生物工艺学2

合集下载

生物制药工艺学教学设计 (2)

生物制药工艺学教学设计 (2)

生物制药工艺学教学设计1. 理论部分1.1 课程简介生物制药工艺学是生物制药专业的核心课程,主要介绍生物制品制造中的微生物学、生物化学、分子生物学、发酵工程学等基础知识和专业知识。

通过本课程的学习,学生将掌握生物制品制造的基本理论以及各种生产工艺和质量控制方法,为日后从事生物制品制造相关工作打下扎实的理论基础。

1.2 教学目标1.掌握生物制品制造中的基础知识和专业知识;2.熟悉各种生产工艺和质量控制方法;3.熟练掌握生物制品制造中常用的仪器设备和实验技能;4.培养学生的实验操作技能、团队合作能力和创新思维。

1.3 课程大纲序号内容学时1 微生物学基础82 生物化学基础83 分子生物学84 细胞培养技术85 发酵工程学8序号内容学时6 生产工艺优化87 质量控制体系88 新药研发流程89 现代生产技术81.4 教学方法1.课堂讲授:教师通过课件、PPT等方式进行知识点讲解;2.实验教学:学生通过实验学习掌握生产技术、仪器设备操作等技能;3.独立思考:学生通过独立阅读文献、科研项目等形式培养独立思考能力;4.讨论研究:老师安排小组讨论,学生进行思路碰撞,为创新思考打下基础。

2. 实践部分2.1 实验设计1.基本实验:培养微生物、生产生物制品、分离提纯、质量检测;2.综合实验:结合多个生产环节,完成一次完整的生产过程,并进行质量控制。

2.2 实验器材1.常规实验器材:超净台、平板培养箱、恒温水浴、高速离心机等;2.特殊实验器材:生物反应器、膜分离设备、柱层析设备等。

2.3 实验流程1.实验前准备:培养菌种、准备介质、消毒仪器设备等;2.实验操作流程:发酵过程、生产工艺、离心分离、柱层析等;3.实验数据处理:生产过程监控、质量检测分析等。

3. 课程评估3.1 考核方式1.考核方式:期末笔试、实验操作评估、课程设计等;2.考核比重:笔试占50%、实验操作和课程设计各占25%。

3.2 课程评价1.学生自我评价:通过填写问卷形式进行;2.班主任评价:对学生进行综合评价,优秀者给予表彰。

生物制药工艺学第二版各章习题_百度文库

生物制药工艺学第二版各章习题_百度文库

《现代生物制药工艺学》配套习题班级:姓名:学号:第1章绪论习题一、名词解释:1、生物药物:2、生化药物3、生物制品二、填空题:1、按照药物的化学本质,把生物药物分为()、()、()、()、()、()、()七类。

2、生物药物的原料来源分为()、()、()、()、()五大类。

3、肝素的化学成分属于一种(),其最常见的用途是()。

4、SOD的中文全称是(),能专一性清除()。

5、辅酶在人体内的酶促反应中起重要的递H、递e等作用,有药用价值,请任意列举4种人体生化反应中重要的辅酶:()、()、()和()。

6、前列腺素的成分是一大类含五元环的(),重要的天然前列腺素有()、()、()等。

三、选择题1、复方氨基酸注射液临床最主要的用途是()A,治疗肝脏疾病;B,为重症患者提供蛋白类原料;C,为病人提供能量;D,用做稀释抗生素类药物的载体。

2、某些氨基酸的衍生物具有特殊药效,例如()是治疗帕金森病的最有效药物。

A,N-乙酰-Cys;B,S-甲基-Cys;C,S-氨基甲酰-Cys;D,L-多巴(L-二羟-Phe)3、下列药物其本质不属于多肽的为()A,催产素;B,加压素;C,胰岛素;D,胰高血糖素4、细胞因子如EGF、EPO等对特定细胞有重要的调节作用,有重要医用价值,目前发现的细胞因子,其成分主要为()类。

A,蛋白或多肽;B,多糖;C,固醇;D,核酸5、下列()药品目前已主要使用基因工程方法制备。

(多选)A,乙肝疫苗;B,胰岛素;C,人生长素;D,抗蛇毒血清6、抗生素的成分大多为()A,多糖;B,多肽;C,脂类;D,小分子化学物质7、cty C (细胞色素C)参与代谢的机制是()A,参与细胞内的无氧酵解;B,参与细胞内的有氧呼吸,是呼吸链的组成部分; C,参与氨基酸的转氨基反应;D,参与核苷酸的合成8、胰岛组织中胰岛素的含量仅为()A,0.5%;B,0.2%; C,0.02%; D,0.002%四、简答题1、请说明酶类药物主要有哪几类,并分别举例。

2第二章--生物制药工艺基础

2第二章--生物制药工艺基础

第二节 微生物制药工艺技术基础
一、菌种的分离与筛选
1.含菌样品收集 2. 富集培养:“投其所好”,“取其所抗” 3. 菌种纯化:(1)平板划线法 (2)稀释平板法 4. 性能测定(菌种复筛)
(1)平板划线法
是将微生物样品在固体培养基表面多次作“由点到线”稀 释而达到分离的目的。固体培养基四区划法接种法步骤:
二、菌种的选育与保藏
1.自然选育
依据自发突变原理,通过不断分离、筛选,除去 衰变菌落,从中选择维持原有生产水平的菌株或高产 突变株,达到纯化、复壮、稳定生产目的。
单孢子菌悬液的制备→分离→单菌落培养→筛选
2.诱变育种
指有意识地将生物体暴露于物理的、化学的或生物的一种 或多种诱变因子,促使生物体发生突变,进而从突变体中 筛选具有优良性状的突变株的过程。
优点是生产规模大、蒸发温度低、速度快, 目的是除去挥发性溶剂,保持物料生物活性, 加速蒸发原理是使液体形成薄膜,增加气化表面
积。
世界上最大的具有80m2蒸发面 积的薄膜蒸发器。
实验室常用真空旋转蒸发仪。
薄膜蒸发器
2.干燥
使物质从固体或半固体状经除去存在的水分或它种 溶剂,从而获得干燥物品的过程。
第二章 生物制药工艺技术基础
Basis of biopharmaceutical technology
生化制药工艺技术基础 微生物制药工艺技术基础 生物技术制药工艺技术基础 生物制药中试放大工艺设计 生物药物的研究与新药申报
本章学习目标
掌握:生化活性物质的提取、分离和纯化; 微生物菌种选育和培养。
②pH;
③盐;
④表面活性剂。
四、生化活性物质浓缩与干燥
1.浓缩方法: 生化活性物质的热不稳定性 ①盐析,中性盐硫酸铵沉淀蛋白(酶); ②有机溶剂沉淀,生物大分子溶液

生物工艺学教学大纲

生物工艺学教学大纲

生物工艺学教学大纲
一、引言
A. 目的和背景
生物工艺学是一门研究利用生物体进行工业化生产的学科。

它结合了生物学和工程学的知识,用于开发和应用生物技术来生产药物、食品和其他生物制品。

本教学大纲旨在介绍生物工艺学的基本概念、原理和应用,培养学生的科学研究能力和工程实践能力。

B. 教学目标
1. 了解生物工艺学的定义和发展背景;
2. 掌握生物反应器设计与生物转化过程基础知识;
3. 理解生物工艺技术的应用领域和未来发展方向;
4. 培养学生的科学研究能力和工程实践能力。

二、课程内容
A. 生物工艺学基础
1. 生物工艺学的定义和历史发展
2. 生物工艺学与其他相关学科的关系
3. 生物工艺学发展的驱动因素
B. 生物反应器设计
1. 反应器种类和基本结构
2. 反应器运行参数的选择和优化
3. 反应器控制策略和操作技术
C. 生物转化过程
1. 酒精发酵过程
2. 生物降解过程
3. 生物合成过程
4. 生物转化过程的机理和控制
D. 生物工艺技术的应用
1. 药物生产与工艺优化
2. 食品生产与质量控制。

生物工艺学知识点

生物工艺学知识点

生物工艺学知识点第一章绪论1、生物工艺学biotechnology:又称为生物技术,它是应用自然科学及工程学原理,依靠生物作用剂biologicalagents的作用将物料进行加工以提供产品或社会服务的技术;特点:多学科和多技术的结合、生物作用剂生物催化剂的参与、应用大量高、精、尖设备;;2、生物催化剂是游离的或固定化的细胞或酶的总称;生物催化剂特点:优点:①常温、常压下反应②反应速率大③催化作用专一④价格低廉缺点:稳定性差控制条件严格易变异细胞生物反应过程实质是利用生物催化剂以从事生物技术产品的生产过程processengineering;3、生物技术研究的主要内容:基因工程DNA重组技术,geneengineering、细胞工程cellengineering、酶工程enzymeengineering、发酵工程fermentationengineering、蛋白质工程proteinengineering、第二章菌种的来源1、工业生产常用的微生物细菌、酵母菌、霉菌、放线菌、担子菌、藻类;2、分离微生物新种的过程大体可分为采样、增殖、纯化和性能测定;含微生物材料的预处理方法:物理方法加热;化学方法pH;诱饵法;诱饵技术:将固体基质加到待检的土壤或水中,待其菌落长成后再铺平板;分离的效率影响因素:1培养基的养分;2pH;3加入的选择性抑制剂;3、高产培养基成分的选择准则:制备一系列的培养基,其中有各种类型的养分成为生长限制因素C、N、P、O;使用一聚合或复合形式的生长限制养分;避免使用容易同化的碳葡萄糖或氮NH4+,它们可能引起分解代谢物阻遏;确定含有所需的辅因子Co2+,Mg2+,Mn2+,Fe2+加入缓冲溶液以减小pH变化;4、代谢控制发酵MetabolicControlfermentation:用人工诱变的方法,有意识地改变微生物的代谢途径,最大限度地积累产物,这种发酵形象地称为代谢控制发酵,最早在氨基酸发酵中得到成功应用;5、菌种的衰退表观现象有哪些目的产物的产量下降营养物质代谢和生长繁殖能力下降发酵周期延长抗不良环境的性能减弱6、菌种的衰退的原因菌种保藏不当提供不了当的条件或不利的条件经诱变得到的新菌株发生回复突变7、菌种的复壮方法:纯种分离通过寄主体进行复壮淘汰已衰退的个体8、菌种的保藏的原理根据菌种的生理生化特点,人工创造条件,使孢子或菌体的生长代谢活动尽量降低,以减少其变异;一般可通过保持培养基营养成分在最低水平,缺氧状态,干燥和低温,使菌种处于“休眠”状态,抑制其繁殖能力;9、菌种的保藏方法:A斜面冰箱保藏法B沙土管保藏法C石蜡油封存法D真空冷冻干燥保藏法E液氮超低温保藏法第三章菌种选育1、常用菌种选育方法1自然选育:是指在生产过程中,不经过人工处理,利用菌种的自发突变spontaneousmutation而进行菌种筛选的过程;特点:自发突变的频率较低,变异程度不大;所以该法培育新菌种的过程十分缓慢; 2诱变育种:是利用物理或化学诱变剂处理均匀分散的微生物细胞群,促进其突变率大幅度提高,然后采用简便、快速和高效的筛选方法,从中挑选少数符合育种目的的突变株,以供生产实践或科学研究使用;诱变育种的理论基础是基因突变;常用诱变剂:物理诱变剂、化学诱变剂碱基类似物、与碱基反应的物质、在DNA分子中插入或缺失一个或几个碱基物质、生物诱变剂3分子育种DNA重组、基因工程:用人为的方法将所需的某一供体生物的遗传物质DNA分子提取出来,在离体条件下切割后,把它与作为载体的DNA分子连接起来,然后导入某一受体细胞中,让外来的遗传物质在其中进行正常的复制和表达,从而获得新物种的一种崭新的育种技术;4杂交育种Hybridization:常规杂交育种Hybridization:一般是指人为利用真核微生物的有性生殖或准性生殖或原核微生物的接合、F因子转移、转导和转化等过程,促使两个具有不同遗传性状的菌株发生基因重组,以获得性能优良的生产菌株;原生质体融合技术:通过人工方法,使遗传性状不同的两个细胞的原生质体发生融合,并产生重组子的过程,亦称为“细胞融合”cellfusion;原生质体融合的基本过程:原生质体形成、原生质体融合、原生质体的再生;3、工程菌的不稳定性表现质粒的不稳定质粒的丢失、重组质粒的DNA片段脱落、表达产物的不稳定第三章微生物的代谢调节1、微生物代谢调节方式代谢流向的调控分为代谢物的合成和代谢物的降解;通过快速启动蛋白质的合成和有关的代谢途径,平衡各代谢物流和反应速率来适应外界环境的变化;代谢速度的调控分为酶量粗调酶合成的诱导和酶合成的阻遏和酶活细调酶活性的激活、酶活性的抑制反馈阻遏是转录水平的调节,产生效应慢;影响催化一系列反应的多个酶反馈抑制是酶活性水平调节,产生效应快;只对是一系列反应中的第一个酶起作用底物对酶的影响称为前馈;产物对酶的影响称为反馈;2、微生物初级代谢调节包括酶活调节、酶合成调节、遗传控制1酶活性的调节细调:一定数量的酶,通过其分子构象或分子结构的改变来调节其催化反应的速率;酶活调节的影响因素包括:底物和产物的性质和浓度、压力、pH、离子强度、辅助因子以及其他酶的存在等等;特点是反应快速;酶活性的调节包括:酶活性的激活和酶活性的抑制反馈抑制2酶合成的调节:通过调节酶合成的量来控制微生物代谢速度的调节机制;这类调节在基因转录水平上进行,对代谢活动的调节是间接的、缓慢的3酶合成的阻遏:在某代谢途径中,当末端产物过量时,微生物的调节体系就会阻止代谢途径中包括关键酶在内的一系列酶的合成,从而彻底地控制代谢,减少末端产物生成,这种现象称为酶合成的阻遏;末端代谢产物阻遏:由于某代谢途径末端产物的过量积累而引起酶合成的反馈阻遏;分解代谢物阻遏:当细胞内同时存在两种可利用底物碳源或氮源时,利用快的底物会阻遏与利用慢的底物有关的酶合成;这种阻遏并不是由于快速利用底物直接作用的结果,而是由这种底物分解过程中产生的中间代谢物引起的,所以称为分解代谢物阻遏过去被称为葡萄糖效应;3、改变细胞膜通透性的方法A限制培养基中生物素浓度在1~5mg/L,控制细胞膜中脂质的合成;B加入青霉素,抑制细胞壁肽聚糖合成中肽链的交联;C加入表面活性剂如吐温80或阳离子表面活性剂如聚氧化乙酰硬脂酰胺,将脂类从细胞壁中溶解出来,使细胞壁疏松,通透性增加;D控制Mn2+、Zn2+的浓度,干扰细胞膜或细胞壁的形成;E可以通过诱变育种的方法,筛选细胞透性突变株;5、人工控制微生物代谢的两种手段:1生物合成途径的遗传控制2发酵条件的控制6.谷氨酸棒杆菌生物素缺陷型生产谷氨酸的调控第四章微生物次级代谢与调节1、次级代谢产物:某些微生物在生命循环的某一个阶段产生的物质,它们一般是在菌生长终止后合成的;其生物合成至少有一部分是与核内和核外的遗传物质有关,同时也与这类遗传信息产生的酶所控制的代谢途径有关;微生物产生的次级代谢物有抗生素、毒素、色素和生物碱等;2、初级与次级代谢途径相互连接次级代谢物通常是由初级代谢中间体经修饰后形成的修饰初级代谢中间体的三种生化过程生物氧化与还原、生物甲基化、生物卤化3、前体:指加入到发酵培养基中的某些化合物,它能被微生物直接结合到产物分子中去,而自身的结构无多大变化有些还具有促进产物合成的作用;中间体是指养分或基质进入一途径后被转化为一种或多种不同的物质,他们均被进一步代谢,最终获得该途径的终产物;4、次级代谢物生物合成的原理①一旦前体被合成,在适当条件下它们便流向次级代谢物生物合成的专用途径;②在某些情况下单体结构单位被聚合,形成聚合物;这些特有的生物合成中间体产物需做后几步的结构修饰,修饰的程度取决于产生菌的生理条件;有些复杂抗生素是由几个来自不同生物合成途径组成的;第五章发酵培养基1、培养基通常指人工配制的供微生物生长、繁殖、代谢和合成所需产物的营养物质和原料,同时,培养基也为微生物等提供除营养外的其它生长所必需的环境条件2、发酵培养基的要求①培养基能够满足产物最经济地合成②发酵后所形成的副产物尽可能的少③培养基的原料应因地制宜,价格低廉;且性能稳定,资源丰富,便于采购运输,适合大规模储藏,能保证生产上的供应;④所用培养基应能满足总体工艺的要求,如不应影响通气、提取、纯化及废物处理等;3、工业上常用的碳源:葡萄糖、乳糖、淀粉、蔗糖工业上常用的氮源:无机氮源:氨水,铵盐,硝酸盐等;有机氮源:玉米浆、豆饼粉、花生饼粉、棉籽粉、鱼粉、酵母浸出液等;生理酸性物质,如硫酸铵;生理碱性物质,如硝酸钠;提供生长因子的农副产品原料:1玉米浆2麸皮水解液3糖蜜4酵母:可用酵母膏、酵母浸出液或直接用酵母粉;产物促进剂是指那些非细胞生长所必需的营养物,又非前体,但加入后却能提高产量的添加剂;4、发酵培养基的设计和优化方法正交试验设计、均匀设计、响应面分析正交试验设计:利用正交表来安排与分析多因素试验的一种设计方法;它是由试验因素的全部水平组合中,挑选部分有代表性的水平组合进行试验,通过对这部分试验结果的分析,了解全面试验的情况,找出最优的水平组合;正交实验数据分析,见教材P112-114例题,表4-16,同时确定因素的主次顺序、各因素的优水平、各因素水平的最优组合;小数点后保留一位;第六章发酵培养基灭菌和空气净化在发酵工业生产中,为了保证纯种培养,在生产菌种接种培养前,要对培养基、空气系统、消泡剂、流加物料、设备、管道等进行灭菌,还要对生产环境进行消毒,防止杂菌和噬菌体的大量繁殖;1.微生物热阻:微生物在某一特定条件下主要是温度和加热方式下的致死时间;2.对数残留定律中各符号的意义;3.理论灭菌时间的计算间歇实罐灭菌时间的计算连续灭菌的灭菌时间计算:4.灭菌温度的选择:随着温度升高,灭菌速率常数增加的倍数大于培养基中营养成分的分解速率常数的增加倍数;即当灭菌温度升高时,微生物杀灭速度提高,培养基营养成分破坏的速度减慢;5.影响培养基灭菌的因素:所污染杂菌的种类、数量、灭菌温度和时间,培养基成分、pH值、培养基中颗粒、泡沫等对培养基灭菌也有影响;6.无菌空气:指通过除菌处理使空气中含菌量降低至一个极低的百分数,从而能控制发酵污染至极小机会;此种空气称为“无菌空气”;7.介质过滤除菌是使空气通过经高温灭菌的介质过滤层,将空气中的微生物等颗粒阻截在介质层中,而达到除菌的目的;是大多数发酵厂广泛采用的方法;按除菌机制可分为:绝对表面过滤和深层介质过滤;介质过滤除菌的机理:空气流通过这种介质过滤层时,借助惯性碰撞、拦截滞流、静电吸附、扩散等作用,将其尘埃和微生物截留在介质层内,达到过滤除菌目的;第七章种子的扩大培养1、种子扩大培养:指将保存在砂土管、冷冻干燥管中处于休眠状态的生产菌种接入试管斜面活化后,再经过扁瓶或摇瓶及种子罐逐级扩大培养而获得一定数量和质量的纯种过程;这些纯种培养物称为种子2、种子扩大培养的目的与要求1种子扩培的目的①接种量的需要②菌种的驯化③缩短发酵时间、保证生产水平2种子的要求①菌种细胞的生长活力强,移种至发酵罐后能迅速生长,延迟期短②生理性状稳定③菌体总量及浓度能满足大容量发酵罐的要求④无杂菌污染⑤保持稳定的生产能力;3、种子罐级数:是指制备种子需逐级扩大培养的次数,取决于菌种生长特性、孢子发芽及菌体繁殖速度、所采用发酵罐的容积;种子罐级数受发酵规模、菌体生长特性、接种量的影响;级数大,难控制、易染菌、易变异,管理困难,一般2~4级;4、种子制备分两个阶段:实验室种子制备阶段生产车间种子制备阶段5、种龄:是指种子罐中培养的菌丝体开始移入下一级种子罐或发酵罐时的培养时间;接种量:是指移入的种子液体积和接种后培养液体积的比例;通常接种量:细菌1-5%,酵母菌5-10%,霉菌7-15%,有时20-25%青霉素生产的种子制备过程:安瓿管→斜面孢子→大米孢子→一级种子→二级种子→发酵第八章发酵工艺控制1、微生物发酵的生产水平取决于生产菌种本身的性能和合适的环境条件;2、发酵过程的代谢变化从产物形成来说,代谢变化就是反映发酵中的菌体生长、发酵参数的变化培养基和培养条件和产物形成速率这三者之间的关系;在分批培养过程中根据产物生成是否与菌体生长同步的关系,将微生物产物形成动力学分为①生长关联型和②非生长关联型;3、发酵方式1补料-分批发酵:指分批培养过程中,间歇或连续地补加新鲜培养基的培养方法;优点在于使发酵系统中维持很低的基质浓度;低基质浓度的优点:①可以除去快速利用碳源的阻遏效应,并维持适当的菌体浓度,使不至于加剧供氧的矛盾;②克服养分的不足,避免发酵过早结束;2半连续发酵:是指在补料-分批发酵的基础上,间歇地放掉部分发酵液的培养方法;优点:①可以除去快速利用碳源的阻遏效应,并维持适当的菌体浓度,使不至于加剧供氧的矛盾;②克服养分的不足,避免发酵过早结束;③缓解有害代谢产物的积累;3连续发酵:指培养基料液连续输入发酵罐,并同时放出含有产品的发酵液的培养方法;在这样的环境中培养,菌的生长就受到所提供基质的限制,培养液中的菌体浓度能保持一定的稳定状态;与传统的分批发酵相比,连续培养有以下优点:①维持低基质浓度:可以除去快速利用碳源的阻遏效应,并维持适当的菌体浓度,使不至于加剧供氧的矛盾;②避免培养基积累有毒代谢物;③可以提高设备利用率和单位时间的产量,节省发酵罐的非生产时间;④便于自动控制;4、发酵控制参数按性质分类:物理参数、化学参数、生物参数按检测手段分类:①直接参数:⑴在线检测参数⑵离线检测参数②间接参数5、发酵热发酵热就是发酵过程中释放出来的净热量;Q发酵=Q生物+Q搅拌-Q蒸发-Q显-Q辐射生物热biologicalheat是菌体生长过程中直接释放到体外的热能,使发酵液温度升高;搅拌热agitationheat是搅拌器引起的液体之间和液体与设备之间的摩擦所产生的热量;6、发酵过程pH值的一般变化规律1生长阶段:菌体产生蛋白酶水解培养基中的蛋白质,生成铵离子,使pH上升至碱性;随着菌体量增多,铵离子的消耗也增多,另外糖利用过程中有机酸的积累使pH 值下降;2生产阶段:这个阶段pH值趋于稳定;3自溶阶段:随着养分的耗尽,菌体蛋白酶的活跃,培养液中氨基氮增加,致使pH又上升,此时菌体趋于自溶而代谢活动终止;7、引起发酵液pH值异常波动的因素pH值的变化决定于所用的菌种、培养基的成分和培养条件pH下降:①培养基中碳、氮比例不当;碳源过多,特别是葡萄糖过量,或者中间补糖过多加上溶氧不足,致使有机酸大量积累而pH下降;②消泡剂加得过多;③生理酸性物质的存在,铵被利用,pH下降;pH上升:①培养基中碳、氮比例不当;氮源过多,氨基氮释放,使pH上升;②生理碱性物质存在;③中间补料氨水或尿素等碱性物质加入过多;8、临界氧浓度criticalvalueofdissolvedoxygenconcentration:指不影响菌的呼吸所允许的最低氧浓度;如对产物形成而言便称为产物合成的临界氧浓度;呼吸强度又称氧比消耗速率,是指单位质量的干菌体在单位时间内所吸取的氧量,以QO2表示,单位为mmolO2/g干菌体·h;耗氧速率又称摄氧率,是指单位体积培养液在单位时间内的吸氧量,以r表示,单位为mmolO2/L·h;9、引起溶氧异常下降,可能有下列几种原因:①污染好气性杂菌,大量的溶氧被消耗掉,可能使溶氧在较短时间内下降到零附近,如果杂菌本身耗氧能力不强,溶氧变化就可能不明显;②菌体代谢发生异常现象,需氧要求增加,使溶氧下降;③某些设备或工艺控制发生故障或变化,也可能引起溶氧下降,如搅拌功率消耗变小或搅拌速度变慢,影响供氧能力,使溶氧降低;10、泡沫的形成及其对发酵的影响在大多数微生物发酵过程中,通气、搅拌以及代谢气体的逸出,再加上培养基中糖、蛋白质、代谢物等表面活性剂的存在,培养液中就形成了泡沫;形成的泡沫有两种类型:一种是发酵液液面上的泡沫,气相所占的比例特别大,与液体有较明显的界限,如发酵前期的泡沫;另一种是发酵液中的泡沫,又称流态泡沫fluidfoam,分散在发酵液中,比较稳定,与液体之间无明显的界限大量的泡沫引起的负作用:发酵罐的装料系数减少、氧传递系统减小;增加了菌群的非均一性;造成大量逃液,增加染菌机会;严重时通气搅拌无法进行,菌体呼吸受到阻碍,导致代谢异常或菌体自溶;消泡剂的添加将给提取工序带来困难;泡沫的消除调整培养基中的成分如少加或缓加易起泡的原料或改变某些物理化学参数如pH 值、温度、通气和搅拌或者改变发酵工艺如采用分次投料来控制,以减少泡沫形成的机会;采用菌种选育的方法,筛选不产生流态泡沫的菌种,来消除起泡的内在因素;采用机械消泡或消泡剂来消除已形成的泡沫;常用的消泡剂有4大类:天然油脂类、脂肪酸和酯类、聚醚类、硅酮类11、造成染菌的主要原因设备渗漏空气带菌种子带菌灭菌不彻底技术管理不善第十章下游加工过程概论1、下游技术工程downstreamprocessing:对于由生物界自然产生的或由微生物菌体发酵的、动植物细胞组织培养的、酶反应等各种生物工业生产过程获得的生物原料,经提取分离、加工并精制目的成分,最终使其成为产品的技术;2.发酵液的特点1含水多,产物含量低;2含菌体蛋白;3溶有原来培养基成分;4相当多的副产物和色素;5易被杂菌污染或使产物进一步分解;6易起泡,粘性物质多;3、整个下游加工过程应遵循下列四个原则1时间短;2温度低,选择在生物物质的温度范围内;3pH适中;4严格清洗消毒包括厂房、设备及管路,注意死角;4、一般下游加工过程可分为4个阶段1培养液发酵液的预处理和固液分离;2初步纯化提取;3高度纯化精制;4成品加工;5、下游加工过程的一般流程第十二章发酵液的预处理和固液分离方法1、改善发酵液过滤特性的物理化学方法:调酸等电点、热处理、电解质处理、添加凝聚剂、添加表面活性物质、添加反应剂、冷冻-解冻及添加助滤剂等;2、凝聚——指在电解质作用下,由于胶粒之间双电层电排斥作用降低,电位下降,而使胶体体系不稳定的现象;常用的凝聚剂电解质有:硫酸铝Al2SO4318H2O明矾;氯化铝AlCl36H2O;三氯化铁FeCl3;硫酸亚铁FeSO4·7H2O;石灰;ZnSO4;MgCO3絮凝——指在某些高分子絮凝剂存在下,基于桥架作用,使胶粒形成较大絮凝团的过程;工业上使用的絮凝剂可分为三类:1有机高分子聚合物,如聚丙烯酰胺类衍生物、聚苯乙烯类衍生物;2无机高分子聚合物,如聚合铝盐、聚合铁盐等;3天然有机高分子絮凝剂,如聚糖类胶粘物、海藻酸钠、明胶、骨胶、壳多糖、脱乙酰壳多糖等;目前最常见的高分子聚合物絮凝剂有机合成的聚丙烯酰胺polyacrylamide类衍生物3、杂蛋白的去除方法有沉淀法、变性法、吸附法4、固液分离的方法:重力沉降、浮选、旋液分离、介质过滤、离心;5、根据过滤机理,过滤操作可分为澄清过滤和滤饼过滤;第十三章细胞破碎1、细胞破碎的阻力:细菌破碎的主要阻力:肽聚糖的网状结构,网状结构越致密,破碎的难度越大,革兰氏阴性细菌网状结构不及革兰氏阳性细菌的坚固;酵母细胞壁破碎的阻力:主要决定于壁结构交联的紧密程度和它的厚度;霉菌细胞壁中含有几丁质或纤维素的纤维状结构,其强度比细菌和酵母菌的细胞壁有所提高;2、常用破碎方法机械法:珠磨法固体剪切作用、高压匀浆法液体剪切作用、超声破碎法液体剪切作用、X-press法固体剪切作用;非机械法:酶溶法酶分解作用、化学渗透法改变细胞膜的渗透性、渗透压法渗透压剧烈改变、冻结融化法反复冻结-融化、干燥法改变细胞膜渗透性3、破碎率的测定方法1直接测定法2目的产物测定法3导电率测定法第十四章沉淀法Precipitation1、固相析出技术:通过加入某种试剂或改变溶液条件,使生化产物溶解度降低,以固体形式沉淀和晶体从溶液中沉降析出的分离纯化技术;结晶法:在固相析出过程中,析出物为晶体称为结晶法;沉淀法:在固相析出过程中,析出物为无定形固体称为沉淀法;常用的沉淀法:盐析法、有机溶剂沉淀法和等电点沉淀法等;2、盐析Saltinducedprecipitation:在高浓度的中性盐存在下,蛋白质酶等生物大分子物质在水溶液中的溶解度降低,产生沉淀的过程;原因如下:1无机离子与蛋白质表面电荷中和,形成离子对,部分中和了蛋白质的电性,使蛋白质分子之间的排斥力减弱,从而能够相互靠拢;2中性盐的亲水性大,使蛋白质脱去水化膜,疏水区暴露,由于疏水区的相互作用导致沉淀;Ks盐析法:在一定pH和温度下,改变体系离子强度进行盐析的方法;β盐析法:在一定离子强度下,改变pH和温度进行盐析;常用的盐析用盐:硫酸铵、硫酸钠,磷酸盐,柠檬酸盐;3、有机溶剂沉淀:在含有溶质的水溶液中加入一定量亲水的有机溶剂,降低溶质的溶解度,使其沉淀析出;原理:1降低了溶质的介电常数,使溶质之间的静电引力增加,从而出现聚集现象,导致沉淀;2有机溶剂的水合作用,降低了自由水的浓度,降低了亲水溶质表面水化层的厚度,降低了亲水性,导致脱水凝聚;常用的有机溶剂沉析剂:乙醇:沉析作用强,挥发性适中,无毒常用于蛋白质、核酸、多糖等生物大分子的沉析;丙酮:沉析作用更强,用量省,但毒性大,应用范围不广;4、等电点沉淀:调节体系pH值,使两性电解质的溶解度下降,析出的操作称为等电点沉淀;原理:蛋白质是两性电解质,当溶液pH值处于等电点时,分子表面净电荷为0,双电层和水化膜结构被破坏,由于分子间引力,形成蛋白质聚集体,进而产生沉淀;第十五章膜过滤法1、膜过滤法指以压力为推动力,依靠膜的选择性,将液体中的组分进行分离的方法;基本原理是筛孔分离过程;在压差的推动下,原料液中的溶剂和小的溶质粒子从高压的料液侧透过膜到低压侧,所得到的液体一般称为滤出液或透过液,而大的粒子组分被膜截留;包括微滤MF、超滤UF、纳滤NF和反渗透RO四种过程;在工业上用得最广的膜材料是醋酸纤维素和聚砜;浓差极化:当溶剂透过膜,而溶质留在膜上,使膜面浓度增大,并高于主体中浓度,这种浓度差导致溶质自膜面反扩散至主体中,这种现象称为浓差极化;在超滤中,为减少浓差极化,通常采用错流操作;膜的污染:膜在使用中,尽管操作条件保持不变,但通量仍逐渐降低的现象;污染原因:膜与料液中某一溶质的相互作用;吸附在膜上的溶质和其它溶质的相互作用;。

了解生物学中的生物工艺技术

了解生物学中的生物工艺技术

了解生物学中的生物工艺技术生物工艺技术是一门综合性强、前沿性强的学科,它将生物学、化学、物理学和工程学等多个学科紧密结合起来,旨在利用生物体或其组成部分来进行生物制品的研发、生产和应用。

生物工艺技术在医药、农业、环境保护等领域具有广阔的应用前景,对于人类社会的可持续发展具有重要意义。

一、生物工艺技术的定义和概念生物工艺技术是指通过生物体、细胞、细胞器、酶等生物材料,运用现代生物学、化学、工程学等知识与技术手段,实现对生物制品的生产和应用的一门综合性学科。

它是人们利用生物体或其组成部分,在人工条件下进行研究和开发的过程。

生物工艺技术的研究领域包括基因工程技术、发酵技术、细胞工程技术、酶工程技术等。

二、生物工艺技术在医药领域的应用1. 基因工程技术在药物研发中的应用基因工程技术是生物工艺技术中的一个重要分支,它能够修改生物体的基因组,实现对目标物质的高效表达和产生。

在药物研发中,基因工程技术可以应用于蛋白质药物的生产,例如重组人胰岛素的生产。

2. 细胞工程技术在药物制备中的应用细胞工程技术是利用生物体的细胞进行生产的技术手段,它在药物制备中有着广泛的应用。

例如,利用细胞工程技术可以大规模培养植物细胞,从而获得生长激素、抗生素等药物。

3. 发酵技术在药物制造中的应用发酵技术是以微生物为基础,通过控制生物发酵过程来产生目标物质的技术。

在药物制造中,发酵技术可以应用于抗生素、生长因子等药物的生产。

三、生物工艺技术在农业领域的应用1. 转基因作物的研发和应用转基因技术是通过基因工程手段,将外源基因导入植物或动物细胞中,从而赋予其新的性状或功能。

在农业领域,转基因技术可以应用于抗虫、抗草、抗病等性状的改良,提高作物的产量和质量。

2. 细胞培养技术在植物育种中的应用细胞培养技术是利用植物组织或细胞的无性繁殖能力,通过体外培养方法进行大规模繁殖的技术。

在植物育种中,细胞培养技术可以应用于快速繁殖、基因保护和遗传改良等方面。

生物工艺学第二章发酵液的预处理与固液分离2

生物工艺学第二章发酵液的预处理与固液分离2
收集胞内产物的细胞或菌体,分离除 去液相,
收集含生化物质的液相,分离除去固 体悬浮物(细胞、菌体、细胞碎片、 蛋白质的沉淀物和它们的絮凝体等)。
42
二 常见的固液分离方法
过滤 离心 膜分离 双水相萃取 ATPS 扩张床吸附 EBA
43
(一) 过 滤
过滤操作是借助于过滤介质,在一定的 压力差ΔP作用下,使悬浮液中的液体通过 介质的孔道,而固体颗粒被截留在介质上, 从而实现固液分离的单元操作。
发酵液中的杂质
A.高价无机离子(Ca2+、Mg2+、Fe2+)
在采用离子交换提炼时,会影响树脂对生化物质的交换容量。
B.杂蛋白
常规过滤或膜过滤时,易使过滤介质堵塞,影响过滤效率。 采用离子交换和吸附法提取时会降低其交换容量和吸附能力, 有机溶剂法或双水相萃取时,易产生乳化,使两相分离不清。
因此,在预处理时,应尽量除去这些物质。
4
为何要对发酵液进行预处理?
固液分离方法主要是过滤和离心。 对于细菌及某些放线菌,菌体细小,液体粘度
大,不能直接过滤,若用高速离心,能耗很大, 设备昂贵。若用膜分离技术(如微滤)易产生 膜污染,通量降低。 发酵液中由于菌体自溶,核酸、蛋白质及其它 有机粘性物质的存在也会影响固液分离。 因而寻找一种经济有效的方法来提高固液分离 速度显得十分必要。
24
目前最常见:聚丙烯酰胺类絮凝剂
聚丙烯酰胺类絮凝剂的优点
用量少,一般以mg/L计量; 絮凝体粗大,分离效果好; 絮凝速度快; 种类多,适用范围广。
聚丙烯酰胺类絮凝剂的缺点:
存在一定的毒性,特别是阳离子型聚丙烯酰胺, 用于食品和医药工业时应谨慎。
25
2)天然有机高分子絮凝剂

生物制药学——第二章 生物制药工艺学基础

生物制药学——第二章  生物制药工艺学基础
原料药(精制品)经精细加工制成片剂、针剂、冻干剂、 粉剂等供临床应用的各种剂型。
一、生物材料与生化活性物质
(一)生物制药的生物材料来源
生物资源:主要有动物、植物、微生物的组织、器 官、细胞与代谢产物。
开发新途径: 动植物细胞培养、微生物发酵、 基因工程、细胞工程、酶工程等。
一、生物材料与生化活性物质
红霉素 杀念珠菌素 Bialaphos FK506
(约8700种)
放线菌产生的多种多样的次生代谢产物
Hygromycin B
Kanamycin B
Rifamycin SV
Cephamycin C
Erythromycin streptomycin
Spinosyn A
Abamectin
Validamycin A
人源性生化药物 动物生化药物 植物生化药物 微生物源生化药物 海洋生物生化药物
生化制药的六个阶段:
1.原料的选择和预处理 2.原料的粉碎 3.提取:
从原料中经溶剂分离有效成分,制成粗品的工艺过程。 4.纯化:
粗制品经盐析、有机溶剂沉淀、吸附、层析、 透析、超 离心 、膜分离、结晶等步骤进行精制的工艺过程。 5.浓缩、干燥及保存 6.制剂:
生化成分:氨基酸、蛋白质、酶、激素、糖类、 脂类、维生素等。
新的有效生物药物逐年增加:天花粉蛋白、木瓜 蛋白酶、天麻多糖等。
5、微生物—细菌
常用细菌发酵法生产乳酸、醋酸、丙酮、丁醇。主 要发展领域有: (1)氨基酸:
利用微生物酶可转化对应的α酮酸或羟基酸产生 氨基酸。 (2)有机酸:柠檬酸、苹果酸、乳酸
生物材料来源
1、动物脏器 2、血液、分泌物和其他代谢产物 3、海洋生物 4、植物 5、微生物

生物制药工艺学第二章+生物制药工艺技术基资料教程

生物制药工艺学第二章+生物制药工艺技术基资料教程
(3)抑制水解酶的作用
(4)其它保护措施(冷、热、酸、碱)
二、物质的性质与溶解度
(一)物质溶解度的一般规律
相似相溶
(二)水在生化物质提取中的作用
水是提取生化物质的常用溶剂。水分子的存在可使其它 生物分子之间的氢键减弱,而与水分子形成氢键,水 分子还能使溶质分子的离子键解离,这就是所谓的水 合作用。水合作用促使蛋白质、核酸、多糖等生物大 分子与水形成了水合分子或水合离子从而促使它们溶 解于水或水溶液中。
(3)超声波法 (4)反复冻融法 2.化学法 用稀酸、稀碱、浓盐、有机溶剂或表面活性剂处理细胞,
可破坏细胞结构释放出内容物。
3.生物法 (1)组织自溶法
利用组织中自身溶解酶的作用改变、破坏细胞结构, 释放出目的物称为组织自溶法。
(2) 酶解法 用外来酶处理生物材料,如用溶菌酶处理某些细菌, 蜗牛酶等
砂土管法—取普通黄沙,洗净过60目筛,晒干,另取普 通圆土研碎,过筛,晒干。两者以6:4混合。分装于安 醅瓶或小试管中,然后在60℃干热灭菌2小时,连续灭 菌三次后即可使用。装管时可吸取少许孢子悬浮液加 入,待干燥后抽真空封口或用棉花塞紧后蜡封,低温 保藏。
冷冻干燥法:将菌种悬浮于脱脂消毒牛奶中,快速冷冻, 真空干燥。
甘油冷冻保存法:将对数期菌体悬浮于新鲜培养基中, 加入15%消毒甘油,混匀速冻,冻存于-70~-80℃.
(五)组织与细胞的破碎
组织与细胞的破碎方法有物理法、化学法与生物法。
1.物理法 (1)磨切法
工业上常用的有绞肉机,刨胰机,球磨机、磨粉机。 实验室常用的有匀浆机,研钵,高速组织捣碎机。
(2)压力法 有压榨法、高压法和减压法,渗透压法。
(1)pH 在萃取操作中正确选择pH值很重要。因为在水溶液中某些酸、 碱物质会解离,在萃取时改变了分配系数,直接影响提取效率。

生物制药工艺学试题及答案

生物制药工艺学试题及答案

生物制药工艺学试题1一、名词解释(每题2分,共16分)1、生物药物2、效价3、种子级数4、反萃取5、补料6、盐溶7、差异毒力8、配料比二、选择题(每题1分,共20分)09.是利用生物机体、组织、细胞,生产制造或从中分离得到的具有预防、诊断、和治疗功能的物药。

A 生物技术药物B 生物技术产品C 生物技术制品D 生物药物10. 青霉素的抗菌能力主要取决于()A β—内酰胺环B 羧基C 氨基D 噻唑环11. 红霉素中的去氧氨基已糖和红霉糖的碳架来源于()A蔗糖 B乳糖 C 甘露糖 D葡萄糖12、利用产氨短杆菌发酵法生产肌苷酸,第一步是用诱变育种的方法筛选缺乏哪种酶的腺嘌呤缺陷型菌株,并在发酵培养基中提供亚适量的腺嘌呤。

()A.SAMP合成酶 B.SAMP裂解酶 C.PRPP转酰胺酶 D.IMP脱氢酶13、蛋白质类物质的分离纯化往往是多步骤的,其前期处理手段多采用下列哪类的方法。

()A.分辨率高B.负载量大C.操作简便D.价廉14、用大网格高聚物吸附剂吸附的弱酸性物质,一般用下列哪种溶液洗脱()A.水B.高盐C.低pHD. 高pH15、凝胶层析中,有时溶质的Kd>1,其原因是()A.凝胶排斥B.凝胶吸附C.柱床过长D.流速过低16、在酸性条件下用下列哪种树脂吸附氨基酸有较大的交换容量()A.羟型阴B.氯型阴C.氢型阳D.钠型阳17、亲和层析的洗脱过程中,在流动相中加入配基的洗脱方法称作()A. 阴性洗脱B. 剧烈洗脱C. 竞争洗脱D. 非竞争洗脱18、当向蛋白质纯溶液中加入中性盐时,蛋白质溶解度()A.增大 B. 减小 C. 先增大,后减小 D. 先减小,后增大三、填空题(每空1分,共10分)19. 在青霉素的发酵培养过程中补加的前体为。

20. 常用的灭菌方法有:化学灭菌、辐射灭菌、和。

21、多氧大环内脂的作用机理是与的特殊部位结合,选择性的抑制原核生物蛋白质合成。

22、是机体免疫细胞产生的一类细胞因子,是机体受到病毒感染时,免疫细胞通过抗病毒应答而产生的一组结构相似,功能接近的生物调节蛋白。

生物工艺学

生物工艺学

生物工艺学
1. 介绍
生物工艺学是一门融合了生物科学与工程学的学科,可作为独立
的学科学习。

生物工艺学根据具体的生物体的特性和规律,运用工程
学的方法,利用机械、电子、计算机技术充分发挥生物的作用和功能。

2. 学习内容
生物工艺学主要课程有:生物化学、生物物理、微生物学、发酵
工程、生物装备工程、蛋白质工程学、生物工艺等等。

这些课程涉及
了生物质处理技术、生物分离技术和生物检测技术等,其中讨论了生
物工艺学的理论基础及其本质、原理以及疗法技术。

3. 应用领域
生物工艺学的应用可以分成三大类:生物检测、制药和环境护理。

例如,在生物检测方面,可以利用生物工艺学的知识和技术来检
测病原生物和药物;在制药方面,可以利用生物应用工程学的知识和技
术来设计制造各种药物;在环境保护方面,可以应用生物工程技术实现
资源的回收和再利用,以减少资源的浪费。

4. 发展前景
随着科学技术和工程技术的发展,生物技术,尤其是生物工艺学
的发展前景非常广阔,发展速度也越来越快。

生物工艺技术的应用,
已经被广泛应用于食品、制药、日化、农业等众多的领域,把握和开
发这一研究领域,将帮助人类更好的开发利用自然资源,保护环境和改善生活质量。

生物工艺学考试复习重点

生物工艺学考试复习重点

生物工艺学考试复习重点生物工艺学考试复习重点工业生物技术:应用化学、生物学及工程学的原理,对生物催化剂进行改造和改良,并依靠生物催化剂的作用,将物料进行加工转化以提供产品或为社会服务的技术。

特点:①是一门多学科,综合性的科学技术。

②反应过程需有生物催化剂的参与。

③最后目的是建立工业生产过程或进行社会服务(能源、环境保护)。

生物催化剂:是游离的或固定化的酶、单细胞或多细胞生物体的总称,它们在生物反应过程中起催化剂的作用。

4、生物反应过程的定义、类型及其组成单元。

生物反应过程:将生物技术的实验室成果经工艺及工程开发,成为可供工业生产的工艺过程统称为生物反应过程,其实质是利用生物催化剂以从事生物技术产品的生产过程。

生物反应过程的类型:发酵工程,酶工程,细胞工程,环境生物工程,生化分离工程。

生物反应过程的组成单元:培养基或底物溶液的制备,生物催化剂的制备,生物反应器和反应条件的选择及控制,产物的分离纯化。

1、微生物选择性分离方法包括哪些步骤?如何利用选择性分离的方法从自然界分离筛选到蛋白酶产生菌?如何利用选择性分离的方法从自然界分离筛选到纤维素酶产生菌?微生物选择性分离方法步骤:①含微生物材料(样品分离源)的选择。

②分离源材料的预处理。

③所需菌种的选择性分离。

④所需菌种的选择性培养。

⑤菌落的选择和纯化。

利用选择性分离的方法从自然界分离筛选蛋白酶产生菌:①从蛋白质加工厂(豆制品厂、肉制品厂)附近的土壤中采集样品分离源。

②用富含蛋白质的原料(豆饼)为培养基对样品分离源进行富集培养,使目的菌数量和生长势达到优势。

③样品分离源经富集培养后制成菌悬液,适当稀释后涂布于以酪蛋白为唯一氮源的平板培养基。

经保温培养一定时间后,选择分解酪蛋白形成透明圈的菌落。

将透明圈直径与菌落直径之比值大的菌落编号后移接于试管斜面培养基,经保温培养长出丰厚的菌落。

④将试管斜面培养基长出各菌株,按编号分别进行小型发酵试验,通过测定发酵结果的蛋白酶活力,筛选出产酶活力高菌株。

生物工艺学习题

生物工艺学习题

⽣物⼯艺学习题第 5 章代谢调控1、代谢控制的类型有⼏种?主要类型1.酶活的调节(活化或钝化)2.酶合成的调节(诱导或阻遏)微⽣物采⽤3种⽅式调节其初级代谢:酶活的调节、酶合成的调节和遗传控制。

2、酶合成调节与酶活调节异同之处是什么?酶合成的调节与酶活性的调节的对⽐酶合成的调节酶活性的调节不同点调节对象通过酶量的变化控制代谢速率控制酶活性,不涉及酶量变化调节效果相对缓慢快速、精细调节机制基因⽔平调节,调节控制酶合成代谢调节,它调节酶活性相同点细胞内两种⽅式同时存在,密切配合,⾼效、准确控制代谢的正常进⾏。

3、简述诱导作⽤的机制。

(1)酶的诱导可分两种:当诱导物加⼊后,同时或⼏乎同时诱导⼏种酶的合成;主要存在于短的代谢途径中。

如将乳糖加⼊到E.coli培养基后,可同时诱导出β-半乳糖苷透性酶、β-半乳糖苷酶、半乳糖苷转⼄酰基酶;不管诱导强度如何,所以这三种蛋⽩以同⼀⽐例合成。

(因为三者的基因组成同⼀操纵⼦)2)顺序诱导先合成能分解底物的酶,再依次合成分解各中间代谢物的酶,以达到对较复杂代谢途径的分段调节。

(2)酶的诱导机制:(以E.coli乳糖操纵⼦为例)E.coli乳糖操纵⼦由lac启动基因(lacP)、lac操纵基因(lacO)和三个结构基因(lacZ、Y、A)所组成,三个结构基因分别编码β-半乳糖苷酶、透过酶和转⼄酰酶。

乳糖操纵⼦是负调节的代表,在缺乏乳糖等诱导物时,由调节基因(lacI)编码的调节蛋⽩(即lac阻遏物)⼀直结合在操纵基因上,抑制着结构基因转录的进⾏。

4、反馈调节有⼏种主要类型?简述其机制。

反馈调节分为:1.反馈抑制2. 反馈阻遏1.反馈抑制: 是末端代谢产物抑制其合成途径中参与前⼏步反应的酶(通常是催化第⼀步反应酶)活性的作⽤。

2.反馈阻遏:是末端代谢产物阻⽌整个代谢途径酶的合成作⽤两种机制都起着调节代谢途径末端产物的⽣产速率的作⽤,以适应细胞中⼤分⼦合成对前体的需要。

末端代谢产物阻遏作⽤的功能直接影响酶的合成速率,但如果其单独起作⽤,代谢还会继续,直⾄先前存在的酶随着细胞的⽣长⽽被稀释为⽌;末端代谢产物抑制作⽤可弥补这种不⾜,使某⼀代谢途径的运⾏⽴即中⽌。

生物制药工艺学

生物制药工艺学

生物制药工艺学1. 概述生物制药工艺学是指利用生物学、化学和工程学的原理与技术,研究生物制药产品的生产和工艺流程。

生物制药工艺学是生物制药领域的核心学科,对于生物制药企业的产品开发和生产具有重要的指导意义。

2. 生物制药工艺的分类生物制药工艺根据产品类型的不同可以分为以下几类:2.1.细胞培养工艺细胞培养工艺是指利用细胞对培养基中的营养物质进行代谢,合成所需的生物制药产品。

细胞培养工艺主要用于生产蛋白质类的生物制药产品,如重组蛋白、单克隆抗体等。

2.2.发酵工艺发酵工艺是指利用微生物对培养基中的底物进行代谢反应,合成所需的生物制药产品。

发酵工艺主要用于生产抗生素、酶类和其他天然产物类的生物制药产品。

2.3.基因工程工艺基因工程工艺是指通过对基因的重组和调控,利用细胞进行代谢反应,合成所需的生物制药产品。

基因工程工艺主要用于生产基因治疗药物、基因工程疫苗和其他基因工程产品。

3. 生物制药工艺流程生物制药工艺流程包括以下几个主要步骤:3.1. 预处理预处理是指对原料进行处理,以满足后续生产过程的需要。

预处理的主要工作包括原料清洗、消毒和初步处理等。

3.2. 发酵或细胞培养发酵或细胞培养是生物制药工艺的关键步骤,其目的是利用合适的培养基、适宜的培养条件和适宜的微生物或细胞系,使其合成所需的生物制药产品。

3.3. 分离与纯化分离与纯化是将发酵或细胞培养过程中产生的目标产品从复杂的培养基或发酵液中分离出来,并达到一定程度的纯化。

分离与纯化的主要方法包括离心、过滤、薄层层析、柱层析等。

3.4. 后处理后处理是对分离与纯化的产品进行处理,以得到符合药品质量要求的最终产品。

后处理的主要包括冷冻干燥、溶解、再溶解等工艺步骤。

3.5. 包装与贮存包装与贮存是将最终产品进行合适的包装,并储存于适宜的环境条件下,以保证产品的质量和稳定性。

4. 生物制药工艺的挑战与发展趋势4.1. 应对规模化生产的挑战随着生物制药行业的发展,规模化生产面临着更多的挑战。

生物制药工艺学重点

生物制药工艺学重点
土、碳酸钙。
应用最广泛的是活性炭及大孔树脂吸附剂。
(二)活性炭的选择 活性炭是非极性吸附剂,在水溶液中吸附力 最强,在有机溶剂中吸附力较弱。
极性基团多>极性基团少; 芳香族>脂肪族; 分子量大>分子量小; 碱性→中性吸附,酸性解吸;酸性→中性吸
附,碱性解吸;
未达平衡前,吸附量随温度提高而增加。
(五)温度 一般在室温进行。
三、基本操作
(一)中性盐的选择
硫酸铵、硫酸镁、硫酸钠、氯化钠、磷酸
钠 (二) pH的选择
选择蛋白质等电点
(三)温度、时间的控制
尽可能在低温下操作 盐析后需要静臵一段时间,保证完全沉淀
(四)饱和度及其计算
饱和溶液的体积占混合溶液总体积的百分 数
有机溶剂沉淀法与盐析法比较: 有机溶剂易挥发,无残留; 沉淀物与母液间密度差较大,易分离; 容易使蛋白质变性;
成本高,溶剂易燃易爆。
第三节 其他沉淀法
一、等电点沉淀法
在等电点时水化膜被破坏,分子间引力增 加,溶解度降低。
二、高分子聚合物沉淀法 可使蛋白质水合作用减弱而发生沉淀
三、表面活性剂沉淀法
形成络合物 四、聚电解质沉淀法 絮凝剂 盐析和降低水化
五、不可逆的沉淀去除法
(一)金属离子沉淀法 (二)有机酸沉淀法 (三)其他
适用于少量乳浊液或乳化不严重的乳浊液。
吸附法破乳 利用吸附介质对油水吸附能力差异进行破乳。 碳酸钙或无水碳酸钠作为吸附剂。
高压电破乳
机理较复杂,破坏扩散双电层
加热
布朗运动加速,絮凝速度加快,降低黏度,聚 结速度加快,利于膜的破裂。 产物对热稳定。 稀释法
加入连续相,使乳化剂浓度降低而减轻乳化。
第二节 影响溶解能力的因素

生物工艺学教案及讲

生物工艺学教案及讲

一、生物工艺学简介1. 教学目标(1)了解生物工艺学的定义、起源和发展历程。

(2)掌握生物工艺学的基本原理和应用领域。

(3)培养对生物工艺学的兴趣和好奇心。

2. 教学内容(1)生物工艺学的定义:利用生物体或其细胞、酶等生物催化剂进行物质转化过程的总称。

(2)生物工艺学的起源和发展:从古代的发酵技术到现代的生物技术。

(3)生物工艺学的基本原理:微生物代谢、酶催化、细胞培养等。

(4)生物工艺学的应用领域:食品工业、制药工业、能源工业等。

3. 教学方法(1)讲解:讲解生物工艺学的定义、起源和发展历程。

(2)案例分析:分析生物工艺学在实际应用中的例子。

(3)讨论:引导学生探讨生物工艺学的未来发展。

4. 教学评估(1)课堂问答:检查学生对生物工艺学的基本概念的理解。

二、微生物代谢1. 教学目标(1)了解微生物代谢的基本过程和类型。

(2)掌握微生物代谢的关键酶和调控机制。

(3)了解微生物代谢在生物工艺学中的应用。

2. 教学内容(1)微生物代谢的基本过程:糖代谢、氨基酸代谢、脂肪代谢等。

(2)微生物代谢的类型:厌氧代谢、好氧代谢、兼性厌氧代谢等。

(3)微生物代谢的关键酶:糖代谢酶、氨基酸代谢酶、脂肪代谢酶等。

(4)微生物代谢的调控机制:基因调控、酶调控、代谢途径调控等。

3. 教学方法(1)讲解:讲解微生物代谢的基本过程、类型和调控机制。

(2)实验演示:展示微生物代谢的实验现象。

(3)案例分析:分析微生物代谢在生物工艺学中的应用例子。

4. 教学评估(1)课堂问答:检查学生对微生物代谢的基本概念的理解。

(2)实验报告:要求学生完成微生物代谢的实验并进行报告。

三、发酵技术1. 教学目标(1)了解发酵技术的定义和原理。

(2)掌握发酵过程中的关键因素和调控方法。

(3)了解发酵技术在食品工业和制药工业中的应用。

2. 教学内容(1)发酵技术的定义:利用微生物代谢过程中产生的酶或代谢产物进行物质转化的技术。

(2)发酵过程中的关键因素:微生物种类、培养基、温度、pH、氧气等。

生物工艺大实验报告(3篇)

生物工艺大实验报告(3篇)

第1篇一、实验目的1. 理解并掌握生物工艺的基本原理和操作流程。

2. 学习微生物发酵的基本知识,包括菌种选择、培养基配制、发酵条件控制等。

3. 培养实验操作技能,提高对实验结果的分析和解决问题的能力。

二、实验原理生物工艺是利用微生物或酶的催化作用,通过生物化学反应生产所需产品的技术。

本实验以微生物发酵为例,通过发酵过程产生某种代谢产物,如抗生素、有机酸等。

三、实验仪器与材料1. 仪器:发酵罐、恒温培养箱、移液器、显微镜、pH计、酒精灯、无菌操作台等。

2. 材料与试剂:菌种(如青霉素菌)、葡萄糖、酵母提取物、琼脂、磷酸氢二钠、磷酸二氢钠、硫酸铜、氢氧化钠等。

四、实验步骤1. 菌种活化- 将菌种接种于斜面培养基上,37℃恒温培养24小时。

- 取活化后的菌种接种于液体培养基中,37℃恒温培养4小时。

2. 培养基配制- 称取葡萄糖、酵母提取物等原料,溶解于去离子水中。

- 调节pH值至适宜范围,灭菌后备用。

3. 发酵过程- 将活化后的菌种接种于发酵培养基中,控制温度、pH值、溶氧等发酵条件。

- 观察发酵过程,记录菌体生长情况、产物生成情况等。

4. 产物提取与鉴定- 发酵结束后,对发酵液进行离心分离,收集沉淀物。

- 对沉淀物进行提取、纯化等操作,得到目标产物。

- 利用化学或仪器分析方法对产物进行鉴定。

五、实验结果与分析1. 菌体生长情况- 通过显微镜观察,发现菌体呈杆状,生长良好。

2. 产物生成情况- 发酵过程中,产物浓度逐渐升高,最终达到一定水平。

3. 产物鉴定- 利用高效液相色谱(HPLC)等方法,对产物进行鉴定,确认为目标产物。

六、实验讨论1. 发酵条件对产物生成的影响- 发酵温度、pH值、溶氧等条件对产物生成有显著影响。

本实验中,发酵温度控制在37℃,pH值控制在6.0,溶氧控制在饱和度70%左右,有利于产物生成。

2. 菌种选择对产物生成的影响- 菌种选择对产物生成至关重要。

本实验中,选择了一种产目标产物的菌种,发酵效果较好。

关于生物制药的书籍

关于生物制药的书籍

关于生物制药的书籍
生物制药是指利用生物技术和生物制药工艺,生产和制造治疗人类疾病的制剂,如生物制药品、基因工程药品等。

随着科学技术的不断发展,生物制药已经成为了现代医药发展的重要方向之一。

如果你对生物制药感兴趣,那么以下是一些值得一读的书籍:
1.《生物制药工艺学》(第二版),作者:李方建、张法远、罗万良等
这本书是生物制药学的经典教材,内容涵盖了生物制药的工艺流程、产品质量控制、生物反应器、分离纯化技术等方面。

2.《生物技术和制药技术》(第四版),作者:加里·沙唐、彼得·达菲、史蒂文·霍华德等
这本书是一本非常好的综合性教材,涵盖了基础生物学、分子生物学、细胞培养、生物分离纯化等方面,同时也介绍了生物制药品的生产和制造过程。

3.《生物制药品开发与生产》,作者:张克勤
这本书详细介绍了生物制药品的开发和生产过程,包括从基础研究到产品上市的整个流程,对于生物制药领域的从业者非常有价值。

4.《生物制药品质量控制技术手册》,作者:周洪波
这本书着眼于生物制药品的质量控制和质量保证,介绍了生物制药品的检测方法和质量标准,对于生物制药品的研究和开发非常有帮助。

5.《生物制药品临床试验指南》,作者:陈冰、杨晓波
这本书针对生物制药品的临床试验进行了详细介绍,介绍了临床试验的设计、实施、监测和数据分析等方面内容,对于从事生物制药品临床研究的人员非常有用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章1、生物工艺学定义:A 国际经济合作及发展组织定义: 生物技术是应用自然科学及工程学的原理,依靠生物作用剂(一般称为生物催化剂,是游离或固定化细胞、酶的总称)的作用将物料进行加工以提供产品和为社会服务的技术。

B生物工艺学,也称生物技术,是指以现代生命科学为基础,结合其他基础学科的科学原理,采用先进的工程技术手段,按照设计改造生物体或生物原料,为人类生产出所需要产品或达到某种目的的技术。

2、先进的工程技术手段:是指基因工程、细胞工程、酶工程和发酵工程、(生化工程)新技术。

3、发酵工程:是将微生物学、生物化学和化学工程的基本原理有机的结合起来,利用微生物的生长和代谢活动来生产各种有用物质的工程技术,是生物技术产业化的重要环节。

发酵(广义):任何通过大规模培养微生物来生产产品的过程。

4、酶工程:它是从应用的角度出发研究酶,是在一定的生物反应装置中利用酶的催化性质进行生物转化的技术。

其内容包括酶的生产、酶的分离纯化、酶分子修饰、酶固定化、酶反应动力学、酶反应器、酶的应用。

5、生物工艺学特点:(1)是一门综合性学科;(2)采用生物催化剂;(3)采用可再生资源为主要原料,原料来源丰富,价格低廉,过程中废物的危害性小,但由于原料成分难以控制,会给产品质量带来一定的影响。

6、生物反应的一般过程:7、生物反应过程的工业生产主要有以下三种:酶催化反应过程;细胞反应过程;废水的生物处理过程。

第二章1、醋酸杆菌AS 1.41:是我国酿醋工业常用菌种之一。

产醋酸量6%~8%,可将醋酸进一步氧化为CO2和H2O。

最适生长温度28~30℃,耐酒精浓度8%。

2、酵母菌:兼性厌氧有氧条件下,将可发性糖类通过有氧呼吸作用彻底氧化为CO2和H2O,释放大量能量供菌体繁殖;无氧条件下,使可发酵性糖类通过发酵作用(EMP途径)生成酒精和CO2,释放较少能量供细胞繁殖。

3、工业微生物菌种选育:通过各种手段获得代谢调控机制不完善的菌株,以改良菌种的特性,使其符合工业生产的要求。

4、诱变育种:是通过人工处理微生物,使之发生突变,并运用合理的筛选程序和方法,把适合人类需要的伏良菌株选育出来的过程。

5、理性筛选:是指运用遗传学、生物化学的原理,根据产物已知的或可能的生物合成途径、代谢调控机制和产物分子结构来进行设计和采用一些筛选方法,以打破原有的代谢调控机制,来获得高产突变株。

6、杂交育种:一般是指两个不同基因型的菌株通过接合或原生质体融合使遗传物质重新组合,再从中分离和筛选出具有新性状的菌株。

杂交育种是选用已知性状的供体菌株作为亲本,把不同菌株的优良性状集中于组合体中。

杂交育种具有定向育种的性质。

杂交育种主要有常规的杂交育种和原生质体融合这两种方法。

7、原生质体融合是将双亲株的微生物细胞分别通过酶解去壁,使之形成原生质体,然后在高渗条件下混合,并加入物理的、化学的或生物的助融条件,使双亲株的原生质体间发生相互凝集和融合的过程。

8、DNA重组过程:(1)目的基因的获得(2) 与载体DNA分子的连接(3)重组DNA分子引入宿主细胞(4)选出含有所需重组DNA分子的宿主细胞。

9、这些纯种培养物称为种子,优良的种子须具有生长活力强、生理性状稳定、具有适宜的菌体总量及浓度、无杂菌污染、保持稳定的生产能力等条件。

10、种子制备的过程:其过程大致可分为实验室制备阶段和生产车间种子制备阶段。

11、种子质量判断:(1) 菌体形态、菌体浓度以及培养液的外观。

(2)生化指标(3)产物生成量(4)酶活力:测定种子液中某种酶的活力,作为种子质量的标准,是一种较新的方法。

此外,种子应确保无任何杂菌污染。

种子异常:(1)菌种生长发育缓慢或过快 (2)菌丝结团 (3)菌丝粘壁12、复壮:因为在退化的菌种中仍有一些保持原有菌种特性的细胞,故有可能采取一些相应措施,使这些细胞生长、繁殖,以更新退化的菌株。

常用方法:单细胞分离、纯化、扩大培养。

第三章1、工业培养基: 指提供微生物生长繁殖和生物合成各种代谢产物所需要的,按一定比例配制的多种营养物质的混合物。

2、工业大规模发酵的培养基遵循原则:①必须提供合成微生物细胞和发酵产物的基本成分。

②有利于减少培养基原料的单耗,即提高单位营养物质的转化率。

③有利于提高产物的浓度,以提高单位容积发酵罐的生产能力。

④有利于提高产物的合成速度,缩短发酵周期。

⑤尽量减少副产物的形成,便于产物的分离纯化。

⑥原料价格低廉,质量稳定,取材容易。

⑦所用原料尽可能减少对发酵过程中通气搅拌的影响,利于提高氧的利用率,降低能耗。

⑧有利于产品的分离纯化,并尽可能减少“三废”物质的产生。

2、工业培养基的成分及来源:碳源能源氮源无机盐及微量元素生长调节物质水。

2.1 碳源:能提供微生物营养所需碳(元)素或碳架的营养物质称为碳源。

意义:是微生物细胞需要量最大的元素。

葡萄糖效应:葡萄糖或某些容易利用的碳源,其分解代谢产物阻遏某些诱导酶体系编码的基因转录的现象。

2.2 能源:提供微生物生命活动所需能量的物质。

(也是意义)2.3 氮源:能提供微生物所需氮素的营养物质。

常用的氮源分为两大类:有机氮源和无机氮源。

铵盐是微生物最常用的氮源。

2.4 无机盐及微量元素:生理功能:☆提供微生物细胞化学组成中(除C和N外)的重要元素。

☆参与并稳定微生物细胞的结构。

☆与酶的组成和活力有关。

☆调节和维持微生物生长过程中诸如渗透压、氢离子浓度和氧化还原电位等生长条件;☆用作某些化能自养细菌物能源物质。

☆用作呼吸链末端的氢受体。

3、生长调节物质:微生物自己不能合成,但生长不可缺少的微量有机物,它是构成细胞的组成部分、促进生命活动的进行。

生长因子:是在培养基中补充的微量有机营养物质才能使微生物生长或者生长良好的物质。

主要功能:是提供微生物细胞重要化学物质(蛋白质、核酸和脂质)、辅因子(辅酶和辅基)的组分和参与代谢。

4、前体:指某些加入到培养基中,能直接被微生物在生物合成过程中结合到产物分子中去,而自身的结构并没有多大变化,产物的产量也因此提高的物质。

5、抑制剂:在发酵过程中加入抑制剂会抑制某些代谢途径的进行同时会使另一代谢途径活跃,从而获得人们所需的某种产物或使正常代谢的某一代谢中间物积累起来。

6、促进剂:指那些既不是营养物又不是前体,但却能提高产量的添加剂。

一般来说,促进剂的专一性较强,效果较好,用量极微,相互间不能套用。

7、合成培养基:是通过顺序加入准确称量的高纯化学试剂与蒸馏水配制而成的,其所含成分(包括微量元素在内)以及它们的量都能确切地知道。

优点:化学成分确定并精确定量,实验的可重复性高;缺点:配制较烦,成本较高。

应用:实验室中进行的营养、代谢、遗传育种、鉴定和生物测定等定量要求较高的研究。

8、将淀粉降解要经历三个不可逆过程:糊化、液化、糖化。

糊化:在热水溶液中,水分子大量进入淀粉分子中,体积增大,密结的淀粉颗粒膨胀、破裂,形成粘性(粘稠)的溶液。

糊化后的淀粉不再聚结成固体淀粉颗粒,需经酸或酶的作用进一步地降解。

液化:由许多葡萄糖残基组成的淀粉长链(支链淀粉和直链淀粉)被a-淀粉酶或酸迅速分解为短链,形成糊精。

因而可使已糊化醪液的粘度迅速下降,即表现为由半固态变为溶液态。

糖化:经液化后的产物糊精及低聚糖可在葡萄糖淀粉酶(对a-1、4、 a-1、6糖苷键都作用)的作用下进一步地分解成为葡萄糖单糖的过程。

9、淀粉水解糖的制备方法:酸解法、酶解法、酸酶解法。

酶解法具有以下一些优点:①由于酶解反应条件比较温和,因此不需要耐高温和耐高压的设备。

不仅节省设备投资,而且也改善了操作条件。

②由于酶的作用专一性强,因此淀粉水解过程中很少有副反应发生,淀粉水解的转化率较高,DE值可达98%以上,比酸解法的90%高出许多。

③因为酶法水解淀粉很少发生副反应。

淀粉乳的浓度可提高到不超过40%为宜。

④用酶解法制得的糖液色泽较浅,质量高。

但反应时间较长,对一些质地坚硬的原料处理效果较差。

第四章1 湿热灭菌原理:1.1 致死温度:杀死微生物的极限温度;或指在一定时间内杀死微生物的最低温度。

1.2 致死时间:在致死温度下,杀死全部微生物所需要的最少时间。

1.3 热阻:微生物对热的抵抗力,即指微生物在某一特定条件下(主要是温度)的致死时间。

1.4 相对热阻:指某一条件下的致死时间与另一微生物在相同条件下的致死时间之比。

k是微生物耐热性的一种特征,随微生物的种类和灭菌温度不同而不同。

k越小,微生物越耐热。

2.灭菌温度和时间的选择:培养基灭菌一般选择高温快速灭菌法,则为达到相同的灭菌效果,提高灭菌温度可以明显缩短灭菌时间,并可减少培养基因受热时间长而遭到破坏的损失。

3.培养基的分批灭菌:就是将配制好的培养基放在发酵罐或生物反应器中,用直接蒸汽或间接蒸汽将培养基和所用设备加热到灭菌温度(一般121℃),并在此温度维持一定时间,再冷却到发酵温度,此操作过程,也称为实罐灭菌。

分批灭菌过程包括升温、维持和冷却三个阶段空消:是对发酵罐设备及其周边连接管道进行灭菌处理。

优点:培养基的分批灭菌不需要专门的灭菌设备,对蒸汽要求低,投资少,设备简单,灭菌效果可靠。

缺点:在灭菌过程中蒸汽消耗量大,造成锅炉负荷波动大。

应用:常用于中、小型发酵罐的培养基灭菌。

4.培养基的连续灭菌:是将配好的培养基在向发酵罐等培养装置输送的同时进行加热、保温和冷却的灭菌过程。

优点:①可采用高温短时灭菌,培养基受热时间短,营养成分损失少,有利于提高发酵率,发酵罐利用及产量;②产品质量较易控制。

③蒸汽负荷均衡,锅炉利用率高,操作方便。

④适宜采用自动控制。

⑤劳动强度低。

⑥采用板式换热器时,可节约大量能量。

但对培养基中含有较多的固体颗粒或泡沫时,采用分批灭菌较好。

5.连消塔—喷淋冷却流程:6.喷射加热—真空冷却流程:流程优点:加热和冷却在瞬间完成,营养成分破坏最少,可以采用高温灭菌,把温度升高到140℃而不致引起培养基营养成分的严重破坏。

7、两级冷却、加热除菌流程:特点:提高传热系数、节约冷却用水、油水分离完全。

膨胀阀真空 急速冷却器维持段蒸汽生培养液。

相关文档
最新文档