高数1全套公式
(完整版)高数1全套公式
o
x
极限的计算方法 一、初等函数: 1.lim C C(C是常值函数)
2.若 f x M(即 f x 是有界量),lim (0 即 是无穷小量), lim f x
0,
特别 : f x C lim C 0
fx
3.若 f x M(即 f x 是有界量) lim
0,
特别 : f x C C 0
lim C 0
2.特殊角的三角函数值
f( ) cos sin tan cot
0 (0 )
1 0 0 不存在
6
(30 ) 3/ 2 1/ 2
1/ 3 3
4
( 45 ) 2 /2 2 /2
1 1
3
( 60 ) 1/ 2 3/ 2
3 1/ 3
2
( 90 )
0 1 不存在 0
只需记住这两个特殊的直角三角形的边角关系,依照三角函数的定义即可推出上面的三角值
(3)、 d( ax ) a x ln adx ,特别地,当 a e时, d (ex ) exdx ;
(4)、 d(log a x)
1 dx ,特别地,当 a e 时, d (ln x) 1 dx ;
1。
45 2
1
60
2 1
45
30
1 3 诱导公式:
3
函数
角A
sin cos tg ctg
-α 90 °- α 90 °+ α 180 °-α 180 °+α 270 °-α 270 °+α 360 °-α 360 °+α
-sin α cos α -tg α -ctg α cos α sin α ctg α tg α cos α -sin α -ctg α -tg α sin α -cos α -tg α -ctg α -sin α -cos α tg α ctg α -cos α -sin α ctg α tg α -cos α sin α -ctg α -tg α -sin α cos α -tg α -ctg α sin α cos α tg α ctg α
高等数学一(微积分)常用公式表
高等数学一(微积分)常用公式表-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN1、乘法公式(1)(a+b )²=a 2+2ab+b 2 (2)(a-b)²=a ²-2ab+b ²(3)(a+b)(a-b)=a ²-b ² (4)a ³+b ³=(a+b)(a ²-ab+b ²) (5)a ³-b ³=(a-b)(a ²+ab+b ²)2、指数公式:(1)a 0=1 (a ≠0)(2)a P -=P a 1(a ≠0)(3)amn=mna(4)a m a n =a n m +(5)a m ÷a n=n m aa =a nm -(6)(am)n =amn(7)(ab )n =a n b n(8)(b a)n =n n ba (9)(a )2=a (10)2a =|a|3、指数与对数关系: (1)若a b=N ,则N b a log = (2)若10b=N ,则b=lgN (3)若be =N ,则b=㏑N4、对数公式: (1)b a b a =log , ㏑eb=b (2)N aaN=log ,eNln =N(3)aN N a ln ln log =(4)a b be aln = (5)N M MN ln ln ln +=(6)N M NMln ln ln -= (7)Mn M n ln ln =(8)㏑nM =M nln 15、三角恒等式:(1)(Sin α)²+(Cos α)²=1 (2)1+(tan α)²=(sec α)²(3)1+(cot α)²=(csc α)²(4)αααtan cos sin =(5)αααcot sin cos =(6)ααtan 1cot =(7)ααcos 1csc =(8)ααcos 1sec =7.倍角公式: (1)αααcos sin 22sin = (2)ααα2tan 1tan 22tan -=(3)ααααα2222sin 211cos 2sin cos 2cos -=-=-=8.半角公式(降幂公式):(1)(2sin α)2=2cos 1a - (2)(2cosα)2=2cos 1a + (3)2tan α=a a sin cos 1+=a acos 1sin +常用公式表(二)1、求导法则:(1)(u+v )/=u /+v / (2)(u-v )/=u /-v /(3)(cu )/=cu / (4)(uv )/=uv /+u/v (5)2v v u v u v u '-'='⎪⎭⎫ ⎝⎛ 5、定积分公式:(1)⎰⎰=babadtt f dx x f )()( (2)⎰=aadx x f 0)((3)()()dx x f dx x f abba⎰⎰-= (4)⎰⎰⎰+=bac ab cdxx f dx x f dx x f )()()((5)若f (x )是[-a,a]的连续奇函数,则⎰-=aadx x f 0)((6)若f (x )是[-a,a]的连续偶函数,则6、积分定理:(1)()()x f dt t f xa ='⎥⎦⎤⎢⎣⎡⎰ ()()()()()[]()()[]()x a x a f x b x b f dt t f x b x a '-'='⎥⎦⎤⎢⎣⎡⎰2(3)若F (x )是f (x )的一个原函数,则)()()()(a F b F x F dx x f ba b a -==⎰7.积分表()C x x xdx ++=⎰tan sec ln sec 1 ()C x x xdx +-=⎰cot csc ln csc 2()C a xa dx x a +=+⎰arctan 11322 ()C a x dx x a +=-⎰arcsin 1422()C a x ax a dx ax ++-=-⎰ln 211522 8.积分方法()()bax x f +=1;设:t b ax =+()()222x a x f -=;设:t a x sin = ()22a x x f -=;设:t a x sec =()22x a x f +=;设:t a x tan =()3分部积分法:⎰⎰-=vdu uv udv。
(完整版)高数公式大全(费了好大的劲),推荐文档
lim[ f ( x) g ( x)]
两个重要极限
lim
sin
x
1, lim
sin
x
0; lim(1
1)x
e
lim(1
1
x) x
x0 x
x x
x
x
x0
常用等价无穷小:
1 cos x ~ 1 x2; x ~ sin x ~ arcsin x ~ arctan x; n 1 x 1 ~ 1 x;
lim n0
n i 1
f(i)1 nn
F (b) F (a) F (x)
b a
,
(F(x) f (x))
连续可积; 有界+有限个间断点可积; 可积有界; 连续原函数存在
(x) x f (t)dt (x) f (x) a
d (x) f (t)dt f [(x)](x) f [ (x)] (x)
1 x
n0
3、
弧微分公式:ds 1 y2 dx x(t) y(t)2 dt 2 2 d
平均曲率:K从点到点.(, 切: 线M斜率的M倾 角变化量;: s
弧长)
s MM
M点的曲率:K lim d s0 s ds
y
(t) (t) (t) (t)
= (1 y2 )3
Байду номын сангаас
3
[2 (t) 2 (t)]2
x2 a2 2a x a
a2 x2 2a a x
dx ln(x x2 a2 ) C;
x2 a2
x2 a2 dx x x2 a2 a2 ln(x x2 a2 ) C;
2
2
a2 x2 dx x a2 x2 a2 arcsin x C
高数一全套公式
初等数学基础知识一、三角函数1 .公式同角三角函数间的基本关系式:平方关系:sin A2( a )+cos A2( a )=tan^2( a )+1= sec A2( ;cOt A2( a )+1= csc A2( a) 商的关系:tan a =sin a /cos a ot a =cos a /sin a倒数关系:tan a・ cot a; =sin a・ csc a =1cos a・ sec a =1三角函数恒等变形公式:两角和与差的三角函数:cos( a + 3 )=cos a・ coin Ba・ sin 3cos( a 3 )=cos a・ cos 3 +sin a・ sin 3sin( a±3 )=sin a・ cos 3 土 cos a・ sin 3tan( a + 3 )=(tan a +tan -tan(a^ tan 3)tan( a 3 )=(tan -tan 3 )/(1+tan a・ tan 3)倍角公式:sin(2 a )=2sin a・ cos acos(2 a )=cosA2( -s)n人2( a )=2cosA2( -a=1- 2si门人2( a)tan(2 a )=2tan a #1 门人2( a )]半角公式:sinA2( a /2X1-C0S a )/2cosA2( a /2)=(1+cos a )/2tan A2( a /2)=(1cos a )/(1+cos a)tan( a /2)=sin a /(1+cos ot-()os1a )/sin a万能公式:sin a =2tan( a /2)/[1+ta门人2( a /2)]cos a =[1-tanA2( a /2)]/[1+ta门人2( a /2)]tan a =2tan( a /2)/{t1a门人2( a /2)]积化和差公式:sin a・cos 3 =(1/2){sin(a + 3-)+s]n( acos a・sin 3=(1/2){sin(-si a+ a))]cos a・cos 3 =(1/2){cos( a + 3 )+^$1 asin a・sin-(1=){cos( a +-co)( a- 3 )] 和差化积公式:sin a +sin 3 =2sin{( a + 3 )/2]cos{)/2] asin asin3 =2cos[( a + 3 )/2]sin{© )/2}x cos a +cos 3 =2cos[( a + 3 )/2]cos{(3 )2 cos a-cos 3=2S in{(a + 3 )/2]sin{- 3 )/a2.特殊角的三角函数值f (衿、0 (0=)JI■6(30 JJT~4(45)JI~3(60 °)31"2(90°)cos日 1 73/2 V2/2 1/2 0si n日0 1/2 v'2 / 2 V3/2 1tan日0 1/V3 1 不存在cot日不存在43 1 1小0只需记住这两的三角值。
高中数学必修一全部公式
高中数学必修一全部公式数学这门学科,有时候真的是让人觉得头疼,但只要掌握了那些公式,它就会变得简单许多。
今天咱们就来聊聊高中数学必修一里那些基础公式,让它们变成你手里的小宝贝,助你在数学的海洋中轻松遨游!1. 函数与方程1.1 一次函数先说说一次函数吧。
它的公式就是 y = kx + b。
这是个直线方程,其中的 k 是斜率,决定了直线的倾斜程度,而 b 是截距,决定了直线和 y 轴的交点。
就像你画直线的时候,k 就是你手抖的程度,b 就是你线从 y 轴的哪个位置开始。
这玩意儿非常基础,但用得可广泛了。
1.2 二次函数接下来是二次函数,它的公式是y = ax² + bx + c。
这个公式看起来是不是有点吓人?别担心,其实它的图像就是个漂亮的抛物线。
a、b、c 分别是这个抛物线的“身高”、"弯度"和“横坐标”,直接决定了它的样子。
a 大于零时,抛物线是向上的,a 小于零时,它就是向下的,像个倒立的笑脸。
2. 代数公式2.1 完全平方公式接下来,咱们聊聊代数公式。
首先是完全平方公式:(a + b)² = a² + 2ab + b²。
这个公式就是告诉你,两个数相加再平方,等于各自的平方和加上两者的乘积的两倍。
简单说,就是把“a + b”先“平方”,你得到的结果其实就是把每个数平方加起来,再加上它们的乘积乘以二。
然后是差平方公式:(a b)² = a² 2ab + b²。
这个公式类似于完全平方公式,但这里是“减”。
就是说,两个数相减再平方,结果等于各自的平方和减去两者的乘积的两倍。
它其实是个简化的工具,能让我们更快地解决问题。
3. 三角函数3.1 正弦和余弦公式三角函数也是数学里的一大重点。
正弦函数和余弦函数的基本公式是:sin²θ + cos²θ = 1这就像是一条法则,无论你选择什么角度θ,只要你把正弦和余弦的平方相加,结果总是 1。
高等数学考研(数学一)公式大全
高等数学公式大全导数公式:基本积分表:三角函数的有理式积分: 222212211cos 12sin udu dx x tg u uu x uu x +==+-=+=, , , ax x a a a x x x x x x x x x x a xxln 1)(logln )(cot csc )(csc tan sec )(sec csc )(cot sec )(tan 22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin xarcctgx xarctgx xx xx +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x ax dx Cshx chxdx C chx shxdx Caadx aC x ctgxdx x C x dx tgx x Cctgx xdx xdxC tgx xdx x dxxx)ln(ln csc csc sec sec cscsinsec cos 22222222Cax xa dxCx a x a ax a dx C a x a x a a x dx C ax arctg a x a dxCctgx x xdx Ctgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Ca x ax a x dx x a Ca x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n nnn arcsin22ln 22)ln(221cos sin22222222222222222222220ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:函数 角A sincostancot-α -sinα cosα -tan α -cot α 90°-α cosα sinαcot αtan α90°+α cosα -sinα -cot α -tan α 180°-α sinα-c osα -tan α -cot α180°+α -sinα -cosα tan α cot α 270°-α -cosα -sinα cot α tan α270°+α -cosα sinα -cot α -tan α 360°-α -sinα cosα -tan α -cot α 360°+αsinαcosαtan αcot α·和差角公式: ·和差化积公式:·倍角公式:2sin2sin 2cos cos 2cos 2cos 2cos cos 2sin2cos 2sin sin 2cos 2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+-=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαcot cot 1cot cot )cot(tan tan 1tan tan )tan(sin sin cos cos )cos(sin cos cos sin )sin(±⋅=±⋅±=±=±±=± xx arthx x x archx x x arshx ee e e chxshx thx ee chx ee shx xxx x xxxx-+=-+±=++=+-==+=-=----11ln 21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim==+=∞→→e xx x xx x·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctgtg·正弦定理:R CcBb Aa 2sin sin sin ===·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k nn uvvuk k n n n v un n v nuv uvuCuv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
高数一公式-自己的笔记
第一章 极限连续五种基本初等函数:(缺少定义域) 1.幂函数为实数)μμ(x y = 2.指数函数)1,0(≠>=a a a y x 3.对数函数 )1,0(log ≠>=a a x y a4.三角函数x y x y x y x y x y x y csc ,sec ,cot ,tan ,cos ,sin ====== 5.反三角函数x arc y x y x y x y cot ,arctan ,arccos ,arcsin ====一、函数的极限:f(x)在x 0处极限存在的充分必要条件是f(x)在点x 0处的左极限与右极限都存在且相等,此时三者值相同。
是否有极限与在x 0处有无定义无关。
两个重要极限公式:⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧=+=+=→∞→→e x e x x x x x x x x )11(lim ,)1(lim 1sin lim 100 ⎪⎪⎩⎪⎪⎨⎧<∞>==++++++--→∞→∞nm n m n m ba b x b x b a x a x a x Q x P m m m n n n x x ,,0,......lim ,)()(lim00110110可利用公式对于 二、无穷小量:零可以作为无穷小量的唯一的数。
无穷小之商不一定无穷小。
无穷小量比较:设0lim ,0lim 0==→→βαx x x x。
不能在加减运算中使用除中使用!!!注意:只能在乘存在,则且时性质:当时,当。
记为为等价无穷小量与时为同阶无穷小量。
与时则称在若为低阶无穷小量。
较时则称在若记为为高阶无穷小量较时则称在若,! ''limlim ''lim ,'~,'~~1,2~cos 1,~)1ln(,~tan ,~sin 0~,1A ,,0A lim ,,lim )(,,,0lim00000002000βαβαβαββααβαβαβαβαβαβαβοαβαβαx x x x x x xx x x x x x x x xe x x x x x x x x x x x x x x x →→→→→→=→--+→=→≠=→∞==→= 三、函数连续的三要素1〉f(x)在x 0处有定义;2〉0x x →时f(x)有极限;3〉极限值等于该点的函数值。
成人高考高数一公式
, , 2211x x --±±a x a x )22222x a a x a x ctgx tgx x -+-sec sin 22-----+++x a x dx x a a x a x x dx a x a x a x x dx a x n 222222222222222222p p一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:函数函数 角A sin cos tg ctg -α -sinα cosα -tgα -ctgα 90°90°--α cosα sinα ctgα tgα 90°+α cosα -sinα -ctgα -tgα 180°180°--α sinα -cosα -tgα -ctgα 180°180°+α+α -sinα -cosα tgα ctgα 270°270°--α -cosα -sinα ctgα tgα 270°+α -cosα sinα -ctgα -tgα 360°360°--α -sinα cosα -tgα -ctgα 360°+αsinα cosα tgα ctgα·和差角公式: ··和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin 2cos 2sin sin 2cos2sin2sin sin ba b a b a ba b a b a ba b a b a ba ba b a -+=--+=+-+=--+=+ab b a b a b a ba b a b a b a b a b a b a b a ctg ctg ctg ctg ctg tg tg tgtg tg ±×=±×±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln 21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim==+=¥®®e xxx xx x·倍角公式:·半角公式:aa a a a a a a a a a a a a a aaacos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos2cos 12sin-=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R C c B b A a 2sinsin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin pp高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n kn n uv v u k k n n n v u n n v nu v u vuC uv +++--++¢¢-+¢+==---=-å中值定理与导数应用:拉格朗日中值定理。
(完整版)高数1全套公式
一、三角函数1.公式同角三角函数间的基本关系式:·平方关系:sin^2(α)+cos^2(α)=1; tan^2(α)+1=sec^2(α);cot^2(α)+1=csc^2(α)·商的关系:tanα=sinα/cosαcotα=cosα/sinα·倒数关系:tanα·cotα=1; sinα·cscα=1; cosα·secα=1三角函数恒等变形公式:·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)倍角公式:sin(2α)=2sinα·cosαcos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·半角公式:sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]2只需记住这两个特殊的直角三角形的边角关系,依照三角函数的定义即可推出上面的三角值1。
高数公式大全(全)
高数公式大全1.基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππx x arshx e e e e chx shx thx e e chx e e shx x xxx xx xx ++=+-==+=-=----1ln(:2:2:2)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(μμμ·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑ΛΛΛ中值定理与导数应用:拉格朗日中值定理。
高数(一)全公式
初等数学基础知识一、三角函数1.公式同角三角函数间的基本关系式:·平方关系:sin^2(α)+cos^2(α)=1; tan^2(α)+1=sec^2(α);cot^2(α)+1=csc^2(α)·商的关系:tanα=sinα/cosαcotα=cosα/sinα·倒数关系:tanα·cotα=1; sinα·cscα=1; cosα·secα=1三角函数恒等变形公式:·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)倍角公式:sin(2α)=2sinα·cosαcos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·半角公式:sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]co sα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)] ·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]2.特殊角的三角函数值θ)(θf0 )0(6π )30( 4π )45( 3π )60( 2π)90(θcos 1 2/32/2 2/10 θsin 0 2/12/22/3 1 θtan 0 3/1 1 3不存在 θcot不存在313/1只需记住这两个特殊的直角三角形的边角关系,依照三角函数的定义即可推出上面的三角值。
(完整版)高数1全套公式
02>cbxax 2121)(xxxxxx>或<< abx2 Rx 02<cbxax 21xxx x x
因式分解与乘法公式
2
22
22
322
322
2233
2233
22(1)()()(2)2()(3)2()(4)()()(5)()()(6)33()(7)33()
222(abababaabbabaabbabababaabbababaabbaababbabaababbababcabbcca 2
竖变横不变(奇变偶不变),符号看象限(一全,二正弦割,三切,四余弦割
b42 0 0 0
0(2>一元二次函数acbxaxy
.1x
2cbxax一元二次方程
acbbx2422,1有二互异实根
abx2)(2,1有一根有二相等实根 无实根 1 45 2 1 45 1 2 30 60 3 2x 1x
、1()dxxdx(为任意常数);
、()lnxxdaaadx,特别地,当ea时,()xxdeedx;
、1(log)
adxdxxa,特别地,当ea时,1(ln)dxdxx;
、(sin)cosdxxdx;
、
)sindxxdx;
、2(tan)secdxxdx;
、2(cot)cscdxxdx;
数
函
数 10logaaxya R y=logax
xa>10<a<1O(1,0)xy
过点1,0. 1a单增. 10a单减.
log1,log10,,0logloglog,logloglog,loglog,loglog0,1,loglog(0)
0)
aaaaaaaapaacacxaxaMNMNMNMMNNMPMbbcaaxxaxx
高数公式大全(全)
高数公式大全1.基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππx x arshx e e e e chx shx thx e e chx e e shx x xxx xx xx ++=+-==+=-=----1ln(:2:2:2)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+= ·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
高中数学必修一公式大全
高中数学必修一公式大全全文共四篇示例,供读者参考第一篇示例:高中数学必修一公式大全高中数学是我们学习的一门基础学科,掌握好数学知识对我们的学习和未来的发展至关重要。
在高中阶段,数学被划分为必修一和必修二两部分,其中必修一主要包括代数、函数、数列和不等式等内容。
在这篇文章中,我们将为大家整理高中数学必修一的常用公式,希望对大家学习和复习数学知识有所帮助。
一、代数部分公式1. 二次函数一般式:y=ax^2+bx+c2. 一元二次方程求根公式:x=\frac{-b±\sqrt{b^2-4ac}}{2a}3. 重要恒等式:(a+b)^2=a^2+2ab+b^24. 二次方程判别式:Δ=b^2-4ac1. 定义域和值域的定义:- 定义域:函数能够取值的集合- 值域:函数所有可能的输出值的集合2. 奇函数和偶函数的性质:- 奇函数:f(-x)=-f(x)- 偶函数:f(-x)=f(x)3. 函数的复合与反函数:- 复合函数:(f◦g)(x)=f[g(x)]- 反函数:f(f^(-1)(x))=x4. 函数的性质之一致性与不一致性- 一致性:若f(x)=g(x),则等式两边分别代入相同的值时,结果相等- 不一致性:若f(x)=g(x),则一定存在某一值x使得f(x)≠g(x)1. 等差数列求和公式:Sn=\frac{n(a1+an)}{2}2. 等比数列求和公式:Sn=\frac{a1(1-q^n)}{1-q}3. 通项公式:- 等差数列:an=a1+(n-1)d- 等比数列:an=a1*q^(n-1)4. 递推公式:- 等差数列:an=an-1+d- 等比数列:an=an-1*q四、不等式部分公式1. 绝对值不等式的性质:- |a|<b等价于-b<a<b- |a|>b等价于a<-b或者a>b2. 一元一次不等式解法:- 含有绝对值的一元一次不等式:|ax+b|<c等价于-b<ax+b<c和-b>ax+b>-c3. 一元二次不等式解法:- 一元二次不等式ax^2+bx+c<0或者ax^2+bx+c>0的解法以上是高中数学必修一的部分公式,这些公式是我们学习数学时常用到的基础知识,希望大家能够掌握好这些知识,为学习和考试打下坚实的基础。
(完整版)高数一全套公式
初等数学基础知识一、三角函数1.公式同角三角函数间的基本关系式:·平方关系:sin^2(α)+cos^2(α)=1; tan^2(α)+1=sec^2(α);cot^2(α)+1=csc^2(α)·商的关系:tanα=sinα/cosαcotα=cosα/sinα·倒数关系:tanα·cotα=1; sinα·cscα=1; cosα·secα=1三角函数恒等变形公式:·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)倍角公式:sin(2α)=2sinα·cosαcos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·半角公式:sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]2只需记住这两个特殊的直角三角形的边角关系,依照三角函数的定义即可推出上面的三角值。
高数一全套公式范文
高数一全套公式范文高数一是一门重要的数学课程,它涉及的内容非常广泛,包括函数、极限、连续性、导数、积分等等。
以下是高数一的全套公式:1.函数相关公式:-阶乘:n!=n(n-1)(n-2)...3*2*1-组合数:C(n,m)=n!/(m!(n-m)!)2.极限相关公式:- 基本极限:lim(x->0) (sinx/x) = 1;lim(x->0) (1-cosx/x) =0 - 极限的四则运算:lim(x->a) [f(x) ± g(x)] = lim(x->a) f(x) ± lim(x->a) g(x)- 复合函数极限:lim(x->a) f[g(x)] = f[lim(x->a) g(x)]3.连续性相关公式:- 连续函数极限:f(x)在x=a处连续当且仅当lim(x->a) f(x) =f(a)-零点定理:如果f(x)在[a,b]上连续,并且f(a)f(b)<0,则方程f(x)=0在[a,b]上至少有一个根。
4.导数相关公式:- 基本导数:(d/dx) (c) = 0, 其中c为常数;(d/dx) (x^n) =nx^(n-1)- 幂函数求导法则:(d/dx) (a^x) = a^x ln(a), 其中a为正数且不等于1- 三角函数求导法则:(d/dx) (sinx) = cosx, (d/dx) (cosx) = -sinx- 乘积法则:(d/dx) (u*v) = u*(d/dx)v + v*(d/dx)u5.积分相关公式:- 定积分的基本性质:∫(a, b) f(x) dx = -∫(b, a) f(x) dx- 定积分与导数的关系:f(x)在[a, b]上连续,则∫(a, b) f'(x)dx = f(b) - f(a)- 分部积分法:∫u dv = uv - ∫v du这只是高数一公式的一小部分。
高数公式大全(全)
高数公式大全1.基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππxxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x xxx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( αααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=-=-=αααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=-=-=-=-==·正弦定理:R CcB b A a 2sin sin sin ===·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
大一高等数学公式(精华整理的)
高等数学公式1导数公式:2基本积分表:3三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ4一些初等函数: 5两个重要极限:6三角函数公式: ·诱导公式:7·和差角公式: 8 ·和差化积公式:2sin 2cos 2sin sin 2cos2sin 2sin sin βαβαβαβαβαβαβαβα-+-+=--+=+βαβαβαβαβαβαβαβαβαtg tg tg tg tg ⋅±=±=±±=±1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x xﻬ9·倍角公式:10·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg11·正弦定理:R CcB b A a 2sin sin sin === 12·余弦定理:C ab b a c cos 2222-+=13·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ14高阶导数公式——莱布尼兹(Lei bni z)公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑15中值定理与导数应用:拉格朗日中值定理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、三角函数1.公式同角三角函数间的基本关系式:·平方关系:sin^2(α)+cos^2(α)=1; tan^2(α)+1=sec^2(α);cot^2(α)+1=csc^2(α)·商的关系:tanα=sinα/cosαcotα=cosα/sinα·倒数关系:tanα·cotα=1; sinα·cscα=1; cosα·secα=1三角函数恒等变形公式:·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)倍角公式:sin(2α)=2sinα·cosαcos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·半角公式:sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]2只需记住这两个特殊的直角三角形的边角关系,依照三角函数的定义即可推出上面的三角值1。
3诱导公式:记忆规律: 竖变横不变(奇变偶不变),符号看象限(一全,二正弦割,三切,四余弦割即第一象限全是正的,第二象限正弦、正割是正的,第三象限正切是正的,第四象限余弦、余割是正的)二、一元二次函数、方程和不等式 1ο4521ο4512ο30ο603三、因式分解与乘法公式22222222332233223223332233222(1)()()(2)2()(3)2()(4)()()(5)()()(6)33()(7)33()(8)222(a b a b a b a ab b a b a ab b a b a b a b a ab b a b a b a ab b a a b ab b a b a a b ab b a b a b c ab bc ca -=+-++=+-+=-+=+-+-=-+++++=+-+-=-+++++= 21221)(9)()(),(2)n n n n n n a b c a b a b a a b ab b n ----++-=-++++≥L 四、等差数列和等比数列()()()11111 22n n n n a a n d n a a n n n S S na d=+-+-==+1.等差数列 通项公式: 前项和公式或()()1100n n n GP a a qa q -=≠≠2.等比数列 通项公式,()()()11.1111n n n a q q S qna q ⎧-⎪≠=-⎨⎪=⎩前项和公式 五、常用几何公式一、初等函数:()()()()()()()()()1.lim (2.lim 0lim 0,:lim 03.lim 0,:0lim 004.lim0C C C f x M f x f x f x C C f x f x M f x C f x C C C C C αααα=≤=⇒⋅==⇒⋅=≤⇒=∞=≠⇒=∞+∞>⎧=⎨-∞<⎩是常值函数)若(即是有界量),(即是无穷小量), 特别若(即是有界量) 特别()()5.010.,,.(sin ~,1~,ln 1~)x A B x x e x x x -+未定式型分子分母含有相同的零因式消去零因式等价无穷小替换常用()()()()()()()().,,lim ,,lim limf x f x f x C f xg x g x g x g x ''''=''洛必达法则:要求存在且存在此时 ()2.,,,.,,...A B C ∞∞型忽略掉分子分母中可以忽略掉的较低阶的无穷大保留最高阶的无穷大再化简计算分子分母同除以最高阶无穷大后再化简计算洛必达法则()型型或转化为数有理化通过分式通分或无理函型"""00",3∞∞∞-∞ ()⎪⎪⎪⎩⎪⎪⎪⎨⎧=∞∞∞=∞∞⋅00100104转化为 ()()()().1lim 170600510或求对数来计算通过型型型求对数求对数e x xx =+∞⋅−−→−∞∞⋅−−→−→∞二、分段函数:,.分段点的极限用左右极限的定义来求解 基本初等函数的导数公式(1) 0)(='C ,C 是常数 (2) 1)(-='αααx x(3) a a a x x ln )(=',特别地,当e a =时,x x e e =')( (4) a x x a ln 1)(log =', 特别地,当e a =时,xx 1ln =')( (5) x x cos )(sin =' (6) x x sin )(cos -=' (7) x xx 22sec cos 1)(tan ==' (8) x xx 22csc sin 1)(cot -=-='(9) x x x tan )(sec )(sec =' (10) x x x cot )(csc )(csc -=' (11) =')(arcsin x 211x-(12) 211)(arccos xx --='(13) 211)(arctan x x +=' (14) 21(arccot )1x x '=-+基本初等函数的微分公式(1)、0dc =(c 为常数);(2)、1()d x x dx μμμ-=(μ为任意常数);(3)、()ln x x d a a adx =,特别地,当e a =时,()x x d e e dx =; (4)、1(log )ln a d x dx x a =,特别地,当e a =时,1(ln )d x dx x=; (5)、(sin )cos d x xdx =; (6)、(cos )sin d x xdx =-; (7)、2(tan )sec d x xdx =; (8)、2(cot )csc d x xdx =-; (9)、(sec )sec tan d x x xdx =; (10)、(csc )csc cot d x x xdx =-;(11)、(arcsin )d x =; (12)、(arccos )d x =;(13)、21(arctan )1d x dx x=+; (14)、21(cot )1d arc x dx x =-+. 曲线的切线方程000'()()y y f x x x -=-幂指函数的导数极限、可导、可微、连续之间的关系条件A ⇒ 条件B ,A 为B 的充分条件 条件B ⇒ 条件A ,A 为B 的必要条件 条件A ⇔ 条件B ,A 和B 互为充分必要条件 边际分析边际成本 MC =()C q ';边际收益 MR =()R q ';边际利润 ML =()L q ',()()()L q R q C q '''=-= MR —MC弹性分析)(x f y =在点0x 处的弹性,()ED pD p Ep D-'= 特别的,需求价格弹性:罗尔定理若函数)(x f 满足: (1) 在闭区间],[b a 连续;(2) 在开区间),(b a 可导;(3) )()(b f a f =,则在),(b a 内至少存在一点ξ,使0)(='ξf .拉格朗日定理()()()()()()()()()'ln v x v x u x u x u x v x u x v x u x ⎛⎫'⎡⎤'=+ ⎪⎪⎣⎦⎝⎭00()x x x Eyy x Exy ='=设函数)(x f 满足:(1) 在闭区间],[b a 连续;(2) 在开区间),(b a 可导,则在),(b a 上至少存在一点ξ,使得ab a f b f f --=')()()(ξ .基本积分公式(1) 0dx C =⎰ (2) ()为常数k Ckx kdx +=⎰特别地:dx x C =+⎰(3) ()111-≠μ++μ=+μμ⎰C x dx x(4)C x dx x +=⎰||ln 1(有时绝对值符号也可忽略不写)(5) C aa dx a xx+=⎰ln (6) C e dx e x x +=⎰ (7) C x xdx +=⎰sin cos (8) C x xdx +-=⎰cos sin (9)⎰⎰+==C x xdx x dx tan sec cos 22 (10)⎰⎰+-==C x xdx x dx cot csc sin 22(11) C x xdx x +=⎰sec tan sec (12) C x xdx x +-=⎰csc cot csc (13) C x x dx +=+⎰arctan 12(或C x arc x dx +-=+⎰cot 12)(14) C x xdx +=-⎰arcsin 12(或C x xdx +-=-⎰arccos 12)(15)C x xdx +-=⎰|cos |ln tan ,(16) C x xdx +=⎰|sin |ln cot ,(17) C x x xdx ++=⎰|tan sec |ln sec , (18) C x x dx x +-=⎰|cot csc |ln cot ,(19) C a xa xa dx +=+⎰arctan 122,)0(≠a ,(20)C a x a x a xa dx +-+=-⎰ln 2122,(0)a ≠,y x(21) C axx a dx +=-⎰arcsin22,)0(>a , (22)C a x x a x dx +±+=±⎰2222ln ,)0(≠a .常用凑微分公式(1)、()()0,,1≠+=a b a b ax d adx 且为常数(2)、()221x d xdx = (3)、⎪⎭⎫ ⎝⎛-=x d dx x 112 (4)、x d dx x21=(5)、x d dx xln 1=(6)、x x de dx e = (7)、()sin cos xdx d x =- (8)、x d xdx sin cos = (9)、x d xdxtan sec 2= (10)、x d xdx cot csc 2-= (11)arcsin d x =(12)、x d dx x arctan 112=+一阶线性非齐次微分方程的通解为()()()P x dx P x dx y e Q x e dx C -⎛⎫⎰⎰=+ ⎪⎝⎭⎰平面图形面积的计算公式1)区域D 由连续曲线和直线x=a,x=b 围成,其中 (右图)()()dyP x y Q x dx+=()()()f x g x a x b ≤≤≤[]()()ba A g x f x dx=-⎰D 的面积 (),()y f x y g x ==2)区域D 由连续曲线 和直线x=c,x=d 围成,其中 (右图)平面图形绕旋转轴旋转得到的旋转体体积公式1 、绕x 轴的旋转体体积(右图)注意:此时的曲边梯形必须紧贴旋转轴.2、绕y 轴的旋转体体积(右图)注意:此时的曲边梯形必须紧贴旋转轴.由边际函数求总函数000()()((0)qC q f x dx C C C =+=⎰为固定成本) 0()()qR q g x dx =⎰总利润函数为00()()()[()()]qL q R q C q g x f x dx C =-=--⎰。