陕西省西安市铁一中2020年九年级数学一模测试卷
2020年陕西省西安市碑林区铁一中学中考数学模拟试卷(三) (解析版)

2020年中考数学模拟试卷一、选择题(共10小题).1.﹣的倒数是()A.﹣B.C.D.﹣2.下列不是三棱柱展开图的是()A.B.C.D.3.如图,直线BC∥AE,CD⊥AB于点D,若∠BCD=40°,则∠1的度数是()A.60°B.50°C.40°D.30°4.如图,在矩形OACB中,A(﹣2,0),B(0,﹣1),若正比例函数y=kx的图象经过点C,则k值是()A.﹣2B.C.2D.5.下列运算中,正确的是()A.(﹣x)2•x3=x5B.(x2y)3=x6yC.(a+b)2=a2+b2D.a6+a3=a26.如图,在△ABC中,∠C=90°,∠A=30°,AB的垂直平分线分别交AB、AC于点D、E.则以下AE与CE的数量关系正确的是()A.AE=CE B.AE=CE C.AE=CE D.AE=2CE7.已知直线y=﹣x+8与x轴、y轴分别交于点A和点B,M是OB上的一点,若将△ABM 沿AM折叠,点B恰好落在x轴上的点B′处,则直线AM的函数解析式是()A.y=﹣x+8B.y=﹣x+8C.y=﹣x+3D.y=﹣x+3 8.如图:在四边形ABCD中,E是AB上的一点,△ADE和△BCE都是等边三角形,点P、Q、M、N分别为AB、BC、CD、DA的中点,则四边形MNPQ是()A.等腰梯形B.矩形C.菱形D.正方形9.如图,在⊙O中,弦AC∥半径OB,∠BOC=48°,则∠OAB的度数为()A.24°B.30°C.60°D.90°10.若二次函数y=ax2+bx+c的图象与x轴有两个交点A和B,顶点为C,且b2﹣4ac=4,则∠ACB的度数为()A.30°B.45°C.60°D.90°二.填空题(共4小题,每小题3分,计12分)11.比较大小:﹣﹣3.2(填“>”、“<”或“=”)12.如图,正五边形ABCDE中,对角线AC与BE相交于点F,则∠AFE=度.13.如图,已知,在矩形AOBC中,OB=4,OA=3,分别以OB、OA所在直线为x轴和y轴,建立如图所示的平面直角坐标系,F是边BC上的一个动点(不与B、C重合),过F点的反比例函数y=(k>0)的图象与AC边交于点E,将△CEF沿E对折后,C 点恰好落在OB上的点D处,则k的值为.14.如图,已知平行四边形ABCD中,∠B=60°,AB=12,BC=5,P为AB上任意一点(可以与A、B重合),延长PD到F,使得DF=PD,以PF、PC为边作平行四边形PCEF,则PE长度的最小值.三、解答题[共11小题,计78分,解答应写出过程)15.计算:÷+8×2﹣1﹣(+1)0+2•sin60°.16.解分式方程:﹣1=.17.如图,△ABC中,P是线段AB上一点,尺规作图:在BC边上找一点D,使以P、D、B为顶点的三角形与△ABC相似(保留作图痕迹,不写作法)18.如图,已知四边形AECF是平行四边形,D,B分别在AF,CE的延长线上,连接AB,CD,且∠B=∠D.求证:(1)△ABE≌△CDF;(2)四边形ABCD是平行四边形.19.为了解某种电动汽车的性能,对这种电动汽车进行了抽检,将一次充电后行驶的里程数分为A,B,C,D四个等级,其中相应等级的里程依次为200千米,210千米,220千米,230千米,获得如下不完整的统计图,根据信息解答下列问题:(1)问这次被抽检的电动汽车共有几辆?并补全条形统计图:(2)求电动汽车一次充电后行驶里程数的中位数、众数:(3)一次充电后行驶里程数220千米以上(含220千米)为优质等级,若全市有这种电动汽车1200辆,估计优质等级的电动汽车约为多少辆?20.西安市的大雁塔又名“慈恩寺塔”,是国家级文物保护单位,玄奘为保存由天竺经丝绸之路带回长安的经卷主持修建了大雁塔,最初五层,后加盖至九层,是西安市的标志性建筑之一,某校社会实践小组为了测量大雁塔的高度,在地面上C处垂直于地面竖立了高度为2米的标杆CD,这时地面上的点E,标杆的顶端点D,大雁塔的塔尖点B正好在同一直线上,测得EC=4米,将标杆CD向后平移到点G处,这时地面上的点F,标杆的顶端点H,大雁塔的塔尖点B正好在同一直线上(点F,点G,点E,点C与塔底处的点A在同一直线上),这时测得FG=6米,GC=53米,请你根据以上数据,计算大雁塔的高度AB.21.某书店为了迎接“读书节”制定了活动计划,以下是活动计划书的部分信息.(1)陈经理查看计划数时发现:A类图书的标价是B类图书标价的1.5倍,若顾客用540元购买的图书,能单独购买A类图书的数量恰好比单独购买B类图书的数量少10本,请求出A、B两类图书的标价.(2)经市场调查后,陈经理发现他们高估了“读书节”对图书销售的影响,便调整了销售方案,A类图书每本标价降低a元(0<a<5)销售,B类图书价格不变,那么书店应如何进货才能获得最大利润?读书节”活动计划书书本类别A类B类进价(单位:元)1812备注1.用不超过16800元购进A、B两类图书共1000本2.A类图书不少于600本22.如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形的圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止).(1)转动转盘一次,求转出的数字是﹣2的概率;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.23.如图,在△ABC中,D为AC上一点,且CD=CB,以BC为直径作⊙O,交BD于点E,连接CE,过D作DF⊥AB于点F,∠BCD=2∠ABD.(1)求证:AB是⊙O的切线;(2)若∠A=60°,DF=,求⊙O的直径BC的长.24.如图,抛物线L1:y=ax2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于C点,且A(﹣1,0),OB=OC=3OA.若抛物线L2与抛物线L1关于直线x=2对称.(1)求抛物线L1与抛物线L2的解析式:(2)在抛物线L1上是否存在一点P,在抛物线L2上是否存在一点Q,使得以BC为边,且以B、C、P、Q为顶点的四边形为平行四边形?若存在,求出P、Q两点的坐标:若不存在,请说明理由.25.问题提出:(1)如图①,半圆O的直径AB=10,点P是半圆O上的一个动点,则△PAB的面积最大值是.问题探究:(2)如图②,在边长为10的正方形ABCD中,点G是BC边的中点,E、F分别是AD 和CD边上的点,请探究并求出四边形BEFG的周长的最小值.问题解决:(3)如图③,四边形ABCD中,AB=AD=6,∠BAD=60°,∠BCD=120°,四边形ABCD的周长是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.参考答案一、选择题(共10小题,每小题3分,计30分)1.﹣的倒数是()A.﹣B.C.D.﹣【分析】根据倒数的意义,乘积是1的两个数互为倒数.求分数的倒数,把分子和分母调换位置即可.解:﹣的倒数是﹣,故选:D.2.下列不是三棱柱展开图的是()A.B.C.D.【分析】根据三棱柱的两底展开是三角形,侧面展开是三个四边形,可得答案.解:A、B、D中间三个长方形能围成三棱柱的侧面,上、下两个三角形围成三棱柱的上、下两底面,故均能围成三棱柱,均是三棱柱的表面展开图.C围成三棱柱时,两个三角形重合为同一底面,而另一底面没有.故C不能围成三棱柱.故选:C.3.如图,直线BC∥AE,CD⊥AB于点D,若∠BCD=40°,则∠1的度数是()A.60°B.50°C.40°D.30°【分析】先在直角△CBD中可求得∠DBC的度数,然后平行线的性质可求得∠1的度数.解:∵CD⊥AB于点D,∠BCD=40°,∴∠CDB=90°.∴∠BCD+∠DBC=90°,即∠BCD+40°=90°.∴∠DBC=50°.∵直线BC∥AE,∴∠1=∠DBC=50°.故选:B.4.如图,在矩形OACB中,A(﹣2,0),B(0,﹣1),若正比例函数y=kx的图象经过点C,则k值是()A.﹣2B.C.2D.【分析】由点A,B的坐标结合矩形的性质可得出点C的坐标,再利用一次函数图象上点的坐标特征,即可求出k值,此题得解.解:∵四边形OACB为矩形,A(﹣2,0),B(0,﹣1),∴点C的坐标为(﹣2,﹣1).∵正比例函数y=kx的图象经过点C(﹣2,﹣1),∴﹣1=﹣2k,∴k=.故选:D.5.下列运算中,正确的是()A.(﹣x)2•x3=x5B.(x2y)3=x6yC.(a+b)2=a2+b2D.a6+a3=a2【分析】根据同底数幂的乘法、积的乘方与幂的乘方、完全平方公式及同类项的概念逐一计算可得.解:A.(﹣x)2•x3=x5,此选项正确;B.(x2y)3=x6y3,此选项错误;C.(a+b)2=a2+2ab+b2,此选项错误;D.a6与a3不是同类项,不能合并,此选项错误;故选:A.6.如图,在△ABC中,∠C=90°,∠A=30°,AB的垂直平分线分别交AB、AC于点D、E.则以下AE与CE的数量关系正确的是()A.AE=CE B.AE=CE C.AE=CE D.AE=2CE【分析】首先连接BE,由在△ABC中,∠C=90°,∠A=30°,可求得∠ABC的度数,又由AB的垂直平分线交AB于点D,交AC于点E,根据线段垂直平分线的性质,可得AE=BE,继而可求得∠CBE的度数,然后由含30°角的直角三角形的性质,证得AE =2CE.解:连接BE,∵DE是AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=30°,∴∠CBE=∠ABC﹣∠ABE=30°,在Rt△BCE中,BE=2CE,∴AE=2CE,故选:D.7.已知直线y=﹣x+8与x轴、y轴分别交于点A和点B,M是OB上的一点,若将△ABM 沿AM折叠,点B恰好落在x轴上的点B′处,则直线AM的函数解析式是()A.y=﹣x+8B.y=﹣x+8C.y=﹣x+3D.y=﹣x+3【分析】把x的值代入即可求出y的值,即是点的坐标,再把坐标代入就能求出解析式.解:当x=0时,y=﹣x+8=8,即B(0,8),当y=0时,x=6,即A(6,0),所以AB=AB′=10,即B′(﹣4,′0),设OM=x,则B′M=BM=BO﹣MO=8﹣x,B′O=AB′﹣AO=10﹣6=4∴x2+42=(8﹣x)2x=3∴M(0,3)又A(6,0)直线AM的解析式为y=﹣x+3.故选:C.8.如图:在四边形ABCD中,E是AB上的一点,△ADE和△BCE都是等边三角形,点P、Q、M、N分别为AB、BC、CD、DA的中点,则四边形MNPQ是()A.等腰梯形B.矩形C.菱形D.正方形【分析】连接四边形ADCB的对角线,通过全等三角形来证得AC=BD,从而根据三角形中位线定理证得四边形NPQM的四边相等,可得出四边形MNPQ是菱形.解:连接BD、AC;∵△ADE、△ECB是等边三角形,∴AE=DE,EC=BE,∠AED=∠BEC=60°;∴∠AEC=∠DEB=120°;∴△AEC≌△DEB(SAS);∴AC=BD;∵M、N是CD、AD的中点,∴MN是△ACD的中位线,即MN=AC;同理可证得:NP=DB,QP=AC,MQ=BD;∴MN=NP=PQ=MQ,∴四边形NPQM是菱形;故选:C.9.如图,在⊙O中,弦AC∥半径OB,∠BOC=48°,则∠OAB的度数为()A.24°B.30°C.60°D.90°【分析】利用平行线的性质得∠OBA=∠BAC,再利用圆周角定理得到∠BAC=∠BOC =24°,从而得到∠OAB的度数.解:∵AC∥OB,∴∠OBA=∠BAC,∵∠BAC=∠BOC=×48°=24°,∴∠OBA=24°,∵OA=OB,∴∠OAB=24°.故选:A.10.若二次函数y=ax2+bx+c的图象与x轴有两个交点A和B,顶点为C,且b2﹣4ac=4,则∠ACB的度数为()A.30°B.45°C.60°D.90°【分析】根据题目中的条件和二次函数的性质,特殊角的三角函数值,可以求得∠ACB 的度数,本题得以解决.解:设二次函数y=ax2+bx+c的图象与x轴有两个交点A和B的坐标分别为(x1,0),(x2,0),则x1==,该函数顶点C的坐标为:(﹣,),tan∠CAB==1,则∠CAB═45°,同理可得,∠CBA=45°,∴∠ACB=90°,故选:D.二.填空题(共4小题,每小题3分,计12分)11.比较大小:﹣<﹣3.2(填“>”、“<”或“=”)【分析】由10>3.22为突破口来比较﹣与﹣3.2的大小.解:∵10>3.22,∴>3.2,∴﹣<﹣3.2,故答案是:<.12.如图,正五边形ABCDE中,对角线AC与BE相交于点F,则∠AFE=72度.【分析】根据五边形的内角和公式求出∠EAB,根据等腰三角形的性质,三角形外角的性质计算即可.解:∵五边形ABCDE是正五边形,∴∠EAB=∠ABC=,∵BA=BC,∴∠BAC=∠BCA=36°,同理∠ABE=36°,∴∠AFE=∠ABF+∠BAF=36°+36°=72°.故答案为:7213.如图,已知,在矩形AOBC中,OB=4,OA=3,分别以OB、OA所在直线为x轴和y轴,建立如图所示的平面直角坐标系,F是边BC上的一个动点(不与B、C重合),过F点的反比例函数y=(k>0)的图象与AC边交于点E,将△CEF沿E对折后,C 点恰好落在OB上的点D处,则k的值为.【分析】证明Rt△MED∽Rt△BDF,则==,而EM:DB=ED:DF=4:3,求出DB,在Rt△DBF中,利用勾股定理即可求解.解:如图,过点E作EM⊥x轴于点M,∵将△CEF沿EF对折后,C点恰好落在OB上的D点处,∴∠EDF=∠C=90°,EC=ED,CF=DF,∴∠MDE+∠FDB=90°,而EM⊥OB,∴∠MDE+∠MED=90°,∴∠MED=∠FDB,∴Rt△MED∽Rt△BDF;又∵EC=AC﹣AE=4﹣,CF=BC﹣BF=3﹣,∴ED=4﹣,DF=3﹣,∴==;∵EM:DB=ED:DF=4:3,而EM=3,∴DB=,在Rt△DBF中,DF2=DB2+BF2,即(3﹣)2=()2+()2,解得k=,故答案为.14.如图,已知平行四边形ABCD中,∠B=60°,AB=12,BC=5,P为AB上任意一点(可以与A、B重合),延长PD到F,使得DF=PD,以PF、PC为边作平行四边形PCEF,则PE长度的最小值5.【分析】当PE⊥DC,且垂足G为DC的中点时,PE长度的最小,进而解答即可.解:过C作CH⊥AB于H,则∠CHB=90°,在Rt△CBH中,∵∠B=60°,BC=5,∴sin∠B=,即,∴CH=,当PE⊥DC,且垂足G为DC的中点时,如图,此时PE的长最小,∴PE=2PG=2CH=5,当点P运动到点A时,PE最小为,故答案为:5.三、解答题[共11小题,计78分,解答应写出过程)15.计算:÷+8×2﹣1﹣(+1)0+2•sin60°.【分析】利用负整数指数幂、零指数幂的意义和特殊角的三角函数值进行计算.解:原式=+8×﹣1+2×=3+4﹣1+=6+.16.解分式方程:﹣1=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解:去分母得:x2﹣2x﹣x2+3x﹣2=3x﹣3,移项合并得:﹣2x=﹣1,解得:x=,经检验x=是分式方程的解.17.如图,△ABC中,P是线段AB上一点,尺规作图:在BC边上找一点D,使以P、D、B为顶点的三角形与△ABC相似(保留作图痕迹,不写作法)【分析】过P作PD∥AC交BC于点D,或作∠BPD=∠C,即可利用相似三角形的判定解答即可.解:如图所示:18.如图,已知四边形AECF是平行四边形,D,B分别在AF,CE的延长线上,连接AB,CD,且∠B=∠D.求证:(1)△ABE≌△CDF;(2)四边形ABCD是平行四边形.【分析】(1)根据平行四边形的性质得到∠AEC=∠AFC,AE=CF,AF=CE,根据全等三角形的判定定理即可得到结论;(2)由全等三角形的性质得到AB=CD,BE=DF,根据平行四边形的判定定理即可得到结论.【解答】证明:(1)∵四边形AECF是平行四边形∴∠AEC=∠AFC,AE=CF,AF=CE,∵∠AEC+∠AEB=180°,∠AFC+∠CFD=180°,∴∠AEB=∠CFD,∵∠B=∠D,∴△ABE≌△CDF(AAS);(2)由(1)知△ABE≌△CDF可得:AB=CD,BE=DF,∵AF=CE,∴AF+DF=CE+BE,∴AF+DF=CE+BE即AD=BC,∴四边形ABCD是平行四边形.19.为了解某种电动汽车的性能,对这种电动汽车进行了抽检,将一次充电后行驶的里程数分为A,B,C,D四个等级,其中相应等级的里程依次为200千米,210千米,220千米,230千米,获得如下不完整的统计图,根据信息解答下列问题:(1)问这次被抽检的电动汽车共有几辆?并补全条形统计图:(2)求电动汽车一次充电后行驶里程数的中位数、众数:(3)一次充电后行驶里程数220千米以上(含220千米)为优质等级,若全市有这种电动汽车1200辆,估计优质等级的电动汽车约为多少辆?【分析】(1)根据条形统计图和扇形图可知,将一次充电后行驶的里程数分为B等级的有30辆电动汽车,所占的百分比为30%,用30÷30%即可求出电动汽车的总量;分别计算出C、D所占的百分比,即可得到A所占的百分比,即可求出A的电动汽车的辆数,即可补全统计图;(2)根据众数和中位数的定义解答可得;(3)用优质等级所占的百分数乘以汽车总辆数,即可解答.解:(1)这次被抽检的电动汽车共有:30÷30%=100(辆),C所占的百分比为:40÷100×100%=40%,D所占的百分比为:20÷100×100%=20%,A所占的百分比为:100%﹣40%﹣20%﹣30%=10%,A等级电动汽车的辆数为:100×10%=10(辆),补全统计图如图所示:(2)由条形图知,220千米的数量最多,故众数为220千米;100辆汽车里程数的中位数为=220千米;(3)1200×=720(辆),答:估计优质等级的电动汽车约为720辆.20.西安市的大雁塔又名“慈恩寺塔”,是国家级文物保护单位,玄奘为保存由天竺经丝绸之路带回长安的经卷主持修建了大雁塔,最初五层,后加盖至九层,是西安市的标志性建筑之一,某校社会实践小组为了测量大雁塔的高度,在地面上C处垂直于地面竖立了高度为2米的标杆CD,这时地面上的点E,标杆的顶端点D,大雁塔的塔尖点B正好在同一直线上,测得EC=4米,将标杆CD向后平移到点G处,这时地面上的点F,标杆的顶端点H,大雁塔的塔尖点B正好在同一直线上(点F,点G,点E,点C与塔底处的点A在同一直线上),这时测得FG=6米,GC=53米,请你根据以上数据,计算大雁塔的高度AB.【分析】易知△EDC∽△EBA,△FHG∽△FBA,可得=,=,因为DC =HG,推出,列出方程求出CA=106(米),由=,可得,由此即可解决问题.解:∵△EDC∽△EBA,△FHG∽△FBA,∴=,=,∵DC=HG,∴=,∴=,∴CA=106(米),∵=,∴=,∴AB=55(米),答:大雁塔的高度AB为55米.21.某书店为了迎接“读书节”制定了活动计划,以下是活动计划书的部分信息.(1)陈经理查看计划数时发现:A类图书的标价是B类图书标价的1.5倍,若顾客用540元购买的图书,能单独购买A类图书的数量恰好比单独购买B类图书的数量少10本,请求出A、B两类图书的标价.(2)经市场调查后,陈经理发现他们高估了“读书节”对图书销售的影响,便调整了销售方案,A类图书每本标价降低a元(0<a<5)销售,B类图书价格不变,那么书店应如何进货才能获得最大利润?读书节”活动计划书书本类别A类B类进价(单位:元)1812备注1.用不超过16800元购进A、B两类图书共1000本2.A类图书不少于600本【分析】(1)先设B类图书的标价为x元,则由题意可知A类图书的标价为1.5x元,然后根据题意列出方程,求解即可.(2)先设购进A类图书t本,总利润为w元,则购进B类图书为(1000﹣t)本,根据题目中所给的信息列出不等式组,求出t的取值范围,然后根据总利润w=总售价﹣总成本,求出最佳的进货方案.解:(1)设B类图书的标价为x元,则A类图书的标价为1.5x元,根据题意可得﹣10=,化简得:540﹣10x=360,解得:x=18,经检验:x=18是原分式方程的解,且符合题意,则A类图书的标价为:1.5x=1.5×18=27(元),答:A类图书的标价为27元,B类图书的标价为18元;(2)设购进A类图书t本,总利润为w元,A类图书的标价为(27﹣a)元(0<a<5),由题意得,,解得:600≤t≤800,则总利润w=(27﹣a﹣18)t+(18﹣12)(1000﹣t)=(9﹣a)t+6(1000﹣t)=6000+(3﹣a)t,故当0<a<3时,3﹣a>0,t=800时,总利润最大,且大于6000元;当a=3时,3﹣a=0,无论t值如何变化,总利润均为6000元;当3<a<5时,3﹣a<0,t=600时,总利润最大,且小于6000元;答:当A类图书每本降价少于3元时,A类图书购进800本,B类图书购进200本时,利润最大;当A类图书每本降价大于等于3元,小于5元时,A类图书购进600本,B 类图书购进400本时,利润最大.22.如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形的圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止).(1)转动转盘一次,求转出的数字是﹣2的概率;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.【分析】(1)将标有数字1和3的扇形两等分可知转动转盘一次共有6种等可能结果,其中转出的数字是﹣2的有2种结果,根据概率公式计算可得;(2)列表得出所有等可能结果,从中找到乘积为正数的结果数,再利用概率公式求解可得.解:(1)将标有数字1和3的扇形两等分可知转动转盘一次共有6种等可能结果,其中转出的数字是﹣2的有2种结果,所以转出的数字是﹣2的概率为=;(2)列表如下:﹣2﹣21133﹣244﹣2﹣2﹣6﹣6﹣244﹣2﹣2﹣6﹣61﹣2﹣211331﹣2﹣211333﹣6﹣633993﹣6﹣63399由表可知共有36种等可能结果,其中数字之积为正数的有20种结果,所以这两次分别转出的数字之积为正数的概率为=.23.如图,在△ABC中,D为AC上一点,且CD=CB,以BC为直径作⊙O,交BD于点E,连接CE,过D作DF⊥AB于点F,∠BCD=2∠ABD.(1)求证:AB是⊙O的切线;(2)若∠A=60°,DF=,求⊙O的直径BC的长.【分析】(1)由CD=CB,∠BCD=2∠ABD,可证得∠BCE=∠ABD,继而求得∠ABC =90°,则可证得AB是⊙O的切线;(2)由∠A=60°,DF=,可求得AF、BF的长,易证得△ADF∽△ACB,然后由相似三角形的对应边成比例,求得答案.【解答】(1)证明:∵CD=CB,∴∠CBD=∠CDB,∵BC是⊙O的直径,∴∠CEB=90°,∴∠CBD+∠BCE=∠CDB+∠DCE,∴∠BCE=∠DCE,即∠BCD=2∠BCE,∵∠BCD=2∠ABD,∴∠ABD=∠BCE,∴∠CBD+∠ABD=∠CBD+∠BCE=90°,∴CB⊥AB,∵CB为直径,∴AB是⊙O的切线;(2)解:∵∠A=60°,DF=,∴在Rt△AFD中,AF===1,AD=2∵DF⊥AB,CB⊥AB,∴DF∥BC,∴∠ADF=∠ACB,∵∠A=∠A,∴△ADF∽△ACB,∴=,设BC=x,则=,解得x=4+6.∴BC=4+6.24.如图,抛物线L1:y=ax2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于C点,且A(﹣1,0),OB=OC=3OA.若抛物线L2与抛物线L1关于直线x=2对称.(1)求抛物线L1与抛物线L2的解析式:(2)在抛物线L1上是否存在一点P,在抛物线L2上是否存在一点Q,使得以BC为边,且以B、C、P、Q为顶点的四边形为平行四边形?若存在,求出P、Q两点的坐标:若不存在,请说明理由.【分析】(1)用待定系数法求抛物线L1的解析式并配方成顶点式,得到抛物线L1的顶点坐标D;由抛物线L2与抛物线L1关于直线x=2对称可得两抛物线开口方向、大小相同,且两顶点关于直线x=2对称,因此求得抛物线L2的顶点D',进而得到抛物线L2的顶点式.(2)由于BC为边,以B、C、P、Q为顶点的四边形为平行四边形,所以有两种情况:①BQ∥PC,BQ=PC;②BP∥CQ,BP=CQ.因为可把点B、C之间看作是向左(或右)平移3个单位,再向上(或下)平移3个单位得到,所以点P、Q之间也有相应的平移关系,故可由点P坐标(t,﹣t2+2t+3)的t表示点Q坐标,再把点Q坐标代入抛物线L2解方程即求得t的值,进而求得点P、Q坐标.解:(1)∵A(﹣1,0)∴OB=OC=3OA=3∴B(3,0),C(0,3)∵抛物线L1:y=ax2+bx+c经过点A、B、C∴解得:∴抛物线L1的解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4∴抛物线L1的顶点D(1,4)∵抛物线L2与抛物线L1关于直线x=2对称∴两抛物线开口方向、大小相同,抛物线L2的顶点D'与点D关于直线x=2对称∴D'(3,4)∴抛物线L2的解析式为y=﹣(x﹣3)2+4(2)存在满足条件的P、Q,使得以BC为边且以B、C、P、Q为顶点的四边形为平行四边形.设抛物线L1上的P(t,﹣t2+2t+3)①若四边形BCPQ为平行四边形,如图1,∴BQ∥PC,BQ=PC∴BQ可看作是CP向右平移3个单位,再向下平移3个单位得到的∴Q(t+3,﹣t2+2t)∵点Q在抛物线L2上∴﹣t2+2t=﹣(t+3﹣3)2+4解得:t=2∴P(2,3),Q(5,0)②若四边形BCQP为平行四边形,如图2,∴BP∥CQ,BP=CQ∴CQ可看作是BP向左平移3个单位,再向上平移3个单位得到的∴Q(t﹣3,﹣t2+2t+6)∴﹣t2+2t+6=﹣(t﹣3﹣3)2+4解得:t=∴P(,﹣),Q(,﹣)综上所述,存在P(2,3),Q(5,0)或P(,﹣),Q(,﹣),使得以BC为边且以B、C、P、Q为顶点的四边形为平行四边形.25.问题提出:(1)如图①,半圆O的直径AB=10,点P是半圆O上的一个动点,则△PAB的面积最大值是25.问题探究:(2)如图②,在边长为10的正方形ABCD中,点G是BC边的中点,E、F分别是AD 和CD边上的点,请探究并求出四边形BEFG的周长的最小值.问题解决:(3)如图③,四边形ABCD中,AB=AD=6,∠BAD=60°,∠BCD=120°,四边形ABCD的周长是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.【分析】(1)如图1,点P运动至半圆O的中点时,底边AB上的高最大,即P'O=r =5,求出此时△P'AB的面积即可;(2)如图2,作点G关于CD的对称点G′,作点B关于AD的对称点B′,连接B′G′,B'E,FG',根据两点之间线段最短即可解决问题;(3)如图3,连接AC、BD,在AC上取一点,使得DM=DC.首先证明AC=CD+CB,再证明当AC为△ABC的外接圆的直径时,四边形ABCD的周长最大.解:(1)如图1,点P运动至半圆O的中点时,底边AB上的高最大,即P'O=r=5,此时△PAB的面积最大值,∴S△P'AB=×10×5=25,故答案为:25;(2)如图2,作点G关于CD的对称点G′,作点B关于AD的对称点B′,连接B′G′,B'E,FG',∵EB=EB′,FG=FG′,∴BE+EF+FG+BG=B′E+EF+FG′+BG,∵EB′+EF+FG′≥B′G′,∴四边形BEFG的周长的最小值=BG+B′G′,∵BG=BC=5,BB′=20,BG′=15,∴B′G′===25,∴四边形BEFG的周长的最小值为30.(3)如图3,连接AC、BD,在AC上取一点,使得DM=DC.∵∠DAB=60°,∠DCB=120°,∴∠DAB+∠DCB=180°,∴A、B、C、D四点共圆,∵AD=AB,∠DAB=60°,∴△ADB是等边三角形,∴∠ABD=∠ADB=60°,∴∠ACD=∠ADB=60°∵DM=DC,∴△DMC是等边三角形,∴∠ADB=∠MDC=60°,CM=DC,∴∠ADM=∠BDC,∵AD=BD,∴△ADM≌△BDC(SAS),∴AM=BC,∴AC=AM+MC=BC+CD,∵四边形ABCD的周长=AD+AB+CD+BC=AD+AB+AC,∵AD=AB=6,∴当AC最大时,四边形ABCD的周长最大,∴当AC为△ABC的外接圆的直径时,四边形ABCD的周长最大,∵,∴AC的最大值=4,∴四边形ABCD的周长最大值为12+4.。
2020届陕西省西安市中考数学一模试卷(有答案)

陕西省西安市中考数学一模试卷一、选择题1.下列各数中,最小的数是()A.﹣2 B.﹣0.1 C.0 D.|﹣1|2.图中的几何体是由7个大小相同的小正方体组成的,该几何体的俯视图为()A.B.C. D.3.下列计算正确的是()A.a3+a2=a5 B.a3﹣a2=a C.a3•a2=a6 D.a3÷a2=a4.某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如表所示:用电量(度)12014016180200户数23672则这20户家庭该月用电量的众数和中位数分别是()A.180,160 B.160,180 C.160,160 D.180,1805.如图,AC∥BD,AE平分∠BAC交BD于点E.若∠1=68°,则∠2=()A.112°B.124°C.128° D.140°6.将下列图形绕其对角线的交点逆时针旋转90°,所得图形一定与原图形重合的是()A.平行四边形B.矩形C.菱形D.正方形7.如图,在平面直角坐标系中,有一条通过点(﹣3,﹣2)的直线L,若四点(﹣2,a)、(0,b)、(c,0)、(d,﹣1)均在直线L上,则下列数值的判断哪个是正确的()A.a=3 B.b>﹣2 C.c<﹣3 D.d=28.如图是跷跷板示意图,横板AB绕中点O上下转动,立柱OC与地面垂直,设B点的最大高度为h1.若将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为h2,则下列结论正确的是()A.h2=2h1B.h2=1.5h1 C.h2=h1D.h2=h19.如图,在半径为的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=4,则OP的长为()A.1 B.C.2 D.210.二次函数y=﹣x2+1的图象与x轴交于A、B两点,与y轴交于点C,下列说法错误的是()A.点C的坐标是(0,1)B.线段AB的长为2C.△ABC是等腰直角三角形D.当x>0时,y随x增大而增大二、填空题11.分解因式:mn2+6mn+9m=.14.如图,在直角坐标系中,直线y=6﹣x与y=(x>0)的图象相交于点A,B,设点A的坐标为(x1,y1),那么长为x1,宽为y1的矩形面积和周长分别为、.15.如图,在△ABC中,AB=15,AC=12,BC=9,经过点C且与边AB相切的动圆与CB、CA分别相交于点E、F,则线段EF长度的最小值是.请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.12.如图,在菱形ABCD中,对角线AC与BD相交于点O,OE⊥AB,垂足为E,若∠ADC=120°,则∠AOE=.13.用科学计算器计算:12×tan13°=(结果精确到0.01).三、解答题16.计算:()﹣2﹣(π﹣)0+|﹣2|+4sin60°.17.先化简,再求值:,其中.18.如图,在图中求作⊙P,使⊙P满足以线段MN为弦且圆心P到∠AOB两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)19.为了了解青少年形体情况,现随机抽查了某市若干名初中学生坐姿、站姿、走姿的好坏情况.我们对测评数据作了适当处理(如果一个学生有一种以上不良姿势,以他最突出的一种作记载),并将统计结果绘制了如下两幅不完整的统计图,请你根据图中所给信息解答下列问题:(1)请将两幅统计图补充完整;(2)请问这次被抽查形体测评的学生一共是多少人?(3)如果全市有5万名初中生,那么全市初中生中,坐姿和站姿不良的学生有多少人?20.已知:如图,▱ABCD中,点E是AD的中点,延长CE交BA的延长线于点F.求证:AB=AF.21.随着人们经济收入的不断提高,汽车已越来越多地进入到各个家庭.某大型超市为缓解停车难问题,建筑设计师提供了楼顶停车场的设计示意图.按规定,停车场坡道口上坡要张贴限高标志,以便告知车辆能否安全驶入.如图,地面所在的直线ME与楼顶所在的直线AC是平行的,CD的厚度为0.5m,求出汽车通过坡道口的限高DF的长(结果精确到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).22.某工厂生产一种产品,当生产数量至少为10吨,但不超过50吨时,每吨的成本y(万元/吨)与生产数量x(吨)的函数关系式如图所示.(1)求y关于x的函数解析式,并写出它的定义域;(2)当生产这种产品的总成本为280万元时,求该产品的生产数量.(注:总成本=每吨的成本×生产数量)23.一枚棋子放在边长为1个单位长度的正六边形ABCDEF的顶点A处,通过摸球来确定该棋子的走法,其规则是:在一只不透明的袋子中,装有3个标号分别为1、2、3的相同小球,搅匀后从中任意摸出1个,记下标号后放回袋中并搅匀,再从中任意摸出1个,摸出的两个小球标号之和是几棋子就沿边按顺时针方向走几个单位长度.棋子走到哪一点的可能性最大?求出棋子走到该点的概率.(用列表或画树状图的方法求解)24.如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)若∠DBC=30°,DE=1cm,求BD的长.25.如图,抛物线y=x2﹣x+a与x轴交于点A,B,与y轴交于点C,其顶点在直线y=﹣2x上.(1)求a的值;(2)求A,B的坐标;(3)以AC,CB为一组邻边作▱ACBD,则点D关于x轴的对称点D′是否在该抛物线上?请说明理由.26.如图,正三角形ABC的边长为3+.(1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法);(2)求(1)中作出的正方形E′F′P′N′的边长;(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值和最小值,并说明理由.陕西省西安市中考数学一模试卷参考答案与试题解析一、选择题1.下列各数中,最小的数是()A.﹣2 B.﹣0.1 C.0 D.|﹣1|【考点】有理数大小比较.【分析】根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,进行比较.【解答】解:因为正实数都大于0,所以>0,又因为正实数大于一切负实数,所以>﹣2,所以>﹣0.1所以最大,故D不对;又因为负实数都小于0,所以0>﹣2,0>﹣0.1,故C不对;因为两个负实数绝对值大的反而小,所以﹣2<﹣0.1,故B不对;故选A.2.图中的几何体是由7个大小相同的小正方体组成的,该几何体的俯视图为()A.B.C. D.【考点】简单组合体的三视图.【分析】找到从上面所看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从上面看,这个几何体有三行四列,且第一列有3个小正方形,二、四列有1个小正方形、第三列有2个小正方形;故选C.3.下列计算正确的是()A.a3+a2=a5 B.a3﹣a2=a C.a3•a2=a6 D.a3÷a2=a【考点】同底数幂的除法;合并同类项;同底数幂的乘法.【分析】根据同类项定义;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、a2与a3不是同类项,不能合并,故本选项错误;B、a3与a2不是同类项,不能合并,故本选项错误;C、应为a3•a2=a5,故本选项错误;D、a3÷a2=a,正确.故选D.4.某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如表所示:用电量(度)120140160180200户数23672则这20户家庭该月用电量的众数和中位数分别是()A.180,160 B.160,180 C.160,160 D.180,180【考点】众数;中位数.【分析】根据众数和中位数的定义就可以解决.【解答】解:在这一组数据中180是出现次数最多的,故众数是180;将这组数据从小到大的顺序排列后,处于中间位置的两个数是160,160,那么由中位数的定义可知,这组数据的中位数是÷2=160.故选:A.5.如图,AC∥BD,AE平分∠BAC交BD于点E.若∠1=68°,则∠2=()A.112°B.124°C.128° D.140°【考点】平行线的性质.【分析】根据邻补角的定义求出∠BAC,再根据角平分线的定义求出∠3,然后利用两直线平行,同旁内角互补列式求解即可.【解答】解:∵∠1=68°,∴∠BAC=180°﹣∠1=180°﹣68°=112°,∵AE平分∠BAC,∴∠3=∠BAC=×112°=56°,∵AC∥BD,∴∠2=180°﹣∠3=180°﹣56°=124°.故选B.6.将下列图形绕其对角线的交点逆时针旋转90°,所得图形一定与原图形重合的是()A.平行四边形B.矩形C.菱形D.正方形【考点】旋转对称图形.【分析】根据旋转对称图形的性质,可得出四边形需要满足的条件,结合选项即可得出答案.【解答】解:由题意可得,此四边形的对角线互相垂直、平分且相等,则这个四边形是正方形.故选D.7.如图,在平面直角坐标系中,有一条通过点(﹣3,﹣2)的直线L,若四点(﹣2,a)、(0,b)、(c,0)、(d,﹣1)均在直线L上,则下列数值的判断哪个是正确的()A.a=3 B.b>﹣2 C.c<﹣3 D.d=2【考点】一次函数图象上点的坐标特征.【分析】根据一次函数图象上点的坐标特征,根据此函数为减函数,利用增减性分析解答即可.【解答】解:如图,可得此一次函数是减函数,因为﹣2<0,所以可得a>b,因为﹣3<﹣1<0,可得c<d<﹣2,故选C.8.如图是跷跷板示意图,横板AB绕中点O上下转动,立柱OC与地面垂直,设B点的最大高度为h1.若将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为h2,则下列结论正确的是()A.h2=2h1B.h2=1.5h1 C.h2=h1D.h2=h1【考点】三角形中位线定理.【分析】直接根据三角形中位线定理进行解答即可.【解答】解:如图所示:∵O为AB的中点,OC⊥AD,BD⊥AD,∴OC∥BD,∴OC是△ABD的中位线,∴h1=2OC,同理,当将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为h2,则h2=2OC,∴h1=h2.故选C.9.如图,在半径为的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=4,则OP的长为()A.1 B.C.2 D.2【考点】垂径定理;勾股定理.【分析】作OE⊥AB于E,OF⊥CD于F,连结OD、OB,如图,根据垂径定理得到AE=BE=AB=2,DF=CF=CD=2,根据勾股定理在Rt△OBE中计算出OE=1,同理可得OF=1,接着证明四边形OEPF为正方形,于是得到OP=OE=.【解答】解:作OE⊥AB于E,OF⊥CD于F,连结OD、OB,如图,则AE=BE=AB=2,DF=CF=CD=2,在Rt△OBE中,∵OB=,BE=2,∴OE==1,同理可得OF=1,∵AB⊥CD,∴四边形OEPF为矩形,而OE=OF=1,∴四边形OEPF为正方形,∴OP=OE=.故选B.10.二次函数y=﹣x2+1的图象与x轴交于A、B两点,与y轴交于点C,下列说法错误的是()A.点C的坐标是(0,1)B.线段AB的长为2C.△ABC是等腰直角三角形D.当x>0时,y随x增大而增大【考点】抛物线与x轴的交点;二次函数的性质.【分析】判断各选项,点C的坐标可以令x=0,得到的y值即为点C的纵坐标;令y=0,得到的两个x值即为与x轴的交点坐标A、B;且AB的长也有两点坐标求得,对函数的增减性可借助函数图象进行判断.【解答】解:A,令x=0,y=1,则C点的坐标为(0,1),正确;B,令y=0,x=±1,则A(﹣1,0),B(1,0),|AB|=2,正确;C,由A、B、C三点坐标可以得出AC=BC,且AC2+BC2=AB2,则△ABC是等腰直角三角形,正确;D,当x>0时,y随x增大而减小,错误.故选D.二、填空题11.分解因式:mn2+6mn+9m=m(n+3)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式m,再对余下的多项式利用完全平方公式继续分解.【解答】解:mn2+6mn+9m=m(n2+6n+9)=m(n+3)2.故答案为:m(n+3)2.14.如图,在直角坐标系中,直线y=6﹣x与y=(x>0)的图象相交于点A,B,设点A的坐标为(x1,y1),那么长为x1,宽为y1的矩形面积和周长分别为4、12.【考点】反比例函数系数k的几何意义;一次函数的图象.【分析】先求出两图象的交点坐标,从而得出矩形面积和周长.【解答】解:把y=6﹣x与y=联立到一个方程组中,解得x=3+和3﹣,y=3﹣和3+.在本题中x1=3﹣,y1=3+,所以矩形面积=x1y1=4,周长=2(x1+y1)=12.故矩形面积和周长分别为4和12.故答案为:4、12.15.如图,在△ABC中,AB=15,AC=12,BC=9,经过点C且与边AB相切的动圆与CB、CA分别相交于点E、F,则线段EF长度的最小值是7.2.【考点】切线的性质;垂线段最短.【分析】三角形ABC中,利用勾股定理的逆定理判断得到∠C为直角,利用90度的圆周角所对的弦为直径,得到EF为圆的直径,设圆与AB的切点为D,连接CD,当CD垂直于AB时,即CD是圆的直径的时,EF长度最小,求出即可.【解答】解:∵在△ABC中,AB=15,AC=12,BC=9,∴AB2=AC2+BC2,∴△ABC为RT△,∠C=90°,即知EF为圆的直径,设圆与AB的切点为D,连接CD,当CD垂直于AB,即CD是圆的直径时,EF长度最小,最小值是=7.2.故答案为:7.2.请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.12.如图,在菱形ABCD中,对角线AC与BD相交于点O,OE⊥AB,垂足为E,若∠ADC=120°,则∠AOE=60°.【考点】菱形的性质.【分析】先根据菱形的邻角互补求出∠BAD的度数,再根据菱形的对角线平分一组对角求出∠BAO的度数,然后根据直角三角形两锐角互余列式计算即可得解.【解答】解:在菱形ABCD中,∠ADC=120°,∴∠BAD=180°﹣120°=60°,∴∠BAO=∠BAD=×60°=30°,∵OE⊥AB,∴∠AOE=90°﹣∠BAO=90°﹣30°=60°.故答案为:60°.13.用科学计算器计算:12×tan13°= 2.77(结果精确到0.01).【考点】计算器—三角函数;近似数和有效数字.【分析】正确使用计算器计算即可,注意运算顺序.【解答】解:12×tan13°≈12×0.231≈2.77.故答案为:2.77.三、解答题16.计算:()﹣2﹣(π﹣)0+|﹣2|+4sin60°.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式第一项利用负整数指数幂法则计算,第二项利用零指数幂法则计算,第三项利用绝对值的代数意义化简,最后一项利用特殊角的三角函数值计算即可得到结果.【解答】解:原式=4﹣1+2﹣+4×=5+.17.先化简,再求值:,其中.【考点】分式的化简求值;二次根式的化简求值.【分析】先将括号内通分,合并;再将除法问题转化为乘法问题;约分化简后,在原式有意义的条件下,代入计算即可【解答】解:===,当时,原式===.18.如图,在图中求作⊙P,使⊙P满足以线段MN为弦且圆心P到∠AOB两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)【考点】作图—复杂作图;角平分线的性质;垂径定理.【分析】作∠AOB的角平分线,作MN的垂直平分线,以角平分线与垂直平分线的交点为圆心,以圆心到M点(或N点)的距离为半径作圆.【解答】解:如图所示.圆P即为所作的圆.19.为了了解青少年形体情况,现随机抽查了某市若干名初中学生坐姿、站姿、走姿的好坏情况.我们对测评数据作了适当处理(如果一个学生有一种以上不良姿势,以他最突出的一种作记载),并将统计结果绘制了如下两幅不完整的统计图,请你根据图中所给信息解答下列问题:(1)请将两幅统计图补充完整;(2)请问这次被抽查形体测评的学生一共是多少人?(3)如果全市有5万名初中生,那么全市初中生中,坐姿和站姿不良的学生有多少人?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据各部分所占的百分比的和等于1求出坐姿不良所占的百分比,然后求出被抽查的学生总人数,然后求出站姿不良与三姿良好的学生人数,最后补全统计图即可;(2)根据(1)的计算即可;(3)用总人数乘以坐姿和站姿不良的学生所占的百分比,列式计算即可得解.【解答】解:(1)坐姿不良所占的百分比为:1﹣30%﹣35%﹣15%=20%,被抽查的学生总人数为:100÷20%=500名,站姿不良的学生人数:500×30%=150名,三姿良好的学生人数:500×15%=75名,补全统计图如图所示;(2)100÷20%=500(名),答:这次被抽查形体测评的学生一共是500名;(3)5万×(20%+30%)=2.5万,答:全市初中生中,坐姿和站姿不良的学生有2.5万人.20.已知:如图,▱ABCD中,点E是AD的中点,延长CE交BA的延长线于点F.求证:AB=AF.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】本题考查平行四边形性质的应用,要证AB=AF,由AB=CD,可以转换为求AF=CD,只要证明△AEF≌△DEC即可.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD且AB=CD.∴∠F=∠2,∠1=∠D.∵E为AD中点,∴AE=ED.在△AEF和△DEC中∴△AEF≌△DEC.∴AF=CD.∴AB=AF.21.随着人们经济收入的不断提高,汽车已越来越多地进入到各个家庭.某大型超市为缓解停车难问题,建筑设计师提供了楼顶停车场的设计示意图.按规定,停车场坡道口上坡要张贴限高标志,以便告知车辆能否安全驶入.如图,地面所在的直线ME与楼顶所在的直线AC是平行的,CD的厚度为0.5m,求出汽车通过坡道口的限高DF的长(结果精确到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).【考点】解直角三角形的应用.【分析】首先根据AC∥ME,可得∠CAB=∠AE28°,再根据三角函数计算出BC的长,进而得到BD的长,进而求出DF即可.【解答】解:∵AC∥ME,∴∠CAB=∠AEM,在Rt△ABC中,∠CAB=28°,AC=9m,∴BC=ACtan28°≈9×0.53=4.77(m),∴BD=BC﹣CD=4.77﹣0.5=4.27(m),在Rt△BDF中,∠BDF+∠FBD=90°,在Rt△ABC中,∠CAB+∠FBC=90°,∴∠BDF=∠CAB=28°,∴DF=BDcos28°≈4.27×0.88=3.7576≈3.8 (m),答:坡道口的限高DF的长是3.8m.22.某工厂生产一种产品,当生产数量至少为10吨,但不超过50吨时,每吨的成本y(万元/吨)与生产数量x(吨)的函数关系式如图所示.(1)求y关于x的函数解析式,并写出它的定义域;(2)当生产这种产品的总成本为280万元时,求该产品的生产数量.(注:总成本=每吨的成本×生产数量)【考点】一次函数的应用.【分析】(1)利用待定系数法求出一次函数解析式即可,根据当生产数量至少为10吨,但不超过50吨时,得出x的定义域;(2)根据总成本=每吨的成本×生产数量,利用(1)中所求得出即可.【解答】解:(1)利用图象设y关于x的函数解析式为y=kx+b,将(10,10)(50,6)代入解析式得:,解得:,y=﹣x+11(10≤x≤50)(2)当生产这种产品的总成本为280万元时,x(﹣x+11)=280,解得:x1=40,x2=70(不合题意舍去),故该产品的生产数量为40吨.23.一枚棋子放在边长为1个单位长度的正六边形ABCDEF的顶点A处,通过摸球来确定该棋子的走法,其规则是:在一只不透明的袋子中,装有3个标号分别为1、2、3的相同小球,搅匀后从中任意摸出1个,记下标号后放回袋中并搅匀,再从中任意摸出1个,摸出的两个小球标号之和是几棋子就沿边按顺时针方向走几个单位长度.棋子走到哪一点的可能性最大?求出棋子走到该点的概率.(用列表或画树状图的方法求解)【考点】列表法与树状图法.【分析】先画树形图:共有9种等可能的结果,其中摸出的两个小球标号之和是2的占1种,摸出的两个小球标号之和是3的占2种,摸出的两个小球标号之和是4的占3种,摸出的两个小球标号之和是5的占两种,摸出的两个小球标号之和是6的占一种;即可知道棋子走到哪一点的可能性最大,根据概率的概念也可求出棋子走到该点的概率.【解答】解:画树形图:共有9种等可能的结果,其中摸出的两个小球标号之和是2的占1种,摸出的两个小球标号之和是3的占2种,摸出的两个小球标号之和是4的占3种,摸出的两个小球标号之和是5的占两种,摸出的两个小球标号之和是6的占一种;所以棋子走E点的可能性最大,棋子走到E点的概率==.24.如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)若∠DBC=30°,DE=1cm,求BD的长.【考点】切线的判定;圆周角定理.【分析】(1)连接OA,根据角之间的互余关系可得∠OAE=∠DEA=90°,故AE⊥OA,即AE是⊙O的切线;(2)根据圆周角定理,可得在Rt△AED中,∠AED=90°,∠EAD=30°,有AD=2DE;在Rt△ABD中,∠BAD=90°,∠ABD=30°,有BD=2AD=4DE,即可得出答案.【解答】(1)证明:连接OA,∵DA平分∠BDE,∴∠BDA=∠EDA.∵OA=OD,∴∠ODA=∠OAD,∴∠OAD=∠EDA,∴OA∥CE.∵AE⊥CE,∴AE⊥OA.∴AE是⊙O的切线.(2)解:∵BD是直径,∴∠BCD=∠BAD=90°.∵∠DBC=30°,∠BDC=60°,∴∠BDE=120°.∵DA平分∠BDE,∴∠BDA=∠EDA=60°.∴∠ABD=∠EAD=30°.∵在Rt△AED中,∠AED=90°,∠EAD=30°,∴AD=2DE.∵在Rt△ABD中,∠BAD=90°,∠ABD=30°,∴BD=2AD=4DE.∵DE的长是1cm,∴BD的长是4cm.25.如图,抛物线y=x2﹣x+a与x轴交于点A,B,与y轴交于点C,其顶点在直线y=﹣2x上.(1)求a的值;(2)求A,B的坐标;(3)以AC,CB为一组邻边作▱ACBD,则点D关于x轴的对称点D′是否在该抛物线上?请说明理由.【考点】二次函数综合题.【分析】(1)根据二次函数的顶点坐标的求法得出顶点坐标,再代入一次函数即可求出a的值;(2)根据二次函数解析式求出与x轴的交点坐标即是A,B两点的坐标;(3)根据平行四边形的性质得出D点的坐标,即可得出D′点的坐标,即可得出答案.【解答】解:(1)∵抛物线y=x2﹣x+a其顶点在直线y=﹣2x上.∴抛物线y=x2﹣x+a,=(x2﹣2x)+a,=(x﹣1)2﹣+a,∴顶点坐标为:(1,﹣+a),∴y=﹣2x,﹣+a=﹣2×1,∴a=﹣;(2)二次函数解析式为:y=x2﹣x﹣,∵抛物线y=x2﹣x﹣与x轴交于点A,B,∴0=x2﹣x﹣,整理得:x2﹣2x﹣3=0,解得:x=﹣1或3,A(﹣1,0),B(3,0);(3)作出平行四边形ACBD,作DE⊥AB,在△AOC和△BDE中∵∴△AOC≌△BED(AAS),∵AO=1,∴BE=1,∵二次函数解析式为:y=x2﹣x﹣,∴图象与y轴交点坐标为:(0,﹣),∴CO=,∴DE=,D点的坐标为:(2,),∴点D关于x轴的对称点D′坐标为:(2,﹣),代入解析式y=x2﹣x﹣,∵左边=﹣,右边=×4﹣2﹣=﹣,∴D′点在函数图象上.26.如图,正三角形ABC的边长为3+.(1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法);(2)求(1)中作出的正方形E′F′P′N′的边长;(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值和最小值,并说明理由.【考点】位似变换;等边三角形的性质;勾股定理;正方形的性质.【分析】(1)利用位似图形的性质,作出正方形EFPN的位似正方形E′F′P′N′,如答图①所示;(2)根据正三角形、正方形、直角三角形相关线段之间的关系,利用等式E′F′+AE′+BF′=AB,列方程求得正方形E′F′P′N′的边长;(3)设正方形DEMN、正方形EFPH的边长分别为m、n(m≥n),求得面积和的表达式为:S=+(m﹣n)2,可见S的大小只与m、n的差有关:①当m=n时,S取得最小值;②当m最大而n最小时,S取得最大值.m最大n最小的情形见第(1)(2)问.【解答】解:(1)如图①,正方形E′F′P′N′即为所求.(2)设正方形E′F′P′N′的边长为x,∵△ABC为正三角形,∴AE′=BF′=x.∵E′F′+AE′+BF′=AB,∴x+x+x=3+,∴x=,即x=3﹣3,(x≈2.20也正确)(3)如图②,连接NE、EP、PN,则∠NEP=90°.设正方形DEMN、正方形EFPH的边长分别为m、n(m≥n),它们的面积和为S,则NE=,PE=n.∴PN2=NE2+PE2=2m2+2n2=2(m2+n2).∴S=m2+n2=PN2,延长PH交ND于点G,则PG⊥ND.在Rt△PGN中,PN2=PG2+GN2=(m+n)2+(m﹣n)2.∵AD+DE+EF+BF=AB,即m+m+n+n=+3,化简得m+n=3.∴S= [32+(m﹣n)2]= +(m﹣n)2①当(m﹣n)2=0时,即m=n时,S最小.∴S最小=;②当(m﹣n)2最大时,S最大.即当m最大且n最小时,S最大.∵m+n=3,3.由(2)知,m最大=3﹣9+(m最大﹣n最小)2]∴S最大= [= [9+(3﹣3﹣6+3)2]=99﹣54….≈5.47也正确)(S最大54,S最小=.综上所述,S最大=99﹣。
2020-2021西安市铁一中学初三数学下期末一模试卷(带答案)

2020-2021西安市铁一中学初三数学下期末一模试卷(带答案)一、选择题1.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是230000000人一年的口粮,将230000000用科学记数法表示为( ) A.2.3×109 B.0.23×109 C.2.3×108 D.23×1072.若一个凸多边形的内角和为720°,则这个多边形的边数为()A.4B.5C.6D.73.如图是由5个相同大小的正方体搭成的几何体,则它的俯视图是()A.B.C.D.4.下列命题正确的是()A.有一个角是直角的平行四边形是矩形B.四条边相等的四边形是矩形C.有一组邻边相等的平行四边形是矩形D.对角线相等的四边形是矩形5.如图抛物线y=ax2+bx+c的对称轴为直线x=1,且过点(3,0),下列结论:①abc>0;②a﹣b+c<0;③2a+b>0;④b2﹣4ac>0;正确的有()个.A.1B.2C.3D.46.-2的相反数是()A.2B.12C.-12D.不存在7.如图,把一个正方形三次对折后沿虚线剪下,得到的图形是()A .B .C .D .8.如图,在△ABC 中,∠ACB=90°, ∠ABC=60°, BD 平分∠ABC ,P 点是BD 的中点,若AD=6, 则CP 的长为( )A .3.5B .3C .4D .4.59.已知直线//m n ,将一块含30角的直角三角板ABC 按如图方式放置(30ABC ∠=︒),其中A ,B 两点分别落在直线m ,n 上,若140∠=︒,则2∠的度数为( )A .10︒B .20︒C .30D .40︒10.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几何体的侧面积是( )A .212cmB .()212πcm +C .26πcmD .28πcm 11.已知关于x 的方程2x+a-9=0的解是x=2,则a 的值为 A .2 B .3 C .4D .5 12.若0xy <,则2x y 化简后为( )A .x y -B .x yC .x y -D .x y --二、填空题13.如果a 是不为1的有理数,我们把11a -称为a 的差倒数如:2的差倒数是1112=--,-1的差倒数是111(1)2=--,已知14a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,…,依此类推,则 2019a =___________ .14.如图,直线a 、b 被直线l 所截,a ∥b ,∠1=70°,则∠2= .15.中国的陆地面积约为9 600 000km2,把9 600 000用科学记数法表示为.16.如图:在△ABC中,AB=13,BC=12,点D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么△ACD的周长是_____.17.如图,⊙O的半径为6cm,直线AB是⊙O的切线,切点为点B,弦BC∥AO,若∠A=30°,则劣弧BC的长为 cm.18.九年级三班小亮同学学习了“测量物体高度”一节课后,他为了测得如图所放风筝的高度,进行了如下操作:(1)在放风筝的点A处安置测倾器,测得风筝C的仰角∠CBD=60°;(2)根据手中剩余线的长度出风筝线BC的长度为70米;(3)量出测倾器的高度AB=1.5米.根据测量数据,计算出风筝的高度CE约为_____米.(精确到0.1米,3≈1.73).19.如图,将矩形ABCD沿CE折叠,点B恰好落在边AD的F处,如果AB2BC3,那么tan∠DCF的值是____.20.如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点处,当△为直角三角形时,BE 的长为 .三、解答题21.先化简,再求值:(2)(2)(4)a a a a +-+-,其中14a =. 22.如图,在Rt△ACB 中,∠C=90°,AC=3cm ,BC=4cm ,以BC 为直径作⊙O 交AB 于点D .(1)求线段AD 的长度;(2)点E 是线段AC 上的一点,试问:当点E 在什么位置时,直线ED 与⊙O 相切?请说明理由.23.如图,点D 在以AB 为直径的⊙O 上,AD 平分BAC ∠,DC AC ⊥,过点B 作⊙O 的切线交AD 的延长线于点E .(1)求证:直线CD 是⊙O 的切线.(2)求证:CD BE AD DE ⋅=⋅.24.某市某中学积极响应创建全国文明城市活动,举办了以“校园文明”为主题的手抄报比赛.所有参赛作品均获奖,奖项分为一等奖、二等奖、三等奖和优秀奖,将获奖结果绘制成如右两幅统计图.请你根据图中所给信息解答意)(1)等奖所占的百分比是________;三等奖的人数是________人;(2)据统计,在获得一等奖的学生中,男生与女生的人数比为11:,学校计划选派1名男生和1名女生参加市手抄报比赛,请求出所选2位同学恰是1名男生和1名女生的概率; (3)学校计划从获得二等奖的同学中选取一部分人进行集训使其提升为一等奖,要使获得一等奖的人数不少于二等奖人数的2倍,那么至少选取多少人进行集训?25.材料:解形如(x+a )4+(x+b )4=c 的一元四次方程时,可以先求常数a 和b 的均值,然后设y =x+.再把原方程换元求解,用种方法可以成功地消去含未知数的奇次项,使方程转化成易于求解的双二次方程,这种方法叫做“均值换元法. 例:解方程:(x ﹣2)4+(x ﹣3)4=1解:因为﹣2和﹣3的均值为,所以,设y =x ﹣,原方程可化为(y+)4+(y ﹣)4=1,去括号,得:(y 2+y+)2+(y 2﹣y+)2=1y 4+y 2++2y 3+y 2+y+y 4+y 2+﹣2y 3+y 2﹣y =1 整理,得:2y 4+3y 2﹣ =0(成功地消去了未知数的奇次项)解得:y 2=或y 2=(舍去)所以y =±,即x ﹣=±.所以x =3或x =2.(1)用阅读材料中这种方法解关于x 的方程(x+3)4+(x+5)4=1130时,先求两个常数的均值为______.设y =x+____.原方程转化为:(y ﹣_____)4+(y+_____)4=1130.(2)用这种方法解方程(x+1)4+(x+3)4=70626.如图,ABC ∆是边长为4cm 的等边三角形,边AB 在射线OM 上,且6OA cm =,点D 从点O 出发,沿OM 的方向以1cm/s 的速度运动,当D 不与点A 重合时,将ACD ∆绕∆,连接DE.点C逆时针方向旋转60°得到BCE∆是等边三角形;(1)如图1,求证:CDE(2)如图2,当6<t<10时,DE是否存在最小值?若存在,求出DE的最小值;若不存在,请说明理由.(3)当点D在射线OM上运动时,是否存在以D,E,B为顶点的三角形是直角三角形?若存在,求出此时t的值;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】230000000=2.3×108 ,故选C.2.C解析:C【解析】【分析】设这个多边形的边数为n,根据多边形的内角和定理得到(n﹣2)×180°=720°,然后解方程即可.【详解】设这个多边形的边数为n,由多边形的内角和是720°,根据多边形的内角和定理得(n-2)180°=720°.解得n=6.故选C.【点睛】本题主要考查多边形的内角和定理,熟练掌握多边形的内角和定理是解答本题的关键. 3.B解析:B【解析】【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】从上边看第一列是一个小正方形,第二列是一个小正方形,第三列是两个小正方形,故选:B.本题考查了简单几何体的三视图,从上边看上边看得到的图形是俯视图.4.A解析:A【解析】【分析】运用矩形的判定定理,即可快速确定答案.【详解】解:A.有一个角为直角的平行四边形是矩形满足判定条件;B 四条边都相等的四边形是菱形,故B 错误;C 有一组邻边相等的平行四边形是菱形,故C 错误;对角线相等且相互平分的四边形是矩形,则D 错误;因此答案为A.【点睛】本题考查了矩形的判定,矩形的判定方法有:1.有三个角是直角的四边形是矩形;2.对角线互相平分且相等的四边形是矩形;3.有一个角为直角的平行四边形是矩形;4.对角线相等的平行四边形是矩形.5.B解析:B【解析】【分析】由图像可知a >0,对称轴x=-2b a=1,即2a +b =0,c <0,根据抛物线的对称性得x=-1时y=0,抛物线与x 轴有2个交点,故△=b 2﹣4ac >0,由此即可判断.【详解】 解:∵抛物线开口向上,∴a >0,∵抛物线的对称轴为直线x =﹣2b a=1, ∴b =﹣2a <0,∵抛物线与y 轴的交点在x 轴下方,∴c <0,∴abc >0,所以①正确;∵抛物线与x 轴的一个交点为(3,0),而抛物线的对称轴为直线x =1,∴抛物线与x 轴的另一个交点为(﹣1,0),∵x =﹣1时,y =0,∴a ﹣b +c =0,所以②错误;∵b =﹣2a ,∴2a +b =0,所以③错误;∵抛物线与x 轴有2个交点,∴△=b 2﹣4ac >0,所以④正确.【点睛】此题主要考查二次函数的图像,解题的关键是熟知各系数所代表的含义.6.A解析:A【解析】试题分析:根据只有符号不同的两数互为相反数,可知-2的相反数为2.故选:A.点睛:此题考查了相反数的意义,解题关键是明确相反数的概念,只有符号不同的两数互为相反数,可直接求解.7.C解析:C【解析】【分析】按照题中所述,进行实际操作,答案就会很直观地呈现.【详解】解:将图形按三次对折的方式展开,依次为:.故选:C.【点睛】本题主要考查学生的动手能力及空间想象能力,对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.8.B解析:B【解析】【分析】【详解】解:∵∠ACB=90°,∠ABC=60°,∴∠A=30°,∵BD平分∠ABC,∴∠ABD=12∠ABC=30°,∴∠A=∠ABD,∴BD=AD=6,∵在Rt△BCD中,P点是BD的中点,∴CP=12BD=3.故选B.9.B解析:B【解析】【分析】根据平行线的性质判断即可得出结论.【详解】m n,解:直线//+︒,21180∴∠+∠∠+∠=ABC BAC∠=︒,∠,9030ABC=︒∠=︒,140BAC︒︒=︒︒︒,∴∠=---218030904020故选:B.【点睛】本题考查的是平行线的性质,熟练掌握平行线的性质是解题的关键.10.C解析:C【解析】【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【详解】先由三视图确定该几何体是圆柱体,底面半径是2÷2=1cm,高是3cm.所以该几何体的侧面积为2π×1×3=6π(cm2).故选C.【点睛】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.11.D解析:D【解析】∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,解得a=5.故选D.12.A解析:A【解析】【分析】二次根式有意义,隐含条件y>0,又xy<0,可知x<0,根据二次根式的性质化简.解答【详解】y>0,∵xy<0,∴x<0,∴原式=-故选A【点睛】此题考查二次根式的性质与化简,解题关键在于掌握其定义二、填空题13.【解析】【分析】利用规定的运算方法分别算得a1a2a3a4…找出运算结果的循环规律利用规律解决问题【详解】∵a1=4a2=a3=a4=…数列以4−三个数依次不断循环∵2019÷3=673∴a2019 解析:34. 【解析】【分析】 利用规定的运算方法,分别算得a 1,a 2,a 3,a 4…找出运算结果的循环规律,利用规律解决问题.【详解】∵a 1=4a 2=11111143a ==---, a 3=211311413a ⎛⎫ ⎪⎝=⎭=---, a 4=31143114a ==--, …数列以4,−1334,三个数依次不断循环, ∵2019÷3=673, ∴a 2019=a 3=34, 故答案为:34. 【点睛】此题考查规律型:数字的变化类,倒数,解题关键在于掌握运算法则找到规律. 14.110°【解析】∵a ∥b ∴∠3=∠1=70°∵∠2+∠3=180°∴∠2=110°解析:110°【解析】∵a∥b,∴∠3=∠1=70°,∵∠2+∠3=180°,∴∠2=110°15.6×106【解析】【分析】【详解】将9600000用科学记数法表示为96×106故答案为96×106解析:6×106.【解析】【分析】【详解】将9600000用科学记数法表示为9.6×106.故答案为9.6×106.16.18【解析】【分析】根据三角形中位线定理得到AC=2DE=5AC∥DE根据勾股定理的逆定理得到∠ACB=90°根据线段垂直平分线的性质得到DC=BD根据三角形的周长公式计算即可【详解】∵DE分别是A解析:18【解析】【分析】根据三角形中位线定理得到AC=2DE=5,AC∥DE,根据勾股定理的逆定理得到∠ACB=90°,根据线段垂直平分线的性质得到DC=BD,根据三角形的周长公式计算即可.【详解】∵D,E分别是AB,BC的中点,∴AC=2DE=5,AC∥DE,AC2+BC2=52+122=169,AB2=132=169,∴AC2+BC2=AB2,∴∠ACB=90°,∵AC∥DE,∴∠DEB=90°,又∵E是BC的中点,∴直线DE是线段BC的垂直平分线,∴DC=BD,∴△ACD的周长=AC+AD+CD=AC+AD+BD=AC+AB=18,故答案为18.【点睛】本题考查的是三角形中位线定理、线段垂直平分线的判定和性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.17.【解析】根据切线的性质可得出OB⊥AB从而求出∠BOA的度数利用弦BC∥AO及OB=OC可得出∠BOC的度数代入弧长公式即可得出∵直线AB是⊙O的切线∴OB⊥AB(切线的性质)又∵∠A=30°∴∠B解析:2π.【解析】根据切线的性质可得出OB ⊥AB ,从而求出∠BOA 的度数,利用弦BC ∥AO ,及OB=OC 可得出∠BOC 的度数,代入弧长公式即可得出∵直线AB 是⊙O 的切线,∴OB ⊥AB (切线的性质).又∵∠A=30°,∴∠BOA=60°(直角三角形两锐角互余).∵弦BC ∥AO ,∴∠CBO=∠BOA=60°(两直线平行,内错角相等).又∵OB=OC ,∴△OBC 是等边三角形(等边三角形的判定).∴∠BOC=60°(等边三角形的每个内角等于60°).又∵⊙O 的半径为6cm ,∴劣弧BC 的长=606=2180ππ⋅⋅(cm ). 18.1【解析】试题分析:在Rt △CBD 中知道了斜边求60°角的对边可以用正弦值进行解答试题解析:在Rt △CBD 中DC=BC•sin60°=70×≈6055(米)∵AB=15∴CE=6055+15≈621解析:1.【解析】试题分析:在Rt △CBD 中,知道了斜边,求60°角的对边,可以用正弦值进行解答. 试题解析:在Rt △CBD 中,.55(米). ∵AB=1.5,∴CE=60.55+1.5≈62.1(米).考点:解直角三角形的应用-仰角俯角问题. 19.【解析】【分析】【详解】解:∵四边形ABCD 是矩形∴AB =CD ∠D =90°∵将矩形ABCD 沿CE 折叠点B 恰好落在边AD 的F 处∴CF =BC ∵∴∴设CD =2xCF =3x ∴∴tan ∠DCF =故答案为:【点【解析】【分析】【详解】 解:∵四边形ABCD 是矩形,∴AB =CD ,∠D =90°,∵将矩形ABCD 沿CE 折叠,点B 恰好落在边AD 的F 处,∴CF =BC , ∵AB 2BC 3=,∴CD 2CF 3=.∴设CD =2x ,CF =3x ,∴.∴tan ∠DCF =DF CD =.故答案为:52.【点睛】本题考查翻折变换(折叠问题),翻折对称的性质,矩形的性质,勾股定理,锐角三角函数定义.20.3或32【解析】【分析】当△CEB′为直角三角形时有两种情况:①当点B′落在矩形内部时如答图1所示连结AC先利用勾股定理计算出AC=5根据折叠的性质得∠AB′E=∠B=90°而当△CEB′为直角三角解析:3或.【解析】【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴AC==5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5-3=2,设BE=x,则EB′=x,CE=4-x,在Rt △CEB′中,∵EB′2+CB′2=CE 2,∴x 2+22=(4-x )2,解得,∴BE=;②当点B′落在AD 边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE 的长为或3. 故答案为:或3. 三、解答题21.44a -,3-.【解析】试题分析:根据平方差公式和单项式乘以多项式可以对原式化简,然后将a=14代入化简后的式子,即可解答本题. 试题解析:原式=2244a a a -+-=44a -; 当a=14时,原式=1444⨯-=14-=3-. 考点:整式的混合运算—化简求值. 22.(1)AD=95;(2)当点E 是AC 的中点时,ED 与⊙O 相切;理由见解析. 【解析】【分析】(1)由勾股定理易求得AB 的长;可连接CD ,由圆周角定理知CD ⊥AB ,易知△ACD ∽△ABC ,可得关于AC 、AD 、AB 的比例关系式,即可求出AD 的长.(2)当ED 与 O 相切时,由切线长定理知EC=ED ,则∠ECD=∠EDC ,那么∠A 和∠DEC 就是等角的余角,由此可证得AE=DE ,即E 是AC 的中点.在证明时,可连接OD ,证OD ⊥DE 即可.【详解】(1)在Rt △ACB 中,∵AC=3cm ,BC=4cm ,∠ACB=90°,∴AB=5cm ;连接CD ,∵BC 为直径,∴∠ADC=∠BDC=90°;∵∠A=∠A ,∠ADC=∠ACB ,∴Rt △ADC ∽Rt △ACB ;∴,∴;(2)当点E 是AC 的中点时,ED 与⊙O 相切;证明:连接OD ,∵DE 是Rt △ADC 的中线;∴ED=EC ,∴∠EDC=∠ECD ;∵OC=OD ,∴∠ODC=∠OCD ;∴∠EDO=∠EDC+∠ODC=∠ECD+∠OCD=∠ACB=90°;∴ED ⊥OD ,∴ED 与⊙O 相切.【点睛】本题考查了圆周角定理、切线的判定、相似三角形的判定与性质,熟练掌握该知识点是本题解题的关键.23.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)连接OD ,由角平分线的定义得到∠CAD=∠BAD ,根据等腰三角形的性质得到∠BAD=∠ADO ,求得∠CAD=∠ADO ,根据平行线的性质得到CD ⊥OD ,于是得到结论;(2)连接BD ,根据切线的性质得到∠ABE=∠BDE=90°,根据相似三角形的性质即可得到结论.【详解】解:证明:(1)连接OD ,∵AD 平分BAC ∠,∴CAD BAD ∠=∠,∵OA OD =,∴BAD ADO =∠∠,∴CAD ADO ∠=∠,∴AC OD ∥,∵CD AC ⊥,∴CD OD ⊥,∴直线CD 是⊙O 的切线;(2)连接BD ,∵BE 是⊙O 的切线,AB 为⊙O 的直径,∴90ABE BDE ︒∠=∠=,∵CD AC ⊥,∴90C BDE ︒∠=∠=,∵CAD BAE DBE ∠=∠=∠,∴ACD BDE ∆∆∽, ∴CD AD DE BE=, ∴CD BE AD DE ⋅=⋅.【点睛】本题考查了相似三角形的判定和性质,角平分线的定义.圆周角定理,切线的判定和性质,正确的作出辅助线是解题的关键.24.(1)8%,16;(2)P (1名男生和1名女生)23=;(3)至少需要选取6人进行集训. 【解析】【分析】(1)一等奖所占的百分比=1减去其它奖项的百分比即可求解;根据优秀奖比例和人数可计算总数,进而计算出三等奖人数.(2)求出一等奖男女各有多少人,然后列表或画树形图即可解;(3)设需要选取x 人进行集训,依据使获得一等奖的人数不少于二等奖人数的2倍,列不等式解答即可.【详解】(1)一等奖所占的百分比=1-40%-30%-32=8%;总人数=20÷40%=50(人), 三等奖的人数是=50×32%=16(人); (2)一等奖的人数=508%4⨯=,男女都有的人数14211⨯=+, 列表得:∴一等奖有两位男生两位女生,一共有12种等可能结果,其中恰是一男一女的结果数是8,∴P (1名男生和1名女生)82123==. (3)设需要选取x 人进行集训,根据题意得:()4210x x +≥-,解得 163x ≥, 因为x 是整数,所以x 取6.答:至少需要选取6人进行集训.【点睛】本题主要考查了条形统计图及扇形统计图以及求随机事件的概率,不等式的应用,解题的关键是能从条形统计图及扇形统计图得出相关数据.列表或画出树形图解答.25.(1)4,4,1,1;(2)x =2或x =﹣6.【解析】【分析】(1)可以先求常数3和5的均值4,然后设y =x+4,原方程可化为(y ﹣1)4+(y+1)4=1130;(2)可以先求常数1和3的均值2,然后设y =x+2,原方程可化为(y ﹣1)4+(y+1)4=706,再整理化简求出y 的值,最后求出x 的值.【详解】(1)因为3和5的均值为4,所以,设y =x+4,原方程可化为(y ﹣1)4+(y+1)4=1130,故答案为4,4,1,1;(2)因为1和3的均值为2,所以,设y =x+2,原方程可化为(y ﹣1)4+(y+1)4=706,去括号,得:(y 2﹣2y+1)2+(y 2+2y+1)2=706,y 4+4y 2+1﹣4y 3+2y 2﹣4y+y 4+4y 2+1+4y 3+2y 2+4y =706,整理,得:2y 4+12y 2﹣704=0(成功地消去了未知数的奇次项),解得:y 2=16或y 2=﹣22(舍去)所以y =±4,即x+2=±4.所以x =2或x =﹣6. 【点睛】本题考查了解高次方程,求出均值把原方程换元求解是解题的关键.26.(1)详见解析;(2)存在,23+4;(3)当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.【解析】试题分析:(1)由旋转的性质结合△ABC是等边三角形可得∠DCB=60°,CD=CE,从而可得△CDE 是等边三角形;(2)由(1)可知△CDE是等边三角形,由此可得DE=CD,因此当CD⊥AB时,CD最短,则DE最短,结合△ABC是等边三角形,AC=4即可求得此时DE=CD=23;(3)由题意需分0≤t<6,6<t<10和t>10三种情况讨论,①当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,由此可知:此时若△DBE是直角三角形,则∠BED=90°;②当6<t<10s时,由性质的性质可知∠DBE=120°>90°,由此可知:此时△DBE不可能是直角三角形;③当t>10s时,由旋转的性质可知,∠DBE=60°,结合∠CDE=60°可得∠BDE=∠CDE+∠BDC=60°+∠BDC>60°,由此可得∠BED<60°,由此可知此时若△BDE 是直角三角形,则只能是∠BDE=90°;这样结合已知条件即可分情况求出对应的t的值了.试题解析:(1)∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)存在,当6<t<10时,由(1)知,△CDE是等边三角形,∴DE=CD,由垂线段最短可知,当CD⊥AB时,CD最小,此时∠ADC=90°,又∵∠ACD=60°,∴∠ACD=30°,∴ AD=12AC=2,∴ CD=22224223AC AD-=-=,∴ DE=23(cm);(3)存在,理由如下:①当0s≤t<6s时,由旋转可知,∠ABE=60°,∠BDE<60°,∴此时若△DBE是直角三角形,则∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEC=60°,∴∠CEB=∠BED-∠DEC=30°,∴∠CDA=∠CEB=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴t=2÷1=2(s);②当6s<t<10s时,由性质的性质可知∠DBE=120°>90°,∴此时△DBE不可能是直角三角形;③当t>10s时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14cm,∴t=14÷1=14(s);综上所述:当t=2s或14s时,以D、E、B为顶点的三角形是直角三角形.点睛:(1)解第2小题的关键是:抓住点D在运动过程中,△DBE是等边三角形这一点得到DE=CD,从而可知当CD⊥AB时,CD最短,则DE最短,由此即可由已知条件解得DE的最小值;(2)解第3小题的关键是:根据点D的不同位置分为三段时间,结合已知条件首先分析出在每个时间段内△BDE中哪个角能够是直角,然后再结合已知条件进行解答即可求得对应的t的值了.。
2020年陕西省中考数学一模试卷 (含解析)

2020年陕西省中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.−66的相反数是()A. −66B. 66C. 166D. −1662.55°角的余角是()A. 55°B. 45°C. 35°D. 125°3.据报道,2015年国内生产总值达到677000亿元,677000用科学记数法表示应为()A. 0.677×106B. 6.77×105C. 67.7×104D. 677×1034.如图是郴(cℎēn)州市春季某一天的气温随时间变化的图象,根据图象可知,在这一天中最高气温与达到最高气温的时间是()A. 25℃,16时B. 10℃,6时C. 20℃,14时D. 15℃,18时5.(−12x2y)3的计算结果是()A. −12x6y3 B. −16x6y3 C. −18x6y3 D. 18x6y36.如图,△ABC的顶点A,B,C在边长为1的正方形网格的格点上,BD⊥AC于点D.则CD的长为()A. 25√5 B. 23√5 C. 45√5 D. 35√57.直线y=ax+2与直线y=3x−2平行,下列说法不正确的是()A. a =3B. 直线y =ax +2与y =3x −2没有交点C. 方程组{y =ax +2y =3x −2无解D. 方程组{y =ax +2y =3x −2有无穷多个解8. 如图,平行四边形ABCD 中,AC ⊥AB ,点E 为BC 边中点,AD =6,则AE 的长为( )A. 2B. 3C. 4D. 59. 在直径为12cm 的圆中有一个内接△ABC ,AB =6cm ,则∠C 的度数是A. 30°B. 150°C. 30°或120°D. 30°或150°10. 在平面直角坐标系中,将抛物线y =3x 2+2先向左平移2个单位,再向上平移6个单位后所得到的抛物线的顶点坐标是( )A. (−2,6)B. (−2,−8)C. (−2,8)D. (2,−8)二、填空题(本大题共4小题,共12.0分)11. 计算:(1+√2)(1−√2)=______.12. 如图,在正五边形ABCDE 中,连接AC ,则∠BAC 的度数为______.13. 若M(2,2)和N(b,−1−n 2)是反比例函数y =kx 图象上的两点,则一次函数y =kx +b 的图象经过______ 象限.14. 如图,在菱形ABCD 中,AB =2,∠DAB =60°,对角线AC ,BD 相交于点O ,过点C 作CE//BD交AB 的延长线于点E ,连接OE ,则OE 长为______.三、计算题(本大题共2小题,共12.0分)15.解分式方程:①40x−3=64x;②2xx−1+2=−21−x.16.如图,学校的实验楼对面是一幢教工宿舍楼,小敏在实验楼的窗口C测得教工宿台楼顶部D仰角为15°,教学楼底部B的俯角为22°,量得实验楼与教学楼之间的距离AB=30m.(1)求∠BCD的度数.(2)求教工宿舍楼的高BD.(结果精确到0.1m,参考数据:tanl5°≈0.268,tan22°=0.404)四、解答题(本大题共9小题,共66.0分)17.解不等式组:{3x≥4x−1 5x−12>x−218.已知:∠α.请你用直尺和圆规画一个∠BAC,使∠BAC=∠α.(要求:要保留作图痕迹,不写作法.)19.如图,在▱ABCD中,AE=CF,求证:四边形DEBF是平行四边形.20.某商场进了600箱苹果.在出售之前,先从中随机抽出10箱检查,称得10箱苹果的质量(单位:千克)如下:5.0,5.4,4.4,5.3,5.0,5.0,4.8,4.8,4.0,5.3.(1)请指出这10箱苹果质量的平均数、中位数和众数分别是多少?(2)请你根据上述结果估计600箱苹果的质量为多少千克.21.某生物小组观察一植物生长,得到植物高度y(单位:厘米)与观察时间x(单位:天)的关系,并画出如图所示的图象(AC是线段,直线CD平行于x轴).(1)该植物从观察时起,多少天以后停止长高?(2)求AC段对应的函数解析式,并求该植物最高能长到多少厘米.22.不透明的口袋里装有黄、白两种颜色的乒乓球(除颜色外其他都相同),其中黄球有3个,白球有1个.(1)若从中随机摸出1个乒乓球,则摸出白球的概率为______;(2)若从中随机摸出2个乒乓球,求摸出的2个球都是黄球的概率.23.如图,⊙O是Rt△ABC的外接圆,∠ACB=90°,∠A=25°,过点C作⊙O的切线,交AB的延长线于点D,求∠D的度数.24.如图,在平面直角坐标系中,抛物线y=ax2+bx+4与x轴的一个交点为A(−2,0),与y轴的交点为C,对称轴是x=3,对称轴与x轴交于点B.(1)求抛物线的函数表达式;(2)点P的横坐标为t,在抛物线上的第一象限内移动,当△BCP的面积取最大值时,求t得值;(3)经过B,C的直线l平移后与抛物线交于点M,与x轴交于点N,当以B,C,M,N为顶点的四边形是平行四边形时,求出点M的坐标;25.如图,⊙O的直径AB=10,点P为BA的延长线上一点,直线PD切⊙O于点D,过点B作BH⊥PD,垂足为H,BH交⊙O于点C,BC=6,连接BD.(1)求证:BD平分∠ABH;(2)求PA的长;(3)E是AB⏜上的一动点,DE交AB于点F,连接AD,AE.是否存在点E,使得△ADE∽△FDB?如果存在,请证明你的结论,并求AE⏜的长;如果不存在,请说明理由.【答案与解析】1.答案:B解析:解:−66的相反数是66.故选:B.直接利用相反数的定义得出答案.此题主要考查了相反数,正确把握相反数的定义是解题关键.2.答案:C解析:解:55°的余角=90°−55°=35°.故选C.相加等于90°的两角称作互为余角,也作两角互余,即一个角是另一个角的余角.因而,求这个角的余角,就可以用90°减去这个角的度数.本题考查了余角的定义,互余是反映了两个角之间的关系即和是90°.3.答案:B解析:解:677000=6.77×105,故选:B.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.答案:C解析:本题考查了函数图象,仔细观察图象,即可解决问题.根据图象,即可求出答案.解:根据题意:在这一天中最高气温即T的最大值为20,达到最高气温的时间即对应t的值为14.故选C .5.答案:C解析:解:原式=−18x 6y 3.故选C .根据幂的乘方与积的乘方运算法则进行运算即可.本题考查了幂的乘方与积的乘方,解答本题的关键是掌握幂的乘方与积的乘方运算法则. 6.答案:A解析:本题考查了勾股定理,三角形的面积.利用面积法求得线段BD 的长度是解题的关键.利用勾股定理求得相关线段的长度,然后由面积法求得BD 的长度,再利用勾股定理即可求出CD 的长.解:如图,由勾股定理得AC =√12+22=√5,∵12BC ×2=12AC ⋅BD ,即12×2×2=12×√5BD ,∴BD =4√55, ∴CD =√BC 2−BD 2=2√55. 故选A .7.答案:D解析:本题主要考查了两条直线平行问题、一次函数与二元一次方程组的关系.根据两个一次函数平行时系数之间的关系即可得出答案.解:∵直线y =ax +2与直线y =3x −2平行,∴a =3,两直线无交点,方程组{y =ax +2y =3x −2无解. 故A ,B ,C 正确,D 错误,故选D .8.答案:B解析:解:∵四边形ABCD是平行四边形,∴BC=AD=6,∵E为BC的中点,AC⊥AB,BC=3,∴AE=12故选:B.由平行四边形的性质得出BC=AD=6,由直角三角形斜边上的中线性质即可得出结果.本题考查了平行四边形的性质、直角三角形斜边上的中线性质;熟练掌握平行四边形的性质,由直角三角形斜边上的中线性质求出AE是解决问题的关键.9.答案:D解析:本题考查了圆周角定理,考查了三角形的内接圆,解答时要进行分类讨论,根据点C所在的不同位置来加以分析.解:如图∵⊙O的直径为12cm,∴OA=OB=6cm,∵AB=6cm,∴OA=OB=AB,∴△OAB是等边三角形,∴∠AOB=60°,∴∠ACB=1∠AOB=30°,2∵四边形ACBC′是⊙O的内接四边形,∴∠AC′B+∠ACB=180°,∴∠AC′B=150°.∴弦长6cm所对的圆周角等于30°或150°.故选D.10.答案:C解析:本题考查了二次函数图象与几何变换.先把抛物线的解析式化为顶点式y=a(x−k)2+ℎ,其中对称轴为直线x=k,顶点坐标为(k,ℎ),若把抛物线先右平移m个单位,向上平移n个单位,抛物线的平移后顶点(k+m,ℎ+n).解:抛物线y=3x2+2的顶点坐标为(0,2),抛物线y=3x2+2先向左平移2个单位,再向上平移6个单位后所得到抛物线顶点坐标为(−2,8),故选:C.11.答案:−1解析:解:原式=1−(√2)2=1−2=−1.故答案为−1.根据平方差公式计算.本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.12.答案:36°解析:解:正五边形内角和:(5−2)×180°=3×180°=540°∴∠B=540°=108°,5∴∠BAC=180°−∠B2=180°−108°2=36°,故答案为:36°.首先利用多边形的内角和公式求得正五边形的内角和,再求得每个内角的度数,利用等腰三角形的性质可得∠BAC的度数.本题主要考查了正多边形的内角和,熟记多边形的内角和公式:(n−2)×180°是解答此题的关键.13.答案:第一、三、四解析:本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键,先根据M(2,2)和N(b,−1−n2)是反比例函数y=kx图象上的两点求出k 的值及b的符号,再根据一次函数的性质即可得出结论.解:∵M(2,2)和N(b,−1−n2)是反比例函数y=kx图象上的两点,∴k=2×2=4,∴b(−1−n2)=4,∴−1−n2=4b,∵1+n2>0,∴−1−n2<0,即4b<0,∴b<0,∵一次函数y=kx+b中k=4>0,b<0,∴此函数的图象经过一、三、四象限.故答案为第一、三、四.14.答案:√7解析:解:∵四边形ABCD是菱形,∠DAB=60°,∴∠OAB=30°,∠AOB=90°.OB=OD,AO=CO,CD//AB,∵AB=2,∴OB=1,AO=OC=√3,∴DB=2,∵CE//DB,CD//BE,∴四边形DBEC是平行四边形.∴CE=DB=2,∠OCE=90°,∴OE=√OC2+CE2=√4+3=√7,故答案为:√7.由菱形的性质可得∠OAB=30°,∠AOB=90°,由直角三角形的性质可求OB=1,AO=OC=√3,由勾股定理可求OE的长.本题菱形的性质,等边三角形的性质,直角三角形的性质,平行四边形的判定和性质,灵活运用菱形的性质是本题的关键.15.答案:解:(1)方程两边都乘以x(x−3)得,40x=64(x−3),64x−40x=192,x=8,检验:当x=8时,x(x−3)≠0,∴x=8是原方程的解;(2)方程两边都乘以(x−1)得,2x+2(x−1)=2,4x=4,x=1,检验:当x=1时,x−1=0,∴x=1是原分式方程的增根,原分式方程无解.解析:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.(1)方程两边都乘以x(x−3),分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)方程两边都乘以(x−1),分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.16.答案:解:(1)作CH ⊥BD 于H ,如图,根据题意得∠DCH =15°,∠BCH =22°,∴∠BCD =∠DCH +∠BCH =15°+22°=37°;(2)易得四边形ABHC 为矩形,则CH =AB =30,在Rt △DCH 中,tan∠DCH =DH CH ,∴DH =30tan15°=30×0.268=8.04,在Rt △BCH 中,tan∠BCH =BHCH ,∴BH =30tan22°=30×0.404=12.12,∴BD =12.12+8.04=20.16≈20.2(m).答:教工宿舍楼的高BD 为20.2m .解析:(1)作CH ⊥BD 于H ,如图,利用仰角和俯角定义得到∠DCH =15°,∠BCH =22°,然后计算它们的和即可得到∠BCD 的度数;(2)利用正切定义,在Rt △DCH 中计算出DH =30tan15°=8.04,在Rt △BCH 中计算出BH =30tan22°=12.12,然后计算BH +DH 即可得到教工宿舍楼的高BD .本题考查了解直角三角形的应用−仰角俯角问题:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.17.答案:解:{3x ≥4x −1①5x−12>x −2② ∵解不等式①得:x ≤1,解不等式②得:x >−1,∴不等式组的解集为−1<x ≤1,解析:先求出不等式的解集,再求出不等式组的解集即可.本题考查了解一元一次不等式组,能根据不等式的解集找出不等式组的解集是解此题的关键. 18.答案:解:如图所示,∠BAC 即为所求.解析:根据作一个角等于已知角的方法作图即可.此题主要考查了基本作图,关键是掌握作一个角等于已知角的方法.19.答案:证明:在▱ABCD中,则AB//CD,AB=CD,∵AE=CF,∴AB−AE=CD−CF,∴BE=DF,∵BE//DF,∴四边形DEBF是平行四边形.解析:利用平行四边形的性质得出AB//CD,AB=CD,进而求出BE=DF,进而利用一组对边平行且相等的四边形是平行四边形进而求出即可.此题主要考查了平行四边形的判定与性质,得出BE=DF是解题关键.=4.9(千克),20.答案:解:(1)平均数=5.0+5.4+4.4+5.3+5.0+5.0+4.8+4.8+4.0+5.3105.0出现的次数最多,是3次,因而众数是5.0千克;共有10个数,中间位置的是第5个与第6个,中位数是这两个数的平均数是5.0千克.(2)由(1)得每箱苹果的质量平均为4.9千克,∴总量=4.9×600=2940千克.答:600箱苹果的质量约为2940千克.解析:本题考查的是平均数、众数和中位数.要注意,当所给数据有单位时,所求得的平均数、众数和中位数与原数据的单位相同,不要漏单位.并且本题考查了总体与样本的关系,可以用样本平均数估计总体平均数.(1)根据平均数、众数和中位数的定义求解;(2)先求出样本的平均数,再估计总体.21.答案:解:(1)∵CD//x轴,∴从第50天开始植物的高度不变,答:该植物从观察时起,50天以后停止长高;(2)设直线AC的解析式为y=kx+b(k≠0),∵经过点A(0,6),B(30,12),∴{b=630k+b=12,解得{k=15b=6.所以,直线AC的解析式为y=15x+6(0≤x≤50),当x=50时,y=15×50+6=16cm.答:直线AC所在线段的解析式为y=15x+6(0≤x≤50),该植物最高长16cm.解析:本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知自变量求函数值,仔细观察图象,准确获取信息是解题的关键.(1)根据平行线间的距离相等可知50天后植物的高度不变,也就是停止长高;(2)设直线AC的解析式为y=kx+b(k≠0),然后利用待定系数法求出直线AC线段的解析式,再把x=50代入进行计算即可得解.22.答案:14解析:解:(1)∵不透明的口袋里黄球有3个,白球有1个,共有4个球,∴摸出白球的概率为14;故答案为:14.(2)根据题意画树状图如下:共有12种等情况数,其中摸出的2个球都是黄球的有6种,则摸出的2个球都是黄球的概率是612=12.(1)用白球的个数除以总球的个数即可得出答案;(2)根据题意画树状图,然后根据树状图即可求得所有等可能的结果与摸出的2个球都是黄球的情况,然后根据概率公式求解即可求得答案.此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.23.答案:40°解析:考查切线的性质,圆周角定理,比较简单,熟记圆周角定理是解题的关键.首先连接OC,由∠A=25°,可求得∠BOC的度数,由CD是⊙O的切线,可得OC⊥CD,继而求得答案.解:连接OC,∵圆O是Rt△ABC的外接圆,∴AB是直径,∵CD 是圆O 的切线,∴OC ⊥CD ,24.答案:解:(1)∵抛物线y =ax 2+bx +4交x 轴于A(−2,0), ∴0=4a −2b +4,∵对称轴是x =3,∴−b 2a =3,即6a +b =0,两关于a 、b 的方程联立解得a =−14,b =32,∴抛物线为y =−14x 2+32x +4;(2)当x =0时,y =4,∴点C 的坐标为(0,4),∴OC =4,OB =3.∵点P 的横坐标为t ,点P 在抛物线上,∴点P 的坐标为(t,−14t 2+32t +4),当0<x ≤3时,S △BCP =3(−14t 2+32t +4)−12×3×4−12t(−14t 2+32t +4−4)−12(3−t)(−14t 2+32t +4)=−38(t −173)2+28924, 即当t =173时,最大面积为28924; 当3<x ≤6时,S △BCP =t(−1t 2+3t +4)−1×3×4−1(t −3)(−1t 2+3t +4)−1t(−1t 2+3t +4−4) =−38(t −173)2+289, 即当t =173时,最大面积为28924;当6<x ≤8时,S △BCP =4t −12×3×4−12t(4+14t 2−32t −4)−12(t −3)(−14t 2+32t +4) =−98(t −209)2+509, 即当t =209时,最大面积为509. ∵28924>509,∴当△BCP 的面积取最大值时,t 的值为173;(3)如图1所示,∵四边形为平行四边形,且BC//MN ,∴BC =MN .①N 点在M 点下方,即M 向下平移4个单位,向右平移3个单位与N 重合. 设M 1(x,−14x 2+32x +4),则N 1(x +3,−14x 2+32x), ∵N 1在x 轴上,∴−14x 2+32x =0,解得x =0(M 与C 重合,舍去),或x =6, ∴x M =6,∴M 1(6,4);②M 点在N 点右下方,即N 向下平移4个单位,向右平移3个单位与M 重合. 设M(x,−14x 2+32x +4),则N(x −3,−14x 2+32x +8), ∵N 在x 轴上,∴−14x2+32x+8=0,解得x=3−√41,或x=3+√41,∴x M=3−√41,或3+√41,∴M2(3−√41,−4)或M3(3+√41,−4)综上所述,M的坐标为(6,4)或(3−√41,−4)或(3+√41,−4).解析:本题考查了一次函数、二次函数的图象与性质,函数的意义,平移及二元一次方程求解等知识,本题难度适中,但想做全答案并不容易,是道非常值得学生练习的题目.(1)解析式已存在,y=ax2+bx+4,我们只需要根据特点描述求出a,b即可.由对称轴为−b2a,又过点A(−2,0),所以函数表达式易得;(2)根据(1)求出OB,OC的长,然后得出点P的坐标为(t,−14t2+32t+4),再分三种情况分析:当0<x≤3时;当3<x≤6时;当6<x≤8时,分别求出三种情况下的最大面积,再比较即可;(3)四边形BCMN为平行四边形,则必定对边平行且相等.因为已知MN//BC,所以MN=BC,即M、N的位置如B、C位置关系,则可分2种情形,①N点在M点右下方,即M向下平移4个单位,向右平移3个单位与N重合.②M点在N右下方,即N向下平移4个单位,向右平移3个单位与M重合.因为M在抛物线,可设坐标为(x,−14x2+32x+4),易得N坐标,由N在x轴上,所以其纵坐标为0,则可得关于x的方程,进而求出x,求出M的坐标.25.答案:(1)证明:连接OD,∵PD是⊙O的切线,∴OD⊥PD,又∵BH⊥PD,∴∠PDO=∠PHB=90°,∴OD//BH,∴∠ODB=∠DBH,而OD=OB,∴∠ODB=∠OBD,∴∠OBD=∠DBH,∴BD平分∠ABH;(2)解:过点O 作OG ⊥BC ,垂足为G ,则BG =CG =3,在Rt △OBG 中,OG =√OB 2−BG 2=4,∵∠ODH =∠DHG =∠HGO =90°,∴四边形ODHG 为矩形,∴OD =GH =5,BH =BG +GH =8,∵OD//BH ,∴PO PB =OD BH ,即PO PO+5=58,解得PO =253,∴PA =PO −AO =253−5=103;(3)当E 为AB 弧的中点时,△ADE∽△FDB ,∵E 是AB⏜的中点, 即AE⏜=BE ⏜, ∴∠ADE =∠EDB ,又∵∠AED =∠ABD ,∴△ADE∽△FDB ,可求得AE ⏜=52π.解析:此题考查了平行线的判定与性质,角平分线的定义,勾股定理,矩形的判定与性质,切线的性质,圆周角定理及其推论,相似三角形的判定,掌握这些判定与性质及定理的内容是解决此类问题的关键.(1)先连接OD ,根据PD 是⊙O 的切线,得到OD ⊥PD ,结合BH ⊥PD ,得到∠PDO =∠PHB =90°,∴OD//BH ,∴∠ODB =∠DBH ,而OD =OB ,∴∠ODB =∠OBD ,∴∠OBD =∠DBH ,即可证明BD 平分∠ABH ;(2)过点O 作OG ⊥BC ,垂足为G ,先用勾股定理求出OG =√OB 2−BG 2=4,根据∠ODH =∠DHG =∠HGO =90°,得到四边形ODHG 为矩形,得到OD =GH =5,BH =BG +GH =8,根据OD//BH ,得到PO PB =OD BH ,即PO PO+5=58,可以求出PO =253,即可求出PA 的长;(3)当E 是AB⏜的中点时,得到AE ⏜=BE ⏜,则∠ADE =∠EDB ,又∵∠AED =∠ABD ,∴△ADE∽△FDB ,可求得AE ⏜=52π.。
陕西省2020年中考数学第一次模拟检测试卷(含解析)

2020年中考数学第一次模拟检测试卷一、选择题1.的倒数是()A.B.C.D.2.如图,将直角三角形绕其一条直角边所在直线l旋转一周,得到的几何体是()A.B.C.D.3.下列计算正确的是()A.a3+a2=a5B.a3﹣a2=a C.a3•a2=a6D.a3÷a2=a4.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65°B.115°C.125°D.130°5.某校给足球队的十一位运动员每人购买了一双运动鞋.尺码及购买数量如下表:尺码/码40 41 42 43 44购买数量/双 2 4 2 2 1则这十一双运动鞋尺码的众数和中位数分别为()A.40,41 B.41,41 C.41,42 D.42,436.若正比例函数的图象经过(﹣3,2),则这个图象一定经过点()A.(2,﹣3)B.C.(﹣1,1)D.(2,﹣2)7.如图,在菱形ABCD中,∠ABC=60°,AB=4.若点E、F、G、H分别是边AB、BC、CD、DA的中点,连接EF、FG、GH、HE,则四边形EFGH的面积为()A.8 B.6C.4D.68.如果点A(m,n)、B(m+1,n+2)均在一次函数y=kx+b(k≠0)的图象上,那么k的值为()A.2 B.1 C.﹣1 D.﹣29.如图,在矩形ABCD中,AB=3.4,BC=5,以BC为直径作半圆O,点P是半圆O上的一点,若PB=4,则点P到AD的距离为()A.B.1 C.D.10.在平面直角坐标系中,有两条抛物线关于x轴对称,且它们的顶点相距10个单位长度.若其中一条抛物线的函数表达式为y=x2+6x+m,则m的值是()A.﹣4或﹣14 B.﹣4或14 C.4或﹣14 D.4或14二、填空题(共4小题)11.在,﹣1,,π这四个数中,无理数有个.12.不等式+2>x的正整数解为.13.如图,在x轴上方,平行于x轴的直线与反比例函数y=和y=的图象分别交于A、B两点,连接OA、OB,若△AOB的面积为6,则k1﹣k2=.14.如图,在半圆⊙O中,AB是直径,CD是一条弦,若AB=10,则△COD面积的最大值是.三、解答题(共11小题)15.计算:×﹣2×|﹣5|+(﹣)﹣2.16.解方程:﹣=1.17.如图,已知锐角△ABC,点D是AB边上的一定点,请用尺规在AC边上求作一点E,使△ADE与△ABC相似.(作出符合题意的一个点即可,保留作图痕迹,不写作法.)18.在正方形ABCD中,M、N分别是边CD、AD的中点,连接BN,AM交于点E.求证:AM⊥BN.19.为了庆祝六一儿童节,红旗中学七年级举办了文艺演出,该校学生会为了了解学生最喜欢演出中的哪类节目,对这个年级的学生进行了抽样调查.我们根据调查结果绘制了两幅统计图.请依据以下两幅统计图提供的相关信息,解答下列问题:(1)本次抽样调查了多少名学生?(2)补全两幅统计图;(3)若该校七年级有800名学生,求这些学生中最喜欢歌唱类节目的人数.20.小明想利用所学知识测量一公园门前热气球直径的大小,如图,当热气球升到某一位置时,小明在点A处测得热气球底部点C、中部点D的仰角分别为50°和60°,已知点O 为热气球中心,EA⊥AB,OB⊥AB,OB⊥OD,点C在OB上,AB=30m,且点E、A、B、O、D在同一平面内,根据以上提供的信息,求热气球的直径约为多少米?(精确到0.1m)(参考数据:sin50°≈0.7660,cos50°≈0.6428,tan50°=1.192)21.某市为了倡导居民节约用水,生活用自来水按阶梯式水价计费.如图是居民每户每月的水(自来水)费y(元)与所用的水(自来水)量x(吨)之间的函数图象.根据下面图象提供的信息,解答下列问题:(1)当17≤x≤30时,求y与x之间的函数关系式;(2)当一户居民在某月用水为15吨时,求这户居民这个月的水费;(3)已知某户居民上月水费为91元,求这户居民上月用水量多少吨?22.甲、乙两人利用五个小球做“找象限”游戏,这五个小球的球面上分别标有数字﹣2、﹣1、1、2、3,这些小球除球面上数字不同外其他完全相同.他们俩约定:把这五个小球放在一个不透明的口袋中,甲先从口袋中任摸一个小球,记下数字作为一点的横坐标,再将这个小球放回这个袋中摇匀,接着乙从口袋中任摸一个小球,记下数字作为这个点的纵坐标,这样就得到坐标平面上的一个点,若此点在第一、三象限,则甲胜,否则乙胜.这样的游戏对甲、乙双方公平吗?为什么?23.如图,⊙O是△ABC的外接圆,过点A、B两点分别作⊙O的切线PA、PB交于一点P,连接OP(1)求证:∠APO=∠BPO;(2)若∠C=60°,AB=6,点Q是⊙O上的一动点,求PQ的最大值.24.如图,在平面直角坐标系中,点A(﹣1,0),B(0,2),点C在x轴上,且∠ABC =90°.(1)求点C的坐标;(2)求经过A,B,C三点的抛物线的表达式;(3)在(2)中的抛物线上是否存在点P,使∠PAC=∠BCO?若存在,求出点P的坐标;若不存在,说明理由.25.问题探究(1)如图①,在Rt△ABC中,∠B=90°,请你过点A作一条直线AD,其中点D为BC 上一点,使直线AD平分△ABC的面积;(2)如图②,点P为▱ABCD外一点,AB=6,BC=12,∠B=45°,请过点P作一条直线l,使其平分▱ABCD的面积,并求出▱ABCD的面积;问题解决(3)如图③,在平面直角坐标系中,四边形OABC是李爷爷家一块土地的示意图,其中OA∥BC,点P处有一个休息站点(占地面积忽略不计),李爷爷打算过点P修一条笔直的小路l(路的宽度不计),使直线l将四边形OABC分成面积相等的两部分,分别用来种植不同的农作物.已知点A(8,8)、B(6,12)、P(3,6).你认为直线1是否存在?若存在,求出直线l的表达式;若不存在,请说明理由.参考答案一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.的倒数是()A.B.C.D.解:根据倒数的定义得:﹣的倒数是﹣;故选:A.2.如图,将直角三角形绕其一条直角边所在直线l旋转一周,得到的几何体是()A.B.C.D.解:将直角三角形绕其一条直角边所在直线l旋转一周,得到的几何体是圆锥,故选:B.3.下列计算正确的是()A.a3+a2=a5B.a3﹣a2=a C.a3•a2=a6D.a3÷a2=a 解:A、a2与a3不是同类项,不能合并,故本选项错误;B、a3与a2不是同类项,不能合并,故本选项错误;C、应为a3•a2=a5,故本选项错误;D、a3÷a2=a,正确.故选:D.4.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65°B.115°C.125°D.130°解:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=50°,∴∠CAB=180°﹣50°=130°,∵AE平分∠CAB,∴∠EAB=65°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°﹣65°=115°,故选:B.5.某校给足球队的十一位运动员每人购买了一双运动鞋.尺码及购买数量如下表:尺码/码40 41 42 43 44 购买数量/双 2 4 2 2 1 则这十一双运动鞋尺码的众数和中位数分别为()A.40,41 B.41,41 C.41,42 D.42,43 解:由表可知41出现次数最多,所以众数为41,因为共有2+4+2+2+1=11个数据,所以中位数为第6个数据,即中位数为41,故选:B.6.若正比例函数的图象经过(﹣3,2),则这个图象一定经过点()A.(2,﹣3)B.C.(﹣1,1)D.(2,﹣2)解:设正比例函数的解析式为y=kx(k≠0),∵正比例函数的图象经过(﹣3,2),∴﹣3k=2,解得k=﹣,∴正比例函数的解析式为:y=﹣x.A、∵当x=2时,y=﹣×2=﹣≠﹣3,∴此点不在函数图象上,故本选项错误;B、∵当x=时,y=﹣×=﹣1,∴此点在函数图象上,故本选项正确;C、∵当x=﹣1时,y=﹣×(﹣1)=≠1,∴此点不在函数图象上,故本选项错误;D、∵当x=2时,y=﹣×2=﹣≠﹣2,∴此点不在函数图象上,故本选项错误.故选:B.7.如图,在菱形ABCD中,∠ABC=60°,AB=4.若点E、F、G、H分别是边AB、BC、CD、DA的中点,连接EF、FG、GH、HE,则四边形EFGH的面积为()A.8 B.6C.4D.6解:连接AC、BD交于O,∵四边形ABCD是菱形,∴AC⊥BD,∵点E、F、G、H分别是边AB、BC、CD和DA的中点,∴EH∥BD,FG∥BD,EF∥AC,HG∥AC,∴EH∥FG,EF∥HG,∴四边形EFGH是平行四边形,∵AC⊥BD,∴∠AOB=90°,∴∠BAO+∠ABO=90°,∵∠AEO=∠ABO,∠BEF=∠EAO,∴∠AEO+∠BEF=90°,∴∠HEF=90°,∴四边形EFGH是矩形,∵在菱形ABCD中,∠ABC=60°,∴△ABC是等边三角形,∴AC=AB=4,BD=4,∴EF=AC=2,∴EH=BD=2,∴四边形EFGH的面积为2×=4,故选:C.8.如果点A(m,n)、B(m+1,n+2)均在一次函数y=kx+b(k≠0)的图象上,那么k的值为()A.2 B.1 C.﹣1 D.﹣2解:∵点A(m,n)、B(m+1,n+2)均在一次函数y=kx+b(k≠0)的图象上,∴,解得:k=2.故选:A.9.如图,在矩形ABCD中,AB=3.4,BC=5,以BC为直径作半圆O,点P是半圆O上的一点,若PB=4,则点P到AD的距离为()A.B.1 C.D.解:如图,连接PC,作PE⊥AD于E,直线PE交BC于F,∵AD∥BC,∴PF⊥BC,∵BC为直径,∴∠BPC=90°,∴PC==3,∵PF•BC=PB•PC,∴PF==2.4,易得四边形ABFE为矩形,∴EF=AB=3.4,∴PE=3.4﹣2.4=1.故选:B.10.在平面直角坐标系中,有两条抛物线关于x轴对称,且它们的顶点相距10个单位长度.若其中一条抛物线的函数表达式为y=x2+6x+m,则m的值是()A.﹣4或﹣14 B.﹣4或14 C.4或﹣14 D.4或14解:∵一条抛物线的函数表达式为y=x2+6x+m,∴这条抛物线的顶点为(﹣3,m﹣9),∴关于x轴对称的抛物线的顶点(﹣3,9﹣m),∵它们的顶点相距10个单位长度.∴|m﹣9﹣(9﹣m)|=10,∴2m﹣18=±10,当2m﹣18=10时,m=14,当2m﹣18=﹣10时,m=4,∴m的值是4或14.故选:D.二、填空题(共4小题,每小题3分,计12分)11.在,﹣1,,π这四个数中,无理数有2个.解:在,﹣1,,π这四个数中,无理数有和π共2个.故答案为:212.不等式+2>x的正整数解为1,2.解:+2>x,去分母,得:x﹣1+6>3x,移项,得:x﹣3x>1﹣6,合并同类项,得:﹣2x>﹣5,系数化成1得:x<2.5.则正整数解是:1,2.故答案是:1,2.13.如图,在x轴上方,平行于x轴的直线与反比例函数y=和y=的图象分别交于A、B两点,连接OA、OB,若△AOB的面积为6,则k1﹣k2=﹣12.解:∵AB∥x轴,∴设A(x,),B(,)∴AB=﹣x,∵△AOB的面积为6,∴(﹣x)•=6,∴k1﹣k2=﹣12,故答案为:﹣12.14.如图,在半圆⊙O中,AB是直径,CD是一条弦,若AB=10,则△COD面积的最大值是12.5.解:如图,作DH⊥CO交CO的延长线于H.∵S△COD=•OC•DH,∵DH≤OD,∴当DH=OD时,△COD的面积最大,此时△COD是等腰直角三角形,∠COD=90°,此时面积的最大值为:×5×5=12.5,故答案为:12.5.三、解答题(共11小题,计78分,解答应写出过程)15.计算:×﹣2×|﹣5|+(﹣)﹣2.解:原式=﹣2×10+9=2﹣10+9=2﹣1.16.解方程:﹣=1.解:去分母得:x(x﹣1)﹣2=x2﹣3x,去括号得:x2﹣x﹣2=x2﹣3x,移项合并得:2x=2,解得:x=1,经检验x=1是分式方程的解.17.如图,已知锐角△ABC,点D是AB边上的一定点,请用尺规在AC边上求作一点E,使△ADE与△ABC相似.(作出符合题意的一个点即可,保留作图痕迹,不写作法.)解:如图,点E即为所求作的点.18.在正方形ABCD中,M、N分别是边CD、AD的中点,连接BN,AM交于点E.求证:AM⊥BN.【解答】证明:∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠BAN=∠ADM=90°,∵M、N分别是边CD、AD的中点,∴AN=AD,DM=CD,∴AN=DM,在△ABN和△DAM中,,∴△ABN≌△DAM(SAS),∴∠ABN=∠DAM,∵∠DAM+∠BAE=90°,∴∠ABN+∠BAE=90°,∴∠AEB=90°,∴AM⊥BN.19.为了庆祝六一儿童节,红旗中学七年级举办了文艺演出,该校学生会为了了解学生最喜欢演出中的哪类节目,对这个年级的学生进行了抽样调查.我们根据调查结果绘制了两幅统计图.请依据以下两幅统计图提供的相关信息,解答下列问题:(1)本次抽样调查了多少名学生?(2)补全两幅统计图;(3)若该校七年级有800名学生,求这些学生中最喜欢歌唱类节目的人数.解:(1)本次抽样调查的学生人数:12÷10%=120(名);(2)舞蹈类人数:120×35%=42(名),歌唱类的百分比:×100%=30%,小品类的百分比:×100%=20%.补全两幅统计图如图所示:(3)800×30%=240(名).答:最喜欢歌唱类节目的人数为240名.20.小明想利用所学知识测量一公园门前热气球直径的大小,如图,当热气球升到某一位置时,小明在点A处测得热气球底部点C、中部点D的仰角分别为50°和60°,已知点O 为热气球中心,EA⊥AB,OB⊥AB,OB⊥OD,点C在OB上,AB=30m,且点E、A、B、O、D在同一平面内,根据以上提供的信息,求热气球的直径约为多少米?(精确到0.1m)(参考数据:sin50°≈0.7660,cos50°≈0.6428,tan50°=1.192)解:如图,过E点作EF⊥OB于F,过D点作DG⊥EF于G.在Rt△CEF中,CF=EF•tan50°=AB•tan50°=35.76m,在Rt△DEG中,DG=EG•tan60°=EG,设热气球的直径为x米,则35.76+x=(30﹣x),解得x≈11.9.故热气球的直径约为11.9米.21.某市为了倡导居民节约用水,生活用自来水按阶梯式水价计费.如图是居民每户每月的水(自来水)费y(元)与所用的水(自来水)量x(吨)之间的函数图象.根据下面图象提供的信息,解答下列问题:(1)当17≤x≤30时,求y与x之间的函数关系式;(2)当一户居民在某月用水为15吨时,求这户居民这个月的水费;(3)已知某户居民上月水费为91元,求这户居民上月用水量多少吨?解:(1)y与x之间的函数关系式为:y=kx+b,由题意得:∴∴y与x之间的函数关系式为:y=5x﹣34;(2)当x=17吨时,y=5×17﹣34=51元,∴当0≤x<17时,y与x之间的函数关系式为:y=3x,∴当x=15吨时,y=45元,答:这户居民这个月的水费45元;(3)当y=91元>51元,∴91=5x﹣34x=25答:这户居民上月用水量25吨.22.甲、乙两人利用五个小球做“找象限”游戏,这五个小球的球面上分别标有数字﹣2、﹣1、1、2、3,这些小球除球面上数字不同外其他完全相同.他们俩约定:把这五个小球放在一个不透明的口袋中,甲先从口袋中任摸一个小球,记下数字作为一点的横坐标,再将这个小球放回这个袋中摇匀,接着乙从口袋中任摸一个小球,记下数字作为这个点的纵坐标,这样就得到坐标平面上的一个点,若此点在第一、三象限,则甲胜,否则乙胜.这样的游戏对甲、乙双方公平吗?为什么?解:画树状图如下:共有25种情况,其中此点在第一、三象限的有13种结果,此点在第二、四象限的有12种结果,∴甲获胜的概率为,乙获胜的概率为,∵>,∴这样的游戏对甲、乙双方不公平.23.如图,⊙O是△ABC的外接圆,过点A、B两点分别作⊙O的切线PA、PB交于一点P,连接OP(1)求证:∠APO=∠BPO;(2)若∠C=60°,AB=6,点Q是⊙O上的一动点,求PQ的最大值.【解答】(1)证明:连接OA、OB,∵PA、PB是⊙O的切线,∴OA⊥PA,OB⊥PB,在RT△PAO和RT△PBO中,,∴RT△PAO≌RT△PBO(HL),∴∠APO=∠BPO;(2)解:∵PA、PB是⊙O的切线,∴∠PAB=∠PBA=∠C=60°,OP⊥AB,∴△PAB为等边三角形,延长PO交⊙O于Q,连接AQ、BQ,则此时PQ最大,∵∠APB=60°,∴∠APO=∠BPO=30°∴PQ=2×AP=2×AB=2××6=6.24.如图,在平面直角坐标系中,点A(﹣1,0),B(0,2),点C在x轴上,且∠ABC =90°.(1)求点C的坐标;(2)求经过A,B,C三点的抛物线的表达式;(3)在(2)中的抛物线上是否存在点P,使∠PAC=∠BCO?若存在,求出点P的坐标;若不存在,说明理由.解:(1)设C点坐标为(x,0)(x>0),则AC=x+1,AB=,BC=,由勾股定理可得(x+1)2=5+()2,解得x=4.故点C的坐标为(4,0);(2)设经过A,B,C三点的抛物线的表达式为y=ax2+bx+c,依题意有,解得.故经过A,B,C三点的抛物线的表达式为y=﹣x2+x+2;(3)∵∠PAC=∠BCO,∴tan∠PAC=tan∠BCO,设P点坐标为(x,y),tan∠BCO=,P点在x轴上方时,y>0,tan∠PAC=,联立,﹣x2+3x+4=x+1,x2﹣2x﹣3=0,(x﹣3)(x+1)=0,∵y>0,∴x=3,∴点P的坐标为(3,2);P点在x轴下方时;y<0,x>0,tan∠PAC=﹣,联立,x2﹣3x﹣4=x+1,x2﹣4x﹣5=0,(x﹣5)(x+1)=0,∵x>0,∴x=5,∴点P的坐标为(5,﹣3).综上可得,点P的坐标为(3,2)或(5,﹣3).25.问题探究(1)如图①,在Rt△ABC中,∠B=90°,请你过点A作一条直线AD,其中点D为BC 上一点,使直线AD平分△ABC的面积;(2)如图②,点P为▱ABCD外一点,AB=6,BC=12,∠B=45°,请过点P作一条直线l,使其平分▱ABCD的面积,并求出▱ABCD的面积;问题解决(3)如图③,在平面直角坐标系中,四边形OABC是李爷爷家一块土地的示意图,其中OA∥BC,点P处有一个休息站点(占地面积忽略不计),李爷爷打算过点P修一条笔直的小路l(路的宽度不计),使直线l将四边形OABC分成面积相等的两部分,分别用来种植不同的农作物.已知点A(8,8)、B(6,12)、P(3,6).你认为直线1是否存在?若存在,求出直线l的表达式;若不存在,请说明理由.解:(1)如图1,点D为BC的中点,作直线AD,直线AD则平分△ABC的面积;(2)如图2,连接AC、BD,AC与BD交于点O,则点O为平行四边形ABCD的对称中心,作直线OP,直线OP即为所求;如图3,过A作AE⊥BC于E,∵∠ABC=45°,∴△ABE是等腰直角三角形,∴AE===3,∵BC=12,∴▱ABCD的面积=BC•AE=12×3=36;(3)∵A(8,8),∴直线OA的解析式为:y=x,过点B作BD⊥x轴于点D,交AO于E,连接OB,则E(6,6),∵B(6,12),点P(3,6),∴点P为线段OB的中点.∵OA∥BC,BE∥OC,∴四边形OEBC是平行四边形.∴点P是平行四边形OEBC的对称中心,∴过点P的直线平分平行四边形OEBC.∴过点P的直线PF只要平分△BEA的面积即可.设直线PF的表达式为y=kx+b,且过点P(3,6),∴3k+b=6,即b=6﹣3k,∴y=kx+6﹣3k.设直线AB的表达式为y=mx+n,且过点B(6,12),A(8,8),则,解得:,∴直线AB的函数表达式为y=﹣2x+24.∴,解得:x=,∴F的横坐标为,把x=6代入y=kx+6﹣3k得y=3k+6,∴G(6,3k+6)同理得直线AP的解析式为y=x+,当x=6时,y=,∴<3k+6<12,解得<k<2,∵S△BFG=BG•(F x﹣6)=(12﹣3k﹣6)(﹣6)=(8﹣6)(12﹣6),解得k=或k=4(舍去),∴直线l的表达式为y=x+4.。
2020届初三中考数学一诊联考试卷含答案解析 (陕西)

2020届**市初三中考一诊联考试卷数学注意事项:1.答卷前,考生务必将自己的姓名、准考证填写在答题卡上。
2.回答客观题时,选出每小题答案后,用2B铅笔把答题卡上对应的答案标号涂黑。
如需改正,必须用橡皮擦擦涂干净,回答非客观题,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,将本试卷和答题卡一并收回。
4.考试时间:120分钟。
一、单选题(共10题,每题3分,共30分,四个选项中只有一项符合题目要求)1.下列运算正确的是()A.2a2+2a2=4a2B.(a2)3=a5C.a2•a3=a6D.a6÷a3=a22.下列立体图形中,主视图是矩形的是()A.B.C.D.3.今年清明小长假期问,长春净月某景区接待游客约为51700人次,数字51700用科学记数法表示为()A.51.7×103B.5.17×104C.5.17×105D.0.517×1054.如图,在一张长方形纸条上画一条截线AB ,将纸条沿截线AB 折叠,则△ABC 一定是( )A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形5.如图,△ABC 为直角三角形,∠C=90°,BC=2cm ,∠A=30°,四边形DEFG为矩形,cm , EF=6cm ,且点C 、B 、E 、F 在同一条直线上,点B 与点E 重合.Rt△ABC 以每秒1cm 的速度沿矩形DEFG 的边EF 向右平移,当点C 与点F 重合时停止.设Rt△ABC 与矩形DEFG 的重叠部分的面积为ycm 2,运动时间xs .能反映ycm 2与xs 之间函数关系的大致图象是( )A .B .C .D .6.改革开放40年,中国教育呈现历史性变化.其中,全国高校年毕业生人数从16.5万增长到820万,40年间增加了近50倍.把数据“820万”用科学记数法可表示为( )A .48210⨯B .58210⨯C .58.210⨯D .68.210⨯7.如图,AB ⊥CD ,且AB =CD ,E 、F 是AD 上两点,CE ⊥AD ,BF⊥AD.若CE=8,BF=6,AD=10,则EF的长为()A.4B.72C.3D.528.如图的立体图形,从左面看可能是()A.B.C.D.9.一个几何体的三视图如图所示,则这个几何体是()A.B.C.D.10.下列的几何图形中,一定是轴对称图形的有()A.5个B.4个C.3个D.2个二、填空题(共4题,每题4分,共16分)11____________.12.方程32x2-﹣1xx-=3的解是_____.13.如图,矩形ABCD中,AB=5,BC=7,点E是对角线AC上的动点EH⊥AD,垂足为H,以EH为边作正方形EFGH,连结AF,则∠AFE的正弦值为_____.14.因式分解:m2﹣m= ______.三、解答题(共6题,总分54分)15.已知二次函数y=﹣x2﹣2x+3.(1)把函数关系式配成顶点式并求出图象的顶点坐标和对称轴.(2)若图象与x轴交点为A.B,与y轴交点为C,求A、B、C三点的坐标;(3)在图中画出图象.并求出△ABC面积.16.为了更好的落实阳光体育运动,学校需要购买一批足球和篮球,已知一个足球比一个篮球的进价高30元,买一个足球和两个篮球一共需要300元.(1)求足球和篮球的单价;(2)学校决定购买足球和篮球共100个,为了加大校园足球活动开展力度,现要求购买的足球不少于60个,且用于购买这批足球和篮球的资金最多为11000元.试设计一个方案,使得用来购买的资金最少,并求出最小资金数.17.图①、图②、图③均为方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.(探究)在图①中,点A、B、C、D均为格点.证明:BD平分∠ABC.(应用)在图②、图③中,点M、O、N均为格点.(1)利用(探究)的方法,在图②、图③中分别找到一个格点P,使OP平分∠MON.要求:图②、图③中所画的图形不相同,保留画图痕迹.(2)cos ∠MOP 的值为 .18.为了贯彻落实市委政府提出的“精准扶贫”精神,某校特制定了一系列帮扶A 、B 两贫困村的计划,现决定从某地运送152箱鱼苗到A 、B 两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A 、B 两村的运费如表:(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A 村,其余货车前往B 村,设前往A 村的大货车为x 辆,前往A 、B 两村总费用为y 元,试求出y 与x 的函数解析式. (3)在(2)的条件下,若运往A 村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.19.先化简后求值:当1x =时,求代数式221121111x x x x x -+-⋅+-+的值. 20.某批足球的质量检测结果如下:。
西安市2020版中考数学一模试卷(I)卷

西安市2020版中考数学一模试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题: (共10题;共20分)1. (2分)(2017·秦淮模拟) 下列四个数中,是负数的是()A . |﹣3|B . (﹣3)2C . ﹣(﹣3)D . ﹣322. (2分)(2017·眉山) 下列运算结果正确的是()A . ﹣ =﹣B . (﹣0.1)﹣2=0.01C . ()2÷ =D . (﹣m)3•m2=﹣m63. (2分)观察如图图形,从图案看不是轴对称图形的有()A . 1个B . 2个C . 3个D . 4个4. (2分) (2016九上·红桥期中) 下列方程中,关于x的一元二次方程是()A . x2﹣2x﹣3=0B . x2﹣2y﹣1=0C . x2﹣x(x+3)=0D . ax2+bx+c=05. (2分)一个物体由多个完全相同的小正方体组成,的三视图如图所示,那么组成这个物体的小正方体的个数为()A . 2B . 3C . 4D . 56. (2分)(2019·武汉模拟) 在不透明袋子里装颜色不同的16个球,每次从袋子里摸出1个球记录下颜色后再放回,经过多次重复试验,发现摸到白球的频率稳定在0.5,估计袋中白球有()A . 16个B . 12个C . 8个D . 5个7. (2分)(2015秋•浦口区校级期末)下列现象:(1)用两个钉子就可以把木条固定在墙上.(2)从A地到B地架设电线,总是尽可能沿着线段AB架设.(3)植树时,只要确定两棵树的位置,就能确定同一行树所在的直线.(4)把弯曲的公路改直,就能缩短路程.其中能用“两点确定一条直线”来解释的现象有()A . (1)(2)B . (1)(3)C . (2)(4)D . (3)(4)8. (2分)反比例函数y=(k为常数)的图象位于()A . 第一、二象限B . 第一、三象限C . 第二、四象限D . 第三、四象限9. (2分)如图,下图是汽车行驶速度(千米/时)和时间(分)的关系图,下列说法其中正确的个数为()(1)汽车行驶时间为40分钟;(2)AB表示汽车匀速行驶;(3)第40分钟时,汽车停下来了;(4)在第30分钟时,汽车的速度是90千米/时.A . 1个B . 2个C . 3个D . 4个10. (2分)将一次函数y=2x-3的图象沿y轴向上平移8个单位长度,所得直线的解析式为()A . y=2x-5B . y=2x+5C . y=2x+8D . y=2x-8二、填空题 (共8题;共8分)11. (1分) (2019八下·碑林期末) 分解因式:9x2y﹣6xy+y=________.12. (1分)在大课间活动中,体育老师对甲、乙两名同学每人进行10次立定跳远测试,他们的平均成绩相同,方差分别是S甲2=0.20,S乙2=0.16,则甲、乙两名同学成绩更稳定的是________13. (1分)(2017·永州) 某水果店搞促销活动,对某种水果打8折出售,若用60元钱买这种水果,可以比打折前多买3斤.设该种水果打折前的单价为x元,根据题意可列方程为________.14. (1分) (2019八下·内乡期末) 反比例函数y= (k>0)在第一象限内的图象如图,点M是图象上一点,MP垂直x轴于点P,如果△MOP的面积为1,那么k的值是________.15. (1分)(2020·营口) 一个圆锥的底面半径为3,高为4,则此圆锥的侧面积为________.16. (1分) (2016九上·南开期中) 如图在平面直角坐标系中,过格点A,B,C作一圆弧,圆心坐标是________.17. (1分)(2018·曲靖) 一个书包的标价为115元,按8折出售仍可获利15%,该书包的进价为________元.18. (1分)半圆形纸片的半径为1cm,用如图所示的方法将纸片对折,使对折后半圆弧的中点M与圆心O重合,则折痕CD的长为________ cm.三、解答题 (共10题;共106分)19. (5分)(2019·合肥模拟) 计算:2sin60°+(- )-1-20180-|1- |20. (10分)(2018·江都模拟)(1)计算:(﹣)﹣2+2 ﹣8cos30°﹣|﹣3|;(2)解不等式组: .21. (10分)(2011·茂名) 如图,⊙P与y轴相切于坐标原点O(0,0),与x轴相交于点A(5,0),过点A 的直线AB与y轴的正半轴交于点B,与⊙P交于点C.(1)已知AC=3,求点B的坐标;(2)若AC=a,D是OB的中点.问:点O、P、C、D四点是否在同一圆上?请说明理由.如果这四点在同一圆上,记这个圆的圆心为O1 ,函数的图象经过点O1 ,求k的值(用含a的代数式表示).22. (11分)(2019·玉林) 某校有20名同学参加市举办的“文明环保,从我做起”征文比赛,成绩分别记为60分、70分、80分、90分、100分,为方便奖励,现统计出80分、90分、100分的人数,制成如图不完整的扇形统计图,设70分所对扇形圆心角为α.(1)若从这20份征文中,随机抽取一份,则抽到试卷的分数为低于80分的概率是________;(2)当α=108°时,求成绩是60分的人数;(3)设80分为唯一众数,求这20名同学的平均成绩的最大值.23. (6分)(2019·温州模拟) 车辆经过润扬大桥收费站时,4个收费通道 A.B、C、D中,可随机选择其中的一个通过.(1)一辆车经过此收费站时,选择 A通道通过的概率是________;(2)求两辆车经过此收费站时,选择不同通道通过的概率.24. (15分) (2018九上·东台期中) 如图,已知直线的函数表达式为,它与轴、轴的交点分别为A、B两点.(1)求点A、B的坐标;(2)设F是轴上一动点,⊙P经过点B且与轴相切于点F,设⊙P的圆心坐标为P(x,y),求y与之间的函数关系;(3)是否存在这样的⊙P,既与轴相切,又与直线相切于点B?若存在,求出圆心P的坐标;若不存在,请说明理由.25. (12分)(2019·重庆模拟) 阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通过因式分解把它转化为x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.(1)问题:方程x3+x2-2x=0的解是x1=0,x2=________,x3=________;(2)拓展:用“转化”思想求方程的解;(3)应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.26. (10分)如图,平面直角坐标系中,直线AB:y=﹣x+b交y轴于点A(0,4),交x轴于点B.(1)求直线AB的表达式和点B的坐标;(2)直线l垂直平分OB交AB于点D,交x轴于点E,点P是直线l上一动点,且在点D的上方,设点P的纵坐标为n.①用含n的代数式表示△ABP的面积;②当S△ABP=8时,求点P的坐标;③在②的条件下,以PB为斜边在第一象限作等腰直角△PBC,求点C的坐标.27. (12分) (2016八上·宁江期中) 在等边三角形ABC的边BC上任取一点D,以CD为边向外作等边三角形CDE(如图①),连接AD,BE,易证明BE=AD.(1)若点D在射线BC上(如图②),其他条件均不变,BE=AD是否依然成立?试说明理由;(2)在图②中,若等边三角形CDE与等边三角形ABC均在直线BC的同一侧(如图③),并且B,C,D三点在同一直线上,猜想BE=AD是否依然成立?试说明理由;(3)在(2)的条件下,根据图汇总所标字母,请直接写出你发现的两个正确结论.①________;②________.28. (15分)(2017·深圳模拟) 如图(1),抛物线y=ax2+bx+c与x轴交于A(x1,0)、B(x2,0)两点(x1<0<x2),与y轴交于点C(0,-3),若抛物线的对称轴为直线x=1,且tan∠OAC=3.(1)求抛物线的函数解析式;(2)若点D是抛物线BC段上的动点,且点D到直线BC距离为,求点D的坐标(3)如图(2),若直线y=mx+n经过点A,交y轴于点E(0, - ),点P是直线AE下方抛物线上一点,过点P作x轴的垂线交直线AE于点M,点N在线段AM延长线上,且PM=PN,是否存在点P,使△PMN的周长有最大值?若存在,求出点P的坐标及△PMN的周长的最大值;若不存在,请说明理由.参考答案一、选择题: (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共106分)19-1、20-1、20-2、21-2、22-1、22-2、22-3、23-1、23-2、24-1、24-2、24-3、25-1、25-2、25-3、26-1、26-2、27-1、27-2、27-3、28-1、28-2、28-3、。
2020届西安市灞桥区铁一中滨河学校中考数学一模试卷(含解析)

2020届西安市灞桥区铁一中滨河学校中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.下列说法正确的是()A. 平方是本身的数是0B. 立方等于本身的数是1、−1C. 绝对值是本身的数是正数D. 倒数是本身的数是1、−12.下列几何体的主视图和俯视图完全相同的是()A. B. C. D.3.如图,在△ABC中,∠C=90°,点D在AC上,DE//AB,若∠CDE=165°,则∠B的度数为()A. 15°B. 55°C. 65°D. 75°4.2013年安庆市体育考试跳绳项目为学生选考项目,下表是某班模拟考试时10名同学的测试成绩(单位:个/分钟)则关于这10名同学每分钟跳绳的测试成绩,下列说法错误的是()A. 方差是135B. 平均数是170C. 中位数是173.5D. 众数是1775.下列计算正确的是()A. 2x2−x2=1B. (−x3)2=x6C. x8÷x4=x2D. x⋅x5=x56.某双曲线经过点A(4,−2),则该双曲线一定还经过点()A. (−4,−2)B. (8,1)C. (−1,−8)D. (−8,1)7.小芳和小丽是乒乓球运动员,在一次比赛中,每人只允许报“双打”或“单打”中的一项,那么至少有一人报“单打”的概率为()A. 14B. 13C. 12D. 348.如图,四边形ABCD是边长为1的菱形,∠ABC=60°.动点P第1次从点A处开始,沿以B为圆心,AB为半径的圆弧运动到CB延长线,记为点P1;第2次从点P1开始,沿以C为圆心,CP1为半径的圆弧运动到DC的延长线,记为点P2;第3次从P2开始,沿以D为圆心,DP2为半径的圆弧运动到AD的延长线,记为点P3;第4次从点P3开始,沿以A为圆心,AP3为半径的圆弧运动到BA的延长线,记为点P4;…..如此运动下去,当点P运动到P20时,点P所运动的路程为()A. 4303π B. 3103π C. 2103π D. 1053π9.如图,菱形ABCD的对角线AC,BD相交于点O,AC=10,BD=24,则菱形ABCD的周长为()A. 52B. 48C. 40D. 2010.若|m+3|+√n−2=0,点P(m,n)关于x轴的对称点P′为二次函数图象顶点,则二次函数的解析式为()A. y=12(x−3)2+2 B. y=12(x+3)2−2C. y=12(x−3)2−2 D. y=12(x+3)2+2二、填空题(本大题共4小题,共12.0分)11.计算:√4−√−13−√(−3)2=______.12.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC于点E,则EC=______ .13.某次知识竞赛共有20道题,每一题答对得8分,答错或不答都扣4分,小红的得分要超过80分,她至少要答对______道.14.如图,菱形ABCD的边长为1,∠ABC=60°.E,F分别是BC,BD上的动点,且CE=DF,则AE+AF的最小值为______.三、计算题(本大题共2小题,共12.0分)15.先化简,再求值:(1x −1x+2)÷2x2−4,其中x=200.16.在一条笔直的公路上依次有A,C,B三地,甲、乙两人同时出发,甲从A地骑自行车去B地,途经C地休息1分钟,继续按原速骑行至B地,甲到达B地后,立即按原路原速返回A地;乙步行从B地前往A地.甲、乙两人距A地的路程y(米)与时间x(分)之间的函数关系如图所示,请结合图象解答下列问题:(1)请写出甲的骑行速度为______米/分,点M的坐标为______;(2)求甲返回时距A地的路程y与时间x之间的函数关系式(不需要写出自变量的取值范围);(3)请直接写出两人出发后,在甲返回A地之前,经过多长时间两人距C地的路程相等.四、解答题(本大题共9小题,共66.0分)17.(1)求下各式中x的值:(x−1)2=9;)2−|√2−1|.(2)计算:−12016+√(−2)2+(−1218.如图,方格纸中每个小正方形的边长都为1,△ABC的顶点均在格点上,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.利用网格点和三角板画图或计算:(1)在给定方格纸中画出平移后的△A′B′C′;(2)连接线段AA′、BB′,则线段AA′与BB′的位置关系是______ ,数量关系是______ ;(3)△A′B′C′的面积是______ .19.浙江省陆地面积为10.18万平方千米,其中山地丘陵占70.4%,平原占23.2%,河流湖泊占6.4%.请绘制扇形统计图表示各部分面积的比例.20.已知:平行四边形ABCD,点E、F分别为AD、BC的中点,连接AF、CE.(1)如图1,请你判断四边形AFCE的形状,并证明;(2)如图2,连接BD分别交AF、CE于M、N,在不添加其他辅助线的情况下,直接找出图中面的三角形或四边形.积为平行四边形ABCD面积的1421.为方便行人横过马路,打算修建一座高5m的过街天桥.已知天桥的斜面坡度为1:1.5,计算斜坡AB的长度(结果取整数).22.A、B两组卡片共5张,A组中三张分别写有数字2、4、6,B组中两张分别写有数字3、5,它们除数字外其他都相同.(1)随机从A组中抽取一张,则抽到数字是2的概率为______;(2)分别随机从A组、B组中各抽取一张.现制定这样一个游戏规则:若所抽取的两个数字之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?请你用画树状图或列表的方法计算并说明理由.23.如图,在△ABC中.∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC∠BAC.于点M、N,点P在AB的延长线上,且∠BCP=12(1)求证:CP是⊙O的切线;(2)若BC=3√2,cos∠BCP=√30,求点B到AC的距离.624.知抛物线y=ax2+bx+c开口向上,与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),其对称轴为直线x=2.(1)求抛物线的解析式;(2)如图2,作点C 关于抛物线对称轴的对称点D ,连接AD 、BD ,在抛物线上是否存在点P ,使∠PAD =∠ADB ,若存在,求出点P 的坐标;若不存在,请说明理由;(3)若直线l :y =m(m >3)与抛物线有两个交点M 、N(M 在N 的左边),Q 为抛物线上A 、B 之间一点(不包括A 、B),过点Q 作QH 平行于y 轴交直线l 于点H ,求HM⋅HN HQ的值.25. 如图,在△ABC 中,AB =AC ,以AB 为直径的半圆O 交BC 于点D ,DE ⊥AC ,垂足为E .(1)判断DE 与⊙O 的位置关系,并证明你的结论;(2)如果⊙O 的直径为5,sinA =35,求DE 、BC 的长.【答案与解析】1.答案:D解析:解:A、平方是本身的数是0和1,故A错误;B、立方等于本身的数是1、−1、0,故B错误;C、绝对值是本身的数是正数和0,故C错误;D、倒数是本身的数是1、−1,故D正.故选:D.根据有理数的乘方法则、绝对值、倒数的定义回答即可.本题主要考查的是倒数、绝对值、有理数的乘法,掌握相关法则是解题的关键.2.答案:D解析:解:A、圆锥的主视图是等腰三角形,俯视图是圆,故A选项不合题意;B、圆柱主视图是矩形,俯视图是圆,故B选项不合题意;C、三棱柱主视图是一行两个矩形,俯视图是三角形,故C选项不合题意;D、正方体主视图和俯视图都为正方形,故D选项符合题意;故选:D.主视图、俯视图是分别从物体正面、上面看,所得到的图形.本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3.答案:D解析:解:∵∠CDE=165°,∴∠ADE=15°,∵DE//AB,∴∠A=∠ADE=15°,∴∠B=180°−∠C−∠A=180°−90°−15°=75°.故选:D.利用平角的定义可得∠ADE=15°,再根据平行线的性质知∠A=∠ADE=15°,再由三角形内角和定理可得答案.本题考查的是平行线的性质以及三角形内角和定理的运用,解题时注意:两直线平行,内错角相等.4.答案:A解析:根据平均数、方差、中位数和众数的定义分别进行解答,即可求出答案.5.答案:B解析:解:A、2x2−x2=x2,故此选项错误;B、(−x3)2=x6,正确;C、x8÷x4=x4,故此选项错误;D、x⋅x5=x6,故此选项错误.故选:B.直接利用同底数幂的乘除运算法则以及积的乘方运算法则、合并同类项法则分别判断得出答案.此题主要考查了同底数幂的乘除运算以及积的乘方运算、合并同类项,正确掌握相关运算法则是解题关键.6.答案:D的图象过点(4,−2),解析:解:∵反比例数y=kx∴k=xy=4×(−2)=−8;A、k=8;故本选项错误;B、k=8;故本选项错误;C、k=8;故本选项正确;D、k=−8;故本选项错误;故选:D.将(4,−2)代入y=k即可求出k的值,再根据k=xy解答即可.x本题考查了反比例函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式.反之,只要满足函数解析式就一定在函数的图象上.7.答案:D。
陕西省西安市碑林区铁一中学2020届中考数学一模试题(含答案解析)

陕西省西安市碑林区铁一中学2020届中考数学一模试题一、单选题1.下列各数中,其相反数等于本身的是( )A .1-B .0C .1D .a2.下列四个图形中,1∠与2∠是对顶角的是( )A .B .C .D .3.在Rt △ABC 中,∠90C =︒,如果4AC =,3BC =,那么cos A 的值为( )A .45B .35C .43D .344.如图所示的几何体的俯视图是( )A .B .C .D .5.从﹣3、﹣2、﹣1、1、2、3六个数中任选一个数记为k ,若数k 使得关于x 的分式方程11k x -+=k ﹣2有解,且使关于x 的一次函数y =(k +32)x +2不经过第四象限,那么这6个数中,所有满足条件的k 的值之和是( )A .﹣1B .2C .3D .4 6.若正比例函数y =kx (k ≠0)的图象经过A (m ,4),B (m ﹣3,10)两点,则k 的值为( ) A .﹣34 B .﹣43 C .﹣2 D .27.如图,如果△ABC ≌△DEF ,∠B=25°,∠F=45°,那么∠A=( )A .25°B .45°C .70°D .110°8.如图,OP 平分∠BOA ,∠BOA=45°,PC ∥OA ,PD ⊥OA ,若PC=4,则PD 等于( )A .4B .C .D .2 9.已知:()23x y +=,()27x y -=,则化简:()()222224xy xy x y ⎡⎤+--+⎣⎦12xy ⎛⎫÷ ⎪⎝⎭的值为( )A .4-B .2-C .2D .4二、填空题10.在π,-,130.5757757775…(相邻两个5之间的7的个数逐次加1)中,无理数有 个.11.已知点A 在反比例函数y =k x(k ≠0)的图象上,过点A 作AM ⊥x 轴于点M ,△AMO 的面积为3,则k =_____.12.如图,点B 到直线DC 的距离是指线段__________的长度.13.现有①正三角形、②正方形、③正五边形三种形状的地砖,只选取其中一种地砖镶嵌地面,不能进行地面镶嵌的有___________(填序号).三、解答题14.在平面直角坐标系xOy 中,如图,抛物线22y mx x n =-+(m 、n 是常数)经过点(2,3)A -、(3,0)B -,与y 轴的交点为点C .(1)求此抛物线的表达式;(2)点D 为y 轴上一点,如果直线BD 和直线BC 的夹角为15º,求线段CD 的长度;(3)设点P 为此抛物线的对称轴上的一个动点,当△BPC 为直角三角形时,求点P 的坐标.15.计算: ()201220193π-⎛⎫+--- ⎪⎝⎭ 16.现如今,“垃圾分类”意识已深入人心,如图是生活中的四个不同的垃圾投放桶,分别写着:有害垃圾、厨余垃圾、其他垃圾、可回收垃圾.其中小明投放了一袋垃圾,小丽投放了两袋垃圾.(1)直接写出小明投放的垃圾恰好是“厨余垃圾”的概率;(2)用列表法或画树状图法求小丽投放的两袋垃圾是不同类的概率17.如图,ABC 中,90C ∠=︒,30A ∠=︒(1)请用尺规作图作法,作AB 边上的垂直平分线DE ,交AC 于点D ,交AB 于点E (不要求写作法和证明,保留作图痕迹)(2)在(1)条件下,连接BD ,求证:DE CD =18.如图,点A ,B ,C ,D 在同一条直线上,AB CD =,过A ,D 分别作AF AD ⊥,ED AD ⊥,垂足分别为A ,D ,连接BE ,CF ,且BE CF =.求证:ACF DBE ∆≅∆.19.商场销售某种品牌的空调和电风扇:(1)已知购进8台空调和20台电风扇共需17400元,购进10台空调和30台电风扇共需22500元,求每台空调和电风扇的进货价;(2)已知空调标价为2500元/台,电风扇标价为250元/台.若商场购进空调和电风扇共60台,并全部打八折出售,设其中空调的数量为a 台,商场通过销售这批空调和电风扇获得的利润为w 元,求w 和a 之间的函数关系式;(3)在(2)的条件下,若这批空调和电风扇的进货价不超过45300元,商场通过销售这批空调和电风扇获得的利润又不低于6000元,问商场共有多少种不同的进货方案,哪种进货方案获得的利润最高?最高利润是多少?20.设中学生体质健康综合评定成绩为x 分,满分为100分,规定:85≤x ≤100为A 级,75≤x <85为B 级,60≤x <75为C 级,x <60为D 级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了 名学生,α= %;(2)补全条形统计图;(3)扇形统计图中C 级对应的圆心角为 度;(4)若该校共有2000名学生,请你估计该校D 级学生有多少名?21.解方程:2227341x x x x x +=+-- 22.如图,AB 是O 的直径,O 过BC 的中点D .DE AC ⊥,垂足为E .(1)求证:直线DE 是O 的切线; (2)若6BC =,O 的直径为5,求DE 的长及cosC 的值.23.如图所示是某商场楼顶停车场和汽车入口坡道设计示意图.如图,楼顶所在的直线AC 平行于地面所在的直线ME ,CD 的厚度为0.7m ,点B 和点F 在AE 上,BC AC ⊥于点C ,点B ,C ,D 在同一直线上,DF AE ⊥于点F , 3.75DF m =,30AEM ∠=︒,求汽车停车场入口AC 的长(结果精确到0.1m 1.73≈).24.如图1,在矩形纸片ABCD 中,3AB cm =,5AD cm =,折叠纸片使B 点落在边AD 上的E 处,拆痕为PQ .过点E 作EF AB ∥交PQ 于F ,连接BF .(1)求证:四边形BFEP 为菱形;(2)当点E 在AD 边上移动时,折痕的端点P 、Q 也随之移动;①当点Q 与点C 重合时(如图2),求菱形BFEP 的边长;②若限定P 、Q 分别在边BA 、BC 上移动,求Rt CED ∆的内切圆半径的取值范围.参考答案1.B根据只有符号不同的两个数是互为相反数解答即可.A .1-的相反数是1,故不符合题意;B .0的相反数是0,故符合题意;C .1的相反数是-1,故不符合题意;D .a 的相反数是-a ,当a=0时,符合题意;当a ≠0时,不符合题意;故选B .本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义,正数的相反数是负数,0的相反数是0,负数的相反数是正数.2.D根据对顶角的定义,对顶角:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角,据此即可判断.解:由对顶角的定义可知,四个图形中D 中∠1与∠2为对顶角.故选:D .本题考查了对顶角的定义,属于基础题,熟练掌握对顶角的概念是解决本题的关键.3.A先利用勾股定理求出AB 的长度,从而cos AC A AB =可求. ∵∠90C =︒,4AC =,3BC =∴5AB === ∴4cos 5AC A AB == 故选A本题主要考查勾股定理及余弦的定义,掌握余弦的定义是解题的关键.4.B根据几何体俯视图的定义即可得出答案.A 、D 既不是正视图也不是左视图,更不是俯视图,故这两个选项错误;B 是俯视图,故此选项正确;C 既可以是主视图同时也可以是左视图,故此选项错误.因此答案选择B.本题考查的是几何体三视图的定义,属于基础知识点,比较简单.5.B首先利用一次函数的性质,求得当k=-1,1,2,3时,关于x 的一次函数y=(k+32)x+2不经过第四象限,再利用分式方程的知识求得当k=-1,3,使得关于x 的分式方程11k x -+=k-2有解,然后再把-1和3相加即可.解:∵关于x 的一次函数y =(k +32)x +2不经过第四象限, ∴k +32>0, 解得,k >﹣1.5,∵关于x 的分式方程11k x -+=k ﹣2有解, ∴当k =﹣1时,分式方程11k x -+=k ﹣2的解是x =1-3, 当k =1时,分式方程11k x -+=k ﹣2无解, 当k =2时,分式方程11k x -+=k ﹣2无解, 当k =3时,分式方程11k x -+=k ﹣2的解是x =1, ∴符合要求的k 的值为﹣1和3,∵﹣1+3=2,∴所有满足条件的k 的值之和是2,故选:B .一次函数的性质以及分式方程是本题的考点,根据一次函数的性质及分式方程有解时求出k 的值是解题的关键.6.C利用正比例函数图象上点的坐标特征,可得出关于k ,m 的方程组,解之即可得出k 值. ∵正比例函数y =kx (k ≠0)的图象经过A (m ,4),B (m ﹣3,10)两点,∴()4103km k m =⎧⎨=-⎩, 解得:22k m =-⎧⎨=-⎩. 故选:C .本题考查了正比例函数图象上点的坐标特征以及正比例函数的性质,利用正比例函数图象上点的坐标特征,找出关于k ,m 的方程组是解题的关键.7.D因为△ABC ≌△DEF ,所以∠C=∠F=45°,所以∠A=180°-∠B -∠C=180°-25°-45°=110°.故选D.8.B利用角平分线的性质计算.解:作PE ⊥OB 于E ,∵OP 平分∠BOA ,PD ⊥OA ,PE ⊥OB ,∴PD=PE .∵∠BOA=45°,PC ∥OA , ∴∠PCE=45°.在Rt △PCE 中,PE=sin45°×PC=×,∴.即.故选B .此题主要运用了角平分线的性质、平行线的性质以及勾股定理.注意:等腰直角三角形的斜边是直倍.9.C先根据整式的运算法则对算式进行化简,再根据完全平方公式的变形求出xy ,代入即可.()()222224xy xy x y ⎡⎤+--+⎣⎦12xy ⎛⎫÷ ⎪⎝⎭()222214242x y x y xy ⎛⎫=--+÷ ⎪⎝⎭222x y xy=-⨯2xy =- ∵()23x y +=,()27x y -=,。
陕西省西安市碑林区铁一中学2020年中考数学一模试卷 解析版

2020年陕西省西安市碑林区铁一中学中考数学一模试卷一、选择题(共9小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.(3分)﹣的相反数是()A.B.C.D.2.(3分)如图所示,该几何体的主视图为()A.B.C.D.3.(3分)如图,已知DE∥BC,如果∠1=70°,那么∠B的度数为()A.70°B.100°C.110°D.120°4.(3分)若正比例函数y=kx(k≠0)的图象经过A(m,4),B(m﹣3,10)两点,则k 的值为()A.﹣B.﹣C.﹣2D.25.(3分)下列计算正确的是()A.5a+2a=7a2B.(﹣3b)2•2b3=﹣6b6C.6a8÷2a3=3a7D.(b+2a)(2a﹣b)=4a2﹣b26.(3分)如图,已知△ABC中∠A=90°,点E、D分别在AB、AC边上,且BE等于8,CD=10,点F、M、N分别是BC、BD、CE的中点,则MN的长为()A.B.6C.4D.37.(3分)把直线y=﹣x+3向下平移a个单位后,与直线y=2x﹣4的交点在第四象限,则a的取值范围是()A.3<a<5B.1<a<7C.a>7D.a<58.(3分)如图,已知菱形ABCD中,∠ABC=135°,BF⊥AD于点F,BF交对角线AC 于点E,过点E作EH⊥AB于点H,若△EBH的周长是2,则菱形ABCD的面积是()A.4B.2C.8D.9.(3分)如图,已知四边形ABCD内接于⊙O,且⊙O的半径为4,连接AC,BD,交于点O,若∠DAC+∠BAC=90°,AB=6,则CD的长为()A.2B.2C.2D.6二、填空题(共4小题,每小题3分,计12分)10.(3分)在实数﹣,﹣,0,,中,无理数有.11.(3分)如果一个正多边形的每一个内角都是144°,则该正多边形的对称轴条数为.12.(3分)如图,线段AB交x轴于点C,且BC=AC,点A在双曲线y=﹣(x>0)上,点B在双曲线y=(k≠0,x>0)上,若△OAC的面积为4,则k的值为.13.(3分)如图,已知线段AB=8,在平面上有一动点M满足MB﹣MA=3,过点B作∠AMB角平分线的垂线,垂足为N,连接AN,则△ANB面积的最大值为.三、解答题(共11小题,计78分.解答应写出过程)14.(5分)计算:﹣4cos30°﹣|2﹣3|.15.(5分)解分式方程:﹣=3.16.(5分)如图,已知△ABC(∠B>∠A),请在AC上求一点P,使∠APB+2∠A=180°(保留作图痕迹,不写画法)17.(5分)如图:已知∠B=∠E=90°,点B、C、F、E在一条直线上AC=DF,BF=EC.求证四边形ACDF是平行四边形.18.(7分)识稼穡,会知艰辛;知很辛,会懂检朴;懂俭朴,会远离奢靡,劳动教育成为大中小学的必修课程,某校建议同学们在家里“停课不停学”的同时也要帮助父母做一些力所能及的家务小悦随机调查了该校部分同学三份在家做家务的总时间,设被调查得每位同学三月份在家做家务的总时间为x小时,将做家务的总时间分为五个类别:A(0≤x<6)B(6≤x<12),C(12≤x<18),D(18≤x<24),E(x≥24),并将调查结果绘成下两幅不完整的统计图,请结合图中信息解答下列问题:(1)在这次活动中被调查的学生共人;(2)补全条形统计图;(3)该校共有学生1300人,根据抽样调查结果,请你估计该校有多少名学生在三月份在家做家务的时间不低于12个小时.19.(7分)如图,在坡角为20°的山坡上有一铁塔AB、其正前方矗立着一大型广告牌,当阳光与水平线成45°角时,测得铁塔AB落在斜坡上的影子BD=10米,落在广告牌上的影子CD=5米,已知AB,CD均与水平面垂直,请根据相关测量信息,求铁塔AB的高.(sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)20.(7分)某校九年级决定购买学习用具对在本次适应性考试中数学成绩进步较大的同学进行奖励,其中计划购买甲、乙两款圆规套装,已知甲款圆规套装所需费用y(元)与购买数量x(套)之间的函数关系如图所示,乙款圆规套装单价为每套11元,(1)求出y与x的函数关系式;(2)若购买计划中,甲、乙两款圆规套装共需65套,甲款圆规套装的数量不超过50套,但不少于乙款圆规套装的数量,请设计购买方案,使总费用最低,并求出最低费用.21.(7分)西安城墙国际马拉松赛是世界唯一一个将赛道设置在完整古城墙上的马拉松赛事,赛事创办于1993年,2019年被正式列入“一带一路”陕西2019体育精品赛事行列该赛事共有三项:A.(半程马拉松):B.(13.7公里):C.(5公里).小林、小远和小斌参与该赛事的志愿者服务工作,他们每个人被组委会随机的分配到A、B、C中的某一个项目组,每个项目组的志愿者人数不限.(1)求小林被分配到“C.(5公里)”项目组的概率;(2)已知小林被分配到“A.(半程马拉松)”项目组,请利用列表或画树状图的方法求出三人被分配到不同项目组的概率为多少?22.(8分)如图,已知△ABC中,AB=AC,以AB为直径的⊙O交CB于D,E为AB延长上一点,∠C+∠BDE=90°.(1)求证:DE是⊙O的切线.(2)若BE=2,tan∠ABC=,求⊙O的半径.23.(10分)如图,在平面直角坐标系中,已知抛物线C:y=ax2+bx+c经过A(0,﹣3),B(2,0)两点,且点B为抛物线的顶点.(1)求抛物线C的解析式.(2)将抛物线C平移到抛物线C',到抛物线C'的顶点为B',且与x轴交于M、N(M在N的左侧),此时满足以A、B、B'、M为顶点的四边形面积为12的平行四边形,请你写出平移过程,并说明理由.24.(12分)问题提出:(1)如图①,已知线段AB及AB外点C,试在线段AB上确定一点D,使得CD最短.问题探究:(2)如图②,已知Rt△ABC中,∠ACB=90°,AB=10,sin∠ABC=,D为AB中点,点E为AC边上的一个动点,请求出△BDE周长的最小值.问题解决:(3)如图③,有一个矩形花坛ABCD.AB=10m,AD=24m,根据设计造型要求,在AB上任取一动点E、连ED,过点A作AF⊥ED,交DE于点F,在FD上截取FP=AF,连接PB、PC;现需在△PBC的区内种植一种黄色花卉,在矩形内的其它区域种植一种红色花卉,已知种植这种黄色花卉每平方米需200元,种植这种红色花卉每平方米需180元,完成这两种花卉的种植至少需花费多少元?(结果保数整数,参考数据:≈1.7)2020年陕西省西安市碑林区铁一中学中考数学一模试卷参考答案与试题解析一、选择题(共9小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.(3分)﹣的相反数是()A.B.C.D.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:的相反数是,故选:D.2.(3分)如图所示,该几何体的主视图为()A.B.C.D.【分析】找到从正面看所得到的图形即可.【解答】解:从正面看两个矩形,中间的线为虚线,故选:B.3.(3分)如图,已知DE∥BC,如果∠1=70°,那么∠B的度数为()A.70°B.100°C.110°D.120°【分析】设DE与AB相交于点F,由∠1=70°,可得∠AFE的度数,再根据平行线的性质,即可得到∠B的度数.【解答】解:设DE与AB相交于点F,因为∠1=70°,所以∠AFE=110°,因为DE∥BC,所以∠B=∠AFE=110°,故选:C.4.(3分)若正比例函数y=kx(k≠0)的图象经过A(m,4),B(m﹣3,10)两点,则k 的值为()A.﹣B.﹣C.﹣2D.2【分析】利用一次函数图象上点的坐标特征,可得出关于k,m的方程组,解之即可得出k值.【解答】解:∵正比例函数y=kx(k≠0)的图象经过A(m,4),B(m﹣3,10)两点,∴,解得:.故选:C.5.(3分)下列计算正确的是()A.5a+2a=7a2B.(﹣3b)2•2b3=﹣6b6C.6a8÷2a3=3a7D.(b+2a)(2a﹣b)=4a2﹣b2【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=7a,不符合题意;B、原式=9b2•2b3=18b5,不符合题意;C、原式=3a5,不符合题意;D、原式=4a2﹣b2,符合题意.故选:D.6.(3分)如图,已知△ABC中∠A=90°,点E、D分别在AB、AC边上,且BE等于8,CD=10,点F、M、N分别是BC、BD、CE的中点,则MN的长为()A.B.6C.4D.3【分析】根据三角形中位线定理和勾股定理即可得到结论.【解答】解:∵∠A=90°,∴∠ABC+∠ACB=90°,∵点F、M、N分别是BC、BD、CE的中点,∴NF∥BE,NF=BE=4,MF∥CD,MF=CD=5,∴∠NFC=∠ABC,∠MFB=∠ACB,∴∠MFN=180°﹣∠MFB﹣∠NFC=180°﹣∠ABC﹣∠ACB=90°,∴MN===,故选:A.7.(3分)把直线y=﹣x+3向下平移a个单位后,与直线y=2x﹣4的交点在第四象限,则a的取值范围是()A.3<a<5B.1<a<7C.a>7D.a<5【分析】直线y=﹣x+3向下平移a个单位后可得:y=﹣x+3﹣a,求出直线y=﹣x+3﹣a 与直线y=2x﹣4的交点,再由此点在第四象限可得出a的取值范围.【解答】解:直线y=﹣x+3向下平移a个单位后可得:y=﹣x+3﹣a,联立两直线解析式得:,解得:,即交点坐标为(,),∵交点在第四象限,∴,解得:1<a<7.故选:B.8.(3分)如图,已知菱形ABCD中,∠ABC=135°,BF⊥AD于点F,BF交对角线AC 于点E,过点E作EH⊥AB于点H,若△EBH的周长是2,则菱形ABCD的面积是()A.4B.2C.8D.【分析】由菱形的性质可得∠DAB=45°,∠DAC=∠BAC,由角平分线的性质和等腰直角三角形的性质可得EF=EH,AF=BF,AB=BF,HE=HB,BE=BH,由线段的和差关系可求EH的长,可求AB和BF的长,即可求解.【解答】解:∵四边形ABCD是菱形,∠ABC=135°,∴∠DAB=45°,∠DAC=∠BAC,又EH⊥AB,EF⊥AD,∴EF=EH,∠ABF=∠DAB=45°,∴AF=BF,∴AB=BF,∵∠ABF=45°,EH⊥AB,∴∠HEB=45°=∠ABF,∴HE=HB,∴BE=BH,∵△EBH的周长是2,∴BH+EH+EB=2BH+BH=2,∴BH=2﹣=EH=EF,∴BE=2﹣2,∴BF=BE+EF=,∴AB=2,∴菱形ABCD的面积=AB×DH=2,故选:B.9.(3分)如图,已知四边形ABCD内接于⊙O,且⊙O的半径为4,连接AC,BD,交于点O,若∠DAC+∠BAC=90°,AB=6,则CD的长为()A.2B.2C.2D.6【分析】由圆周角定理推知AC、BD是两直径,所以在直角△ABD中利用勾股定理求得AD的长度,然后在直角△ADC中利用勾股定理求得CD的长度即可.【解答】解:如图,∵∠DAC+∠BAC=90°,∴∠DAB=90°.∴BD是直径.在直角△ABD中,AB=6,BD=8,则AD===2.∵AC与BD相交于点O.∴AC是圆O的一条直径,∴∠ADC=90°.在直角△ADC中,CD===6.故选:D.二、填空题(共4小题,每小题3分,计12分)10.(3分)在实数﹣,﹣,0,,中,无理数有,.【分析】无理数常见的三种类型:①开方开不尽的数,②无限不循环小数,③含有π的数.【解答】解:﹣=﹣2是有理数,﹣是有理数,0是有理数,是无理数,是无理数,故答案为:,.11.(3分)如果一个正多边形的每一个内角都是144°,则该正多边形的对称轴条数为10.【分析】根据多边形的内角和公式,得出边数,进而结合对称轴条数的规律,可得答案.【解答】解:设正多边形是n边形,由内角和公式得(n﹣2)180°=144°×n,解得:n=10,故该正多边形的对称轴条数为:10.故答案为:10.12.(3分)如图,线段AB交x轴于点C,且BC=AC,点A在双曲线y=﹣(x>0)上,点B在双曲线y=(k≠0,x>0)上,若△OAC的面积为4,则k的值为3.【分析】分别作AD⊥x轴于点D,BE⊥x轴于点E,设A(a,b),求得ab的值,通过平行线分线段成比例性质,求得B点的坐标,再运用待定系数法求得k的值.【解答】解:分别作AD⊥x轴于点D,BE⊥x轴于点E,如图,则BE∥AD,设A(a,b),则AD=﹣b,OD=a,∵点A在双曲线y=﹣(x>0)上,∴ab=﹣12,,∵△OAC的面积为4,∴OC=2CD,∵BE∥AD,BC=AC,∴,∴BE=AD=﹣b,CE=,∴OE=OC﹣CE=2CD﹣CD=CD,DE=CE+CD=,∴OE=DE=CD=a,∴B(a,﹣b),∵点B在双曲线y=(k≠0,x>0)上,∴k==3.故答案为:3.13.(3分)如图,已知线段AB=8,在平面上有一动点M满足MB﹣MA=3,过点B作∠AMB角平分线的垂线,垂足为N,连接AN,则△ANB面积的最大值为6.【分析】延长BM、MA交于点C,过点N作NH⊥AB于H,取AB的中点P,连接PN,易证△CNM≌△BNM,则有BN=CN,MB=MC,由MB﹣MA=3可得AC=3,根据三角形中位线定理可得PN=,根据点到直线之间垂线段最短可得NH≤,从而可求出△ANB的面积的最大值.【解答】解:延长BM、MA交于点C,过点N作NH⊥AB于H,取AB的中点P,连接PN,如图.∵MN平分∠AMB,BN⊥MN,∴∠AMN=∠BMN,∠CNM=∠BNM=90°.在△CNM和△BNM中,,∴△CNM≌△BNM(ASA),∴BN=CN,MB=MC.∵MB﹣MA=3,∴AC=3,∴BC=PC﹣PB=P A﹣PB=4.∵BN=CN,BP=AP,∴PN=AC=.∵NH⊥AB,∴NH≤.当AC⊥AB时,NP与NH重合,此时,NH取得最大值,△ANB的面积也就取到最大值,最大值为=6.故答案为6.三、解答题(共11小题,计78分.解答应写出过程)14.(5分)计算:﹣4cos30°﹣|2﹣3|.【分析】先计算立方根、代入三角函数值、去绝对值符号,再去括号,最后计算加减可得.【解答】解:原式=3﹣4×﹣(3﹣2)=3﹣2﹣3+2=3﹣3.15.(5分)解分式方程:﹣=3.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3x2﹣9x﹣2x﹣6=3x2﹣27,解得:x=,经检验x=是分式方程的解.16.(5分)如图,已知△ABC(∠B>∠A),请在AC上求一点P,使∠APB+2∠A=180°(保留作图痕迹,不写画法)【分析】根据线段垂直平分线的性质即可在AC上求一点P,使∠APB+2∠A=180°.【解答】解:如图,点P即为所求.17.(5分)如图:已知∠B=∠E=90°,点B、C、F、E在一条直线上AC=DF,BF=EC.求证四边形ACDF是平行四边形.【分析】证Rt△ABC≌Rt△DEF(HL),得出∠ACB=∠DFE,则∠ACF=∠DFC,证出AC∥DF,再由AC=DF,即可得出四边形ACDF是平行四边形.【解答】证明:∵BF=EC,∴BF﹣CF=EC﹣CF,即BC=EF,在Rt△ABC和Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL),∴∠ACB=∠DFE,∴∠ACF=∠DFC,∴AC∥DF,又∵AC=DF,∴四边形ACDF是平行四边形.18.(7分)识稼穡,会知艰辛;知很辛,会懂检朴;懂俭朴,会远离奢靡,劳动教育成为大中小学的必修课程,某校建议同学们在家里“停课不停学”的同时也要帮助父母做一些力所能及的家务小悦随机调查了该校部分同学三份在家做家务的总时间,设被调查得每位同学三月份在家做家务的总时间为x小时,将做家务的总时间分为五个类别:A(0≤x<6)B(6≤x<12),C(12≤x<18),D(18≤x<24),E(x≥24),并将调查结果绘成下两幅不完整的统计图,请结合图中信息解答下列问题:(1)在这次活动中被调查的学生共50人;(2)补全条形统计图;(3)该校共有学生1300人,根据抽样调查结果,请你估计该校有多少名学生在三月份在家做家务的时间不低于12个小时.【分析】(1)根据A类的人数和所占的百分比即可得出答案;(2)用总人数减去其它类的人数求出D类的人数,从而补全统计图;(3)用该校的总人数乘以在家做家务的时间不低于12个小时的人数所占的百分比即可.【解答】解:(1)在这次活动中被调查的学生总人数有:10÷20%=50(人),故答案为:50;(2)D类人数:50﹣10﹣14﹣16﹣4=6(人),补全条形统计图如下:(3)根据题意得:1300×(1﹣20%﹣28%)=676(名),答:估计该校有676名学生在三月份在家做家务的时间不低于12个小时.19.(7分)如图,在坡角为20°的山坡上有一铁塔AB、其正前方矗立着一大型广告牌,当阳光与水平线成45°角时,测得铁塔AB落在斜坡上的影子BD=10米,落在广告牌上的影子CD=5米,已知AB,CD均与水平面垂直,请根据相关测量信息,求铁塔AB的高.(sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)【分析】过点C作CE⊥AB于E,过点B作BN⊥CD于N,在Rt△BND中,分别求出DN、BN的长度,在Rt△ACE中,求出AE、CE的长度,继而可求得AB的长度.【解答】解:过点C作CE⊥AB于E,过点B作BN⊥CD于N,在Rt△BND中,∵∠DBN=20°,BD=10,∴DN=BD×sin∠DBN≈10×0.34=3.4,BN=BD×cos∠DBN≈10×0.94=9.4,∵AB∥CD,CE⊥AB,BN⊥CD,∴四边形BNCE为矩形,∴BN=CE=9.4,CN=BE=CD﹣DN=1.6,在Rt△ACE中,∠ACE=45°,∴AE=CE=9.4,∴AB=9.4+1.6=11(米).答:铁塔AB的高约为11米.20.(7分)某校九年级决定购买学习用具对在本次适应性考试中数学成绩进步较大的同学进行奖励,其中计划购买甲、乙两款圆规套装,已知甲款圆规套装所需费用y(元)与购买数量x(套)之间的函数关系如图所示,乙款圆规套装单价为每套11元,(1)求出y与x的函数关系式;(2)若购买计划中,甲、乙两款圆规套装共需65套,甲款圆规套装的数量不超过50套,但不少于乙款圆规套装的数量,请设计购买方案,使总费用最低,并求出最低费用.【分析】(1)根据函数图象中的数据可以求得y与x的函数关系式;(2)根据(1)中的函数关系式和题意,可以求得费用的最小值和所对应的的购买方案.【解答】解:(1)当0≤x≤30时,设y与x的函数关系式为y=k1x,30k1=360,解得,k1=12,即当0≤x≤30时,y与x的函数关系式为y=12x,当x>30时,设y与x的函数关系式是y=k2x+b,,解得,即当x>30时,y与x的函数关系式是y=10x+60,综上可知:y与x的函数关系式为y=;(2)设购买甲款圆规套装的数量x套,则购买乙款圆规套装的数量是(65﹣x)支,由甲款圆规套装的数量不超过50套,但不少于乙款圆规套装的数量,得,解得32.5≤x≤50,∵x为整数,∴33≤x≤50,设总费用为W元,当x>30时,y与x的函数关系式是y=10x+60,∴W=11(65﹣x)+(10x+60)=﹣x+775,以为k=﹣1<0,所以W随x的增大而减小,故当x=50时,W取得最小值,此时W=725,65﹣x=15,答:当购买甲款圆规套装50套,B种乙款圆规套装15套时总费用最低,最低费用是725元.21.(7分)西安城墙国际马拉松赛是世界唯一一个将赛道设置在完整古城墙上的马拉松赛事,赛事创办于1993年,2019年被正式列入“一带一路”陕西2019体育精品赛事行列该赛事共有三项:A.(半程马拉松):B.(13.7公里):C.(5公里).小林、小远和小斌参与该赛事的志愿者服务工作,他们每个人被组委会随机的分配到A、B、C中的某一个项目组,每个项目组的志愿者人数不限.(1)求小林被分配到“C.(5公里)”项目组的概率;(2)已知小林被分配到“A.(半程马拉松)”项目组,请利用列表或画树状图的方法求出三人被分配到不同项目组的概率为多少?【分析】(1)利用概率公式直接计算即可;(2)根据树状图,可得所有可能的结果,即可求出三人被分配到不同项目组的概率.【解答】解:(1)∵赛事共有三项,∴小林被分配到“C.(5公里)”项目组的概率为;(2)∵小林被分配到“A.(半程马拉松)”项目组,画树状图如下:由树状图可知:所有等可能的结果有9种,∵小林被分配到A,∴小远和小斌被分配到B、C组的情况有2种,所以三人被分配到不同项目组的概率为.22.(8分)如图,已知△ABC中,AB=AC,以AB为直径的⊙O交CB于D,E为AB延长上一点,∠C+∠BDE=90°.(1)求证:DE是⊙O的切线.(2)若BE=2,tan∠ABC=,求⊙O的半径.【分析】(1)连接OD,证得∠ODB+∠BDE=90°,则∠ODE=90°,可得出结论;(2)连接AD,证明△BDE∽△DEA,可求出DE,AE的长,则AB可求出.则答案可得出.【解答】解:(1)证明:连接OD,∵AB=AC,∴∠C=∠ABC,∵∠C+∠BDE=90°,∴∠ABC+∠BDE=90°,∵OD=OB,∴∠OBD=∠ODB,∴∠ODB+∠BDE=90°,∴∠ODE=90°,即OD⊥DE,∴DE是⊙O的切线;(2)连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠BAD+∠ABD=90°,∵∠BDE+∠ABD=90°,∴∠BDE=∠BAD,∴△BDE∽△DEA,∴,∵tan∠ABC=,∴,∴,∵BE=2,∴DE=2,AE=10,∴AB=10﹣2=8,∴⊙O的半径为4.23.(10分)如图,在平面直角坐标系中,已知抛物线C:y=ax2+bx+c经过A(0,﹣3),B(2,0)两点,且点B为抛物线的顶点.(1)求抛物线C的解析式.(2)将抛物线C平移到抛物线C',到抛物线C'的顶点为B',且与x轴交于M、N(M在N的左侧),此时满足以A、B、B'、M为顶点的四边形面积为12的平行四边形,请你写出平移过程,并说明理由.【分析】(1)利用顶点式解决问题即可.(2)分点M在点B的右边或左边两种情形分别求解即可.【解答】解:(1)∵抛物线的顶点为B(2,0),∴可以假设抛物线的解析式为y=a(x﹣2)2,把A(0,﹣3)代入y=a(x﹣2)2,得到a=﹣.∴抛物线的解析式为y=﹣(x﹣2)2.(2)当点M在点B的左侧时,∵四边形ABB′M是平行四边形时,∴AB=B′M,AB∥MB′,∴点B′的纵坐标与点A的纵坐标绝对值相等,∵A(0,﹣3),∴点B′的纵坐标为3,∵平行四边形ABB′M的面积为12,∴S△BMB′=×BM×3=6,∴BM=4,∵B(2,0),∴M(﹣2,0),B′(0,3),∴抛物线C向左平移2个单位,再向上平移3个单位得到抛物线C′,同理可得,当点M在点B的右侧时,M′(6,0),B″(8,3),抛物线C向右平移6个单位,再向上平移3个单位得到抛物线C′.24.(12分)问题提出:(1)如图①,已知线段AB及AB外点C,试在线段AB上确定一点D,使得CD最短.问题探究:(2)如图②,已知Rt△ABC中,∠ACB=90°,AB=10,sin∠ABC=,D为AB中点,点E为AC边上的一个动点,请求出△BDE周长的最小值.问题解决:(3)如图③,有一个矩形花坛ABCD.AB=10m,AD=24m,根据设计造型要求,在AB上任取一动点E、连ED,过点A作AF⊥ED,交DE于点F,在FD上截取FP=AF,连接PB、PC;现需在△PBC的区内种植一种黄色花卉,在矩形内的其它区域种植一种红色花卉,已知种植这种黄色花卉每平方米需200元,种植这种红色花卉每平方米需180元,完成这两种花卉的种植至少需花费多少元?(结果保数整数,参考数据:≈1.7)【分析】(1)根据垂线段最短解决问题即可.(2)如图②中,作点D关于AC的对称点D′,连接DD′交AC于J,连接ED′,BD′,过点D′作D′H⊥BC交BC的延长线于H.周长DE+EB的最小值即可解决问题.(3)如图③中,以AD为边向上作等边三角形ADJ,作△AJ的外接圆⊙J,在⊙J上取一点T,连接TA,TD,过点J作JQ⊥BC于Q,过点P作PH⊥BC于H.求出PH的最小值即可解决问题.【解答】解:(1)如图①中,线段CD即为所求.(2)如图②中,作点D关于AC的对称点D′,连接DD′交AC于J,连接ED′,BD′,过点D′作D′H⊥BC交BC的延长线于H.在Rt△ACB中,∵∠ACB=90°,AB=10,∴sin∠ABC==,∴AC=8,BC==6,∵∠DJA=∠ACB=90°,∴DJ∥BC,∵AD=DB,∴AJ=JC=4,∴DJ=JD′=BC=3,AJ=JC=4,∵∠D′HC=∠HCJ=∠CJD′=90°,∴四边形CHD′J是矩形,∴JD′=CH=3,D′H=JC=4,∴BH=BC+CH=6+3=9,∴BD′===,∵DE+BE=BE+ED′≥BD′,∴DE+BE≥,∴DE+BE的最小值为,∴△BDE的周长的最小值为5+.(3)如图③中,以AD为边向上作等边三角形ADJ,作△AJ的外接圆⊙J,在⊙J上取一点T,连接TA,TD,过点J作JQ⊥BC于Q,过点P作PH⊥BC于H.在Rt△AFP中,∵tan∠APF==,∴∠APF=30°,∴∠APD=150°,∵△ADJ是等边三角形,∴∠AJD=60°,∴∠T=∠AJD=30°,∴∠T+∠APD=180°,∴A,T,D,P四点共圆,∵AB=10m,AD=AJ=JD=AP=24m,∴AQ=(10+12)(m),∵P A+PH≥AQ,∴PH的最小值=(10+12)﹣24=(12﹣14)(m),∵完成这两种花卉的种植的费用=200××24×PH+180×(10×24﹣×24×PH)=240PH+43200,∴PH=12﹣14时,费用最小,最小值为240×(12﹣14)+43200≈44736(元).。
2020届初三中考数学一诊联考试卷含参考答案 (陕西)

2020届**市初三中考一诊联考试卷数学注意事项:1.答卷前,考生务必将自己的姓名、准考证填写在答题卡上。
2.回答客观题时,选出每小题答案后,用2B铅笔把答题卡上对应的答案标号涂黑。
如需改正,必须用橡皮擦擦涂干净,回答非客观题,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,将本试卷和答题卡一并收回。
4.考试时间:120分钟。
一、单选题(共10题,每题3分,共30分,四个选项中只有一项符合题目要求)1.小亮是一名职业足球队员,根据以往比赛数据统计,小亮进球率为10%,他明天将参加一场比赛,下面几种说法正确的是()A.小亮明天的进球率为10%B.小亮明天每射球10次必进球1次C.小亮明天有可能进球D.小亮明天肯定进球2.如图,AB是⊙O直径,若∠AOC=140°,则∠D的度数是()A.20°B.30°C.40°D.70°3.如图是一个仪器的零件,则这个零件的左视图为()A.B.C.D.4.如图所示的几何体,它的左视图正确的是()A.B.C.D.5.中国科学技术馆有“圆与非圆”展品,涉及了“等宽曲线”的知识。
因为圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”。
除了例以外,还有一些几何图形也是“等宽曲线”,如勒洛只角形(图1),它是分别以等边三角形的征个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧。
三段圆弧围成的曲边三角形。
图2是等宽的勒洛三角形和圆。
下列说法中错误的是A.勒洛三角形是轴对称图形B.图1中,点A到BC上任意一点的距离都相等C.图2中,勒洛三角形上任意一点到等边三角形DEF的中心1O的距离都相等D.图2中,勒洛三角形的周长与圆的周长相等6.下图是由大小相同的5个小正方体搭成的几何体,则它的主视图是()A.B.C.D.7.如图,边长一定的正方形ABCD,Q为CD上一个动点,AQ交BD于点M,过M 作MN⊥AQ交BC于点N,作NP⊥BD于点P,连接NQ,下列结论:①AM=MN;②MP=12BD;③BN+DQ=NQ;④AB BNBM为定值.其中一定成立的是A .①②③B .①②④C .②③④D .①②③④8.下列事件中是必然事件的是( )A .打开电视机,正在播少儿节目B .湟中的中秋节晚上一定能看到月亮C .早晨的太阳一定从东方升起D .小红3岁就加入了少先队9.下列运算正确的是( )A .a •a 2=a 2B .(ab )2=abC .3﹣1=13D =10.某天的同一时刻,甲同学测得1m 的测竿在地面上的影长为0.6m ,乙同学测得国旗旗杆在地面上的影长为9.6m 。
2019-2020西安铁一中分校数学中考第一次模拟试题(含答案)

解析:C 【解析】 【详解】
①∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线 x= =﹣1,∴b=2a<0,∵抛
物线与 y 轴的交点在 x 轴上方,∴c>0,∴abc>0,所以①正确; ②∵抛物线与 x 轴有 2 个交点,∴△=b2-4ac>0,∴4ac <b2,所以②正确; ③∵b=2a,∴2a﹣b=0,所以③错误; ④∵x=﹣1 时,y>0,∴a﹣b+c>2,所以④正确. 故选 C.
点 E 是 OB 上一点,且 连接 BH.
,CE 的延长线交 DB 的延长线于点 F,AF 交⊙O 于点 H,
(1)求证:BD 是⊙O 的切线;(2)当 OB=2 时,求 BH 的长.
24.小华想复习分式方程,由于印刷问题,有一个数“?”看不清楚: ? 3 1 . x2 2x
(1)她把这个数“?”猜成 5,请你帮小华解这个分式方程;
∵关于 x 的分式方程 1 ax 2 1 有整数解,且 a 为整数
x2
2x
∴a=0、3、4
关于
x
的不等式组
x x
3
a 2
0 2(
x
1)
整理得
x x
a 4
∵不等式组
x
3
a
0
的解集为 x>4
x 2 2(x 1)
∴a≤4
于是符合条件的所有整数 a 的值之和为:0+3+4=7
故选 C.
2019-2020 西安铁一中分校数学中考第一次模拟试题(含答案)
一、选择题
1.如图,下列四种标志中,既是轴对称图形又是中心对称图形的为( )
A.
B.
C.
D.
2.二次函数 y=x2﹣6x+m 满足以下条件:当﹣2<x<﹣1 时,它的图象位于 x 轴的下方;
陕西省西安市2020年中考数学一模试卷解析版

中考数学一模试卷题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.-2020的绝对值是( )A. -2020B. 2020C. -D.2.如果有一个正方体,它的展开图可能是下列四个展开图中的( )A. B. C. D.3.下列计算正确的是( )A. (x-8y)(x-y)=x2+8y2B. (a-1)2=a2-1C. -x(x2+x-1)=-x3+x2-xD. (6xy+18x)÷x=6y+184.若正比例函数y=mx(m是常数,m≠0)的图象经过点A(m,4),且y的值随x值的增大而减小,则m等于( )A. 2B. -2C. 4D. -45.如图,将三角板的直角顶点放在直尺的一边上.若∠1=65°,则∠2的度数为( )A. 15°B. 35°C. 25°D. 40°6.在平面直角坐标系中,将直线y=3x的图象向左平移m个单位,使其与直线y=-x+6的交点在第二象限,则m的取值范围是( )A. m>2B. m<2C. m>6D. m<67.如图,已知四边形ABCD中,AC平分∠BAD,AB=AC=5,AD=3,BC=CD.则点C到AB的距离是( )A.B.C. 3D. 28.如图,矩形ABCD中,AB=,BC=3,AE⊥BD于E,则EC=( )A.B.C.D.9.如图,△ABC内接于⊙O,AC=5,BC=12,且∠A=90°+∠B,则点O到AB的距离为( )A.B.C.D. 410.二次函数y=x2+bx+c的图象经过坐标原点O和点A(7,0),直线AB交y轴于点B(0,-7),动点C(x,y)在直线AB上,且1<x<7,过点C作x轴的垂线交抛物线于点D,则CD的最值情况是( )A. 有最小值9B. 有最大值9C. 有最小值8D. 有最大值8二、填空题(本大题共4小题,共12.0分)11.将实数0,-,2.7,-1.4,0.14用“<”号连接起来应为______.12.任意五边形的内角和与外角和的差为______度.13.如图,在平面直角坐标系中,菱形OABC的边OA在x轴的负半轴上,反比例函数y=(x<0)的图象经过对角线OB的中点D和顶点C.若菱形OABC的面积为6,则k的值等于______.14.如图,线段BC和动点A构成△ABC,∠BAC=120°,BC=3,则△ABC周长的最大值______.三、解答题(本大题共11小题,共78.0分)15.计算:16.先化简,再求值:(x+1)÷(2+),其中x=-.17.如右图,已知点P是线段MN外一点,请利用直尺和圆规画一点Q,使得点Q到M、N两点的距离相等,且点Q与点M、P在同一条直线上.(保留作图痕迹)18.如图,AB∥CF,D,E分别是AB,AC上的点,DE=EF.求证:△ADE≌△CFE.19.某学校开展了主题为“垃圾分类,绿色生活新时尚”的宣传活动,为了解学生对垃圾分类知识的掌握情况,该校环保社团成员在校园内随机抽取了部分学生进行问卷调查,将他们的得分按优秀、良好、合格、不合格四个等级进行统计,并绘制了如下不完整的统计表和条形统计图.等级频数频率优秀2040%良好合格10m%不合格5n%请根据以上信息,解答下列问题:优秀良(1)本次调查随机抽取了______名学生;表中m=______,n=______;(2)补全条形统计图;(3)若全校有2000名学生,请你估计该校掌握垃圾分类知识达到“优秀”和“良好”等级的学生共有多少人.20.图1是一种淋浴喷头,图2是图1的示意图,若用支架把喷头固定在点A处,手柄长AB=25cm,AB与墙壁DD′的夹角∠D′AB=37°,喷出的水流BC与AB形成的夹角∠ABC=72°,现在住户要求:当人站在E处淋浴时,水流正好喷洒在人体的C 处,且使DE=50cm,CE=130cm.问:安装师傅应将支架固定在离地面多高的位置?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin72°≈0.95,cos72°≈0.31,tan72°≈3.08,sin35°≈0.57,cos35°≈0.82,tan35°≈0.70).21.甲骑自行车从A地出发前往B地,同时乙步行从B地出发前往A地,如图的折线OPQ和线段EF,分别表示甲、乙两人与A地的距离y甲、y乙与他们所行时间x(h)之间的函数关系(1)求线段OP对应的y甲与x的函数关系式并注明自变量x的取值范围;(2)求y乙与x的函数关系式以及乙到达A地所用的时间;(3)经过______小时,甲、乙两人相距2km.22.为纪念建国70周年,某校举行班级歌咏比赛,歌曲有:《我爱你,中国》,《歌唱祖国》,《我和我的祖国》(分别用字母A,B,C依次表示这三首歌曲).比赛时,将A,B,C这三个字母分别写在3张无差别不透明的卡片正面上,洗匀后正面向下放在桌面上,八(1)班班长先从中随机抽取一张卡片,放回后洗匀,再由八(2)班班长从中随机抽取一张卡片,进行歌咏比赛.(1)八(1)班抽中歌曲《我和我的祖国》的概率是______;(2)试用画树状图或列表的方法表示所有可能的结果,并求出八(1)班和八(2)班抽中不同歌曲的概率.23.已知在Rt△ABC中,∠C=90°;以斜边AB上的一点O为圆心作圆O,与AC、BC分别相切与点D、E.(1)求证:CD=CE;(2)若AC=8,AB=10;求AD的长.24.已知二次函数L与y轴交于点C(0,3),且过点(1,0),(3,0).(1)求二次函数L的解析式及顶点H的坐标(2)已知x轴上的某点M(t,0);若抛物线L关于点M对称的新抛物线为L′,且点C、H的对应点分别为C′,H′;试说明四边形CHC′H′为平行四边形.(3)若平行四边形的边与某一条对角线互相垂直时,称这种平行四边形为“和谐四边形”;在(2)的条件下,当平行四边形CHC′H′为“和谐四边形”时,求t的值.25.问题提出:(1)如图1,在四边形ABCD中,AB=BC,AD=CD=3,∠BAD=∠BCD=90°,∠ADC=60°,则四边形ABCD的面积为______;问题探究:(2)如图2,在四边形ABCD中,∠BAD=∠BCD=90°,∠ABC=135°,AB=2,BC=3,在AD、CD上分别找一点E、F,使得△BEF的周长最小,并求出△BEF的最小周长;问题解决:(3)如图3,在四边形ABCD中,AB=BC=2,CD=10,∠ABC=150°,∠BCD=90°,则在四边形ABCD中(包含其边沿)是否存在一点E,使得∠AEC=30°,且使四边形ABCE的面积最大.若存在,找出点E的位置,并求出四边形ABCE的最大面积;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:根据绝对值的概念可知:|-2020|=2020,故选:B.根据绝对值的定义直接进行计算.本题考查了绝对值.解题的关键是掌握绝对值的概念,注意掌握一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.【答案】A【解析】【分析】本题主要考查的是几何体的展开图,利用带有数的面的特点及位置解答是解题的关键.由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:由原正方体的特征可知,含有4,6,8的数字的三个面一定相交于一点,而选项B 、C、D中,经过折叠后与含有4,6,8的数字的三个面一定相交于一点不符.故选A.3.【答案】D【解析】解:∵(x-8y)(x-y)=x2-9xy+8y2,故选项A错误;∵(a-1)2=a2-2a+1,故选项B错误;∵-x(x2+x-1)=-x3-x2+x,故选项C错误;∵(6xy+18x)÷x=6y+18,故选项D正确;故选:D.根据各个选项中的式子可以计算出正确的结果,本题得以解决.本题考查整式的混合运算,解答本题的关键是明确整式混合运算的计算方法.4.【答案】B【解析】解:∵y=mx(m是常数,m≠0)的图象经过点A(m,4),∴m2=4,∴m=±2,∵y的值随x值的增大而减小,∴m<0,∴m=-2,故选:B.利用待定系数法求出m,再结合函数的性质即可解决问题.本题考查待定系数法,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5.【答案】C【解析】解:∵直尺的两边互相平行,∠1=65°,∴∠3=65°,∴∠2=90°-65°=25°.故选:C.先根据平行线的性质求出∠3的度数,再由余角的定义即可得出结论.本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.6.【答案】A【解析】解:将直线y=3x的图象向左平移m个单位可得:y=3(x+m),联立两直线解析式得:,解得:,即交点坐标为(,),∵交点在第二象限,∴,解得:m>2.故选:A.将直线y=3x的图象向左平移m个单位可得:y=3(x+m),求出直线y=3(x+m),与直线y=-x+6的交点,再由此点在第二象限可得出m的取值范围.本题考查了一次函数图象与几何变换、两直线的交点坐标,注意第二象限的点的横坐标小于0、纵坐标大于0.7.【答案】C【解析】解:在AB上截取AE=AD=3,连接CE,过C作CF⊥AB于F点.∵AC平分∠BAD,∴∠BAC=∠DAC.在△ADC与△AEC中,∵,∴△ADC≌△AEC(SAS),∴CE=CD.∵CD=CB,∴CE=CB.∵CF⊥BE,∴CF垂直平分BE.∵AB=5,∴BE=2,∴EF=1,∴AF=4,在Rt△ACF中,∵CF2=AC2-AF2=52-42=9,∴CF=3.故选:C.在AB上截取AE=AD=3,连接CE,过C作CF⊥AB于F点,根据SAS定理得出△ADC≌△AEC,故可得出CE=CD,再由垂直平分线的性质求出AF的长,根据勾股定理即可得出结论.本题考查的是全等三角形的判定与性质,角平分线的性质,根据题意作出辅助线,构造出全等三角形是解答此题的关键.8.【答案】D【解析】解:作EF⊥BC于F,∵四边形ABCD是矩形,∴AD=BC=3,AB=CD=,∠BAD=90°.∴tan∠ADB==,∴∠ADB=30°,∴∠ABE=60°,∴在Rt△ABE中cos∠ABE===,∴BE=,∴在Rt△BEF中,cos∠FBE===,∴BF=,∴EF==,∴CF=3-=,在Rt△CFE中,CE==.故选:D.作EF⊥BC于F,构造Rt△CFE中和Rt△BEF,由已知条件AB=,BC=3,可求得∠ADB=30°,所以Rt△CFE和Rt△BEF都可解,从而求出BE,BF的长,再求出CF的长,在Rt△CFE中利用勾股定理可求出EC的长.本题考查了矩形的性质,解直角三角形,以及勾股定理的运用.具有一定的综合性.9.【答案】B【解析】解:作直径CD,连BD,过O作OM⊥AB于M,过B作BN⊥CD于N,如图,则∠CBD=90°,∵∠A=90°+∠ABC,∴∠A=∠ABD,∴∠ABD+∠D=∠A+∠D=180°,∴CD∥AB,∴∠BDC=∠ABC,∴=,∴BD=AC=5.∴OM=BN,在Rt△ABD中,CD==13,∵×BN×CD=×BC×BD,∴BN═==,∴OM=,即点O到AB的距离为.故选:B.作直径CD,连BD,过O作OM⊥AB于M,过B作BN⊥CD于N,如图,利用圆周角定理得到∠CBD=90°,再证明CD∥AB得到•∠BDC=∠ABC,所以BD=AC=5.然后利用勾股定理计算出CD,再利用面积法求出BN即可.本题考查了三角形的外心与外接圆:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了垂径定理和圆周角定理.10.【答案】B【解析】解:∵二次函数y=x2+bx+c的图象经过坐标原点O和点A(7,0),∴,解得,∴二次函数为y=x2-7x,∵A(7,0),B(0,-7),∴直线AB为:y=x-7,设C(x,x-7),则D(x,x2-7x),∴CD=x-7-(x2-7x)=-x2+8x-7=-(x-4)2+9,∴1<x<7范围内,有最大值9,故选:B.根据待定系数法求得抛物线的解析式好我在想AB的解析式,设C(x,x-7),则D(x ,x2-7x),根据图象的位置即可得出CD=-(x-4)2+9,根据二次函数的性质即可求得.本题考查了二次函数的性质,待定系数法求一次函数的解析式,求二次函数的解析式,表示出CD的关系式是解题的关键.11.【答案】-<-1.4<0<0.14<2.7【解析】解:将实数0,-,2.7,-1.4,0.14用“<”号连接起来应为-<-1.4<0<0.14<2.7.故答案为:-<-1.4<0<0.14<2.7.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.12.【答案】180【解析】解:任意五边形的内角和是180×(5-2)=540度;任意五边形的外角和都是360度;所以任意五边形的内角和与外角和的差为540-360=180度.故答案为:180.利用多边形的内角和公式求出五边形的内角和,再结合其外角和为360度,即可解决问题.考查了多边形内角与外角,本题利用多边形的内角和公式及多边形的外角和即可解决问题.13.【答案】-2【解析】解:设点A的坐标为(a,0),点C的坐标为(c,),则-a•=6,点D的坐标为(,),∴,解得,k=-2,故答案为-2.根据题意,可以设出点C和点A的坐标,然后利用反比例函数的性质和菱形的性质即可求得k的值,本题得以解决.本题考查反比例函数系数k的几何意义、反比例函数的性质、菱形的性质、反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用数形结合的思想解答.14.【答案】3+2【解析】解:延长BA到D,使AD=AC,连接CD,作△BCD的外接圆⊙O,∵AD=AC,∴△ABC的周长为:AB+BC+AC=AB+BC+AD=BD+BC.∵BC=3,∴当BD的长度最大时,△ABC周长最大,∴当点A与点O重合时,BD为⊙O的直径,BD最大.设⊙O的半径为r,连接OB,OC,过点O作OE⊥BC于点E,∵∠BAC=120°,∴∠BOE=∠AOB=60°.∵BC=3,OE⊥BC,∴BE=,∴=sin60°,∴=,∴r=,∴BD的最大值为2r=2.∴△ABC周长的最大值为3+2.故答案为:3+2.延长BA到D,使AD=AC,连接CD,作△BCD的外接圆⊙O,当BD的长度最大时,△ABC 周长最大,而BD为⊙O的直径时,BD最大.设⊙O的半径为r,连接OB,OC,过点O作OE⊥BC于点E,根据垂径定理得出BE的长,再用正弦函数得出OB的长度,则BD 的最大值可得,从而△ABC周长的最大值可得.本题考查了三角形的外接圆、垂径定理及解直角三角形等知识点,正确构造三角形的外接圆是解题的关键.15.【答案】解:原式=1-1+3+4+3×=1-1+3+4+=7+.【解析】原式利用绝对值的代数意义,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值.此题考查了实数的运算,零指数幂、负整数指数幂,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.16.【答案】解:(x+1)÷(2+)=(x+1)÷=(x+1)=,当x=-时,原式==.【解析】根据分式的加法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.17.【答案】解:作MN的垂直平分线l,连接并延长PM交l于点Q.点Q即为所求作的点.【解析】作线段MN的垂直平分线与射线PM的交点即为所求作的点.本题考查了复杂作图,解决本题的关键是作线段的垂直平分线.18.【答案】解:∵AB∥CF,∴∠ADE=∠F,在△ADE和△CFE中,,∴△ADE≌△CFE(ASA).【解析】首先根据AB∥CF可得∠ADE=∠F,再加上对顶角∠AED=∠CEF,和条件DE=EF 可利用ASA证明△ADE≌△CFE.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA 、AAS、HL.19.【答案】50 20 10【解析】解:(1)本次调查随机抽取了20÷40%=50名学生,=20%,=10%,∴m=20,n=10,故答案为:50,20,10;(2)补全条形统计图如图所示;(3)2000×=1400人,答:该校掌握垃圾分类知识达到“优秀”和“良好”等级的学生共有1400人.(1)用优秀的人数除以优秀的人数所占的百分比即可得到总人数;(2)根据题意补全条形统计图即可得到结果;(3)全校2000名乘以“优秀”和“良好”等级的学生数所占的百分比即可得到结论.本题考查的是条形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.20.【答案】解:过点B作BG⊥D′D于点G,延长EC、GB交于点F,∵AB=25,DE=50,∴sin37°=,cos37°=,∴GB≈25×0.60=15,GA≈25×0.80=20,∴BF=50-15=35,∵∠ABC=72°,∠D′AB=37°,∴∠GBA=53°,∠CBF=55°,∴∠BCF=35°,∵tan35°=,∴CF≈=50,∴FE=50+130=180,∴GD=FE=180,∴AD=180-20=160,∴安装师傅应将支架固定在离地面160cm的位置.【解析】本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于中等题型.过B作BG⊥D′D于点G,延长EC、GB交于点F,根据锐角三角函数的定义即可求出答案.21.【答案】或【解析】解:(1)设线段OP对应的y甲与x的函数关系式为y甲=kx(k≠0),12=k,得k=18,即线段OP对应的y甲与x的函数关系式为y甲=18x(0<x<);(2)设y乙与x的函数关系式为y乙=ax+b,,解得,即y乙与x的函数关系式为y乙=-4.5x+12,当y乙=0时,-4.5x+12=0,解得x=,∴乙到达A地所用的时间小时;(3)|(-4.5x+12)-18x|=2,-4.5x+12-18x=2或18x-(-4.5x+12)=2,解得,x=或x=,∴经过或小时,甲、乙两人相距2km.故答案为:或.(1)根据函数图象中的数据,利用待定系数法可以求得线段OP对应的y甲与x的函数关系式;(2)利用待定系数法可以求得y乙与x的函数关系式以及乙到达A地所用的时间;(3)根据(1)和(2)中的函数解析式,可以求得经过多少小时,甲、乙两人相距2km .本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.22.【答案】(1)(2)树状图如图所示:共有9种可能,八(1)班和八(2)班抽中不同歌曲的概率==.【解析】解:(1)因为有A,B,C3种等可能结果,所以八(1)班抽中歌曲《我和我的祖国》的概率是;故答案为.(2)见答案【分析】(1)直接根据概率公式计算可得;(2)画树状图得出所有等可能结果,再从中找到符合条件的结果数,利用概率公式计算可得.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.23.【答案】(1)证明:连接OD、OE,∵AC、BC都与圆O相切,∴OE⊥BC,OD⊥AC,又∠C=90°,∴四边形OECD为矩形,∵OD=OE,∴四边形OECD为正方形,∴CD=CE;(2)解:设圆O的半径为r,在Rt△ABC中,BC===6,∵OD⊥AC,∠C=90°,∠A=∠A,∴△AOD∽△ABC,∴=,即=,解得,r=,∴AD=AC-CD=8-=.【解析】(1)连接OD、OE,根据切线的性质、正方形的判定定理得到四边形OECD 为正方形,根据正方形的性质证明结论;(2)根据勾股定理求出BC,证明△AOD∽△ABC,根据相似三角形的性质列出比例式,计算即可.本题考查的是切线的性质、相似三角形的判定和性质,掌握圆的切线垂直于经过切点的半径是解题的关键.24.【答案】解:(1)设二次函数L的解析式为:y=ax2+bx+c(a≠0)由题意可得:解得:∴二次函数L的解析式为:y=x2-4x+3,∵y=x2-4x+3=(x-2)2-1,∴顶点H的坐标(2,-1)(2)∵若抛物线L关于点M对称的新抛物线为L′,且点C、H的对应点分别为C′,H′;∴CM=C'M,HM=H'M,∴四边形CHC′H′为平行四边形;(3)∵点C(0,3),点H(2,-1)∴直线CH解析式为:y=-2x+3;若CC'⊥CH时,则CC'解析式为:y=x+3,当y=0时,0=t+3,∴t=-6;若HH'⊥CH时,则HH'解析式为:y=x-2,当y=0时,0=t-2,∴t=4∵若抛物线L关于点M对称的新抛物线为L′,且点C、H的对应点分别为C′,H′;∴点C'(2t,-3),点H'(2t-2,1)若CH'⊥HH',则H'C2+H'H2=CH2,∴(2t-2-0)2+(3-1)2+(2t-2-2)2+(1+1)2=(0-2)2+(3+1)2,∴t=若CC'⊥CH',则H'C2+C'C2=C'H'2,∴(2t-2-0)2+(3-1)2+(2t-0)2+(3+3)2=(0-2)2+(3+1)2,∴△<0,方程无解;综上所述:t=或4或-6.【解析】(1)利用待定系数法可求解析式,由配方法可求顶点坐标;(2)由中心对称的性质可得CM=C'M,HM=H'M,可得结论;(3)分四种情况讨论,由两点距离公式和一次函数的性质可求解.本题是二次函数综合题,考查了二次函数的性质,平行四边形的判定,中心对称的性质,一次函数的性质,两点距离公式等知识,熟练运用这些性质进行推理是本题的关键.25.【答案】(1)3;(2)如图,作点B关于AD的对称点M,作点B关于CD的对称点N,连接MN,交AD 于点E,交CD于点F,过点M作MG⊥BC,交CB的延长线于点G,∵点B,点M关于AD对称∴BE=EM,AB=AM=2,∴BM=4∵点B,点N关于CD对称∴BF=FN,BC=CN=3∴△BEF的周长=BE+BF+EF=NF+EF+EM=MN∵∠ABC=135°,∴∠GBM=45°,且GM⊥BG,∴∠GBM=∠GMB=45°∴BG=GM,且BG2+GM2=BM2,∴BG=4=GM,∴GN=BG+BC+CN=4+3+3=10,∴在Rt△GMN中,MN===2∴△BEF的最小周长为2(3)作△ABC的外接圆,交CD于点E,连接AC,AE,过点A作AM⊥CD于点M,作BN⊥AM于点N,∵四边形ABCE是圆内接四边形∴∠ABC+∠AEC=180°∴∠AEC=30°,∵BN⊥AM,AM⊥CD,∠BCD=90°,∴四边形BCMN是矩形∴BC=MN=2,BN=CM,∠CBN=90°,∵∠ABC=150°,∴∠ABN=60°,且BN⊥AM∴∠BAN=30°,∴BN=AB=1,AN=BN=∴AM=+2,CM=1∵∠AEC=30°,AM⊥CE,∴AE=2AM=2+4,ME=AM=3+2∴CE=CM+ME=4+2=AE∴点E在AC垂直平分线上,∵S四边形ABCE=S△ABC+S△ACE,且S△ABC是定值,AC长度是定值,点E在△ABC的外接圆上,∴当点E在AC的垂直平分线上时,S四边形ABCE最大∴S四边形ABCE=S四边形ABCM+S△AME=××1+=8+4【解析】解:(1)∵AB=BC,AD=CD=3,∠BAD=∠BCD=90°∴△ABD≌△CBD(SAS)∴∠ADB=∠CDB,且∠ADC=60°∴∠ADB=∠CDB=30°,且∠BAD=∠BCD=90°∴AB=BC=∴四边形ABCD的面积=2××3×=3故答案为:3(2)见答案;(3)见答案。
2020年陕西省中考数学一模试卷(含答案解析)

2020年陕西省中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.−12的倒数是()A. −2B. 2C. 12D. −122.一个直角三角形绕其直角边旋转一周得到的几何体可能是()A. B.C. D.3.下列计算正确的是()A. x3·x=x3B. x3−x2=xC. −x3·(−x)2=x5D. x6÷x=x54.如图,AB//CD,CE平分∠ACD交AB于E,若∠A=120°,则∠AEC=()A. 20°B. 25°C. 30°D. 50°5.某商场一天中售出李宁牌运动鞋10双,其中各种尺码的鞋的销售量如下表所示,则这10双鞋的尺码组成的一组数据中,众数和中位数分别为()鞋的尺寸(单位:厘米)23.52424.52526销售量(单位:双)12241A. 25,25B. 24.5,25C. 26,25D. 25,24.756.下列在正比例函数y=−4x的图象上的点是()A. (1,4)B. (−1,−4)C. (4,−1)D. (0.5,−2)7. 如图,在菱形ABCD 中,∠A =60°,AD =8,P 是AB 边上的一点,E ,F 分别是DP ,BP 的中点,则线段EF 的长为( )A. 8B. 2√5C. 4D. 2√2 8. 点A(1,m)在函数y =2x 的图象上,则m 的值是( )A. 1B. 2C. 12D. 09. 如图,在矩形ABCD 中,AB =4,BC =6,E 是矩形内部的一个动点,且AE ⊥BE ,则线段CE的最小值为( )A. 32B. 2√10−2C. 2√13−2D. 410. 将抛物线y =−x 2向左移动2个单位,再向上移动3个单位后,抛物线的顶点为( )A. (2,3)B. (2,−3)C. (−2,3)D. (−2,−3)二、填空题(本大题共4小题,共12.0分)11. 在实数117,−(−1),π3,√1.21,313113113,√5中,无理数有______个.12. 不等式12x −5≤1−32x 的正整数解是______ .13. 如图,过y 轴上任意一点P ,作x 轴的平行线,分别与反比例函数y =−6x 和y =2x 的图象交于点A 和点B ,若C 为x 轴上任意一点,连接AC ,BC ,则△ABC 的面积为_________.14.在Rt△ABC中,∠ACB=90°.AC=6,BC=8,分别以它的三边为直径向上作三个半圆,则阴影部分面积为.三、计算题(本大题共1小题,共5.0分)15.解方程:xx+2−2x2−4=1.四、解答题(本大题共10小题,共73.0分)16.17.计算:(√3+1)×(√3−1)−√8+|1−√2|17.如图,△ABC的顶点在正方形网格的格点上,D是边AB上一点,请在其它边上找一点E,连接DE后,使得到的新三角形与△ABC相似.要求用无刻度的直尺作图,且作出两种不同的情况.18.如图,正方形ABCD中,E、F分别是边CD、DA上的点,且CE=DF,AE与BF交于点M.求证:AE⊥BF.19.东营市“创建文明城市”活动如火如荼的展开.某中学为了搞好“创城”活动的宣传,校学生会就本校学生对东营“市情市况”的了解程度进行了一次调查测试.经过对测试成绩的分析,得到如下图所示的两幅不完整的统计图(A:59分及以下;B:60−69分;C:70−79分;D:80−89分;E:90−100分).请你根据图中提供的信息解答以下问题:(1)求该校共有多少名学生;(2)将条形统计图补充完整;(3)在扇形统计图中,计算出“60−69分”部分所对应的圆心角的度数.20.如图,从地面B处测得热气球A的仰角为45°,从地面C处测得热气球A的仰角为30°,若BC为240米,求:热气球A的高度.21.为了鼓励居民节约用水,某市采用“阶梯水价”的方法按月计算每户家庭的水费:每月用水量不超过20吨时,按每吨2元计费;每月用水量超过20吨时,其中的20吨仍按每吨2元计费,超过部分按每吨2.8元计费,设每户家庭每月用水量为x吨时,应交水费y元.(1)分别求出0≤x≤20和x>20时,y与x之间的函数表达式;(2)小颖家四月份、五月份分别交水费45.6元、38元,问小颖家五月份比四月份节约用水多少吨?22.小华和小军做摸卡片游戏,规则如下:甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为−7,−1,3.乙袋中的三张卡片所标的数值为−2,1,6.先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y表示取出卡片上的数值,把x、y分别作为点A的横坐标和纵坐标.若点A在第一象限,则小华胜,若点A在第三象限则小军胜.这个游戏对双方公平吗?请说明理由.23.如图,在△ABC中,∠A=60°,⊙O是△ABC的外接圆,过点B作⊙O的切线,交CO的延长线于点D,CD交⊙O于点E.(1)求证:BC=BD;(2)若BC=3,求CD的长.x2+bx+c交24.如图,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,B(3,5),抛物线y=−12 x轴于点C,D两点,且经过点B.(1)求抛物线的表达式;(2)在抛物线上是否存在点F,使得△ACF的面积等于5,若存在,求出点F的坐标;若不存在,说明理由;(3)点M(4,k)在抛物线上,连接CM,求出在坐标轴的点P,使得△PCM是以∠PCM为顶角以CM为腰的等腰三角形,请直接写出P点的坐标.25.如图,在平面直角坐标系中,A(−4√3,0)、B(0,−4),D为直线AB上一点,且D点横坐标为−√3,y轴上有一动点P,直线l经过D、P两点.(1)求直线AB的表达式和D点坐标;(2)当∠ADP=105°时,求点P坐标;(3)在直线l上取点Q(m,n)且mn=3√3,现过点Q作QM⊥y轴于M,QN⊥x轴于N.问:是否存在点P,使得直线DQ分长方形ONQM为两部分,其中所分成的三角形面积是△PDB面积的一半?若存在,直接写出P点坐标;若不存在,请说明理由.【答案与解析】1.答案:A的倒数是−2.解析:解:−12故选:A.根据倒数的定义求解.本题主要考查了倒数的定义,解题的关键是熟记定义.2.答案:D解析:本题考查了点线面体的相关知识点,熟记各种平面图形旋转得到的立体图形是解题关键.根据直角三角形绕直角边旋转是圆锥,可得答案.解:将一个直角三角形绕它的一条直角边旋转一周得到的几何体是圆锥,故选D.3.答案:D解析:本题考查同底数幂的乘法,同底数幂的除法,熟练掌握运算性质是解题的关键,合并同类项时,不是同类项的不能合并.利用同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.解:A.应为x3·x=x3+1=x4,故本选项错误;B.x3−x2没有同类项,不能合并,故本选项错误;C.−x3·(−x)2=−x2+2=−x5,故本选项错误;D.应为x6÷x1=x5,故本选项正确.故选D.4.答案:C解析:解:∵AB//CD,∠A=120°,∴∠ACD=60°,∵CE平分∠ACD,∴∠ECD=∠AEC=30°,∵AB//CD,∴∠AEC=∠ECD=30°,故选C.直接利用平行线的性质得出∠ACD=70°,再利用角平分线的性质得出答案.此题主要考查了平行线的性质以及角平分线的性质,正确得出∠ACD的度数是解题关键.5.答案:D解析:解:从小到大排列此数据为:23.5、24、24、24.5、24.5、25、25、25、25、26,中间两个数是24.5和25,则中位数是(24.5+25)÷2=24.75;数据25出现了四次,出现的次数最多,则众数是25.故选:D.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据.此题考查了中位数和众数.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.注意众数可以不止一个.6.答案:D解析:解:A、∵当x=1时,y=−4×1=−4≠4,∴此点不在正比例函数y=−4x图象上,故本选项错误;B、∵当x=−1时,y=(−4)×(−1)=4≠−4,∴此点不在正比例函数y=−4x图象上,故本选项错。
2020-2021西安铁一中滨河学校初三数学下期末一模试卷(含答案)

19.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运
货量不变,且甲、乙两车单独运完这批货物分别用 2a, a 次;甲、丙两车合运相同次数, 运完这批货物,甲车共运180 吨;乙、丙两车合运相同次数,运完这批货物乙车共运 270
1 1 (1)
1 2
,已知
a1
4
,
a2
是
a1
的差倒数,
a3
是
a2
的差倒数,
a4
是
a3
的差
倒数,…,依此类推,则 a2019 ___________ . 15.如图,在平面直角坐标系中,点 O 为原点,菱形 OABC 的对角线 OB 在 x 轴上,顶点
A 在反比例函数 y= 2 的图像上,则菱形的面积为_______. x
D.林茂从文具店回家的平均速度是 60m min
6.如图,在热气球 C 处测得地面 A、B 两点的俯角分别为同一直线上,则 AB 两点的距离是( )
A.200 米
B.200 3 米
7.下列图形是轴对称图形的有( )
C.220 3 米
16.如图,一张三角形纸片 ABC,∠C=90°,AC=8cm,BC=6cm.现将纸片折叠:使点 A 与 点 B 重合,那么折痕长等于 cm. 17.在 Rt△ABC 中,∠C=90°,AC=6,BC=8,点 E 是 BC 边上的动点,连接 AE,过点 E 作
AE 的垂线交 AB 边于点 F,则 AF 的最小值为_______
你估算 5 ﹣1 的值( )
A.在 1.1 和 1.2 之间
B.在 1.2 和 1.3 之间
C.在 1.3 和 1.4 之间
2020年陕西省西安市碑林区铁一中学中考数学模拟试卷(三)

2020年陕西省西安市碑林区铁一中学中考数学模拟试卷(三)一、选择题(共10小题,每小题3分,计30分)1.(3分)﹣的倒数是()A.﹣B.C.D.﹣2.(3分)下列不是三棱柱展开图的是()A.B.C.D.3.(3分)如图,直线BC∥AE,CD⊥AB于点D,若∠BCD=40°,则∠1的度数是()A.60°B.50°C.40°D.30°4.(3分)如图,在矩形OACB中,A(﹣2,0),B(0,﹣1),若正比例函数y=kx的图象经过点C,则k值是()A.﹣2B.C.2D.5.(3分)下列运算中,正确的是()A.(﹣x)2•x3=x5B.(x2y)3=x6yC.(a+b)2=a2+b2D.a6+a3=a26.(3分)如图,在△ABC中,∠C=90°,∠A=30°,AB的垂直平分线分别交AB、AC 于点D、E.则以下AE与CE的数量关系正确的是()A.AE=CE B.AE=CE C.AE=CE D.AE=2CE 7.(3分)已知直线y=﹣x+8与x轴、y轴分别交于点A和点B,M是OB上的一点,若将△ABM沿AM折叠,点B恰好落在x轴上的点B′处,则直线AM的函数解析式是()A.y=﹣x+8B.y=﹣x+8C.y=﹣x+3D.y=﹣x+3 8.(3分)如图:在四边形ABCD中,E是AB上的一点,△ADE和△BCE都是等边三角形,点P、Q、M、N分别为AB、BC、CD、DA的中点,则四边形MNPQ是()A.等腰梯形B.矩形C.菱形D.正方形9.(3分)如图,在⊙O中,弦AC∥半径OB,∠BOC=48°,则∠OAB的度数为()A.24°B.30°C.60°D.90°10.(3分)若二次函数y=ax2+bx+c的图象与x轴有两个交点A和B,顶点为C,且b2﹣4ac =4,则∠ACB的度数为()A.30°B.45°C.60°D.90°二.填空题(共4小题,每小题3分,计12分)11.(3分)比较大小:﹣﹣3.2(填“>”、“<”或“=”)12.(3分)如图,正五边形ABCDE中,对角线AC与BE相交于点F,则∠AFE=度.13.(3分)如图,已知,在矩形AOBC中,OB=4,OA=3,分别以OB、OA所在直线为x 轴和y轴,建立如图所示的平面直角坐标系,F是边BC上的一个动点(不与B、C重合),过F点的反比例函数y=(k>0)的图象与AC边交于点E,将△CEF沿EF对折后,C点恰好落在OB上的点D处,则k的值为.14.(3分)如图,已知平行四边形ABCD中,∠B=60°,AB=12,BC=5,P为AB上任意一点(可以与A、B重合),延长PD到F,使得DF=PD,以PF、PC为边作平行四边形PCEF,则PE长度的最小值.三、解答题[共11小题,计78分,解答应写出过程)15.(5分)计算:÷+8×2﹣1﹣(+1)0+2•sin60°.16.(5分)解分式方程:﹣1=.17.(5分)如图,△ABC中,P是线段AB上一点,尺规作图:在BC边上找一点D,使以P、D、B为顶点的三角形与△ABC相似(保留作图痕迹,不写作法)18.(5分)如图,已知四边形AECF是平行四边形,D,B分别在AF,CE的延长线上,连接AB,CD,且∠B=∠D.求证:(1)△ABE≌△CDF;(2)四边形ABCD是平行四边形.19.(7分)为了解某种电动汽车的性能,对这种电动汽车进行了抽检,将一次充电后行驶的里程数分为A,B,C,D四个等级,其中相应等级的里程依次为200千米,210千米,220千米,230千米,获得如下不完整的统计图,根据信息解答下列问题:(1)问这次被抽检的电动汽车共有几辆?并补全条形统计图:(2)求电动汽车一次充电后行驶里程数的中位数、众数:(3)一次充电后行驶里程数220千米以上(含220千米)为优质等级,若全市有这种电动汽车1200辆,估计优质等级的电动汽车约为多少辆?20.(7分)西安市的大雁塔又名“慈恩寺塔”,是国家级文物保护单位,玄奘为保存由天竺经丝绸之路带回长安的经卷主持修建了大雁塔,最初五层,后加盖至九层,是西安市的标志性建筑之一,某校社会实践小组为了测量大雁塔的高度,在地面上C处垂直于地面竖立了高度为2米的标杆CD,这时地面上的点E,标杆的顶端点D,大雁塔的塔尖点B 正好在同一直线上,测得EC=4米,将标杆CD向后平移到点G处,这时地面上的点F,标杆的顶端点H,大雁塔的塔尖点B正好在同一直线上(点F,点G,点E,点C与塔底处的点A在同一直线上),这时测得FG=6米,GC=53米,请你根据以上数据,计算大雁塔的高度AB.21.(7分)某书店为了迎接“读书节”制定了活动计划,以下是活动计划书的部分信息.(1)陈经理查看计划数时发现:A类图书的标价是B类图书标价的1.5倍,若顾客用540元购买的图书,能单独购买A类图书的数量恰好比单独购买B类图书的数量少10本,请求出A、B两类图书的标价.(2)经市场调查后,陈经理发现他们高估了“读书节”对图书销售的影响,便调整了销售方案,A类图书每本标价降低a元(0<a<5)销售,B类图书价格不变,那么书店应如何进货才能获得最大利润?读书节”活动计划书书本类别A类B 类进价(单位:元)1812备注1.用不超过16800元购进A、B两类图书共1000本2.A类图书不少于600本22.(7分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形的圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止).(1)转动转盘一次,求转出的数字是﹣2的概率;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.23.(8分)如图,在△ABC中,D为AC上一点,且CD=CB,以BC为直径作⊙O,交BD 于点E,连接CE,过D作DF⊥AB于点F,∠BCD=2∠ABD.(1)求证:AB是⊙O的切线;(2)若∠A=60°,DF=,求⊙O的直径BC的长.24.(10分)如图,抛物线L1:y=ax2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于C 点,且A(﹣1,0),OB=OC=3OA.若抛物线L2与抛物线L1关于直线x=2对称.(1)求抛物线L1与抛物线L2的解析式:(2)在抛物线L1上是否存在一点P,在抛物线L2上是否存在一点Q,使得以BC为边,且以B、C、P、Q为顶点的四边形为平行四边形?若存在,求出P、Q两点的坐标:若不存在,请说明理由.25.(12分)问题提出:(1)如图①,半圆O的直径AB=10,点P是半圆O上的一个动点,则△PAB的面积最大值是.问题探究:(2)如图②,在边长为10的正方形ABCD中,点G是BC边的中点,E、F分别是AD 和CD边上的点,请探究并求出四边形BEFG的周长的最小值.问题解决:(3)如图③,四边形ABCD中,AB=AD=6,∠BAD=60°,∠BCD=120°,四边形ABCD的周长是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.2020年陕西省西安市碑林区铁一中学中考数学模拟试卷(三)参考答案与试题解析一、选择题(共10小题,每小题3分,计30分)1.(3分)﹣的倒数是()A.﹣B.C.D.﹣【分析】根据倒数的意义,乘积是1的两个数互为倒数.求分数的倒数,把分子和分母调换位置即可.【解答】解:﹣的倒数是﹣,故选:D.【点评】此题考查的目的是理解倒数的意义,掌握求倒数的方法.2.(3分)下列不是三棱柱展开图的是()A.B.C.D.【分析】根据三棱柱的两底展开是三角形,侧面展开是三个四边形,可得答案.【解答】解:A、B、D中间三个长方形能围成三棱柱的侧面,上、下两个三角形围成三棱柱的上、下两底面,故均能围成三棱柱,均是三棱柱的表面展开图.C围成三棱柱时,两个三角形重合为同一底面,而另一底面没有.故C不能围成三棱柱.故选:C.【点评】本题考查了几何体的展开图,注意两底面是对面,展开是两个全等的三角形,侧面展开是三个矩形.3.(3分)如图,直线BC∥AE,CD⊥AB于点D,若∠BCD=40°,则∠1的度数是()A.60°B.50°C.40°D.30°【分析】先在直角△CBD中可求得∠DBC的度数,然后平行线的性质可求得∠1的度数.【解答】解:∵CD⊥AB于点D,∠BCD=40°,∴∠CDB=90°.∴∠BCD+∠DBC=90°,即∠BCD+40°=90°.∴∠DBC=50°.∵直线BC∥AE,∴∠1=∠DBC=50°.故选:B.【点评】本题主要考查的是平行线的性质、垂线的定义、直角三角形两锐角互余的性质,掌握相关知识是解题的关键.4.(3分)如图,在矩形OACB中,A(﹣2,0),B(0,﹣1),若正比例函数y=kx的图象经过点C,则k值是()A.﹣2B.C.2D.【分析】由点A,B的坐标结合矩形的性质可得出点C的坐标,再利用一次函数图象上点的坐标特征,即可求出k值,此题得解.【解答】解:∵四边形OACB为矩形,A(﹣2,0),B(0,﹣1),∴点C的坐标为(﹣2,﹣1).∵正比例函数y=kx的图象经过点C(﹣2,﹣1),∴﹣1=﹣2k,∴k=.故选:D.【点评】本题考查了一次函数图象上点的坐标特征以及矩形的性质,利用一次函数图象上点的坐标特征,找出关于k的一元一次方程是解题的关键.5.(3分)下列运算中,正确的是()A.(﹣x)2•x3=x5B.(x2y)3=x6yC.(a+b)2=a2+b2D.a6+a3=a2【分析】根据同底数幂的乘法、积的乘方与幂的乘方、完全平方公式及同类项的概念逐一计算可得.【解答】解:A.(﹣x)2•x3=x5,此选项正确;B.(x2y)3=x6y3,此选项错误;C.(a+b)2=a2+2ab+b2,此选项错误;D.a6与a3不是同类项,不能合并,此选项错误;故选:A.【点评】本题主要考查幂的乘方与积的乘方,解题的关键是掌握同类项概念、幂的乘方、完全平方公式及积的乘方.6.(3分)如图,在△ABC中,∠C=90°,∠A=30°,AB的垂直平分线分别交AB、AC 于点D、E.则以下AE与CE的数量关系正确的是()A.AE=CE B.AE=CE C.AE=CE D.AE=2CE【分析】首先连接BE,由在△ABC中,∠C=90°,∠A=30°,可求得∠ABC的度数,又由AB的垂直平分线交AB于点D,交AC于点E,根据线段垂直平分线的性质,可得AE=BE,继而可求得∠CBE的度数,然后由含30°角的直角三角形的性质,证得AE=2CE.【解答】解:连接BE,∵DE是AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=30°,∴∠CBE=∠ABC﹣∠ABE=30°,在Rt△BCE中,BE=2CE,∴AE=2CE,故选:D.【点评】此题考查了线段垂直平分线的性质、直角三角形的性质、等腰三角形的性质以及含30°角的直角三角形的性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.7.(3分)已知直线y=﹣x+8与x轴、y轴分别交于点A和点B,M是OB上的一点,若将△ABM沿AM折叠,点B恰好落在x轴上的点B′处,则直线AM的函数解析式是()A.y=﹣x+8B.y=﹣x+8C.y=﹣x+3D.y=﹣x+3【分析】把x的值代入即可求出y的值,即是点的坐标,再把坐标代入就能求出解析式.【解答】解:当x=0时,y=﹣x+8=8,即B(0,8),当y=0时,x=6,即A(6,0),所以AB=AB′=10,即B′(﹣4,′0),设OM=x,则B′M=BM=BO﹣MO=8﹣x,B′O=AB′﹣AO=10﹣6=4∴x2+42=(8﹣x)2x=3∴M(0,3)又A(6,0)直线AM的解析式为y=﹣x+3.故选:C.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.8.(3分)如图:在四边形ABCD中,E是AB上的一点,△ADE和△BCE都是等边三角形,点P、Q、M、N分别为AB、BC、CD、DA的中点,则四边形MNPQ是()A.等腰梯形B.矩形C.菱形D.正方形【分析】连接四边形ADCB的对角线,通过全等三角形来证得AC=BD,从而根据三角形中位线定理证得四边形NPQM的四边相等,可得出四边形MNPQ是菱形.【解答】解:连接BD、AC;∵△ADE、△ECB是等边三角形,∴AE=DE,EC=BE,∠AED=∠BEC=60°;∴∠AEC=∠DEB=120°;∴△AEC≌△DEB(SAS);∴AC=BD;∵M、N是CD、AD的中点,∴MN是△ACD的中位线,即MN=AC;同理可证得:NP=DB,QP=AC,MQ=BD;∴MN=NP=PQ=MQ,∴四边形NPQM是菱形;故选:C.【点评】此题主要考查的是菱形的判定方法,能发现并构建出全等三角形,是解答本题的关键.9.(3分)如图,在⊙O中,弦AC∥半径OB,∠BOC=48°,则∠OAB的度数为()A.24°B.30°C.60°D.90°【分析】利用平行线的性质得∠OBA=∠BAC,再利用圆周角定理得到∠BAC=∠BOC =24°,从而得到∠OAB的度数.【解答】解:∵AC∥OB,∴∠OBA=∠BAC,∵∠BAC=∠BOC=×48°=24°,∴∠OBA=24°,∵OA=OB,∴∠OAB=24°.故选:A.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.(3分)若二次函数y=ax2+bx+c的图象与x轴有两个交点A和B,顶点为C,且b2﹣4ac =4,则∠ACB的度数为()A.30°B.45°C.60°D.90°【分析】根据题目中的条件和二次函数的性质,特殊角的三角函数值,可以求得∠ACB 的度数,本题得以解决.【解答】解:设二次函数y=ax2+bx+c的图象与x轴有两个交点A和B的坐标分别为(x1,0),(x2,0),则x1==,该函数顶点C的坐标为:(﹣,﹣),tan∠CAB==1,则∠CAB═45°,同理可得,∠CBA=45°,∴∠ACB=90°,故选:D.【点评】本题考查抛物线与x轴的交点、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.二.填空题(共4小题,每小题3分,计12分)11.(3分)比较大小:﹣>﹣3.2(填“>”、“<”或“=”)【分析】由10<3.22为突破口来比较﹣与﹣3.2的大小.【解答】解:∵10<3.22,∴<3.2,∴﹣>﹣3.2,故答案是:>.【点评】本题考查了实数大小比较.任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.12.(3分)如图,正五边形ABCDE中,对角线AC与BE相交于点F,则∠AFE=72度.【分析】根据五边形的内角和公式求出∠EAB,根据等腰三角形的性质,三角形外角的性质计算即可.【解答】解:∵五边形ABCDE是正五边形,∴∠EAB=∠ABC=,∵BA=BC,∴∠BAC=∠BCA=36°,同理∠ABE=36°,∴∠AFE=∠ABF+∠BAF=36°+36°=72°.故答案为:72【点评】本题考查的是正多边形的内角与外角,掌握正多边形的内角的计算公式、等腰三角形的性质是解题的关键.13.(3分)如图,已知,在矩形AOBC中,OB=4,OA=3,分别以OB、OA所在直线为x 轴和y轴,建立如图所示的平面直角坐标系,F是边BC上的一个动点(不与B、C重合),过F点的反比例函数y=(k>0)的图象与AC边交于点E,将△CEF沿EF对折后,C点恰好落在OB上的点D处,则k的值为.【分析】证明Rt△MED∽Rt△BDF,则==,而EM:DB=ED:DF=4:3,求出DB,在Rt△DBF中,利用勾股定理即可求解.【解答】解:如图,过点E作EM⊥x轴于点M,∵将△CEF沿EF对折后,C点恰好落在OB上的D点处,∴∠EDF=∠C=90°,EC=ED,CF=DF,∴∠MDE+∠FDB=90°,而EM⊥OB,∴∠MDE+∠MED=90°,∴∠MED=∠FDB,∴Rt△MED∽Rt△BDF;又∵EC=AC﹣AE=4﹣,CF=BC﹣BF=3﹣,∴ED=4﹣,DF=3﹣,∴==;∵EM:DB=ED:DF=4:3,而EM=3,∴DB=,在Rt△DBF中,DF2=DB2+BF2,即(3﹣)2=()2+()2,解得k=,故答案为.【点评】本题考查了反比例函数与一次函数的交点问题,涉及到图形折叠的性质、勾股定理以及三角形相似的判定与性质,综合性强,难度适中.14.(3分)如图,已知平行四边形ABCD中,∠B=60°,AB=12,BC=5,P为AB上任意一点(可以与A、B重合),延长PD到F,使得DF=PD,以PF、PC为边作平行四边形PCEF,则PE长度的最小值.【分析】当PE⊥DC,且垂足G为DC的中点时,PE长度的最小,进而解答即可.【解答】,解:记PE与CD交点为G,∵四边形PFEC为平行四边形,∴PF∥CE,∴∠DPE=∠CEP,∠PDC=∠ECD,∴△PGD∽△EGC,∵DF=PD,∴PD=PF=CE,∴,∴,∴PE=3PG,要求PE的最小值,只要求PG的最小值即可,PG的最小值为当PG⊥CD时取PG,过点C作CH⊥AB于点H,在Rt△CBH中,∵∠B=60°,BC=5,∴sin∠B=,即,∴PG=CH=,∴PE=3PG=,故答案为:.【点评】考查了平行四边形的性质,关键是根据三角函数、点到直线的距离及垂线段最短解答,三、解答题[共11小题,计78分,解答应写出过程)15.(5分)计算:÷+8×2﹣1﹣(+1)0+2•sin60°.【分析】利用负整数指数幂、零指数幂的意义和特殊角的三角函数值进行计算.【解答】解:原式=+8×﹣1+2×=3+4﹣1+=6+.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.16.(5分)解分式方程:﹣1=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x2﹣2x﹣x2+3x﹣2=3x﹣3,移项合并得:﹣2x=﹣1,解得:x=,经检验x=是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.17.(5分)如图,△ABC中,P是线段AB上一点,尺规作图:在BC边上找一点D,使以P、D、B为顶点的三角形与△ABC相似(保留作图痕迹,不写作法)【分析】过P作PD∥AC交BC于点D,或作∠BPD=∠C,即可利用相似三角形的判定解答即可.【解答】解:如图所示:【点评】此题考查作图,相似变换,关键是根据相似三角形的判定解答.18.(5分)如图,已知四边形AECF是平行四边形,D,B分别在AF,CE的延长线上,连接AB,CD,且∠B=∠D.求证:(1)△ABE≌△CDF;(2)四边形ABCD是平行四边形.【分析】(1)根据平行四边形的性质得到∠AEC=∠AFC,AE=CF,AF=CE,根据全等三角形的判定定理即可得到结论;(2)由全等三角形的性质得到AB=CD,BE=DF,根据平行四边形的判定定理即可得到结论.【解答】证明:(1)∵四边形AECF是平行四边形∴∠AEC=∠AFC,AE=CF,AF=CE,∵∠AEC+∠AEB=180°,∠AFC+∠CFD=180°,∴∠AEB=∠CFD,∵∠B=∠D,∴△ABE≌△CDF(AAS);(2)由(1)知△ABE≌△CDF可得:AB=CD,BE=DF,∵AF=CE,∴AF+DF=CE+BE,∴AF+DF=CE+BE即AD=BC,∴四边形ABCD是平行四边形.【点评】本题考查了平行四边形的判定和性质,全等三角形的判定和性质,熟练掌握平行四边形的判定和性质定理是解题的关键.19.(7分)为了解某种电动汽车的性能,对这种电动汽车进行了抽检,将一次充电后行驶的里程数分为A,B,C,D四个等级,其中相应等级的里程依次为200千米,210千米,220千米,230千米,获得如下不完整的统计图,根据信息解答下列问题:(1)问这次被抽检的电动汽车共有几辆?并补全条形统计图:(2)求电动汽车一次充电后行驶里程数的中位数、众数:(3)一次充电后行驶里程数220千米以上(含220千米)为优质等级,若全市有这种电动汽车1200辆,估计优质等级的电动汽车约为多少辆?【分析】(1)根据条形统计图和扇形图可知,将一次充电后行驶的里程数分为B等级的有30辆电动汽车,所占的百分比为30%,用30÷30%即可求出电动汽车的总量;分别计算出C、D所占的百分比,即可得到A所占的百分比,即可求出A的电动汽车的辆数,即可补全统计图;(2)根据众数和中位数的定义解答可得;(3)用优质等级所占的百分数乘以汽车总辆数,即可解答.【解答】解:(1)这次被抽检的电动汽车共有:30÷30%=100(辆),C所占的百分比为:40÷100×100%=40%,D所占的百分比为:20÷100×100%=20%,A所占的百分比为:100%﹣40%﹣20%﹣30%=10%,A等级电动汽车的辆数为:100×10%=10(辆),补全统计图如图所示:(2)由条形图知,220千米的数量最多,故众数为220千米;100辆汽车里程数的中位数为=220千米;(3)1200×=720(辆),答:估计优质等级的电动汽车约为720辆.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(7分)西安市的大雁塔又名“慈恩寺塔”,是国家级文物保护单位,玄奘为保存由天竺经丝绸之路带回长安的经卷主持修建了大雁塔,最初五层,后加盖至九层,是西安市的标志性建筑之一,某校社会实践小组为了测量大雁塔的高度,在地面上C处垂直于地面竖立了高度为2米的标杆CD,这时地面上的点E,标杆的顶端点D,大雁塔的塔尖点B 正好在同一直线上,测得EC=4米,将标杆CD向后平移到点G处,这时地面上的点F,标杆的顶端点H,大雁塔的塔尖点B正好在同一直线上(点F,点G,点E,点C与塔底处的点A在同一直线上),这时测得FG=6米,GC=53米,请你根据以上数据,计算大雁塔的高度AB.【分析】易知△EDC∽△EBA,△FHG∽△FBA ,可得=,=,因为DC=HG ,推出,列出方程求出CA=106(米),由=,可得,由此即可解决问题.【解答】解:∵△EDC∽△EBA,△FHG∽△FBA,∴=,=,∵DC=HG,∴=,∴=,∴CA=106(米),∵=,∴=,∴AB=55(米),答:大雁塔的高度AB为55米.【点评】本题考查相似三角形的应用,解题的关键是灵活运用所学知识解决问题,学会构建方程解决问题,属于中考常考题型.21.(7分)某书店为了迎接“读书节”制定了活动计划,以下是活动计划书的部分信息.(1)陈经理查看计划数时发现:A类图书的标价是B类图书标价的1.5倍,若顾客用540元购买的图书,能单独购买A类图书的数量恰好比单独购买B类图书的数量少10本,请求出A、B两类图书的标价.(2)经市场调查后,陈经理发现他们高估了“读书节”对图书销售的影响,便调整了销售方案,A类图书每本标价降低a元(0<a<5)销售,B类图书价格不变,那么书店应如何进货才能获得最大利润?读书节”活动计划书书本类别A类B 类进价(单位:元)1812备注1.用不超过16800元购进A、B两类图书共1000本2.A类图书不少于600本【分析】(1)先设B类图书的标价为x元,则由题意可知A类图书的标价为1.5x元,然后根据题意列出方程,求解即可.(2)先设购进A类图书t本,总利润为w元,则购进B类图书为(1000﹣t)本,根据题目中所给的信息列出不等式组,求出t的取值范围,然后根据总利润w=总售价﹣总成本,求出最佳的进货方案.【解答】解:(1)设B类图书的标价为x元,则A类图书的标价为1.5x元,根据题意可得﹣10=,化简得:540﹣10x=360,解得:x=18,经检验:x=18是原分式方程的解,且符合题意,则A类图书的标价为:1.5x=1.5×18=27(元),答:A类图书的标价为27元,B类图书的标价为18元;(2)设购进A类图书t本,总利润为w元,A类图书的标价为(27﹣a)元(0<a<5),由题意得,,解得:600≤t≤800,则总利润w=(27﹣a﹣18)t+(18﹣12)(1000﹣t)=(9﹣a)t+6(1000﹣t)=6000+(3﹣a)t,故当0<a<3时,3﹣a>0,t=800时,总利润最大,且大于6000元;当a=3时,3﹣a=0,无论t值如何变化,总利润均为6000元;当3<a<5时,3﹣a<0,t=600时,总利润最大,且小于6000元;答:当A类图书每本降价少于3元时,A类图书购进800本,B类图书购进200本时,利润最大;当A类图书每本降价大于等于3元,小于5元时,A类图书购进600本,B 类图书购进400本时,利润最大.【点评】本题考查了一次函数的应用,涉及了分式方程的应用、一元一次不等式组的应用、一次函数的最值问题,解答本题的关键在于读懂题意,设出未知数,找出合适的等量关系,列出方程和不等式组求解.22.(7分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形的圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止).(1)转动转盘一次,求转出的数字是﹣2的概率;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.【分析】(1)将标有数字1和3的扇形两等分可知转动转盘一次共有6种等可能结果,其中转出的数字是﹣2的有2种结果,根据概率公式计算可得;(2)列表得出所有等可能结果,从中找到乘积为正数的结果数,再利用概率公式求解可得.【解答】解:(1)将标有数字1和3的扇形两等分可知转动转盘一次共有6种等可能结果,其中转出的数字是﹣2的有2种结果,所以转出的数字是﹣2的概率为=;(2)列表如下:﹣2﹣21133﹣244﹣2﹣2﹣6﹣6﹣244﹣2﹣2﹣6﹣61﹣2﹣211331﹣2﹣211333﹣6﹣633993﹣6﹣63399由表可知共有36种等可能结果,其中数字之积为正数的有20种结果,所以这两次分别转出的数字之积为正数的概率为=.【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.23.(8分)如图,在△ABC中,D为AC上一点,且CD=CB,以BC为直径作⊙O,交BD 于点E,连接CE,过D作DF⊥AB于点F,∠BCD=2∠ABD.(1)求证:AB是⊙O的切线;(2)若∠A=60°,DF=,求⊙O的直径BC的长.【分析】(1)由CD=CB,∠BCD=2∠ABD,可证得∠BCE=∠ABD,继而求得∠ABC=90°,则可证得AB是⊙O的切线;(2)由∠A=60°,DF=,可求得AF、BF的长,易证得△ADF∽△ACB,然后由相似三角形的对应边成比例,求得答案.【解答】(1)证明:∵CD=CB,∴∠CBD=∠CDB,∵BC是⊙O的直径,∴∠CEB=90°,∴∠CBD+∠BCE=∠CDB+∠DCE,∴∠BCE=∠DCE,即∠BCD=2∠BCE,∵∠BCD=2∠ABD,∴∠ABD=∠BCE,∴∠CBD+∠ABD=∠CBD+∠BCE=90°,∴CB⊥AB,∵CB为直径,∴AB是⊙O的切线;(2)解:∵∠A=60°,DF=,∴在Rt△AFD中,AF===1,AD=2∵DF⊥AB,CB⊥AB,∴DF∥BC,∴∠ADF=∠ACB,∵∠A=∠A,∴△ADF∽△ACB,∴=,设BC=x,则=,解得x=4+6.∴BC=4+6.【点评】此题考查了切线的判定、等腰三角形的性质以及相似三角形的判定与性质.注意证得△ADF∽△ACB是解此题的关键.24.(10分)如图,抛物线L1:y=ax2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于C 点,且A(﹣1,0),OB=OC=3OA.若抛物线L2与抛物线L1关于直线x=2对称.(1)求抛物线L1与抛物线L2的解析式:(2)在抛物线L1上是否存在一点P,在抛物线L2上是否存在一点Q,使得以BC为边,且以B、C、P、Q为顶点的四边形为平行四边形?若存在,求出P、Q两点的坐标:若不存在,请说明理由.【分析】(1)用待定系数法求抛物线L1的解析式并配方成顶点式,得到抛物线L1的顶点坐标D;由抛物线L2与抛物线L1关于直线x=2对称可得两抛物线开口方向、大小相同,且两顶点关于直线x=2对称,因此求得抛物线L2的顶点D',进而得到抛物线L2的顶点式.(2)由于BC为边,以B、C、P、Q为顶点的四边形为平行四边形,所以有两种情况:①BQ∥PC,BQ=PC;②BP∥CQ,BP=CQ.因为可把点B、C之间看作是向左(或右)平移3个单位,再向上(或下)平移3个单位得到,所以点P、Q之间也有相应的平移关系,故可由点P坐标(t,﹣t2+2t+3)的t表示点Q坐标,再把点Q坐标代入抛物线L2解方程即求得t的值,进而求得点P、Q坐标.【解答】解:(1)∵A(﹣1,0)∴OB=OC=3OA=3∴B(3,0),C(0,3)∵抛物线L1:y=ax2+bx+c经过点A、B、C∴解得:∴抛物线L1的解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4∴抛物线L1的顶点D(1,4)∵抛物线L2与抛物线L1关于直线x=2对称∴两抛物线开口方向、大小相同,抛物线L2的顶点D'与点D关于直线x=2对称∴D'(3,4)∴抛物线L2的解析式为y=﹣(x﹣3)2+4(2)存在满足条件的P、Q,使得以BC为边且以B、C、P、Q为顶点的四边形为平行四边形.设抛物线L1上的P(t,﹣t2+2t+3)①若四边形BCPQ为平行四边形,如图1,∴BQ∥PC,BQ=PC∴BQ可看作是CP向右平移3个单位,再向下平移3个单位得到的∴Q(t+3,﹣t2+2t)∵点Q在抛物线L2上∴﹣t2+2t=﹣(t+3﹣3)2+4解得:t=2∴P(2,3),Q(5,0)②若四边形BCQP为平行四边形,如图2,∴BP∥CQ,BP=CQ∴CQ可看作是BP向左平移3个单位,再向上平移3个单位得到的∴Q(t﹣3,﹣t2+2t+6)∴﹣t2+2t+6=﹣(t﹣3﹣3)2+4解得:t=∴P(,﹣),Q(,﹣)综上所述,存在P(2,3),Q(5,0)或P(,﹣),Q(,﹣),使得以BC 为边且以B、C、P、Q为顶点的四边形为平行四边形.。