高一高二数学知识点整理
高一高二高三数学知识点
高一高二高三数学知识点一、高一数学知识点1.集合与数的关系- 自然数、整数、有理数等数的概念- 集合的定义、表示方法及基本运算- 元素与集合的关系2.代数- 一元一次方程与一元一次不等式- 二次根式及其运算- 平方差公式、二次方程与二次不等式- 指数与对数的基本概念与运算3.函数- 函数的基本概念与性质- 一次函数与二次函数的图象与性质- 反比例函数的图象与性质- 指数函数与对数函数的基本性质4.三角函数- 角度与弧度的转换- 同界角的三角函数值- 正弦定理、余弦定理及其应用 - 三角函数的和差化积公式5.解析几何- 直线与圆的基本性质- 直线的方程与位置关系- 圆的方程与位置关系- 向量的定义、运算及其应用二、高二数学知识点1.数列与数列的极限- 数列的概念与表示方法- 等差数列与等比数列的性质 - 数列的极限定义、性质及计算2.函数与导数- 导数的定义与计算- 导数的几何意义与应用- 导数的运算法则与基本应用3.三角函数与导数- 三角函数的导数与单调性- 反三角函数的导数与应用- 图像的平移与伸缩变换4.不等式与极值- 一元二次不等式的求解与应用 - 函数的最值与最值问题- 约束条件下的极值问题5.平面向量- 平面向量的加减与数量积- 平面向量的数量积的性质与应用 - 平面向量的叉积与混合积三、高三数学知识点1.概率与统计- 随机事件与概率的基本概念- 条件概率与事件的独立性- 一维随机变量及其分布函数2.数列与数列的极限(进阶)- 数列极限的性质与计算- 数列极限与函数极限的关系- 渐近线与函数的极限3.函数与导数(进阶)- 高阶导数与泰勒展开式- 极值与最值问题的高级应用- 曲线的凸凹性与拐点4.不等式与极值(进阶)- 不等式组的求解与应用- 凸函数与切线法求极值- 不等式极值问题的进阶应用5.平面向量(进阶)- 空间向量的表示与运算- 空间向量的数量积与叉积的计算- 空间中的直线与平面的方程这些是高一到高三数学课程中的主要知识点概述,希望能帮助你对数学学科的整体了解。
高一高二高三阶段知识点
高一高二高三阶段知识点1. 数学知识点在高一高二高三阶段,数学是学生们学习的重点科目之一。
以下是该阶段常见的数学知识点:1.1. 实数与代数运算高一阶段,学生们需要掌握实数的性质与运算法则,包括整数、有理数和无理数的特点以及它们之间的运算。
高二阶段,学生们深入学习了代数运算,包括多项式的乘法与除法、分式的化简与运算,以及根式的加减乘除等。
高三阶段,学生们进一步研究了数与方程的关系,包括一次函数、二次函数、指数函数、对数函数等的性质与图像。
1.2. 几何与三角学在高一阶段,学生们学习了几何基础知识,包括点、线、面的性质,相似三角形、勾股定理、正弦定理、余弦定理等三角学的内容。
高二阶段,学生们学习了向量与向量运算、平面与空间几何、三角函数与三角变换等内容。
高三阶段,学生们进一步研究了解析几何与立体几何,并应用于解决问题。
1.3. 微积分高二阶段,学生们开始接触微积分的基础概念,包括导数与微分、函数的极限与连续性等知识。
高三阶段,学生们进一步学习了微积分的应用,包括导数的应用、定积分与不定积分、微分方程等。
2. 物理知识点在高一高二高三阶段,物理也是学生们需要学习的重要学科。
以下是该阶段常见的物理知识点:2.1. 力学高一阶段,学生们学习了质点的运动、力的合成与分解、运动定律、平衡力等力学的基础知识。
高二阶段,学生们深入学习了牛顿运动定律、平抛运动、圆周运动、万有引力等力学的内容。
高三阶段,学生们进一步研究了质点的一维运动、二维运动、力的做功与能量、动量守恒等内容。
2.2. 热学在高二阶段,学生们开始接触热学的基础知识,包括温度、热量传递、理想气体等。
高三阶段,学生们进一步学习了热力学的内容,包括热力学第一定律、热力学第二定律、熵的概念与计算等。
2.3. 光学与电磁学在高二阶段,学生们学习了光学的基础知识,包括光的反射、折射、光的波动性等。
高三阶段,学生们进一步学习了电磁学的知识,包括电荷、电场、电流、电阻、电路等。
高一高二数学知识点归纳
高一高二数学知识点归纳一、函数与方程1. 函数的定义与性质函数的定义、定义域和值域、奇函数与偶函数、周期函数、反函数等。
2. 一次函数与二次函数一次函数的图像、斜率与截距、函数关系、线性规划等;二次函数的图像、顶点、轴、对称性质、判别式、二次函数图像的平移等。
3. 高次函数与分式函数高次函数的性质、幂函数与指数函数、对数函数等;分式函数的图像、长除法、解分式方程等。
4. 三角函数基本三角函数的定义、单位圆上的三角函数图像、三角函数的性质、解三角方程等。
二、几何与向量1. 几何运算与几何图形直线与平面的方程、向量的加法与数量积、几何图形的平移、旋转、镜像等。
2. 二维几何图形与三维几何图形二维几何图形的性质与计算、三角形与四边形的性质、圆的性质等;三维几何图形的表面积与体积、曲线与曲面的切线与法线等。
3. 空间向量与立体几何三角函数在空间中的应用、向量的混合积、平面与直线的位置关系等。
三、数列与数学归纳法1. 通项公式与递推公式等差数列与等比数列的性质、通项公式的推导、递推公式的应用等。
2. 等差数列与等差数列的求和等差数列与等差数列的求和公式、算术平均数、等差中项等。
3. 数列极限与数学归纳法数列的极限与性质、数学归纳法的应用等。
四、概率与统计1. 事件与概率事件的概念与关系、样本空间与概率、事件的运算、条件概率与独立性等。
2. 随机变量与分布随机变量的概念、离散随机变量与连续随机变量、分布函数与密度函数、期望与方差等。
3. 统计与抽样数据的收集与整理、频率分布表与直方图、数据的描述与分析等。
五、数学思想方法与证明1. 数学思想方法抽象思维与逻辑思维、归纳与演绎、分类与比较等。
2. 数学证明直接证明、间接证明、归纳证明、反证法等。
综上所述,高一高二数学知识点的归纳包括了函数与方程、几何与向量、数列与数学归纳法、概率与统计以及数学思想方法与证明等内容。
掌握这些知识点可以帮助同学们在学习数学过程中更加全面和系统地理解和运用相关的概念与方法,提高数学思维和解决问题的能力。
高一到高二数学知识点目录
高一到高二数学知识点目录一、实数与函数1. 实数的分类与性质2. 数列与数列的性质3. 集合与映射4. 函数的概念与性质5. 函数图像与性质二、平面几何1. 直线与平面2. 角的概念与性质3. 相交线与平行线4. 三角形与四边形:性质与判定5. 圆与圆的性质6. 平面向量与向量运算7. 平面解析几何三、空间几何1. 空间直线与平面2. 点、线、面的位置关系3. 空间几何体的性质与计算4. 空间向量与向量运算5. 空间解析几何四、三角函数与解三角形1. 三角函数的基本概念与性质2. 三角函数的图像与性质3. 三角方程与三角恒等式4. 三角函数的应用5. 解三角形的基本原理与方法五、数列与数项1. 等差数列与等差中项2. 等比数列与等比中项3. 数列的通项与部分和4. 数学归纳法与数列证明5. 数列的极限与无穷级数六、函数与方程1. 函数的单调性与极值2. 一元二次函数与二次函数的图像与性质3. 一元二次方程与二次方程的问题解决4. 一元多项式函数与多项式函数的图像与性质5. 一元多项式方程与多项式方程的解与应用七、导数与微积分1. 导数的概念与性质2. 常用函数的导数3. 高阶导数与导数的应用4. 微分中值定理与导数的计算5. 积分的概念与性质6. 直线与曲线的面积计算与应用八、概率与统计1. 随机事件与事件的运算2. 概率的基本概念与计算3. 条件概率与独立性4. 随机变量与离散型随机变量5. 随机变量的分布定律与统计九、数学建模与应用1. 建模的基本概念与流程2. 常见数学模型解法与应用3. 数学建模的实例分析4. 数学建模的评价与推广以上是高一到高二数学知识点的目录,涵盖了实数与函数、平面几何、空间几何、三角函数与解三角形、数列与数项、函数与方程、导数与微积分、概率与统计以及数学建模与应用等内容。
高中数学知识点全总结(电子版)
高中数学知识点全总结(电子版)高中数学知识点全一、求导数的(1)基本求导公式(2)导数的四则运算(3)复合函数的导数设在点x处可导,y=在点处可导,则复合函数在点x处可导,且即_二、关于极限1、数列的极限:粗略地说,就是当数列的项n无限增大时,数列的项无限趋向于A,这就是数列极限的描述性定义。
记作:=A。
如:2、函数的极限:当自变量x无限趋近于常数时,如果函数无限趋近于一个常数,就说当x趋近于时,函数的极限是,记作三、导数的概念1、在处的导数。
2、在的导数。
3、函数在点处的导数的几何意义:函数在点处的导数是曲线在处的切线的斜率,即k=,相应的切线方程是_注:函数的导函数在时的函数值,就是在处的导数。
例、若=2,则=()A—1B—2C1D四、导数的综合运用(一)曲线的切线函数y=f(x)在点处的导数,就是曲线y=(x)在点处的切线的斜率。
由此,可以利用导数求曲线的切线方程。
具体求法分两步:(1)求出函数y=f(x)在点处的导数,即曲线y=f(x)在点处的切线的斜率k=_(2)在已知切点坐标和切线斜率的条件下,求得切线方程为x。
如何学好高中数学方法1、上课认真听、仔细做笔记学习新的知识首先得通过老师的讲解,然后自己理解,这样才能通过做题巩固,不然上课不认真听的话,下课自己做题也不会,即使自己参照例题做出来了,也会有很多地方不理解,而且自己学还很浪费时间。
所以高中的学生们一定不能轻视了上课老师讲的内容。
再有一点就是数学也是需要记笔记的,上课的时候把老师讲的书上没有的步骤都记一下,重点的内容该画的画,改写的写,千万不要觉得现在看了一眼就记住了,要知道数学的知识从高一到高三会越来越难,前面的知识相当于为后面做铺垫,尤其是高三复习的时候。
所以同学们在高一高二的时候老师讲的重点的内容一定要整理在笔记上,不然到了高三复习的时候忘记了又得浪费时间重新做笔记。
2、以课本为主,把握课本去理解提高数学成绩主要是靠听课和做题来提高。
最全高中数学知识点总结归纳
最全高中数学知识点总结归纳一、数与代数1.1 数的基本概念自然数、整数、有理数、无理数、实数和复数的定义及其性质。
掌握实数的分类和复数的基本概念。
1.2 代数表达式理解并运用单项式、多项式、分式和根式的运算规则。
包括因式分解、公式法解方程、分式方程的解法等。
1.3 不等式掌握一元一次不等式、一元二次不等式、绝对值不等式及其解集的表示方法。
理解不等式的性质和解不等式的一般步骤。
1.4 函数函数的定义、性质、运算及常见函数(一次函数、二次函数、指数函数、对数函数、三角函数等)的图像和性质。
了解函数的极限和连续性概念。
1.5 序列与数列等差数列、等比数列的定义、通项公式和求和公式。
掌握无穷等比数列的和的计算方法。
1.6 排列组合与概率排列、组合的基本概念和公式。
概率的定义、性质及计算方法。
理解条件概率和独立事件的概念。
二、几何与测量2.1 平面几何点、线、面的基本性质。
掌握直线、圆、椭圆、双曲线、抛物线等基本图形的性质和方程。
2.2 空间几何空间直线和平面的位置关系。
柱面、锥面、旋转体等常见立体图形的性质和计算。
2.3 解析几何坐标系的建立和应用。
通过坐标和方程研究几何图形的性质,包括距离公式、斜率公式、圆的方程等。
2.4 三角学三角比的概念、三角函数的定义和性质。
掌握正弦定理、余弦定理及其在解三角形中的应用。
2.5 向量向量的基本概念、线性运算、数量积和向量积。
理解向量在几何和代数中的应用。
三、统计与概率3.1 统计基本概念数据的收集、整理和描述。
理解平均数、中位数、众数、方差、标准差等统计量的概念和计算方法。
3.2 概率分布离散型随机变量和连续型随机变量的概念。
熟悉二项分布、正态分布、均匀分布等常见概率分布的特点和公式。
3.3 抽样与估计抽样方法、样本容量的确定。
参数估计的基本概念和方法,包括点估计和区间估计。
3.4 假设检验假设检验的基本思想和步骤。
理解显著性水平、第一类错误和第二类错误的概念。
高一到高三所有数学知识点
高一到高三所有数学知识点高中阶段,数学是一门必修科目,涵盖了广泛的数学知识点和概念。
以下是高一到高三的所有数学知识点的综述。
一、高一数学知识点1. 函数与方程- 定义域、值域与奇偶性- 一次函数与一元一次方程- 二次函数与一元二次方程- 指数函数与对数函数- 复合函数与反函数2. 直线与圆- 直线的斜率与方程- 圆的方程与性质- 直线与圆的交点与切线3. 三角函数- 基本概念与关系- 三角函数的图像与性质- 三角函数的应用4. 数列与数学归纳法- 等差数列与等比数列的性质- 数列的通项公式与求和公式- 数学归纳法的基本原理与应用5. 平面向量- 平面向量的定义与基本运算- 向量的数量积与向量的夹角- 向量的坐标表示与平面几何应用二、高二数学知识点1. 平面解析几何- 平面方程与直线方程- 平面的位置关系与距离公式- 直线与平面的位置关系2. 函数的导数与微分- 导数的定义与性质- 基本导数公式与求导法则- 函数的极值与最值- 微分的概念与应用3. 不等式与不等式组- 不等式的性质与解法- 一元不等式组与二元不等式组的解法 - 线性规划问题4. 概率与统计- 随机事件与概率的基本概念- 事件的独立性与条件概率- 离散型随机变量与概率分布- 统计与抽样调查5. 三角恒等式与解三角形- 三角函数的和差化积公式- 三角方程的解法与应用- 三角形的面积与相似关系三、高三数学知识点1. 数列与数学归纳法的推广- 等差数列与等比数列的推广- 数列极限的概念与性质- 数学归纳法的扩展应用2. 函数与导数的进一步研究- 高阶导数与高阶导数的求法- 函数的单调性、凹凸性与极值 - 函数的图像与曲线的绘制3. 三角函数的进一步研究- 三角函数的定义域、值域与周期 - 三角方程的解法与应用- 角度制与弧度制的相互转化4. 平面解析几何的进一步研究- 高次曲线的方程与性质- 平面曲线的切线与法线方程- 曲线在直角坐标系中的方程5. 矩阵与向量的进一步研究- 矩阵的基本操作与运算规则- 线性方程组的矩阵表示与解法- 向量空间与线性相关性以上是高一到高三所有数学知识点的综述,这些知识点构成了高中数学的核心内容。
高一高二数学知识点大纲
高一高二数学知识点大纲
一、代数与函数
1.1 一元一次方程与一元一次不等式
1.2 一元二次方程与一元二次不等式
1.3 基本函数及其性质
1.4 幂函数、指数函数与对数函数
1.5 三角函数及其应用
1.6 等差数列与等比数列
二、平面几何
2.1 点、直线及平面
2.2 三角形及其性质
2.3 四边形及其性质
2.4 圆及其性质
2.5 相似与全等
2.6 三角形的面积与二次函数
三、立体几何
3.1 空间几何基础概念与性质3.2 空间中的直线与平面
3.3 空间中的角与距离
3.4 空间图形的计算
3.5 空间中的投影与截面
3.6 空间中的球与圆锥曲线
四、概率与统计
4.1 随机事件及其概率
4.2 随机变量及其分布
4.3 组合与排列
4.4 抽样与统计推断
4.5 统计图表的制作与分析4.6 数据的整理与描述
五、解析几何
5.1 点、向量及其运算
5.2 直线及其方程
5.3 圆锥曲线及其性质
5.4 参数方程与平面直角坐标系转换
5.5 空间曲线与平面方程
六、数学思想方法与解题技巧
6.1 数学证明与推理
6.2 数学建模与问题解决
6.3 解题方法与技巧
6.4 数学思维与能力培养
6.5 数学与实际生活的应用
注意:以上为高一高二数学的知识点大纲,该大纲可作为学习、复习和备考的参考依据。
学生应结合教材和教师要求,有针对性
地进行学习和练习。
江苏高一高二数学知识点
江苏高一高二数学知识点一、集合与函数1. 集合的表示与性质1.1 集合的表示方法- 枚举法:列举集合中的元素- 描述法:根据元素的共同特征进行描述1.2 集合的性质与运算- 包含关系:子集、超集- 并集与交集- 补集与空集2. 函数的概念与性质2.1 函数的定义与表示- 自变量与函数值- 函数图像2.2 函数的性质与分类- 单调性与奇偶性- 周期性与有界性- 反函数与复合函数二、数列与数列极限1. 等差数列与等差中项1.1 等差数列的定义与性质 - 公差与通项公式- 常数列与特殊项1.2 等差数列的应用- 等差数列之和与平均数 - 等差数列与图形的关系2. 等比数列与等比中项2.1 等比数列的定义与性质 - 公比与通项公式- 递增与递减性2.2 等比数列的应用- 等比数列的和与产品- 等比数列与图形的关系3. 数列极限3.1 数列极限的定义与性质- 数列极限存在性与唯一性 - 收敛与发散的判断3.2 数列极限的计算- 夹逼定理与极限运算法则 - 数列极限与函数极限的关系三、函数与导数1. 函数的基本性质与图像1.1 定义域、值域与反函数1.2 函数的图像与性质- 奇偶性与单调性- 极值与拐点2. 导数的定义与计算2.1 导数的定义与几何意义2.2 导数的基本运算法则- 导数与函数的和、差、积、商的关系 - 链式法则与反函数的导数3. 函数的应用3.1 函数的极值与最值问题- 求函数的最值与最值点3.2 函数的单调性与增减区间- 函数图像的拐点与极值点四、平面向量1. 向量的概念与运算1.1 向量的定义与表示- 平面向量与坐标表示- 向量的模与方向1.2 向量的运算法则- 向量的加减与数乘- 向量的数量积与夹角2. 向量的坐标表示与应用2.1 向量的坐标表示与运算 - 平移、旋转与轴对称变换 - 向量共线与垂直2.2 向量的应用- 力的合成与分解问题- 矢量运动与速度五、立体几何1. 空间几何基本概念1.1 点与直线的位置关系1.2 点与平面的位置关系- 平行关系- 垂直关系2. 空间几何的基本性质2.1 三视图与投影2.2 立体图形的表面积与体积- 三棱锥、四棱锥、棱柱的体积与表面积- 球、圆柱、圆锥、球台的体积与表面积3. 空间几何的应用3.1 空间几何证明与推理3.2 空间几何建模与问题解决以上是江苏高一高二数学部分的知识点,通过学习和掌握这些知识,可以为学生打下扎实的数学基础,为日后的学习和应试打下坚实的基础。
高中数学知识点大全(完整版)
高中数学知识点大全(完整版)1. 实数和复数:实数是数轴上的所有数,包括有理数和无理数;复数由实部和虚部组成,可以表示为a+bi的形式,其中a和b 为实数。
2. 幂和根:幂是指数运算,如a的n次幂表示为an;根是幂的逆运算,开x次方根表示为x√a。
3. 代数运算:加法、减法、乘法和除法是代数运算的基本运算,它们遵循相应的运算法则。
4. 贝叶斯定理:条件概率和全概率公式的应用,用于计算事件的概率。
5. 几何:包括平面几何和立体几何,涉及到图形的性质,如平行、垂直、相似、全等等。
6. 向量:具有大小和方向的量,在代数中用坐标表示,可以进行向量的加法、减法和数量乘法等运算。
7. 函数:函数是自变量与因变量之间的依赖关系,常见的函数有线性函数、二次函数、指数函数、对数函数等。
8. 三角函数:包括正弦、余弦、正切、余切等,广泛应用于几何、物理等领域。
9. 极限与连续性:极限是指当自变量趋近于某个特定值时,函数的变化趋势;连续性是指函数在其定义域上无断点。
10. 导数与微分:导数表示函数在某一点处的变化率,微分是导数的几何意义。
11. 积分与不定积分:积分表示函数在一定区间上的面积或曲线长度,不定积分是积分的逆运算。
12. 概率与统计:概率是描述随机事件发生的可能性,统计是收集、整理和分析数据的方法。
13. 矩阵与行列式:矩阵是一个按照一定规则排列的数的矩形阵列,行列式是矩阵的一种特殊表示形式。
14. 数列与数级数:数列是由一个或多个数按一定规律排列而成的序列,数级数是数列的无穷求和。
15. 数论:研究整数性质和整数之间的关系,包括质数、最大公约数、同余等。
16. 解析几何:利用坐标表示几何图形的性质和关系。
17. 空间几何:研究三维空间中图形的性质和关系。
18. 数学证明:用严密的推理和逻辑方法证明数学命题的正确性。
19. 数学建模:将实际问题转化为数学模型,利用数学方法进行求解和分析。
20. 科学计算:利用计算机和数值方法解决数学问题,如差值、插值、数值积分等。
高中高二数学必背重点知识点总结(8篇)
高中高二数学必背重点知识点总结(8篇)高中高二数学必背重点知识点总结(8篇)还在为没有系统的数学必背重点知识点而发愁吗在我们上学期间,大家最熟悉的就是知识点吧知识点也可以通俗的理解为重要的内容。
下面是小编给大家整理的高中高二数学必背重点知识点总结,仅供参考希望能帮助到大家。
高中高二数学必背重点知识点总结篇11、直线的倾斜角的概念:当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x 轴平行或重合时,规定α=0°.2、倾斜角α的取值范围:0°≤α 180°.当直线l与x轴垂直时,α=90°.3、直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是k=tanα⑴当直线l与x轴平行或重合时,α=0°,k=tan0°=0;⑵当直线l与x轴垂直时,α=90°,k不存在.由此可知,一条直线l的倾斜角α一定存在,但是斜率k不一定存在.4、直线的斜率公式:给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率:斜率公式:3.1.2两条直线的平行与垂直1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即注意:上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2,那么一定有L1∥L22、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即3.2.1直线的点斜式方程1、直线的点斜式方程:直线经过点且斜率为2、、直线的斜截式方程:已知直线的斜率为3.2.2直线的两点式方程1、直线的两点式方程:已知两点2、直线的截距式方程:已知直线3.2.3直线的一般式方程1、直线的一般式方程:关于x、y的二元一次方程(A,B不同时为0)2、各种直线方程之间的互化。
数学高一高二高三知识点归纳
数学高一高二高三知识点归纳数学在高中阶段是一门重要而又基础的学科,对学生的逻辑思维和问题解决能力有着重要的培养作用。
为了帮助高中学生更好地掌握数学知识,本文将对高一、高二、高三数学知识点进行归纳总结。
以下是数学高一高二高三知识点的分类和概述:1. 高一数学知识点高一数学主要包括数与式、函数及其图象、三角函数、平面向量等内容。
数与式:包括整式、分式、方程、不等式等,重点掌握因式分解、配方法、分式的简化与运算等基本概念和方法;函数及其图象:重点学习一元二次函数、幂函数、指数函数、对数函数等的性质和变化规律,能够准确绘制函数图像,并进行相关问题的分析和解答;三角函数:重点学习正弦、余弦、正切等三角函数的定义、性质和图像,能够准确运用三角函数解决相关的几何问题;平面向量:学习向量的定义、加法、减法、数量积和向量积等的性质和运算法则,能够解决平面向量的几何和代数问题。
2. 高二数学知识点高二数学主要包括数列、函数、三角函数、立体几何等内容。
数列:学习等差数列、等比数列、通项公式、求和公式等数列的基本概念和常见性质,能够准确应用数列解决相关问题;函数:学习函数的表示、运算和性质,特别是二次函数、指数函数、对数函数、三角函数等的图像和变化规律,能够运用函数解决实际问题;三角函数:主要学习三角函数的基本公式、辅助角公式、和差化积公式等,能够熟练运用三角函数解决各类三角关系问题;立体几何:掌握空间几何体的性质和计算方法,特别是球、柱、锥、棱锥、棱台等的体积、表面积等计算。
3. 高三数学知识点高三数学主要包括函数、导数与微分、不等式、数列等内容。
函数:进一步学习函数的性质和变化规律,特别是指数函数、对数函数、三角函数和反三角函数等,能够熟练解决函数的极值、最值、零点等相关问题;导数与微分:掌握导数的定义、性质和运算法则,学习函数的导数和微分的计算方法和应用,能够准确求解导数和微分相关的问题;不等式:学习解不等式、不等式的性质和基本运算,能够解决复杂的不等式问题,并运用不等式解决实际问题;数列:学习函数、数列和级数的极限概念和性质,了解数列和级数的收敛和发散特征,能够运用极限理论解决数列和级数的相关问题。
高中数学知识点总结全2024
高中数学知识点总结全2024一、集合与函数概念1. 集合的基本概念集合的定义:集合是某些确定的、互不相同的对象的全体。
集合的表示方法:列举法、描述法、图示法。
集合间的关系:子集、真子集、相等。
集合的运算:并集、交集、补集。
2. 函数的概念函数的定义:设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数。
函数的三要素:定义域、对应关系、值域。
函数的性质:单调性、奇偶性、周期性、最值。
3. 函数的表示方法解析法:用数学式子表示函数关系。
表格法:用表格形式表示函数关系。
图象法:用图象表示函数关系。
二、基本初等函数1. 一次函数定义:形如y=kx+b(k≠0)的函数。
性质:图象是一条直线,k为斜率,b为截距。
2. 二次函数定义:形如y=ax²+bx+c(a≠0)的函数。
性质:图象是一条抛物线,a决定开口方向和大小,顶点坐标为(b/2a, cb²/4a)。
3. 指数函数定义:形如y=a^x(a>0且a≠1)的函数。
性质:图象过点(0,1),a>1时单调递增,0<a<1时单调递减。
4. 对数函数定义:形如y=log_a(x)(a>0且a≠1)的函数。
性质:图象过点(1,0),a>1时单调递增,0<a<1时单调递减。
5. 三角函数正弦函数:y=sin(x),周期为2π,图象为波形曲线。
余弦函数:y=cos(x),周期为2π,图象为波形曲线。
正切函数:y=tan(x),周期为π,图象为渐近线间的曲线。
三、立体几何1. 空间几何体的结构多面体:由若干个多边形围成的几何体,如棱柱、棱锥。
旋转体:由平面图形绕某条直线旋转形成的几何体,如圆柱、圆锥、球。
2. 空间几何体的三视图主视图:从正面看到的图形。
俯视图:从上面看到的图形。
左视图:从左面看到的图形。
最新高中数学知识点总结(最全版)
高中数学 必修1知识点1 第一章 函数概念2 (1)函数的概念3 ①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在4 集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对5 应法则f )叫做集合A 到B 的一个函数,记作:f A B →.6 ②函数的三要素:定义域、值域和对应法则.7 ③只有定义域相同,且对应法则也相同的两个函数才是同一函数. 8 (2)区间的概念及表示法9 ①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足10 a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合11 叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记12 做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.13注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须14 a b <,(前者可以不成立,为空集;而后者必须成立). 15 (3)求函数的定义域时,一般遵循以下原则:16 ①()f x 是整式时,定义域是全体实数.17②()f x 是分式函数时,定义域是使分母不为零的一切实数.18 ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.19 ④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. 20 ⑤tan y x =中,()π⑥零(负)指数幂的底数不能为零.22 ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初23 等函数的定义域的交集.24 ⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数25 [()]f g x 的定义域应由不等式()a g x b ≤≤解出.26 ⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. 27 ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. 28 (4)求函数的值域或最值29 求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中30 存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质31 是相同的,只是提问的角度不同.求函数值域与最值的常用方法:32 ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.33 ②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围34 确定函数的值域或最值.35 ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程36 2()()()0a y x b y x c y ++=37则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值38 域或最值.39 ④不等式法:利用基本不等式确定函数的值域或最值.40 ⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问41 题转化为三角函数的最值问题.42 ⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. 43 ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. 44 ⑧函数的单调性法.45(5)函数的表示方法4647表示函数的方法,常用的有解析法、列表法、图象法三种.48解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两49个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.50(6)映射的概念51①设A、B是两个集合,如果按照某种对应法则f,对于集合A中任何一个元素,在集合B52中都有唯一的元素和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫53做集合A到B的映射,记作:f A B→.54②给定一个集合A到集合B的映射,且,∈∈.如果元素a和元素b对应,那么我们把a Ab B55元素b叫做元素a的象,元素a叫做元素b的原象.56(6)函数的单调性57①定义及判定方法②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一58 个减函数为增函数,减函数减去一个增函数为减函数.59 ③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =60 为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,61则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.62 (7)打“√”函数()(0)af xx a x=+>的图象与性质63()f x 分别在(,]a -∞-、[,)a +∞上为增函数,64 分别在[,0)a -、(0,]a 上为减函数. 65 (8)最大(小)值定义66 ①一般地,设函数()y f x =的定义域为I ,如果存67在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤;68 (2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.69②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都70 有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作71 max ()f x m =.72 (9)函数的奇偶性73 ①定义及判定方法74函数的性 质定义图象判定方法函数的奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇.函数...(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=f(x).......,那么函数f(x)叫做偶函..数.. (1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y 轴对称)②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.75 ③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相76 反.77 ④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个78 偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数. 79 第二章 基本初等函数(Ⅰ) 80 〖2.1〗指数函数81 【2.1.1】指数与指数幂的运算 82 (1)根式的概念83 ①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次84 n a n 是偶数时,正数a 的正的n n a 负的n 次方根用符85号0的n 次方根是0;负数a 没有n 次方根.86 n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;87 当n 为偶数时,0a ≥.88 ③根式的性质:n a =;当n 为奇数时,a =;当n 为偶数时,89 (0)|| (0) a a a a a ≥⎧==⎨-<⎩. 90(2)分数指数幂的概念91 ①正数的正分数指数幂的意义是:0,,,m na a m n N +=>∈且1)n >.0的正分数指数幂等于92 0.93②正数的负分数指数幂的意义是: 1()0,,,mm n n aa m n N a -+==>∈且1)n >.0的负分数94 指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. 95 (3)分数指数幂的运算性质96 ①(0,,)r s r s a a a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈ 97③()(0,0,)r r r ab a b a b r R =>>∈ 98 【2.1.2】指数函数及其性质 99 (4)指数函数100101 〖2.2〗对数函数102 【2.2.1】对数与对数运算 103 (1)对数的定义104 ①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N105叫做真数. 106 ②负数和零没有对数.107 ③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>. 108 (2)几个重要的对数恒等式109 log 10a =,log 1a a =,log b a a b =.110 (3)常用对数与自然对数111 常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). 112(4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么113①加法:log log log ()a a a M N MN += ②减法:log log log a a a MM N N-= 114③数乘:log log ()n a a n M M n R =∈ ④log a N a N =115⑤log log (0,)b n a a nM M b n R b =≠∈ ⑥换底公式:log log (0,1)log b a bN N b b a =>≠且 116【2.2.2】对数函数及其性质 117 (5)对数函数118(6)反函数的概念119 设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果120 对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式121 子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯122 上改写成1()y f x -=. 123 (7)反函数的求法124 ①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=; 125③将1()x f y -=改写成1()y f x -=,并注明反函数的定义域. 126 (8)反函数的性质127 ①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.128②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域. 129③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上. 130 ④一般地,函数()y f x =要有反函数则它必须为单调函数. 131 〖2.3〗幂函数 132 (1)幂函数的定义133一般地,函数y xα134=叫做幂函数,其中x为自变量,α是常数.135136137138139140141142143144145146147148149150151152153154155156(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象157 分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点158 对称);是非奇非偶函数时,图象只分布在第一象限.159 ②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).160③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函161 数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.162④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中163 ,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q py x =是奇函数,若p 为奇数q 为偶数时,则164 qpy x =是偶函数,若p 为偶数q 为奇数时,则q py x =是非奇非偶函数.165 ⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,166 其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直167 线y x =下方.168 〖补充知识〗二次函数 169 (1)二次函数解析式的三种形式170 ①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:171 12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法172 ①已知三个点坐标时,宜用一般式.173 ②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. 174 ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便. 175 (3)二次函数图象的性质176①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是177 24(,)24b ac b a a--. 178②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a -+∞上递增,当2bx a=-时,179 2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2ba -+∞上递减,180当2bx a=-时,2max 4()4ac b f x a -=.181③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x 轴有两个交点182 ********(,0),(,0),||||||M x M x M M x x a =-=. 183(4)一元二次方程20(0)ax bx c a ++=≠根的分布184 一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但185 尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)186 的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.187 设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从188以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=- ③判别式:∆ ④端点函189 数值符号. 190 ①k <x 1≤x 2 ⇔191192 ②x 1≤x 2<k ⇔193194 ③x 1<k <x 2 ⇔ af (k )<0195196 ④k 1<x 1≤x 2<k 2 ⇔ 197198199 ⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔f (k 1)f (k 2)<0,并同时考虑200 f (k 1)=0或f (k 2)=0这两种情况是否也符合201202203⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 204 此结论可直接由⑤推出.205 (5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值206 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+.207 (Ⅰ)当0a >时(开口向上) 208 ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a=- ③若2b q a ->,则()m f q = 209210 211 212 213 214 215 216 217 ①若02b x a -≤,则()M f q =b ()f p 218 219 220 221 2222230x 0x225226 (Ⅱ)当0a <时(开口向下) 227 ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a=- ③若2bq a ->,则()M f q = 228229 230 231 232 233 234235 236 237 ①若02b x a -≤,则()m f q = ②02b xa->,则()m f p =.238 239 240 241 242 243244ff fx246 第三章 函数的应用247 一、方程的根与函数的零点248 1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数249 ))((D x x f y ∈=的零点。
高一高二数学知识点梳理大全
高一高二数学知识点梳理大全 1. 数的性质与运算
1.3. 数轴与实数区间
1.4. 数列与求和
2. 代数运算
2.1. 代数式与方程
2.2. 一元一次方程与联立方程
3. 几何基础
3.1. 直线与角
3.2. 三角形与三角函数
3.4. 同位角与错位角
4. 几何证明
4.1. 同旁内角、同旁外角定理
4.4. 平行线性质的证明
5. 平面向量
5.2. 向量的线性相关与线性无关
5.3. 向量的数量积与向量积
5.4. 向量运用于几何问题
6. 概率论与统计
6.1. 随机事件与样本空间
6.2. 概率的定义与性质
6.3. 条件概率与乘法定理
6.4. 统计与抽样调查
7. 数学函数
7.2. 一元函数的变化与图像
7.4. 数学函数的运算与复合函数
8. 数列与数学归纳法
8.2. 等差数列与等比数列
8.3. 数列的通项与前n项和
9. 导数与微分
9.1. 函数的极限与连续性
9.4. 导数在几何与物理问题中的应用
10. 不等式与数列极限
10.1. 不等式的基本性质
10.2. 一元不等式的求解方法
10.4. 数列极限的收敛性证明
11. 平面解析几何
11.1. 平面直角坐标系与坐标点
11.4. 双曲线与抛物线的方程与性质
12.2. 空间中的直线与平面
12.4. 空间图形的投影与旋转
以上是高一高二数学的主要知识点梳理,通过对这些知识点的学习和掌握,能够打好数学基础,为更高级的数学学习奠定坚实的基础。
高一数学必修一二知识点总结
高一数学必修一二知识点总结高一数学必修一二知识点总结 1一:函数模型及其应用本节主要包括函数的模型、函数的应用等知识点。
主要是理解函数解应用题的一般步骤灵活利用函数解答实际应用题。
1、常见的函数模型有一次函数模型、二次函数模型、指数函数模型、对数函数模型、分段函数模型等。
2、用函数解应用题的基本步骤是:(1)阅读并且理解题意。
(关键是数据、字母的实际意义);(2)设量建模;(3)求解函数模型;(4)简要回答实际问题。
常见考法:本节知识在段考和高考中考查的形式多样,频率较高,选择题、填空题和解答题都有。
多考查分段函数和较复杂的函数的最值等问题,属于拔高题,难度较大。
误区提醒:1、求解应用性问题时,不仅要考虑函数本身的定义域,还要结合实际问题理解自变量的取值范围。
2.在解决实际问题时,首先要明确问题的含义,区分条件和结论,把握关键词和数量,理顺数量关系,然后将书面语言转化为数学语言,建立相应的数学模型。
【典型例题】例1:(1)某种储蓄的月利率是0。
36%,今存入本金100元,求本金与利息的和(即本息和)y(元)与所存月数x之间的函数关系式,并计算5个月后的本息和(不计复利)。
(2)按复利计算利息的一种储蓄,本金为a元,每期利率为r,设本利和为y,存期为x,写出本利和y随存期x变化的函数式。
如果存入本金1000元,每期利率2。
25%,试计算5期后的本利和是多少?解:(1)利息=本金×月利率×月数。
y=100+100×0。
36%·x=100+0。
36x,当x=5时,y=101。
8,∴5个月后的本息和为101。
8元。
例2:某民营企业生产a,b两种产品,根据市场调查和预测,a产品的利润与投资成正比,其关系如图1,b产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元)(1)分别将a,b两种产品的利润表示为投资的函数,并写出m.chayi5 它们的函数关系式。
高1到高三数学知识点总结
高1到高三数学知识点总结高一到高三数学知识点总结数学是一门基础学科,对于每个学生而言,高中数学知识点的掌握是十分重要的。
本文将对高一到高三的数学知识点进行总结,帮助学生们更好地复习和掌握这些知识。
1. 高一数学知识点总结1.1 代数与函数高一的代数与函数包括代数运算、一次函数、二次函数等方面的知识。
学生们需要掌握基本的代数运算法则,如整式的加减乘除、方程的解法等。
同时,一次函数和二次函数是高中数学的重难点,需要熟练掌握其图像、性质和相关题型的解法。
1.2 平面几何与立体几何平面几何与立体几何是数学的基础内容,高一阶段主要涉及到直线、角、三角形、平行四边形等的性质与计算。
学生们需要熟悉这些基本概念,并能够应用到具体问题的解答中。
1.3 概率与统计概率与统计是高中数学的另一个重要内容,高一阶段主要包括基本概率、频率与概率、统计的基本概念、直方图与折线图等。
学生们需要了解这些概念,并能够通过实际问题进行概率与统计的计算和分析。
2. 高二数学知识点总结2.1 函数与方程高二阶段的函数与方程主要包括二次函数、指数函数、对数函数、三角函数等。
学生们需要进一步巩固高一阶段的代数与函数知识,掌握更多类型函数的性质和图像,并能够解决复杂的函数方程问题。
2.2 三角学三角学在高中数学中具有较大的比重,包括三角函数、三角恒等式、三角方程等内容。
学生们需要掌握三角函数的定义与性质,灵活运用三角恒等式解决各类三角方程。
2.3 数列与数列数列与数列是高中数学的重要内容,主要包括等差数列、等比数列及其求和公式等。
学生们需要了解数列与数列的定义、性质和应用,并能够应用到实际问题中。
3. 高三数学知识点总结3.1 导数与微分高三阶段的导数与微分是高中数学的重点和难点之一,包括函数的极限、导数的定义与性质、常用函数的导数等。
学生们需要掌握导数的计算方法,理解导数在几何和物理问题中的应用。
3.2 积分与定积分积分与定积分是高三数学的另一个重要内容,主要包括不定积分、定积分的概念与性质、牛顿-莱布尼兹公式等。
高二数学全册重要知识点整理
高二数学全册重要知识点整理高二数学全册重要知识点集合一、集合概念(1)集合中元素的特征:确定性,互异性,无序性。
(2)集合与元素的关系用符号=表示。
(3)常用数集的符号表示:自然数集;正整数集;整数集;有理数集、实数集。
(4)集合的表示法:列举法,描述法,韦恩图。
(5)空集是指不含任何元素的集合。
空集是任何集合的子集,是任何非空集合的真子集。
函数一、映射与函数:(1)映射的概念:(2)一一映射:(3)函数的概念:二、函数的三要素:相同函数的判断方法:①对应法则;②定义域(两点必须同时具备)(1)函数解析式的求法:①定义法(拼凑):②换元法:③待定系数法:④赋值法:(2)函数定义域的求法:①含参问题的定义域要分类讨论;②对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。
(3)函数值域的求法:①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如:的形式;②逆求法(反求法):通过反解,用来表示,再由的取值范围,通过解不等式,得出的取值范围;常用来解,型如:;④换元法:通过变量代换转化为能求值域的函数,化归思想;⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;⑥基本不等式法:转化成型如:,利用平均值不等式公式来求值域;⑦单调性法:函数为单调函数,可根据函数的单调性求值域。
⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。
三、函数的性质:函数的单调性、奇偶性、周期性单调性:定义:注意定义是相对与某个具体的区间而言。
判定方法有:定义法(作差比较和作商比较)导数法(适用于多项式函数)复合函数法和图像法。
应用:比较大小,证明不等式,解不等式。
奇偶性:定义:注意区间是否关于原点对称,比较f(x)与f(-x)的关系。
f(x)-f(-x)=0f(x)=f(-x)f(x)为偶函数;f(x)+f(-x)=0f(x)=-f(-x)f(x)为奇函数。
高一数学必修一二知识点总结
高一数学必修一二知识点总结
一、集合与函数概念
集合的表示与运算:了解集合的概念、分类和表示方法(如列举法、描述法),以及集合的运算(如并集、交集、补集等)。
函数的概念与性质:理解函数的定义域、值域、对应法则等基本要素,掌握函数的单调性、奇偶性、周期性等基本性质。
二、基本初等函数
指数函数与对数函数:掌握指数函数和对数函数的定义、性质、图像及变换,理解指数方程和对数方程的解法。
幂函数与三角函数:了解幂函数的定义、性质和图像,掌握三角函数的定义、诱导公式、基本关系式、图像及性质,理解三角恒等变换和三角函数的应用。
三、数列与不等式
数列的概念与性质:理解数列的定义、分类(等差数列、等比数列等)及通项公式,掌握数列的前n项和公式及求和方法。
不等式的解法与应用:掌握不等式的性质、基本不等式(如均值不等式)及解法,理解不等式在实际问题中的应用。
四、平面向量与立体几何初步
平面向量的基本概念与运算:了解向量的定义、表示方法(如坐标表示法),掌握向量的加、减、数乘及数量积等运算。
立体几何的基本概念与性质:理解空间点、直线、平面的基本性质,掌握空间几何体的表面积和体积计算公式。
五、统计与概率初步
统计的基本概念与数据处理:了解统计的基本概念(如总体、样本、平均数、方差等),掌握数据的收集、整理和分析方法。
概率的基本概念与计算:理解概率的定义、性质及计算方法(如古典概型、几何概型等),掌握条件概率、独立事件等概念及计算方法。
以上只是高一数学必修一和必修二的部分知识点总结,具体学习还需结合教材和教辅资料进行深入理解和应用。
在学习过程中,建议注重基础知识的巩固和拓展,多做练习题以提高解题能力和思维水平。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一高二数学知识点整理高一高二数学知识点整理上学期间,大家对知识点应该都不陌生吧?知识点是知识中的最小单位,最具体的内容,有时候也叫“考点”。
掌握知识点是我们提高成绩的关键!下面是小编收集整理的高一高二数学知识点整理,希望能够帮助到大家。
高一高二数学知识点整理1空间两条直线只有三种位置关系:平行、相交、异面1、按是否共面可分为两类:(1)共面:平行、相交(2)异面:异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。
异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。
两异面直线所成的角:范围为(0°,90°)esp.空间向量法两异面直线间距离:公垂线段(有且只有一条)esp.空间向量法2、若从有无公共点的角度看可分为两类:(1)有且仅有一个公共点——相交直线;(2)没有公共点——平行或异面直线和平面的位置关系:直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行①直线在平面内——有无数个公共点②直线和平面相交——有且只有一个公共点直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。
高一高二数学知识点整理2基本概念公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。
公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。
公理3:过不在同一条直线上的三个点,有且只有一个平面。
推论1:经过一条直线和这条直线外一点,有且只有一个平面。
推论2:经过两条相交直线,有且只有一个平面。
推论3:经过两条平行直线,有且只有一个平面。
公理4:平行于同一条直线的两条直线互相平行。
等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。
高一高二数学知识点整理31.函数的奇偶性。
(1)若f(x)是偶函数,那么f(x)=f(-x)。
(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数)。
(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0)。
(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性。
(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性。
2.复合函数的有关问题。
(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定。
3.函数图像(或方程曲线的对称性)。
(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上。
(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然。
(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0)。
(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0。
(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称。
4.函数的周期性。
(1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数。
(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数。
(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数。
(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数。
5.判断对应是否为映射时,抓住两点。
(1)A中元素必须都有象且。
(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象。
6.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。
高一高二数学知识点整理4一、圆及圆的相关量的定义1.平面上到定点的距离等于定长的`所有点组成的图形叫做圆。
定点称为圆心,定长称为半径。
2.圆上任意两点间的部分叫做圆弧,简称弧。
大于半圆的弧称为优弧,小于半圆的弧称为劣弧。
连接圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径。
3.顶点在圆心上的角叫做圆心角。
顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。
4.过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。
和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。
5.直线与圆有3种位置关系:无公共点为相离;有2个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。
6.两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有2个公共点的叫相交。
两圆圆心之间的距离叫做圆心距。
7.在圆上,由2条半径和一段弧围成的图形叫做扇形。
圆锥侧面展开图是一个扇形。
这个扇形的半径成为圆锥的母线。
二、有关圆的字母表示方法圆--⊙ 半径—r 弧--⌒ 直径—d 扇形弧长/圆锥母线—l 周长—C 面积—S三、有关圆的基本性质与定理(27个)1.点P与圆O的位置关系(设P是一点,则PO是点到圆心的距离):P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO2.圆是轴对称图形,其对称轴是任意一条过圆心的直线。
圆也是中心对称图形,其对称中心是圆心。
3.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。
4.在同圆或等圆中,如果2个圆心角,2个圆周角,2条弧,2条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。
5.一条弧所对的圆周角等于它所对的圆心角的一半。
6.直径所对的圆周角是直角。
90度的圆周角所对的弦是直径。
7.不在同一直线上的3个点确定一个圆。
8.一个三角形有唯一确定的外接圆和内切圆。
外接圆圆心是三角形各边垂直平分线的交点,到三角形3个顶点距离相等;内切圆的圆心是三角形各内角平分线的交点,到三角形3边距离相等。
9.直线AB与圆O的位置关系(设OP⊥AB于P,则PO是AB到圆心的距离):AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB 与⊙O相交,PO10.圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线。
11.圆与圆的位置关系(设两圆的半径分别为R和r,且R≥r,圆心距为P):外离P>R+r;外切P=R+r;相交R-r三、有关圆的计算公式1.圆的周长C=2πr=πd2.圆的面积S=s=πr?3.扇形弧长l=nπr/1804.扇形面积S=nπr? /360=rl/25.圆锥侧面积S=πrl四、圆的方程1.圆的标准方程在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)^2+(y-b)^2=r^22.圆的一般方程把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是x^2+y^2+Dx+Ey+F=0和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2相关知识:圆的离心率e=0.在圆上任意一点的曲率半径都是r.五、圆与直线的位置关系判断平面内,直线Ax+By+C=O与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是讨论如下2种情况:(1)由Ax+By+C=O可得y=(-C-Ax)/B,[其中B不等于0], 代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f (x)=0.利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下:如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离(2)如果B=0即直线为Ax+C=0,即x=-C/A.它平行于y轴(或垂直于x轴)将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2令y=b,求出此时的两个x值x1,x2,并且我们规定x1当x=-C/Ax2时,直线与圆相离当x1当x=-C/A=x1或x=-C/A=x2时,直线与圆相切圆的定理:1.不在同一直线上的三点确定一个圆。
2.垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧推论1.①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧推论2.圆的两条平行弦所夹的弧相等3.圆是以圆心为对称中心的中心对称图形4.圆是定点的距离等于定长的点的集合5.圆的内部可以看作是圆心的距离小于半径的点的集合6.圆的外部可以看作是圆心的距离大于半径的点的集合7.同圆或等圆的半径相等8.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆9.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等10.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等11.定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角12.①直线L和⊙O相交 d②直线L和⊙O相切 d=r③直线L和⊙O相离 d>r13.切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线14.切线的性质定理圆的切线垂直于经过切点的半径15.推论1 经过圆心且垂直于切线的直线必经过切点16.推论2 经过切点且垂直于切线的直线必经过圆心17.切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角18.圆的外切四边形的两组对边的和相等外角等于内对角19.如果两个圆相切,那么切点一定在连心线上20.①两圆外离d>R+r ②两圆外切 d=R+r③两圆相交 R-rr)④两圆内切 d=R-r(R>r)⑤两圆内含dr)21.定理相交两圆的连心线垂直平分两圆的公共弦22.定理把圆分成n(n≥3):(1)依次连结各分点所得的多边形是这个圆的内接正n边形(2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形23.定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆24.正n边形的每个内角都等于(n-2)×180°/n25.定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形26.正n边形的面积Sn=pnrn/2 p表示正n边形的周长27.正三角形面积√3a/4 a表示边长28.如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=429.弧长计算公式:L=n兀R/18030.扇形面积公式:S扇形=n兀R^2/360=LR/231.内公切线长= d-(R-r)外公切线长= d-(R+r)32.定理一条弧所对的圆周角等于它所对的圆心角的一半33.推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等34.推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径35.弧长公式l=a*r a是圆心角的弧度数r >0 扇形面积公式s=1/2*l*r高一高二数学知识点整理5一集合与简易逻辑集合具有四个性质广泛性集合的元素什么都可以确定性集合中的元素必须是确定的,比如说是好学生就不具有这种性质,因为它的概念是模糊不清的互异性集合中的元素必须是互不相等的,一个元素不能重复出现无序性集合中的元素与顺序无关二函数这是个重点,但是说起来也不好说,要作专题训练,比如说二次函数,指数对数函数等等做这一类型题的时候,要掌握几个函数思想如构造函数函数与方程结合对称思想,换元等等三数列这也是个比较重要的题型,做体的时候要有整体思想,整体代换,等比等差要分开来,也要注意联系,这样才能做好,注意观察数列的形式判断是什么数列,还要掌握求数列通向公式的几种方法,和求和公式,求和方法,比如裂项相消,错位相减,公式法,分组求和法等等四三角函数三角函数不是考试题型,只是个应用的知识点,所以只要记熟特殊角的三角函数值和一些重要的定理就行五平面向量这是个比较抽象的把几何与代数结合起来的重难点,结体的时候要有技巧,主要就是把基本知识掌握到位,注意拓展,另外要多做题,见的题型多,结体的时候就有思路,能够把问题简单化,有利于提高做题效率高一的数学只是入门,只要把高一数学知识点掌握了,做题就没什么大问题了,数学就可以上130。