-a b x +z b ,通过求直线的截距zb的最值,间接求出z的最值.【解析】画出不等式组⎩⎨⎧x +y≥3x -y≥-12x -y≤3暗示的平面区域如图中阴影部份所示,由目标函数z =2x +3y 得y =-23x +z 3,平移直线y =-23x 知在点B处目标函数取到最小值,解方程组⎩⎪⎨⎪⎧x +y =32x -y =3得⎩⎪⎨⎪⎧x =2y =1所以B (2,1),z min =2×2+3×1=7,在点A 处目标函数取到最年夜值,解方程组⎩⎪⎨⎪⎧ x -y =-12x -y =3得⎩⎪⎨⎪⎧x =4y =5所以A (4,5),z max=2×4+3×5=23.【谜底】A【母题二】变量x ,y 满足⎩⎨⎧x -4y +3≤03x +5y -25≤0x≥1(1)设z =y2x -1,求z 的最小值;(2)设z =x 2+y 2,求z 的取值范围;(3)设z =x 2+y 2+6x -4y +13,求z 的取值范围.(x ,y )在不等式组暗示的平面区域内,y2x -1=12·y -0⎝⎛⎭⎪⎫x -12暗示点(x ,y )和⎝ ⎛⎭⎪⎪⎫120连线的斜率;x 2+y 2暗示点(x ,y )和原点距离的平方;x 2+y 2+6x -4y +13=(x +3)2+(y -2)2暗示点(x ,y )和点(-3,2)的距离的平方.【解析】(1)由约束条件⎩⎨⎧x -4y +3≤03x +5y -25≤0x≥1作出(x ,y )的可行域如图所示.由⎩⎪⎨⎪⎧x =13x +5y -25=0解得A ⎝ ⎛⎭⎪⎪⎫1225.由⎩⎪⎨⎪⎧ x =1x -4y +3=0解得C (1,1).由⎩⎪⎨⎪⎧x -4y +3=03x +5y -25=0解得B (5,2).∵z =y 2x -1=y -0x -12×12∴z 的值即是可行域中的点与⎝ ⎛⎭⎪⎪⎫120连线的斜率,观察图形可知z min =2-05-12×12=29.(2)z =x 2+y 2的几何意义是可行域上的点到原点O 的距离的平方.结合图形可知,可行域上的点到原点的距离中,d min=|OC|=2,d max=|OB|=29.∴2≤z≤29.(3)z=x2+y2+6x-4y+13=(x+3)2+(y-2)2的几何意义是:可行域上的点到点(-3,2)的距离的平方.结合图形可知,可行域上的点到(-3,2)的距离中,d min=1-(-3)=4,d max=-3-52+2-22=8∴16≤z≤64.1.求目标函数的最值的一般步伐为:一画二移三求.其关键是准确作出可行域,理解目标函数的意义.2.罕见的目标函数有:(1)截距型:形如z=ax+by.求这类目标函数的最值常将函数z=ax+by转化为直线的斜截式:y=-abx+zb,通过求直线的截距zb的最值,间接求出z的最值.(2)距离型:形一:如z=,z=,此类目标函数常转化为点(x,y)与定点的距离;形二:z=(x-a)2+(y-b)2,z=x2+y2+Dx+Ey+F,此类目标函数常转化为点(x,y)与定点的距离的平方.(3)斜率型:形如z=yx,z=ay-bcx-d,z=ycx-d,z=ay-bx,此类目标函数常转化为点(x ,y )与定点所在直线的斜率.【提醒】注意转化的等价性及几何意义. 角度一:求线性目标函数的最值1.(2014·新课标全国Ⅱ卷)设x ,y 满足约束条件⎩⎨⎧x +y -7≤0x -3y +1≤03x -y -5≥0则z =2x -y 的最年夜值为( )A .10B .8C .3D .2【解析】作出可行域如图中阴影部份所示,由z =2x -y 得y =2x -z ,作出直线y =2x ,平移使之经过可行域,观察可知,当直线经过点A (5,2)时,对应的z 值最年夜.故z max =2×5-2=8.【谜底】B2.(2015·高考天津卷)设变量x ,y 满足约束条件⎩⎨⎧x +2≥0x -y +3≥02x +y -3≤0则目标函数z =x +6y 的最年夜值为( )A .3B .4C .18D .40【解析】作出约束条件对应的平面区域如图所示 ,当目标函数经过点(0,3)时,z 取得最年夜值18.【谜底】C3.(2013·高考陕西卷)若点(x ,y )位于曲线y =|x |与y =2所围成的封闭区域,则2x -y 的最小值为( )A .-6B .-2C .0D .2【解析】如图,曲线y =|x |与y =2所围成的封闭区域如图中阴影部份,令z =2x -y ,则y =2x -z ,作直线y =2x ,在封闭区域内平行移动直线y =2x ,当经过点(-2,2)时,z 取得最小值,此时z =2×(-2)-2=-6.【谜底】A角度二:求非线性目标的最值4.(2013·高考山东卷)在平面直角坐标系xOy 中,M 为不等式组⎩⎨⎧2x -y -2≥0x +2y -1≥03x +y -8≤0所暗示的区域上一动点,则直线OM 斜率的最小值为( )A .2B .1C .-13D .-12【解析】已知的不等式组暗示的平面区域如图中阴影所示, 显然当点M 与点A 重合时直线OM 的斜率最小,由直线方程x +2y -1=0和3x +y -8=0,解得A (3,-1),故OM 斜率的最小值为-13.【解析】C5.已知实数x ,y 满足⎩⎪⎨⎪⎧0≤x≤2y≤2x ≤2y 则z =2x +y -1x -1的取值范围.【解】由不等式组画出可行域如图中阴影部份所示, 目标函数z =2x +y -1x -1=2+y +1x -1的取值范围可转化为点(x ,y )与(1,-1)所在直线的斜率加上2的取值范围,由图形知,A 点坐标为(2,1),则点(1,-1)与(2,1)所在直线的斜率为22+2,点(0,0)与(1,-1)所在直线的斜率为-1,所以z 的取值范围为(-∞,1]∪[22+4,+∞).【谜底】(-∞,1]∪[22+4,+∞)6.(2015·郑州质检)设实数x ,y 满足不等式组⎩⎨⎧x +y ≤2y -x ≤2y ≥1则x 2+y 2的取值范围是( )A .[1,2]B .[1,4]C .[2,2]D .[2,4] 【解析】如图所示,不等式组暗示的平面区域是△ABC 的内部(含鸿沟),x 2+y 2暗示的是此区域内的点(x ,y )到原点距离的平方.从图中可知最短距离为原点到直线BC 的距离,其值为1;最远的距离为AO ,其值为2,故x 2+y 2的取值范围是[1,4].【谜底】B7.(2013·高考北京卷)设D为不等式组⎩⎨⎧x ≥02x -y ≤0x +y -3≤0所暗示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为________.【解析】作出可行域,如图中阴影部份所示,则根据图形可知,点B (1,0)到直线2x -y =0的距离最小,d =|2×1-0|22+1=255,故最小距离为255.【谜底】2558.设不等式组⎩⎨⎧x ≥1x -2y +3≥0y ≥x所暗示的平面区域是Ω1,平面区域Ω2与Ω1关于直线3x -4y -9=0对称.对Ω1中的任意点A 与Ω2中的任意点B ,|AB |的最小值即是( )A .285B .4C .125D .2【解析】不等式组⎩⎪⎨⎪⎧x≥1x -2y +3≥0y≥x ,所暗示的平面区域如图所示,解方程组⎩⎪⎨⎪⎧x =1y =x,得⎩⎪⎨⎪⎧x =1y =1.点A (1,1)到直线3x -4y -9=0的距离d =|3-4-9|5=2,则|AB |的最小值为4.【谜底】B角度三:求线性规划中的参数9.若不等式组⎩⎨⎧x ≥0x +3y ≥43x +y ≤4所暗示的平面区域被直线y =kx +43分为面积相等的两部份,则k 的值是( )A .73B .37C .43D .34【解析】不等式组暗示的平面区域如图所示.由于直线y =kx +43过定点⎝ ⎛⎭⎪⎪⎫043.因此只有直线过AB 中点时,直线y=kx +43能平分平面区域.因为A (1,1),B (0,4),所以AB 中点D ⎝ ⎛⎭⎪⎪⎫1252.当y =kx +43过点⎝ ⎛⎭⎪⎪⎫1252时,52=k 2+43,所以k =73.【解析】A10.(2014·高考北京卷)若x ,y满足⎩⎨⎧x +y -2≥0kx -y +2≥0y ≥0且z =y -x 的最小值为-4,则k 的值为( )A .2B .-2C .12D .-12【解析】D作出线性约束条件⎩⎨⎧x +y -2≥0kx -y +2≥0y ≥0的可行域.当k >0时,如图①所示,此时可行域为y 轴上方、直线x +y -2=0的右上方、直线kx -y +2=0的右下方的区域,显然此时z =y -x 无最小值.当k <-1时,z =y -x 取得最小值2;当k =-1时,z =y -x 取得最小值-2,均不符合题意.当-1<k <0时,如图②所示,此时可行域为点A (2,0),B ⎝ ⎛⎭⎪⎪⎫-2k 0,C (0,2)所围成的三角形区域,当直线z =y -x 经过点B ⎝ ⎛⎭⎪⎪⎫-2k 0时,有最小值,即-⎝ ⎛⎭⎪⎫-2k =-4⇒k =-12.【谜底】D11.(2014·高考安徽卷)x ,y满足约束条件⎩⎨⎧ x +y -2≤0x -2y -2≤02x -y +2≥0.若z =y -ax 取得最年夜值的最优解不惟一,则实数a 的值为( )A .12或-1B .2或12C .2或1D .2或-1【解析】法一:由题中条件画出可行域如图中阴影部份所示,可知A (0,2),B (2,0),C (-2,-2),则z A =2,z B =-2a ,z C =2a -2,要使目标函数取得最年夜值的最优解不惟一,只要z A =z B >z C 或z A =z C >z B 或z B =z C >z A ,解得a =-1或a =2.法二:目标函数z =y -ax 可化为y =ax +z ,令l 0:y =ax ,平移l 0,则当l 0∥AB 或l 0∥AC 时符合题意,故a =-1或a =2.【谜底】D12.在约束条件⎩⎪⎨⎪⎧ x ≥0y ≥0x +y ≤s y +2x ≤4.下,当3≤s ≤5时,目标函数z =3x +2y 的最年夜值的取值范围是( ) A .[6,15]B .[7,15]C .[6,8]D .[7,8]【解析】 由⎩⎪⎨⎪⎧ x +y =s y +2x =4得⎩⎪⎨⎪⎧ x =4-s y =2s -4,则交点为B (4-s,2s -4),y +2x =4与x 轴的交点为A (2,0),与y 轴的交点为C ′(0,4),x +y =s 与y 轴的交点为C (0,s ).作出当s =3和s =5时约束条件暗示的平面区域,即可行域,如图(1)(2)中阴影部份所示.(1) (2)当3≤s <4时,可行域是四边形OABC 及其内部,此时,7≤z max <8;当4≤s ≤5时,可行域是△OAC ′及其内部,此时,z max =8.综上所述,可得目标函数z =3x +2y 的最年夜值的取值范围是[7,8].【谜底】D13.(2015·通化一模)设x ,y 满足约束条件⎩⎪⎨⎪⎧ x ≥0y ≥0x 3a +y 4a≤1若z =x +2y +3x +1的最小值为32,则a 的值为________. 【解析】∵x +2y +3x +1=1+2y +1x +1,而y +1x +1暗示过点(x ,y )与(-1,-1)连线的斜率,易知a >0, ∴可作出可行域,由题意知y +1x +1的最小值是14,即⎝ ⎛⎭⎪⎫y +1x +1min =0--13a --1=13a +1=14⇒a =1. 【谜底】1角度四:线性规划的实际应用14.A ,B 两种规格的产物需要在甲、乙两台机器上各自加工一道工序才华成为制品.已知A 产物需要在甲机器上加工3小时,在乙机器上加工1小时;B 产物需要在甲机器上加工1小时,在乙机器上加工3小时.在一个工作日内,甲机器至多只能使用11小时,乙机器至多只能使用9小时.A 产物每件利润300元,B 产物每件利润400元,则这两台机器在一个工作日内缔造的最年夜利润是________元.【解析】 设生产A 产物x 件,B 产物y 件,则x ,y 满足约束条件⎩⎪⎨⎪⎧ 3x +y ≤11x +3y ≤9x ∈N y ∈N 生产利润为z =300x +400y .画出可行域,如图中阴影部份(包括鸿沟)内的整点,显然z =300x +400y 在点A处取得最年夜值,由方程组⎩⎪⎨⎪⎧ 3x +y =11x +3y =9解得⎩⎪⎨⎪⎧ x =3y =2则z max =300×3+400×2=1 700.故最年夜利润是 1 700元.【谜底】1 70015.某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超越10小时.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.(1)试用每天生产的卫兵个数x 与骑兵个数y 暗示每天的利润w (元);(2)怎样分配生产任务才华使每天的利润最年夜,最年夜利润是几多?【解析】(1)依题意每天生产的伞兵个数为100-x -y ,所以利润w =5x +6y +3(100-x -y )=2x +3y +300.(2)约束条件为⎩⎪⎪⎨⎪⎪⎧5x +7y +4100-x -y ≤600100-x -y ≥0x ≥0y ≥0x y ∈N .整理得⎩⎪⎪⎨⎪⎪⎧ x +3y ≤200x +y ≤100x ≥0y ≥0x y ∈N. 目标函数为w =2x +3y +300. 作出可行域.如图所示: 初始直线l 0:2x +3y =0,平移初始直线经过点A 时,w 有最年夜值.由⎩⎪⎨⎪⎧ x +3y =200x +y =100得⎩⎪⎨⎪⎧ x =50y =50.最优解为A (50,50),所以w max =550元.所以每天生产卫兵50个,骑兵50个,伞兵0个时利润最年夜,最年夜利润为550元.一、选择题1.已知点(-3,-1)和点(4,-6)在直线3x -2y -a =0的两侧,则a 的取值范围为( )A .(-24,7)B .(-7,24)C .(-∞,-7)∪(24,+∞) D.(-∞,-24)∪(7,+∞)【解析】根据题意知(-9+2-a )·(12+12-a )<0.即(a +7)(a -24)<0,解得-7<a <24.【谜底】B2.(2015·临沂检测)若x ,y 满足约束条件⎩⎨⎧x ≥0x +2y ≥32x +y ≤3则z =x -y 的最小值是( )A .-3B .0C .32D .3 【解析】作出不等式组⎩⎨⎧ x ≥0x +2y ≥32x +y ≤3暗示的可行域(如图所示的△ABC 的鸿沟及内部). 平移直线z =x -y ,易知当直线z =x -y 经过点C (0,3)时,目标函数z =x -y 取得最小值,即z min =-3.【谜底】A3.(2015·泉州质检)已知O 为坐标原点,A (1,2),点P 的坐标(x ,y )满足约束条件⎩⎪⎨⎪⎧ x +|y|≤1x≥0则z =OA →·OP →的最年夜值为( )A .-2B .-1C .1D .2【解析】如图作可行域,z =OA →·OP →=x +2y ,显然在B (0,1)处z max =2.【谜底】D4.已知实数x ,y 满足:⎩⎨⎧x -2y +1≥0x<2x +y -1≥0则z =2x -2y -1的取值范围是( ) A .⎣⎢⎢⎡⎦⎥⎥⎤535B .[0,5] C .⎣⎢⎢⎡⎭⎪⎪⎫535D .⎣⎢⎢⎡⎭⎪⎪⎫-535 【解析】画出不等式组所暗示的区域,如图阴影部份所示,作直线l :2x -2y -1=0,平移l 可知2×13-2×23-1≤z <2×2-2×(-1)-1,即z 的取值范围是⎣⎢⎢⎡⎭⎪⎪⎫-535.【谜底】D5.如果点(1,b )在两条平行直线6x -8y +1=0和3x -4y +5=0之间,则b 应取的整数值为( )A .2B .1C .3D .0【解析】由题意知(6-8b +1)(3-4b +5)<0,即⎝⎛⎭⎪⎫b -78(b -2)<0,∴78<b <2,∴b 应取的整数为1. 【谜底】B6.(2014·郑州模拟)已知正三角形ABC 的极点A (1,1),B (1,3),极点C 在第一象限,若点(x ,y )在△ABC 内部,则z =-x +y 的取值范围是( )A .(1-3,2)B .(0,2)C .(3-1,2)D .(0,1+3)【解析】如图,根据题意得C (1+3,2).作直线-x +y =0,并向左上或右下平移,过点B (1,3)和C (1+3,2)时,z =-x +y 取范围的鸿沟值,即-(1+3)+2<z <-1+3,∴z =-x +y 的取值范围是(1-3,2).【谜底】A7.(2014·成都二诊)在平面直角坐标系xOy 中,P 为不等式组⎩⎨⎧ y≤1x +y -2≥0x -y -1≤0所暗示的平面区域上一动点,则直线OP 斜率的最年夜值为( )A .2B .13C .12D .1 【解析】作出可行域如图所示,当点P位于⎩⎪⎨⎪⎧ x +y =2y =1的交点(1,1)时,(k OP )max =1.【谜底】D8.在平面直角坐标系xOy 中,已知平面区域A ={(x ,y )|x +y ≤1,且x ≥0,y ≥0},则平面区域B ={(x +y ,x -y )|(x ,y )∈A }的面积为( )A .2B .1C .12D .14【解析】不等式⎩⎨⎧ x +y≤1x≥0y≥0所暗示的可行域如图所示,设a =x +y ,b =x -y ,则此两目标函数的范围分别为a =x +y ∈[0,1],b =x -y ∈[-1,1],又a +b =2x ∈[0,2],a -b =2y ∈[0,2],∴点坐标(x +y ,x -y ),即点(a ,b )满足约束条件⎩⎪⎨⎪⎧ 0≤a≤1-1≤b≤10≤a+b≤20≤a-b≤2作出该不等式组所暗示的可行域如图所示,由图示可得该可行域为一等腰直角三角形,其面积S =12×2×1=1.【谜底】B9.设x ,y 满足约束条件⎩⎪⎨⎪⎧ 3x -y -2≤0x -y≥0x≥0y≥0若目标函数z =ax +by (a >0,b >0)的最年夜值为4,则ab 的取值范围是( )A .(0,4)B .(0,4]C .[4,+∞) D.(4,+∞) 【解析】作出不等式组暗示的区域如图阴影部份所示,由图可知,z =ax +by (a >0,b >0)过点A (1,1)时取最年夜值,∴a +b =4,ab ≤⎝ ⎛⎭⎪⎫a +b 22=4,∵a >0,b >0,∴ab ∈(0,4]. 【谜底】B10.设动点P (x ,y )在区域Ω:⎩⎨⎧ x ≥0y ≥xx +y ≤4上,过点P 任作直线l ,设直线l 与区域Ω的公共部份为线段AB ,则以AB 为直径的圆的面积的最年夜值为( )A .π B.2πC .3π D.4π 【解析】作出不等式组所暗示的可行域如图中阴影部份所示, 则根据图形可知,以AB 为直径的圆的面积的最年夜值S =π×⎝ ⎛⎭⎪⎫422=4π. 【谜底】D11.(2015·西南三校联考)变量x ,y 满足约束条件⎩⎨⎧ y ≥-1x -y ≥23x +y ≤14若使z =ax +y 取得最年夜值的最优解有无穷多个,则实数a 的取值集合是( )A .{-3,0}B .{3,-1}C .{0,1}D .{-3,0,1}【解析】作出不等式组所暗示的平面区域,如图所示.易知直线z =ax +y 与x -y =2或3x +y =14平行时取得最年夜值的最优解有无穷多个,即-a =1或-a =-3,∴a =-1或a =3.【谜底】B12.(2014·新课标全国Ⅰ卷)设x ,y 满足约束条件⎩⎪⎨⎪⎧ x +y ≥a x -y ≤-1且z =x +ay 的最小值为7,则a =( )A .-5B .3C .-5或3D .5或-3【解析】法一:联立方程⎩⎪⎨⎪⎧ x +y =a x -y =-1解得⎩⎪⎨⎪⎧x =a -12y =a +12代入x +ay =7中,解得a =3或-5,当a =-5时,z =x +ay 的最年夜值是7;当a =3时,z =x +ay 的最小值是7.法二:先画出可行域,然后根据图形结合选项求解.当a =-5时,作出不等式组暗示的可行域,如图(1)(阴影部份).图(1) 图(2)由⎩⎪⎨⎪⎧x -y =-1x +y =-5得交点A (-3,-2),则目标函数z =x -5y过A 点时取得最年夜值.z max =-3-5×(-2)=7,不满足题意,排除A,C 选项.当a =3时,作出不等式组暗示的可行域,如图(2)(阴影部份).由⎩⎪⎨⎪⎧x -y =-1x +y =3得交点B (1,2),则目标函数z =x +3y 过B点时取得最小值.z min =1+3×2=7,满足题意.【谜底】B13.若a ≥0,b ≥0,且当⎩⎨⎧x ≥0y ≥0x +y ≤1时,恒有ax +by ≤1,则由点P (a ,b )所确定的平面区域的面积是( )A .12B .π4C .1D .π2【解析】因为ax +by ≤1恒成立,则当x =0时,by ≤1恒成立,可得y ≤1b(b ≠0)恒成立,所以0≤b ≤1;同理0≤a ≤1.所以由点P (a ,b )所确定的平面区域是一个边长为1的正方形,面积为1.【谜底】C14.(2013·高考北京卷)设关于x ,y 的不等式组⎩⎨⎧2x -y +1>0x +m<0y -m>0暗示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2.求得m 的取值范围是( )A .⎝ ⎛⎭⎪⎪⎫-∞43B .⎝ ⎛⎭⎪⎪⎫-∞13C .⎝ ⎛⎭⎪⎪⎫-∞-23D .⎝ ⎛⎭⎪⎪⎫-∞-53【解析】当m ≥0时,若平面区域存在,则平面区域内的点在第二象限,平面区域内不成能存在点P (x 0,y 0)满足x 0-2y 0=2,因此m <0.如图所示的阴影部份为不等式组暗示的平面区域.要使可行域内包括y =12x -1上的点,只需可行域鸿沟点(-m ,m )在直线y =12x -1的下方即可,即m <-12m -1,解得m <-23.【谜底】C15.设不等式组⎩⎨⎧x +y -11≥03x -y +3≥05x -3y +9≤0暗示的平面区域为D .若指数函数y =a x 的图象上存在区域D 上的点,则a 的取值范围是 ( )A .(1,3]B .[2,3]C .(1,2]D .[3,+∞)【解析】平面区域D 如图所示.要使指数函数y =a x的图象上存在区域D 上的点,所以1<a ≤3.【解析】A16.(2014·高考福建卷)已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎨⎧x +y -7≤0x -y +3≥0y ≥0.若圆心C ∈Ω,且圆C 与x 轴相切,则a 2+b 2的最年夜值为( )A .5B .29C .37D .49【解析】由已知得平面区域Ω为△MNP 内部及鸿沟.∵圆C 与x 轴相切,∴b =1.显然当圆心C 位于直线y =1与x +y -7=0的交点(6,1)处时,a max =6.∴a 2+b 2的最年夜值为62+12=37.【解析】C17.在平面直角坐标系中,若不等式组⎩⎨⎧y ≥0y ≤x y ≤kx -1-1暗示一个三角形区域,则实数k 的取值范围是( )A .(-∞,-1)B .(1,+∞)C .(-1,1)D .(-∞,-1)∪(1,+∞)【解析】已知直线y =k (x -1)-1过定点(1,-1),画出不等式组暗示的可行域示意图,如图所示.当直线y =k (x -1)-1位于y =-x 和x =1两条虚线之间时,暗示的是一个三角形区域.所以直线y =k (x -1)-1的斜率的范围为(-∞,-1),即实数k 的取值范围是(-∞,-1).当直线y =k (x -1)-1与y =x 平行时不能形成三角形,不服行时,由题意可得k >1时,也可形成三角形,综上可知k <-1或k >1.【谜底】D18.(2016·武邑中学期中)已知实数x ,y 满足⎩⎪⎨⎪⎧x -2y +1≥0|x|-y -1≤0则z =2x +y 的最年夜值为( )A .4B .6C .8D .10【解析】区域如图所示,目标函数z =2x +y 在点A (3,2)处取得最年夜值,最年夜值为8.【谜底】C19.(2016·衡水中学期末)当变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥x x +3y ≤4x ≥m 时,z =x -3y 的最年夜值为8,则实数m 的值是( )A .-4B .-3C .-2D .-1【解析】画出可行域如图所示,目标函数z =x -3y 变形为y =x 3-z3,当直线过点C 时,z 取到最年夜值, 又C (m ,m ),所以8=m -3m ,解得m =-4. 【谜底】A20.(2016·湖州质检)已知O 为坐标原点,A ,B 两点的坐标均满足不等式组⎩⎨⎧x -3y +1≤0x +y -3≤0x -1≥0则tan ∠AOB 的最年夜值即是( )A .94B .47C .34D .12【解析】如图阴影部份为不等式组暗示的平面区域,观察图形可知当A 为(1,2),B 为(2,1)时,tan ∠AOB 取得最年夜值,此时由于tan α=k BO =12,tan β=k AO =2,故tan ∠AOB =tan(β-α)=tan β-tan α1+tan βtan α=2-121+2×12=34. 【解析】C 二、填空题21.(2014·高考安徽卷)不等式组 ⎩⎨⎧x +y -2≥0x +2y -4≤0x +3y -2≥0暗示的平面区域的面积为________.【解析】作出不等式组暗示的平面区域如图中阴影部份所示,可知S △ABC =12×2×(2+2)=4.【谜底】422.(2014·高考浙江卷)若实数x ,y 满足⎩⎨⎧x +2y -4≤0x -y -1≤0x ≥1则x +y 的取值范围是________.【解析】作出可行域,如图,作直线x +y =0,向右上平移,过点B 时,x +y 取得最小值,过点A 时取得最年夜值.由B (1,0),A (2,1)得(x +y )min =1,(x +y )max =3.所以1≤x +y ≤3.【谜底】[1,3]23.(2015·重庆一诊)设变量x ,y 满足约束条件⎩⎨⎧x ≥1x +y -4≤0x -3y +4≤0则目标函数z =3x -y 的最年夜值为____.【解析】根据约束条件作出可行域,如图中阴影部份所示, ∵z =3x -y ,∴y =3x -z ,当该直线经过点A (2,2)时,z 取得最年夜值,即z max =3×2-2=4.【谜底】424.已知实数x ,y满足⎩⎨⎧x +y -1≤0x -y +1≥0y≥-1则w =x 2+y 2-4x-4y +8的最小值为________.【解析】目标函数w =x 2+y 2-4x -4y +8=(x -2)2+(y -2)2,其几何意义是点(2,2)与可行域内的点的距离的平方.由实数x ,y 所满足的不等式组作出可行域如图中阴影部份所示,由图可知,点(2,2)到直线x +y -1=0的距离为其到可行域内点的距离的最小值,又|2+2-1|2=322,所以w min =92.【谜底】9225.在平面直角坐标系xOy 中,M 为不等式组⎩⎨⎧2x +3y -6≤0x +y -2≥0y ≥0所暗示的区域上一动点,则|OM |的最小值是________.【解析】如图所示阴影部份为可行域,数形结合可知,原点O 到直线x +y -2=0的垂线段长是|OM |的最小值,∴|OM |min =|-2|12+12=2.【谜底】226.(2016·汉中二模)某企业生产甲、乙两种产物,已知生产每吨甲产物要用水3吨、煤2吨;生产每吨乙产物要用水1吨、煤3吨.销售每吨甲产物可获得利润5万元,销售每吨乙产物可获得利润3万元,若该企业在一个生产周期内消耗水不超越13吨,煤不超越18吨,则该企业可获得的最年夜利润是______万元.【解析】设生产甲产物x 吨,生产乙产物y 吨,由题意知⎩⎪⎨⎪⎧x≥0y≥03x +y≤132x +3y≤18利润z =5x +3y ,作出可行域如图中阴影部份所示,求出可行域鸿沟上各端点的坐标,经验证知当x =3,y =4,即生产甲产物3吨,乙产物4吨时可获得最年夜利润27万元.【谜底】2727.某农户计划种植黄瓜和韭菜,种植面积不超越50亩,投入资金不超越54万元,假设种植黄瓜和韭菜的产量、本钱和售价如下表:)最年夜,则黄瓜的种植面积应为________亩.【解析】设黄瓜和韭菜的种植面积分别为x 亩,y 亩,总利润为z 万元,则目标函数为z =(0.55×4x -1.2x )+(0.3×6y -0.9y )=x +0.9y .线性约束条件为⎩⎨⎧x +y ≤≤54x ≥0y ≥0即⎩⎪⎨⎪⎧x +y ≤504x +3y ≤180x ≥0y ≥0.画出可行域,如图所示.作出直线l 0:x +0.9y =0,向上平移至过点A 时,z 取得最年夜值,由⎩⎪⎨⎪⎧x +y =504x +3y =180解得A (30,20).【谜底】3028.(2015·日照调研)若A为不等式组⎩⎨⎧x ≤0y ≥0y -x ≤2暗示的平面区域,则当a 从-2连续变动到1时,动直线x +y =a 扫过A 中的那部份区域的面积为________.【解析】平面区域A 如图所示,所求面积为S =12×2×2-12×22×22=2-14=74.【谜底】7429.(2014·高考浙江卷)当实数x ,y 满足⎩⎨⎧x +2y -4≤0x -y -1≤0x ≥1时,1≤ax +y ≤4恒成立,则实数a 的取值范围是________.【解析】画可行域如图所示,设目标函数z =ax +y ,即y =-ax +z ,要使1≤z ≤4恒成立,则a >0,数形结合知,满足⎩⎪⎨⎪⎧1≤2a +1≤41≤a ≤4即可,解得1≤a ≤32.所以a 的取值范围是1≤a ≤32.【谜底】⎣⎢⎢⎡⎦⎥⎥⎤13230.(2015·石家庄二检)已知动点P (x ,y )在正六边形的阴影部份(含鸿沟)内运动,如图,正六边形的边长为2,若使目标函数z =kx +y (k >0)取得最年夜值的最优解有无穷多个,则k 的值为________.【解析】由目标函数z =kx +y (k >0)取得最年夜值的最优解有无穷多个,结合图形分析可知,直线kx +y =0的倾斜角为120°,于是有-k =tan 120°=-3,所以k =3.【谜底】331.设m >1,在约束条件⎩⎨⎧y ≥xy ≤mxx +y ≤1下,目标函数z =x +my 的最年夜值小于2,则m 的取值范围.【解析】变换目标函数为y =-1m x +z m ,由于m >1,所以-1<-1m <0,不等式组暗示的平面区域如图中的阴影部份所示,根据目标函数的几何意义,只有直线y =-1m x +zm在y 轴上的截距最年夜时,目标函数取得最年夜值.显然在点A 处取得最年夜值,由y =mx ,x +y =1,得A ⎝ ⎛⎭⎪⎪⎫11+m m 1+m ,所以目标函数的最年夜值z max =11+m +m21+m <2,所以m 2-2m -1<0,解得1-2<m <1+2,故m 的取值范围是(1,1+2).【谜底】(1,1+2)32.已知实数x ,y 满足⎩⎨⎧y ≥1y ≤2x -1x +y ≤m若目标函数z =x -y 的最小值的取值范围是[-2,-1],则目标函数的最年夜值的取值范围是________. 【解析】不等式组暗示的可行域如图中阴影部份(包括鸿沟)所示,目标函数可变形为y =x -z ,当z 最小时,直线y =x -z 在y 轴上的截距最年夜.当z 的最小值为-1,即直线为y =x +1时,联立方程⎩⎪⎨⎪⎧ y =x +1y =2x -1可得此时点A 的坐标为(2,3),此时m =2+3=5;当z 的最小值为-2,即直线为y =x +2时,联立方程⎩⎪⎨⎪⎧ y =x +2y =2x -1可得此时点A 的坐标是(3,5),此时m =3+5=8.故m 的取值范围是[5,8].目标函数z =x -y 的最年夜值在点B (m -1,1)处取得,即z max=m -1-1=m -2,故目标函数的最年夜值的取值范围是[3,6].【谜底】[3,6]33.(2013·高考广东卷)给定区域D :⎩⎨⎧ x +4y ≥4x +y ≤4x ≥0.令点集T ={(x 0,y 0)∈D |x 0,y 0∈Z ,(x 0,y 0)是z =x +y 在D 上取得最年夜值或最小值的点},则T 中的点共确定________条分歧的直线.【解析】线性区域为图中阴影部份,取得最小值时点为(0,1),最年夜值时点为(0,4),(1,3),(2,2),(3,1),(4,0),点(0,1)与(0,4),(1,3),(2,2),(3,1),(4,0)中的任何一个点都可以构成一条直线,共有5条 ,又(0,4),(1,3),(2,2),(3,1),(4,0)都在直线x +y =4上,故T 中的点共确定6条分歧的直线.【谜底】634.(2011·湖北改编)已知向量a =(x +z,3),b =(2,y -z ),且a ⊥b .若x ,y 满足不等式|x |+|y |≤1,则z 的取值范围为__________.【解析】∵a =(x +z,3),b =(2,y -z ),且a ⊥b ,∴a ·b =2(x +z )+3(y -z )=0,即2x +3y -z =0.又|x |+|y |≤1暗示的区域为图中阴影部份,∴当2x +3y -z =0过点B (0,-1)时,z min =-3,当2x +3y -z =0过点A (0,1)时,z min =3.∴z ∈[-3,3].【谜底】[-3,3]35.(2016·衡水中学模拟)已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧ x +4y -13≤02y -x +1≥0x +y -4≥0且有无穷多个点(x ,y )使目标函数z =x +my取得最小值,则m =________.【解析】作出线性约束条件暗示的平面区域,如图中阴影部份所示.若m =0,则z =x ,目标函数z =x +my 取得最小值的最优解只有一个,不符合题意.若m ≠0,则目标函数z =x +my 可看作斜率为-1m的动直线y =-1m x +z m, 若m <0,则-1m>0,由数形结合知,使目标函数z =x +my 取得最小值的最优解不成能有无穷多个;若m >0,则-1m<0,数形结合可知,当动直线与直线AB 重合时,有无穷多个点(x ,y )在线段AB 上,使目标函数z =x +my 取得最小值,即-1m=-1,则m =1. 综上可知,m =1.【谜底】1。
高三数学线性规划知识点
高三数学线性规划知识点线性规划是数学中的一个重要分支,广泛应用于经济、管理、工程等领域。
它通过建立数学模型,寻找一组最佳决策方案,以实现特定的目标。
在高三数学学习中,线性规划是一个重要的知识点,本文将介绍线性规划的基本概念、常见问题类型以及解题方法。
一、线性规划的基本概念1. 目标函数:线性规划的目标是在一组约束条件下,最大化或最小化一个线性函数,这个线性函数就是目标函数。
通常用Z表示目标函数的值。
2. 变量:目标函数中的每个变量都代表一个决策变量,这些变量的取值将影响目标函数的计算结果。
3. 约束条件:线性规划的一个重要特点是存在一组约束条件,这些约束条件限制了决策变量的取值范围。
约束条件通常是由一组线性不等式或等式表示。
4. 可行解:满足所有约束条件的解称为可行解。
5. 最优解:在所有可行解中,使得目标函数达到最大值或最小值的解称为最优解。
二、线性规划的问题类型1. 单纯形法:单纯形法是一种常用的线性规划求解方法。
它通过不断优化目标函数的值,逐步接近最优解。
单纯形法通过迭代计算一系列基础可行解,直到找到最优解为止。
2. 对偶性定理:线性规划中的对偶性定理是指对于一个标准型的线性规划问题,它与其对偶问题具有相同的最优解。
3. 整数线性规划:当决策变量要求为整数时,这就是一个整数线性规划问题。
整数线性规划的求解更加困难,常常需要借助于分支定界等特殊算法。
4. 网络流线性规划:网络流线性规划是线性规划与图论相结合的一种问题类型。
它通常用于解决最小费用流、最大流等网络优化问题。
三、线性规划的解题方法1. 图形法:对于二维线性规划问题,可以使用图形法进行求解。
首先绘制出约束条件所构成的区域,然后绘制目标函数的等高线,并找到最优解所在的点。
2. 单纯形法:对于高维的线性规划问题,可以使用单纯形法进行求解。
单纯形法通过迭代计算一系列基础可行解,直到找到最优解为止。
3. 对偶问题:通过建立原始问题与对偶问题之间的关系,可以将原始问题的求解转化为对偶问题的求解。
高中简单线性规划基础题型总结
高中简单线性规划基础题型总结熊明军简单线性规划属于操作性知识,是高考必考知识点,历年不变,必有一选择或填空题。
下面结合例题,总结高中简单线性规划问题的基础题型,方便同学们快速掌握相关内容。
线性规划问题的基础题型,可根据目标函数的特点,将其分为三类: 类型一(直线):by ax z +=【理论】点到直线的距离。
【步骤】①作出可行域;②作出直线by ax +=0;③判断可行域顶点到直线by ax +=0的距离:()max max ,z y x P d ⇒⇒和()min min ,'z y x P d ⇒⇒【例题】已知y x ,满足不等式组⎪⎩⎪⎨⎧≤--≥-+≥+-0520402y x y x y x ,求y x z 2-=的最值。
【解析】分三步走:①作出可行域:②作出直线y x 20-=:③判断直线y x 20-=到可行域顶点C B A 、、间的距离:平移、目测或代点都能判断,得()()11231,3,max max =⨯-=⇒⇒=z B l B d d ;()()119279,7,min min -=⨯-=⇒⇒=z C l C d d 。
类型二(圆):()()22b y a x z -+-= 【理论】两点之间的距离。
【步骤】①作出可行域;②作出圆()()222b y a x d -+-=;③判断可行域上的点到圆心()b a ,的距离(即半径r ):()max max max ,z y x P d r ⇒⇒=和()min min min ,'z y x P d r ⇒⇒=【例题】已知y x ,满足不等式组⎪⎩⎪⎨⎧≤--≥-+≥+-0520402y x y x y x ,求()()2211-+-=y x z 的最值。
【解析】分三步走:①作出可行域:②作出圆()()22211-+-=y x d :r d =且半径r 由小到大逐渐作圆。
③判断圆心()1,1到可行域上点间的距离,也就是与可行域有交点的圆中半径r 的大小:目测或用圆规作圆都能判断,得()()()()10019179,7,22max max max =-+-=⇒⇒==z C D C d d r ;()()211411,2222min min min min =⎪⎪⎭⎫ ⎝⎛+-+==⇒==d z l D d d r AB . 类型三(斜率):m n x a b y m a m n x m a b y a n mx b ay z --⨯=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=--= 【理论】两点确定的直线的斜率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中文科数学线性规划部分常见题型整理1.图中的平面区域(阴影部分包括边界)可用不等式组表示为 (A .20≤≤xB .⎩⎨⎧≤≤≤≤1020y xC .⎪⎩⎪⎨⎧>≤-+yx y x 022D .⎪⎩⎪⎨⎧≥≥≤-+00022y x y x 3.已知点P (x 0,y 0)和点A (1,2)在直线0823:=-+y x l 的异侧,则 ( D )A .02300>+y xB .<+0023y x 0C .82300<+y xD .82300>+y x一、求线性目标函数的取值范围4.若x 、y 满足约束条件222x y x y ≤⎧⎪≤⎨⎪+≥⎩,则z=x+2y 的取值范围是 ( )A 、[2,6]B 、[2,5]C 、[3,6]D 、(3,5] 解:如图,作出可行域,作直线l :x+2y =0,将l 向右上方平移,过点A (2,0)时,有最小值2,过点B (2,2)时,有最大值6,故选 A5.已知变量x 、y 满足约束条件⎪⎩⎪⎨⎧≤-+≥≤+-07102y x x y x ,则x y 的取值范围是( A )A.⎥⎦⎤⎢⎣⎡6,59B.[]6,3C.[)∞+⎥⎦⎤⎝⎛∞-,659, D.(][)∞+∞-,63,二、求可行域的面积7.不等式组260302x y x y y +-≥⎧⎪+-≤⎨⎪≤⎩表示的平面区域的面积为 ( )A 、4 B 、1 C 、5 D 、无穷大解:如图作出可行域,△ABC 的面积即为所求,由梯形OMBC 的面积减去梯形OMAC 的面积即可,选 B8.已知R y x ∈,,则不等式组⎪⎩⎪⎨⎧≥+-≤-≥02|||1|x x y x y 表示的平面区域的面积是__45______.9.不等式组⎪⎩⎪⎨⎧<+>>123400y x y x 表示的平面区域的面积是____,平面区域内的整点坐标 .三、求可行域中整点个数10.满足|x|+|y|≤2的点(x ,y )中整点(横纵坐标都是整数)有( ) A 、9个 B 、10个 C 、13个 D 、14个解:|x|+|y|≤2等价于2(0,0)2(0,0)2(0,0)2(0,0)x y x y x y x y x y x y x y xy+≤≥≥⎧⎪-≤≥⎪⎨-+≤≥⎪⎪--≤⎩作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选 D四、求线性目标函数中参数的取值范围11.已知x 、y 满足以下约束条件5503x y x y x +≥⎧⎪-+≤⎨⎪≤⎩,使z=x+ay(a>0)取得最小值的最优解有无数个,则a 的值为( ) A 、-3 B 、3 C 、-1 D 、1解:如图,作出可行域,作直线l :x+ay =0,要使目标函数z=x+ay(a>0)取得最小值的最优解有无数个,则将l 向右上方平移后与直线x+y =5重合,故a=1,选 D五、求非线性目标函数的最值12.已知x 、y 满足以下约束条件220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则z=x 2+y 2的最大值和最小值分别是 ( ) A 、13,1 B 、13,2C 、13,45D、解:如图,作出可行域,x 2+y 2是点(x ,y )到原点的距离的平方,故最大值为点A (2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x +y -2=0的距离的平方,即为45,选C13.若变量x y 、满足约束条件222x y x y ≤⎧⎪≤⎨⎪+≥⎩,则2z x y =+的最小值为 (A )A.2B.3C.5D.614.设,x y 满足约束条件12x y y x y +≤⎧⎪≤⎨⎪≥-⎩,则3z x y =+的最大值为( C )A . 5 B. 3 C. 7 D. -8六、求约束条件中参数的取值范围19.已知|2x -y +m|<3表示的平面区域包含点(0,0)和(-1,1),则m 的取值范围是( )A 、(-3,6)B 、(0,6)C 、(0,3)D 、(-3,3) 解:|2x -y +m|<3等价于230230x y m x y m -++>⎧⎨-+-<⎩由右图可知3330m m +>⎧⎨-<⎩ ,故0<m <3,选 C七、线性规划的实际应用20.某木器厂生产圆桌和衣柜两种产品,现有两种木料,第一种有72m 3,第二种有56m 3,假设生产每种产品都需要用两种木料,生产一只圆桌和一个衣柜分别所需木料如下表所示.每生产一只圆桌可获利6元,生产一个衣柜可获利10元.木器厂在现有木料条件下,圆桌和衣柜各生产多少,才使获得利润最多?产品木料(单位m3)第一种第二种圆桌0.18 0.08衣柜0.09 0.28解:设生产圆桌x只,生产衣柜y个,利润总额为z元,那么⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+5628.008.07209.018.0yxyxyx而z=6x+10y.如上图所示,作出以上不等式组所表示的平面区域,即可行域.作直线l:6x+10y=0,即l:3x+5y=0,把直线l向右上方平移至l1的位置时,直线经过可行域上点M,且与原点距离最大,此时z=6x+10y取最大值解方程组⎩⎨⎧=+=+5628.008.07209.018.0yxyx,得M点坐标(350,100).答:应生产圆桌350只,生产衣柜100个,能使利润总额达到最大.18.某厂生产甲、乙两种产品,产量分别为45个、50个,所用原料为A、B两种规格的金属板,每张面积分别为2m2、3 m2,用A种金属板可造甲产品3个,乙产品5个,用B种金属板可造甲、乙产品各6个,则A、B两种金属板各取多少张时,能完成计划并能使总用料面积最省?( A )A.A用3张,B用6张B.A用4张,B用5张C.A用2张,B用6张D.A用3张,B用5张一、单项选择题1.下列纳税人中应缴纳城建税的是()。
A.印花税的纳税人B.个人所得税的纳税人C.车船使用税的纳税人D.既交增值税又交消费税的纳税人【答案】D【解析】本题考核点是哪些人缴纳城建税。
增值税、消费税、营业税的纳税人是城建税的纳税人。
2.某县城一加工企业2009年8月份因进口半成品缴纳增值税120万元,销售产品缴纳增值税280万元,本月又出租门面房收到租金40万元。
该企业本月应缴纳城市维护建设税和教育费附加为()万元。
A.22.56B.25.6C.28.2D.35.2【答案】A【解析】城建税和教育费附加的计税依据是纳税人实际缴纳的“两税”税额,城建税的税率根据纳税人所在地的不同设置了三档税率,纳税人所在地为县城的,税率为5%,而教育费附加的税率统一为3%;本题的计税依据是增值税税额280万元和租金收入应纳的营业税税额40×5%=2万元,应纳城建税和教育费附加=(280万元+40万元×5%)×(5%+3%)=22.56(万元)。
3.下列各项中,符合城市维护建设税相关规定的是()。
A.跨省开采的油田应按照油井所在地适用税率纳城市维护建设税B.营业税纳税人跨省承包工程应按劳务发生地适用税率缴纳城市维护建设税C.流动经营的单位应随同缴纳“两税”的经营地的适用税率缴纳城市维护建设税D.代扣代缴的城市维护建设税应按被扣缴纳税人所在地的税率缴纳城市维护建设税【答案】C【解析】选项A,跨省开采的应当选择核算地的税率。
选项B,纳税人从事跨省工程的,应向其机构所在地主管地方税务机关申报纳税。
选项D,代扣代缴、代收代缴的城建税按受托方(扣缴方)所在地适用税率执行。
4.下列纳税人中,应缴纳城市维护建设税的有( )。
A. 消费税的纳税人B.车船税的纳税人C. 契税的纳税人D.个人所得税的纳税人答案:A【解析】缴纳消费税的纳税人,应缴纳城市维护建设税。
5.市区某纳税人当月应纳增值税2万元,减免1万元,补交上月未缴的增值税0.5万元,滞纳金0.1万元。
该纳税人本月应缴纳城建税( )万元。
A. 0.14B. 0.182C.0.105D.0.154答案:C【解析】(2-1+0.5)×7%=0.105(万元),纳税人违反“两税”有关税法而加收的滞纳金和罚款,是税务机关对纳税人违法行为的经济制裁,不作为城建税的计税依据。
6.设在县城的B企业按税法规定代收代缴设在市区的A企业的消费税,则下列处理正确的是( )。
A.由B企业按5%税率代征代扣城建税B.由A企业按5%税率回所在地缴纳C.由B企业按7%税率代征代扣城建税。