24.1.4圆周角教案

合集下载

人教版九年级上册24.1.4圆周角教学设计

人教版九年级上册24.1.4圆周角教学设计
3.教师巡回指导,参与学生的讨论,引导学生深入思考,解决问题。
(四)课堂练习,500字
1.教师设计具有梯度性的练习题,让学生独立完成。
a.基础题:求给定圆周角的度数。
b.提高题:已知圆周角,求圆心角或弧度。
c.应用题:解决实际问题,如求圆的周长、面积等。
2.学生在练习过程中,巩固圆周角的知识,提高解题能力。
4.能够运用圆周角知识,结合其他数学知识,解决综合性问题,提高学生的数学综合运用能力。
(二)过程与方法
1.通过直观演示、动手操作、合作交流等教学活动,引导学生自主探究圆周角的性质和定理,培养学生的观察能力和逻辑思维能力。
2.通过对圆周角定理的证明,让学生体会数学推理的逻辑严密性,提高学生的推理能力。
(1)让学生通过画圆、量角等实践活动,自主发现圆周角的性质。
(2)组织学生进行小组讨论,引导学生运用已有知识,推导圆周角定理。
(3)教师适时给予指导,帮助学生突破证明过程中的难点。
3.案例分析,巩固知识
通过对典型例题的分析和讲解,让学生掌握圆周角定理的应用,提高学生的解题能力。
4.紧扣重难点,梯度训练
3.培养学生勇于挑战困难、克服困难的精神,增强学生的自信心和自我价值感。
4.引导学生认识到数学知识在实际生活中的应用价值,提高学生的数学素养,培养学生的社会责任感。
在教学过程中,教师要关注学生的个体差异,因材施教,使学生在知识与技能、过程与方法、情感态度与价值观等方面得到全面发展。同时,教师要善于运用教育机智,创设生动活泼的课堂氛围,激发学生的学习兴趣,提高教学效果。
三、教学重难点和教学设想
(一)教学重难点
1.重点:圆周角的概念、性质和定理的理解与应用。
2.难点:圆周角定理的证明过程,以及在实际问题中的应用。

人教版数学九年级上册24.1.4圆周角定理教学设计

人教版数学九年级上册24.1.4圆周角定理教学设计
(2)结合圆周角定理,引导学生研究其他几何图形的性质,如椭圆、双曲线等。
(3)鼓励学生参加数学竞赛、课外活动,拓宽知识视野,提高数学素养。
四、教学内容与过的基本概念,如圆心、半径、直径等,为新课的学习做好铺垫。
(1)请学生回顾圆的定义及圆的基本性质。
(2)提问:圆心角和弧有什么关系?如何计算圆心角的度数?
(二)讲授新知
1.圆周角定理的推导:
(1)引导学生观察圆中的圆周角,尝试总结其性质。
(2)教师通过动画演示,直观展示圆周角定理的推导过程。
(3)讲解圆周角定理:圆周角等于其所对圆心角的一半。
2.圆周角定理的应用:
(1)结合实际例题,讲解如何运用圆周角定理解决问题。
(2)引导学生关注圆周角定理在解决角度、弧度等问题中的应用。
(二)过程与方法
1.通过观察、分析、归纳,培养学生发现问题的能力。
2.通过自主探究、合作交流,提高学生解决问题的能力。
3.通过实际操作,培养学生的动手能力和空间想象能力。
4.引导学生从不同角度思考问题,培养学生思维的灵活性和创新意识。
(三)情感态度与价值观
1.激发学生对数学学科的兴趣,提高学生对数学美的感受。
2.培养学生严谨、细致的学习态度,养成良好的学习习惯。
3.培养学生的团队协作精神,学会与人沟通交流。
4.通过圆周角定理的学习,使学生体会数学与生活的紧密联系,培养学生的应用意识。
1.导入:通过复习圆的基本概念,引导学生关注圆周角。
2.自主探究:让学生观察圆周角的特点,尝试总结圆周角定理。
3.合作交流:分组讨论,分享探究成果,互相学习,共同完善圆周角定理。
1.学生总结:请学生谈谈本节课的学习收获,对圆周角定理的理解和运用。

教学设计4:24.1.4圆周角

教学设计4:24.1.4圆周角

24.1.4圆周角教学过程设计其他各角具备什么共同特征?从而引出圆周角定义,并会判断。

板演示,让学生辨析圆周角。

接下来给学生一组辨析题:练习1:判别图7-29中各圆形中的角是不是圆周角,并说明理由.析问题的能力。

活动2:探究圆周角定理,并证明圆周角定理。

问题1:①同弧(弧AB)所对的圆心角∠AOB与圆周角∠ACB的大小关系?②同弧(弧AB)所对的圆周角∠ACB与∠ADB,∠AEB的大小关系怎样?问题2:㈠一条弧所对的圆周角有多少个?圆心角呢?圆心与圆周角的位置关系有几种?㈡当圆心在圆周角的教师提出问题,引导学生用度量工具量角器,动手实验进行度量,发现结论。

由学生归纳发现的规律,教师板书:同弧所对的圆周角度数没有变化,并且它的度数恰好等于这条弧所对的圆心角度数的一半。

教师提问,学生动手画,思考并回答。

教师概括:虽然一条弧所对的圆周角有无数个,但它们与圆心的位置关系,归纳起来却只有三种情况:①圆心在圆周角的一边上、②圆心在圆周角内部、③圆心在圆周角外部.学生亲自动手利用度量工具进行实验,探究得出结论,调动了学生的积极性,培养了他们的归纳能力。

这一过程体现了数学中的分类讨论的思想;在证明中,后两种都化成了第一种情况,这体现数学中从特殊到一般的化归思想.从而让学生学会了一种分析问题解决问题的方式方法。

一边上时,如何证明活动2所发现的结论?㈢对于②③两种情况你也能证明吗?教师引导,学生写出已知,求证,并完成证明。

(1)当圆心在圆周角的一边上时,圆周角与相应的圆心角的关系:(演示图形)观察得知圆心在圆周角上时,圆周角是圆心角的一半.提出必须用严格的数学方法去证明.证明:(圆心在圆周角上)(2)其它情况,圆周角与相应圆心角的关系:当圆心在圆周角外部时(或在圆周角内部时)引导学生作辅助线将问题转化成圆心在圆周角一边上的情况,从而运用前面的结论,得出这时圆周角仍然等于相应的圆心角的结论.证明:作出过C的直径(略)活动三:探索圆周角定理的推论问题1:画一个圆,以B、C为弧的端点能画多少个圆周角?它们有什么关系?问题2:在⊙O中,若= ,能否得到∠C=∠G呢?根据什么?反过来,若∠C=∠G ,是否得到=呢让学生分析、研究,并充分交流.注意:①问题解决,只要构造圆心角进行过渡即可;②若= ,则∠C=∠G;但反过来当∠C=∠G,在同圆或等圆中,可得若= ,否则不一定成立.这时教师要求学生举出反面例子:若∠C=∠G,则≠,从而得到圆周角的又一条性质老师组织学生归纳:同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等.重视:同弧说明是“同一个圆”;等弧说明是“在同圆或等圆中”.问题:“同弧”能否改成“同弦”呢?同弦所对的圆周角一定相等吗?(学生通过交流获得让学生在同一知识中变换角度思考问题,从不同的方位观察圆心角与圆周角,更深一步理解“同弧”二字的含义,培养了学生思维的深度和广度。

人教版数学九年级上册24.1.4《圆周角定理》教学设计

人教版数学九年级上册24.1.4《圆周角定理》教学设计

人教版数学九年级上册24.1.4《圆周角定理》教学设计一. 教材分析人教版数学九年级上册24.1.4《圆周角定理》是本节课的主要内容。

圆周角定理是圆周角定理系列中的重要定理之一,也是后续学习圆的性质和圆的方程的基础。

本节课的内容包括圆周角定理的证明和应用。

教材通过丰富的例题和练习题,帮助学生理解和掌握圆周角定理,并能够运用到实际问题中。

二. 学情分析学生在学习本节课之前,已经掌握了相似三角形的性质,对角的性质有一定的了解。

但是,对于圆周角定理的理解和运用还需要进一步引导和培养。

因此,在教学过程中,需要注重引导学生通过观察和操作,发现和总结圆周角定理的规律。

三. 教学目标1.了解圆周角定理的内容和证明过程。

2.能够运用圆周角定理解决实际问题。

3.培养学生的观察能力、操作能力和推理能力。

四. 教学重难点1.圆周角定理的证明过程。

2.圆周角定理在实际问题中的应用。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察和操作,发现和总结圆周角定理的规律。

2.运用多媒体辅助教学,展示圆周角定理的证明过程,增强学生的直观感受。

3.通过例题和练习题,让学生在实际问题中运用圆周角定理,巩固所学知识。

六. 教学准备1.多媒体教学设备。

2.圆规、直尺等绘图工具。

3.相关例题和练习题。

七. 教学过程1.导入(5分钟)通过提问方式,引导学生回顾相似三角形的性质和角的性质。

让学生思考:在圆中,圆周角和圆心角之间有什么关系?2.呈现(10分钟)展示圆周角定理的证明过程,引导学生观察和理解证明方法。

通过多媒体动画演示,让学生更直观地感受圆周角定理的应用。

3.操练(10分钟)让学生分组讨论,尝试解决一些与圆周角定理相关的问题。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)呈现一些例题和练习题,让学生独立解答。

教师选取部分学生的解答进行讲解和分析,巩固所学知识。

5.拓展(10分钟)引导学生思考:圆周角定理在实际问题中的应用。

人教版九年级上册数学24.1.4圆周角优秀教学案例

人教版九年级上册数学24.1.4圆周角优秀教学案例
(二)讲授新知
1.利用多媒体课件,讲解圆周角的定义及其性质。
2.通过动画演示,让学生直观地感受圆周角的形成过程。
3.运用几何图形,解释圆周角定理及其推论。
在讲授新知环节,我将利用多媒体课件,讲解圆周角的定义及其性质。通过动画演示,让学生直观地感受圆周角的形成过程。在此基础上,我会运用几何图形,解释圆周角定理及其推论。在这个过程中,注重引导学生积极参与,鼓励他们提出问题,以便更好地理解和掌握圆周角的知识。
(三)学生小组讨论
1.设计具有挑战性的问题,引导学生进行小组讨论。
2.让学生通过合作、交流,共同探究圆周角的性质。
3.组织学生展示讨论成果,分享彼此的想法和收获。
三、教学策略
(一)情景创设
1.利用多媒体课件,展示生活中的圆周角实例,引导学生认识圆周角。
2.通过动画演示,让学生直观地感受圆周角的形成过程。
3.设计有趣的数学问题,激发学生的求知欲。
在情景创设方面,我将运用多媒体课件,以生动形象的方式展示圆周角的特点,帮助学生建立起空间观念。通过展示生活中的圆周角实例,引导学生认识圆周角,激发他们的学习兴趣。同时,设计有趣的数学问题,激发学生的求知欲,让他们在解决问题的过程中,自然而然地引入圆周角的知识。
人教版九年级上册数学24.1.4圆周角优秀教学案例
一、案例背景
本节内容为人教版九年级上册数学24.1.4圆周角,旨在让学生掌握圆周角的定义、性质及其在几何中的应用。通过对圆周角的学习,培养学生观察、思考、推理的能力,提高他们的空间想象力。
圆周角是圆心角的一种,它在圆中具有重要的地位。在本节内容中,学生需要了解圆周角的定义、性质,并能运用圆周角定理解决实际问题。在教学过程中,我将结合生活实例,引导学生认识圆周角,并通过小组合作、讨论交流的方式,让学生探究圆周角的性质,从而提高他们的合作意识和解决问题的能力。

24.1.4圆周角定理优质课教案完美版

24.1.4圆周角定理优质课教案完美版

作课类别课题24.1.4圆周角定理课型新授教学媒体多媒体教学目标知识技能1.了解圆周角的概念,理解圆周角的定理及其推论.2.熟练掌握圆周角的定理及其推论的灵活运用.3.体会分类思想.过程方法设置情景,给出圆周角概念,探究这些圆周角与圆心角的关系,运用数学分类思想给予逻辑证明定理,得出推导,让学生活动证明定理推论的正确性,最后运用定理及其推论解决问题.情感态度激发学生观察、探究、发现数学问题的兴趣和欲望.教学重点圆周角定理、圆周角定理的推导及运用它们解题.教学难点运用数学分类思想证明圆周角的定理.教学过程设计教学程序及教学内容师生行为设计意图一、导语上节课我们学习了圆心角、弧、弦之间的关系定理,如果角的顶点不在圆心上,它在其它的位置上?如在圆周上,是否还存在一些等量关系呢?这就是我们今天要探讨,要研究,要解决的问题.二、探究新知(一)、圆周角定义问题:如图所示的⊙O,我们在射门游戏中,设EF是球门,•设球员们只能在所在的⊙O其它位置射门,如图所示的A、B、C点.观察∠EAF、∠EBF、∠ECF 这样的角,它们的共同特点是什么?得到圆周角定义:顶点在圆上,且两边都与圆相交的角叫做圆周角.分析定义:○1圆周角需要满足两个条件;○2圆周角与圆心角的区别(二)、圆周角定理及其推论1.结合圆周角的概念通过度量思考问题:○1一条弧所对的圆周角有多少个?②同弧所对的圆周角的度数有何关系?③同弧所对的圆周角与圆心角有何数量关系吗?2.分情况进行几何证明①当圆心O在圆周角∠ABC的一边BC上时,如图⑴所示,那教师联系上节课所学知识,提出问题,引起学生思考,为探究本节课定理作铺垫学生以射门游戏为情境,通过寻找共同特点,总结一类角的特点,引出圆周角的定义学生比较圆周角与圆心角,进一步理解圆周角定义教师提出问题,引导学生思考,大胆猜想.得到:1一条弧上所对的圆周角有无数个.2通过度量,同弧所对的圆周角是没有变化的,同弧所对的圆周角是圆心角的一半.教师组织学生先自从具体生活情境出发,通过学生观察,发现圆周角的特点深化理解定义激发学生求知欲,为探究圆周角定理做铺垫.培养学生全面分析问题的能力,尝试运用分么∠ABC=12∠AOC吗?②当圆心O在圆周角∠ABC的内部时,如图⑵,那么∠ABC=12∠AOC吗?③当圆心O在圆周角∠ABC的外部时,如图⑶,∠ABC=12∠AOC吗?可得到:一条弧所对的圆周角等于这条弧所对的圆心角的一半.根据得到的上述结论,证明同弧所对的圆周角相等.得到:同弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.问题:将上述“同弧”改为“等弧”结论会发生变化吗?总结归纳出圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.于是,在同圆或等圆中,两个圆心角,两个圆周角、两条弧、两条弦中有一组量相等,则其它各组量都分别相等.半圆作为特殊的弧,直径作为特殊的弦,运用上述定理有什么新的结论?推论半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.(三)圆内接多边形与多边形的内接圆1.圆内接多边形与多边形的内接圆的定义如何区别两个定义?(前者是特殊的多边形后者是特殊的圆)2.圆内接四边形性质这条性质的题设和结论分别是什么?怎样证明?(四)定理应用1.课本例22. 如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?请证明.三、课堂训练完成课本86页练习四、小结归纳1.圆周角的概念及定理和推论2. 圆内接多边形与多边形的内接圆概念和圆内接四边形性质3. 应用本节定理解决相关问题.五、作业设计作业:复习巩固作业和综合运用为全体学生必做;拓广探索为成绩中上等学生必做. 主探究,再小组合作交流,总结出按照圆周角在圆中的位置特点分情况进行探究的方案.学生尝试叙述,达到共识学生尝试证明学生根据同弧与等弧的概念思考教师提出的问题,师生归纳出定理让学生明白该定理的前提条件的不可缺性,师生分析,进一步理解定理.教师试让学生将上节课定理与归纳的定理进行综合,思考,便于综合运用圆的性质定理..教师提出问题,学生领会半圆作为特殊的弧,直径作为特殊的弦,进行思考,得到推论学生按照教师布置阅读课本85—86页,理解圆内接多边形与多边形的内接圆学生运用圆周角定理尝试证明学生审题,理清题中的数量关系,由本节课知识思考解决方法.教师组织学生进行练习,教师巡回检查,集体交流评价,教师指导学生写出解答过程,体会方法,总结规律.让学生尝试归纳,总结,发言,体会,反思,教师点评汇总类讨论思想方法,培养学生发散思维能力.为继续探究其推论奠定基础.感受类比思想,类比中全面透彻地理解和掌握定理,让学生感受相关知识的内在联系,形成知识系统.使学生运用定理解决特殊性问题,从而得到推论培养学生的阅读能力,自学能力.学生初步运用圆周角定理进行证明,同时发现圆内接四边形性质培养学生解决问题的意识和能力运用所学知识进行应用,巩固知识,形成做题技巧让学生通过练习进一步理解,培养学生的应用意识和能力归纳提升,加强学习反思,帮助学生养成系统整理知识的习惯巩固深化提高板书设计。

《24.1.4 圆周角》教案、导学案

《24.1.4 圆周角》教案、导学案

《24.1.4 圆周角》教案【教学目标】1.掌握圆周角定理及其推论并能应用其进行简单的计算与证明.2.掌握圆内接多边形的有关概念及性质.3.在探索过程中,体会观察、猜想的思维方法,在定理的证明过程中,体会化归和分类讨论的数学思想和归纳的方法.【教学过程】一、情境导入你喜欢看足球比赛吗?你踢过足球吗?第十九届世界杯决赛于2014年在巴西举行,共有来自世界各地的32支球队参加赛事,共进行64场比赛决定冠军队伍.比赛中如图所示,甲队员在圆心O处,乙队员在圆上C处,丙队员带球突破防守到圆上C处,依然把球传给了甲,你知道为什么吗?你能用数学知识解释一下吗?二、合作探究探究点一:圆周角定理如图,AB是⊙O的直径,C,D为圆上两点,∠AOC=130°,则∠D等于( )A.25° B.30° C.35° D.50°解析:本题考查同弧所对圆周角与圆心角的关系.∵∠AOC=130°,∠AOB =180°,∴∠BOC=50°,∴∠D=25°.故选A.探究点二:圆周角定理的推论【类型一】利用圆周角定理的推论求角如图,在⊙O 中,AB ︵=AC ︵,∠A =30°,则∠B =( ) A .150° B .75° C .60° D .15°解析:因为AB ︵=AC ︵,根据“同弧或等弧所对的圆周角相等”得到∠B =∠C ,因为∠A +∠B +∠C =180°,所以∠A +2∠B =180°,又因为∠A =30°,所以30°+2∠B =180°,解得∠B =75°,故选B.方法总结:解题的关键是掌握在同圆或等圆中,相等的两条弧所对的圆周角也相等.注意方程思想的应用.如图,BD 是⊙O 的直径,∠CBD =30°,则∠A 的度数为( ) A .30° B.45° C .60° D .75°解析:由BD 是直径得∠BCD =90°.∵∠CBD =30°,∴∠BDC =60°.∵∠A 与∠BDC 是同弧所对的圆周角,∴∠A =∠BDC =60°.故选C.【类型二】利用圆周角定理的推论求线段长如图所示,点C 在以AB 为直径的⊙O 上,AB =10cm ,∠A =30°,则BC的长为________.解析:由AB 为⊙O 的直径得∠ACB =90°.在Rt △ABC 中,因为∠A =30°,所以BC =12AB =12×10=5cm.【类型三】利用圆周角定理的推论进行有关证明如图所示,已知△ABC 的顶点在⊙O 上,AD 是△ABC 的高,AE 是⊙O 的直径,求证:∠BAE =∠CAD .解析:连接BE 构造Rt △ABE ,由AD 是△ABC 的高得Rt △ACD ,要证∠BAE =∠CAD ,只要证出它们的余角∠E 与∠C 相等,而∠E 与∠C 是同弧AB 所对的圆周角.证明:连接BE ,∵AE 是⊙O 的直径,∴∠ABE =90°,∴∠BAE +∠E =90°.∵AD 是△ABC 的高,∴∠ADC =90°,∴∠CAD +∠C =90°.∵AB ︵=AB ︵,∴∠E =∠C ,∵∠BAE +∠E =90°,∠CAD +∠C =90°,∴∠BAE =∠CAD .方法总结:涉及直径时,通常是利用“直径所对的圆周角是直角”来构造直角三角形,并借助直角三角形的性质来解决问题.探究点三:圆的内接四边形及性质【类型一】利用圆的内接四边形的性质进行计算如图,点A ,B ,C ,D 在⊙O 上,点O 在∠D 的内部,四边形OABC 为平行四边形,则∠OAD +∠OCD =________度.解析:∵四边形ABCD 是圆内接四边形,∴∠B +∠ADC =180°.∵四边形OABC 为平行四边形,∴∠AOC =∠B .又由题意可知∠AOC =2∠ADC .∴∠ADC =180°÷3=60°.连接OD ,可得AO =OD ,CO =OD .∴∠OAD =∠ODA ,∠OCD =∠ODC .∴∠OAD +∠OCD =∠ODA +∠ODC =∠D =60°.【类型二】利用圆的内接四边形的性质进行证明如图,已知A,B,C,D是⊙O上的四点,延长DC,AB相交于点E.若BC=BE.求证:△ADE是等腰三角形.解析:由已知易得∠E=∠BCE,由同角的补角相等,得∠A=∠BCE,则∠E =∠A.证明:∵BC=BE,∴∠E=∠BCE.∵四边形ABCD是圆内接四边形,∴∠A+∠DCB=180°.∵∠BCE+∠DCB=180°,∴∠A=∠BCE.∴∠A=∠E.∴AD=DE.∴△ADE是等腰三角形.方法总结:圆内接四边形对角互补.三、板书设计【教学反思】教学过程中,强调圆周角定理得出的理论依据,使学生熟练掌握并会学以致用.在圆中,利用圆周定理及其推论求相关的角度时,注意辅助线的添加及多种可能情况的考虑.《24.1.4 圆周角》教案第1课时圆周角定理及推论【教学内容】1.圆周角的概念.2.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都等于这条弦所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径及其它们的应用.【教学目标】1.了解圆周角的概念.2.理解圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都等于这条弧所对的圆心角的一半.3.理解圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90•°的圆周角所对的弦是直径.4.熟练掌握圆周角的定理及其推理的灵活运用.设置情景,给出圆周角概念,探究这些圆周角与圆心角的关系,运用数学分类思想给予逻辑证明定理,得出推导,让学生活动证明定理推论的正确性,最后运用定理及其推导解决一些实际问题.【重难点、关键】1.重点:圆周角的定理、圆周角的定理的推导及运用它们解题.2.难点:运用数学分类思想证明圆周角的定理.3.关键:探究圆周角的定理的存在.【教学过程】一、复习引入(学生活动)请同学们口答下面两个问题.1.什么叫圆心角?2.圆心角、弦、弧之间有什么内在联系呢?老师点评:(1)我们把顶点在圆心的角叫圆心角.(2)在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,•那么它们所对的其余各组量都分别相等.刚才讲的,顶点在圆心上的角,有一组等量的关系,如果顶点不在圆心上,它在其它的位置上?如在圆周上,是否还存在一些等量关系呢?这就是我们今天A 要探讨,要研究,要解决的问题.二、探索新知问题:如图所示的⊙O ,我们在射门游戏中,设E 、F 是球门,•设球员们只能在EF 所在的⊙O 其它位置射门,如图所示的A 、B 、C 点.通过观察,我们可以发现像∠EAF 、∠EBF 、∠ECF 这样的角,它们的顶点在圆上,•并且两边都与圆相交的角叫做圆周角.现在通过圆周角的概念和度量的方法回答下面的问题. 1.一个弧上所对的圆周角的个数有多少个? 2.同弧所对的圆周角的度数是否发生变化? 3.同弧上的圆周角与圆心角有什么关系?(学生分组讨论)提问二、三位同学代表发言. 老师点评:1.一个弧上所对的圆周角的个数有无数多个.2.通过度量,我们可以发现,同弧所对的圆周角是没有变化的. 3.通过度量,我们可以得出,同弧上的圆周角是圆心角的一半. 下面,我们通过逻辑证明来说明“同弧所对的圆周角的度数没有变化,•并且它的度数恰好等于这条弧所对的圆心角的度数的一半.”(1)设圆周角∠ABC 的一边BC 是⊙O 的直径,如图所示 ∵∠AOC 是△ABO 的外角 ∴∠AOC=∠ABO+∠BAO ∵OA=OB ∴∠ABO=∠BAO ∴∠AOC=∠ABO ∴∠ABC=12∠AOC (2)如图,圆周角∠ABC 的两边AB 、AC 在一条直径OD 的两侧,那么∠ABC=12∠AOC 吗?请同学们独立完成这道题的说明过程. 老师点评:连结BO 交⊙O 于D 同理∠AOD 是△ABO 的外角,∠COD 是△BOC 的外角,•那么就有∠AOD=2∠ABO ,∠DOC=2∠CBO ,因此∠AOC=2∠ABC .CC(3)如图,圆周角∠ABC 的两边AB 、AC 在一条直径OD的同侧,那么∠ABC=12∠AOC 吗?请同学们独立完成证明.老师点评:连结OA 、OC ,连结BO 并延长交⊙O 于D ,那么∠AOD=2∠ABD ,∠COD=2∠CBO ,而∠ABC=∠ABD-∠CBO=12∠AOD-12∠COD=12∠AOC 现在,我如果在画一个任意的圆周角∠AB ′C ,•同样可证得它等于同弧上圆心角一半,因此,同弧上的圆周角是相等的.从(1)、(2)、(3),我们可以总结归纳出圆周角定理:在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.进一步,我们还可以得到下面的推导:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径. 下面,我们通过这个定理和推论来解一些题目.例1.如图,AB 是⊙O 的直径,BD 是⊙O 的弦,延长BD 到C ,使AC=AB ,BD 与CD 的大小有什么关系?为什么?分析:BD=CD ,因为AB=AC ,所以这个△ABC 是等腰,要证明D 是BC 的中点,•只要连结AD 证明AD 是高或是∠BAC 的平分线即可.解:BD=CD理由是:如图24-30,连接AD ∵AB 是⊙O 的直径 ∴∠ADB=90°即AD ⊥BC 又∵AC=AB ∴BD=CD 三、巩固练习1.教材P92 思考题. 2.教材P93 练习. 四、应用拓展例2.如图,已知△ABC 内接于⊙O ,∠A 、∠B 、∠C 的对边分别设为a ,b,c ,⊙O 半径为R ,求证:sin a A =sin b B =sin c C =2R . 分析:要证明sin a A =sin b B =sin c C =2R ,只要证明sin a A =2R ,sin b B =2R ,sin cC =2R ,即sinA=2a R ,sinB=2b R ,sinC=2cR,因此,十分明显要在直角三角形中进行.证明:连接CO 并延长交⊙O 于D ,连接DB ∵CD 是直径 ∴∠DBC=90° 又∵∠A=∠D在Rt △DBC 中,sinD=BC DC ,即2R=sin aA同理可证:sin b B =2R ,sin cC=2R∴sin a A =sin b B =sin c C=2R 五、归纳小结(学生归纳,老师点评) 本节课应掌握: 1.圆周角的概念;2.圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都相等这条弧所对的圆心角的一半;3.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.第2课时 圆内接四边形的性质及圆周角定理的综合运用【教学目标】1.知道圆内接多边形和多边形的外接圆的意义,知道圆内接四边形的对角互补,会简单运用这个结论.2.培养演绎推理能力和识图能力. 【教学重点和难点】1.重点:圆内接四边形的对角互补.2.难点:结论的证明. 【教学过程】(一)基本训练,巩固旧知 1.填空:如图, x= °.2.填空:如图,∠BAC=55°,∠CAD=45°, 则∠DBC= °,∠BDC= °, ∠BCD= °.3.用三角尺画出下面这个圆的圆心.(二)创设情境,导入新课 (师出示下面的板书)圆周角定理:一条弧所对的圆周角等于它所对圆心角的一半. 推论1:同弧或等弧所对的圆周角相等.推论2:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.师:(指准板书)前面我们学习了圆周角定理和它的两个结论,本节课我们要学习什么?我们要学习圆周角定理的第三个推论(板书:推论3).师:推论3怎么说?让我们先来看下面的问题. (三)尝试指导,讲授新课 (师出示下图)x 50︒40︒ABCDOABCD.师:(指准图)这是四边形ABCD,这个四边形有一个特点,什么特点?(稍停)这个四边形的四个顶点,点A,点B,点C,点D都在⊙O上,我们把这个四边形叫做圆内接四边形(板书:四边形ABCD叫做圆内接四边形),我们还把⊙O 叫做四边形ABCD的外接圆(板书:⊙O叫做四边形ABCD的外接圆).师:(出示圆内接三角形图片,并指准)这是一个三角形,这个三角形的所有顶点都在这个圆上,我们把这个三角形叫做圆内接三角形,把这个圆叫做这个三角形的外接圆.师:(出示圆内接五边形图片,并指准)这是五边形,这个五边形的所有顶点都在这个圆上,我们把这个五边形叫做圆内接五边形,把这个圆叫做这个五边形的外接圆.师:(出示圆内接五边形图片,并指准)一般地说,如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆.师:知道了圆内接多边形的概念,(指黑板上的圆内接四边形)现在我们还是回来看圆内接四边形.师:圆内接四边形有一个重要的性质,什么性质?圆内接四边形的对角互补(板书:圆内接四边形的对角互补).师:圆内接四边形的对角互补,什么意思?(指准图)就是说,∠A+∠C=180°,∠B+∠D=180°,(板书:∠A+∠C=180°,∠B+∠D=180°).师:用圆周角定理可以推出这个结论,怎么推?大家自己先想一想(让生思考片刻).师:我们一起来证明,(指板书)先证明∠A+∠C=180°.师:怎么证明∠A+∠C=180°?连结OB,OD(边讲边用虚线连结OB,OD).师:(把BAD描成红色,并指准)这条红弧所对的圆周角是哪个?生:(齐答)∠C.师:红弧所对的圆周角是∠C(边讲边用红笔标∠C),那红弧所对的圆心角是哪个?生:(齐答)∠BOD.师:红弧所对的圆心角是∠BOD (边讲边用红笔标∠BOD ). 师:(把BCD 描成黄色,并指准)这条黄弧所对的圆周角是哪个? 生:(齐答)∠A.师:黄弧所对的圆周角是∠A (边讲边用红笔标∠A ),那黄弧所对的圆心角是哪个?生:……师:(指准图)黄弧所对的圆心角是这个角(边讲边用黄笔标这个角). 师:(指准图)根据圆周角定理,∠A 等于这个圆心角的一半,∠C 等于这个圆心角的一半,所以∠A+∠C 等于这个角加上这个角的一半.这个角加上这个角等于360°,所以∠A+∠C 等于360°的一半,等于180°.师:同样道理可以证明∠B+∠D=180°.师:(指板书)推论3是一个很有用的结论,下面就请同学们利用这个结论来做几个练习.(四)试探练习,回授调节4.如图,四边形ABCD 是⊙O 的内接四边形,∠A=60°, 填空:(1)∠BCD= °; (2)∠DCE= °; (3)∠B+∠D= °.5.如图,四边形ABCD 是⊙O 的内接四边形, ∠BOD=100°, 则∠BAD= °, ∠BCD= °.(五)尝试指导,讲授新课 师:下面我们来看一道例题. (师出示例题)例 求证:圆内接四边形的任何一个外角都等于它的内对角.(师画出图形写出已知求证,然后让生说证明思路,最后师写出证明过程,图形、已知、求证及证明过程如下)E.D CBAOA BOC D已知:如图,四边形ABCD 是⊙O 的内接四边形. 求证:∠DCE=∠A.证明:∵∠DCE+∠BCD=180°, 又∵∠A+∠BCD=180°, ∴∠DCE=∠A.(六)归纳小结,布置作业师:(指准板书)本节课我们学习了圆周角定理的推论3,圆内接四边形的对角互补;还学习了一个例题,利用推论3证明了圆内接四边形的任何一个外角都等于它的内对角.这个结论像别的定理、推论一样可以在做题的时候直接拿来用.(作业:P 88习题6.7.) 课外补充作业6.如图,∠A=30°,∠ABC=50°,则∠E= °, ∠D= °,∠ACB= °. 四、板书设计《24.1.4 圆周角》教案EDAOB C.ABCDE5、几何语言:∵四边形ABCD 内接于⊙O ∴∠A+∠C=180°,∠B+∠D=180° 三、应用举例:例1、若四边形ABCD 为圆内接四边形,则下列选项可能成立的是( )A.∠A ﹕∠B ﹕∠C ﹕∠D=1﹕2﹕3﹕4B.∠A ﹕∠B ﹕∠C ﹕∠D=2﹕1﹕3﹕4C.∠A ﹕∠B ﹕∠C ﹕∠D=3﹕2﹕1﹕4D.∠A ﹕∠B ﹕∠C ﹕∠D=4﹕3﹕2﹕1例2、如图,点C 、D 是⊙O 上不与点A 、B 重合的两点,(1)若∠AOB=70°,则∠ACB= ° (2)若∠ACB=130°,求∠AOB 的度数. (写出推理过程)练习:1、如图1,四边形ABCD 内接于⊙O , 则∠A+∠C= °,∠B+∠ADC= °, 若∠B=80°,则∠ADC= ,∠CDE= ;2、如图2,四边形ABCD 内接于⊙O ,∠AOC=100°,则∠B= , ∠D= ;3、四边形ABCD 内接于⊙O ,∠A :∠C=1:3,则∠A= ;4、如图3,梯形ABCD 内接于⊙O ,AD ∥BC ,∠B=75°,则∠C= °。

人教版九年级数学上册24.1.4圆周角定理教学设计

人教版九年级数学上册24.1.4圆周角定理教学设计
3.突破难点:
(1)运用多媒体演示或实物模型,帮助学生直观地理解弦所对圆周角与圆心角的关系。
(2)结合具体例题,引导学生总结解决圆周角定理相关问题的方法和技巧。
4.巩固练习:
设计具有梯度、层次的练习题,让学生在练习中巩固所学知识,提高解题能力。
5.课堂小结:
通过师生互动,引导学生回顾本节课所学内容,总结圆周角定理及其应用。
4.通过对圆周角定理的推导和应用,培养学生的空间想象能力和创新意识。
(三)情感态度与价值观
1.激发学生对数学学科的兴趣,使学生认识到数学在现实生活中的重要作用,提高学生的数学素养。
2.培养学生勇于探索、积极思考的精神,让学生在解决问题的过程中体验到数学学习的乐趣。
3.引导学生形成良好的学习习惯,如认真审题、规范答题、及时总结反思等,提高学生的学习效率。
(三)学生小组讨论
1.分组讨论:让学生分组讨论如何推导出圆周角定理。
师:请大家分组讨论,每个小组都要思考如何用几何方法推导出圆周角定理。
2.汇报交流:各小组汇报自己的推导过程,其他小组进行评价和补充。
师:现在请各小组派代表汇报你们的推导过程,其他小组认真听,看看有没有需要补充的地方。
3.教师点评:教师对学生的推导过程进行点评,给予肯定和指导。
1.完成作业时,请同学们认真审题,确保解答过程的规范性和准确性。
2.作业完成后,及时进行自我检查,对疑问的地方做好标记,以便在课堂上提问。
3.小组合作完成的开放性问题,鼓励大家积极参与讨论,发挥团队协作精神,共同解决问题。
师:大家的表现都非常棒!在推导过程中,我们要注意严谨的几何论证,确保每一步都合理。
(四)课堂练习
1.设计练习题:针对圆周角定理,设计不同难度的练习题,让学生在课堂上及时巩固所学知识。

九上数学《24.1.4圆周角——圆周角定理及其推论(教学设计)》(推荐五篇)

九上数学《24.1.4圆周角——圆周角定理及其推论(教学设计)》(推荐五篇)

九上数学《24.1.4圆周角——圆周角定理及其推论(教学设计)》(推荐五篇)第一篇:九上数学《24.1.4 圆周角——圆周角定理及其推论(教学设计)》24.1.4 圆周角——圆周角定理及其推论一、新课导入 1.导入课题:情景:如图,把圆心角∠AOB的顶点O拉到圆上,得到∠ACB.问题1:∠ACB有什么特点?它与∠AOB有何异同?问题2:你能仿照圆心角的定义给∠ACB取一个名字并下个定义吗?由此导入课题.(板书课题)2.学习目标:(1)知道什么是圆周角,并能从图形中准确识别它.(2)探究并掌握圆周角定理及其推论.(3)体会“由特殊到一般”“分类” “化归”等数学思想.3.学习重、难点:重点:圆周角定理及其推论.难点:圆周角定理的证明与运用.二、分层学习1.自学指导:(1)自学内容:教材第85页到第86页倒数第6行之前的内容.(2)自学时间:10分钟.(3)自学方法:完成探究提纲.(4)探究提纲: 1)圆周角的概念①顶点在圆上,并且两边都与圆相交的角叫做圆周角.②判别下列各图中的角是不是圆周角,并说明理由.② 猜一猜:一条弧所对的圆周角与圆心角有何数量关系?②量一量:用量角器量一量圆心角∠AOB和圆周角∠ACB.a.如图,∠ACB=∠AOB.b.你可以画多少个AB所对的圆周角?这些圆周角与∠AOB之间有什么数量关系?可以画无数个.这些圆周角都等于∠AOB的一半.③想一想:在⊙O 中任画一个圆周角∠BAC,圆心O与∠BAC可能会有几种位置关系?有3种位置关系.③ 证一证:a.当圆心O在∠BAC的一条边上时(如图1):b.当圆心O在∠BAC的内部时(如图2):作直径AD,同a,得.c.当圆心O在∠BAC的外部时(如图3).作直径AD,同a,得⑤归纳:一条弧所对的圆周角等于它所对的圆心角的一半.2.自学:学生可根据自学指导自主学习,相互交流.3.助学:(1)师助生:①明了学情:关注学生能否探究、归纳和证明圆周角定理.②差异指导:根据学情进行个别指导或分类指导.(2)生助生:小组内交流、研讨.4.强化:(1)圆周角定理的内容.(2)证明圆周角定理所体现的数学思想.(3)练习:如图,OA,OB,OC都是⊙O的半径,∠AOB=2∠BOC.求证:∠ACB=2∠BAC.证明:∵∠ACB=∠AOB,∠BAC=∠BOC,∠AOB=2∠BOC,∴∠ACB=2∠BAC.1.自学指导:(1)自学内容:教材第86页最后5行至第87页例4.(2)自学时间:10分钟.(3)自学方法:完成探究提纲.(4)探究提纲:①探究图中∠ACB,∠ADB和∠AEB的数量关系.1212a.如图1,∵∠ACB=∠AOB,∠ADB=∠AOB,∠AEB=∠AOB,∴∠ACB = ∠ADB = ∠AEB.即同弧所对的圆周角相等.b.如图2,AB=AE,∵AB=AE,∴∠AOB = ∠AOE.∵∠ACB=∠AOB, ∠ADE=∠AOE, ∴∠ACB = ∠ADE.即等弧所对的圆周角相等.c.由此可得,同弧或等弧所对的圆周角相等.d.练习:如图,点A、B、C、D在同一个圆上,四边形ABCD的对角线把四个内角分成8个角,1212121212这些角中哪些是相等的角?∠1=∠4,∠2=∠7,∠3=∠6,∠5=∠8 ②半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径.为什么?因为半圆(或直径)所对的圆心角是180°,所以它所对的圆周角是90°,即直角.90°的圆周角所对的圆心角是180°,所以它所对的弦是直径.④ 如图,用直角曲尺检查半圆形的工件,哪个是合格的?为什么?第二个工件是合格的.因为半圆所对的圆周角为直角.④如图, ⊙O 的直径AB为10cm,弦AC为6cm, ∠ACB的平分线交⊙O于D,求BC,BD的长.∵AB是直径,∴∠ACB=90°,∴在RtςACB中,BC=AB2-AC2=102-62=(.8cm)同理∠ADB=90°,又CD是∠ACB的平分线,∴∠DCA=∠DCB=∠ACB=45°, ∴∠DBA=∠DAB=45°,∴AD=B D.在RtςADB中,AD2+BD2=AB2,∴BD=1AB2=52cm.212⑤ 如图,你能设法确定一个圆形片的圆心吗?你有多少种方法?能,方法很多,例如:利用三角尺的直角可以找出两条直径(90°的圆周角所对的弦是直径),两直径交点就是圆心.2.自学:学生可在自学指导的指引下自主学习,相互交流.3.助学:(1)师助生:①明了学情:关注学生是否会完成任务.②差异指导:根据学情进行个别指导或分类指导.(2)生助生:小组内交流、研讨.4.强化:(1)常规辅助线:遇直径,想直角.(2)点一名学生口答探究提纲中的问题②,点两名学生板演问题④,并点评.1.自学指导:(1)自学内容:教材第87页“思考”到第88页“练习”之前的内容.(2)自学时间:7分钟.(3)自学方法:阅读课文,完成自学参考提纲.(4)自学参考提纲:①什么叫圆内接多边形和多边形的外接圆?如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆.ς和BCDς所对的圆心角,②在图中标出BAD这两个圆心角有什么关系?∠BAD+∠BCD= 180 度,同理可得:∠ABC+∠ADC= 180 度.③圆内接四边形的性质:圆内接四边形的对角互补.④练习:a.如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=100°,则∠BAD=50°,∠BCD=130°.b.如图,四边形ABCD内接于⊙O,E 为CD延长线上一点.若∠B=110°,求∠ADE的度数.∵四边形ABCD内接于⊙O,∴∠B+∠ADC=180°,又∠ADC+∠ADE=180°,∴∠ADE=∠B=110°.c.求证:圆内接平行四边形是矩形.∵圆内接四边形对角互补,而平行四边形对角相等,∴圆内接平行四边形四个角都是直角.∴圆内接平行四边形是矩形.d.已知:如图,两个等圆⊙O1和⊙O2都经过A,B两点,经过点A的直线与两圆分别交于点C,D,经过点B的直线与两圆分别交于点E,F.若CD∥EF,求证:四边形EFDC是平行四边形.连接AB.∵四边形ABEC是⊙O1的内接四边形,∴∠C+∠ABE=180°.又∵四边形ABFD是⊙O2的内接四边形.∴∠D+∠ABF=180°.又∵∠ABE+∠ABF=180°.∴∠C+∠D=180°.∴CE∥DF.又∵CD∥EF,∴四边形EFDC是平行四边形.2.自学:学生可结合自学指导自主学习.3.助学:(1)师助生:①明了学情:明了学生自学提纲的答题情况.②差异指导:根据学情进行个别指导或分类指导.(2)生助生:生生互动,交流研讨.4.强化:(1)圆内接四边形的性质.(2)让学生完成自学参考提纲中的第④题,并点评.(3)练习:圆内接四边形ABCD中,∠A、∠B、∠C的度数的比是2∶3∶6,求四边形ABCD各内角的度数.解:∵∠A∶∠C=2∶6,∠A+∠C=180°, ∴∠A=45°,∠C=135°.又∠A∶∠B=2∶3, ∴∠B =67.5°,∠D=180°-∠B=112.5°.三、评价1.学生的自我评价(围绕三维目标):这节课你学到了哪些知识?在哪些方面还感到比较困难?2.教师对学生的评价:(1)表现性评价:点评学生学习的态度、积极性、小组探究协作情况以及存在的问题等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):(1)这节课首先是类比圆心角得出圆周角的概念.在探究圆周角与圆心角关系过程中,要求学生学会使用分类讨论以及转化的数学思想解决问题,同时也培养了学生勇于探究的精神.其次,本节课还学习了圆内接四边形定义及圆内接四边形的性质,通过例题和习题训练,可以使学生在解答问题时灵活运用前面的一些基础知识,从中获取成功的经验,建立学习的自信心.(2)圆周角定理的证明分了三种情况探讨,这里蕴含着重要的数学思想——分类思想,教材中多处闪烁着分类思想的光环:三角形分类、方程的分类等,故教学过程中要整理相互交融的知识结构,加强分类思想的渗透.(时间:12分钟满分:100分)一、基础巩固(80分)1.(10分)下列四个图中,∠x是圆周角的是(C)2.(10分)如图,⊙O中,弦AB、CD相交于E点,且∠A=40°,∠AED=75°,则∠B=(D)A.15°B.40°C.5°D.35°3.(10分)如图,⊙O的直径AB与弦CD垂直,且∠BAC=40°,则∠BOD= 80°.4.(10分)如图,点B、A、C都在⊙O上,∠BOA=110°,则∠BCA=125°.5.(10分)如图,⊙O中,弦AD平行于弦BC,∠AOC=78°,求∠DAB的度数.解:∵AD∥BC,∴∠DAB=∠B.又∵∠B=∠AOC=39°.∴∠DAB=39°.6.(10分)如图,⊙O的半径为1,A,B,C是⊙O上的三个点,且12∠ACB=45°,求弦AB的长.解:连接OA、OB.∵∠BCA=45°,∴∠BOA=2∠BCA=90°.又OA=OB,∴△AOB是等腰直角三角形.∴AB=OA2+OB2=2OA2=2OA=2.7.(10分)如图,A,P,B,C是⊙O上的四点,∠APC=∠CPB=60°,判断△ABC的形状并证明你的结论.解:△ABC是等边三角形.证明如下:∵∠APC=∠ABC=60°,∠CPB=∠BAC=60°,∴∠ACB=180°-∠ABC-∠BAC=60°,∴△ABC是等边三角形.8.(10分)如图,已知A,B,C,D是⊙O上的四点,延长DC,AB相交于点E,若BC=BE.求证:△ADE是等腰三角形.证明:∵∠A+∠BCD=180°,∠BCE+∠BCD=180°.∴∠A=∠BCE.∵BC=BE,∴∠E=∠BCE,∴∠A=∠E, ∴AD=DE, ∴△ADE是等腰三角形.二、综合应用(10分)9.(10分)如图,已知EF是⊙O的直径,把∠A为60°的直角三角板ABC的一条直角边BC放在直线EF上,斜边AB与⊙O交于点P,点B与点O重合;将三角形ABC沿OE方向平移,使得点B与点E重合为止.设∠POF=x°,则x的取值范围是30≤x≤60 .三、拓展延伸(10分)ς10.(10分)如图,BC为半圆O的直径,点F是BCς上的中点,上一动点(点F不与B、C重合),A是BF设∠FBC=α,∠ACB=β.(1)当α=50°时,求β的度数;(2)猜想α与β之间的关系,并给予证明.解:(1)连接OA,交BF于点M.ς上的中点,∴OA垂直平分BF.∵A是BF∴∠BOM=90°-∠B=90°-α=40°.∴∠C=∠AOB=×40°=20°, 即β=20°.(2)β=45°-α.证明:由(1)知∠BOM=90°-α.又∠C=β=∠AOB, ∴β=(90°-α)=45°-α.121212121212第二篇:圆周角定理课题名称:圆周角定理一、概述:《圆周角定理》是课程标准高中选修4-1第二章第2.1节的内容,是学生在初中已经初步掌握圆与直线的关系的基础上再深入研究圆与直线的一节起始课,它是解决圆内有关角的问题的基础,也为学习有关圆的内接四边形的角的关系做准备。

九年级数学上册24.1.4圆周角教案新版新人教版

九年级数学上册24.1.4圆周角教案新版新人教版

24.1.4 圆周角一、教学目标1.理解圆周角的概念,会叙述并证明圆周角定理.2.理解圆周角与圆心角的关系并能运用圆周角定理及推论解决简单的几何问题.3.了解圆周角的分类,会推理验证“圆周角与圆心角的关系”.二、课时安排1课时三、教学重点理解圆周角与圆心角的关系并能运用圆周角定理及推论解决简单的几何问题. 四、教学难点了解圆周角的分类,会推理验证“圆周角与圆心角的关系”.五、教学过程(一)导入新课问题1 什么叫圆心角?指出图中的圆心角?问题2 如图,∠BAC的顶点和边有哪些特点?(二)讲授新课活动1:小组合作探究1:圆周角的定义定义:顶点在圆上,并且两边都与圆相交的角叫做圆周角判一判:下列各图中的∠BAC是否为圆周角并简述理由.探究2; 圆周角定理及其推论如图,连接BO,CO,得圆心角∠BOC.试猜想∠BAC与∠BOC存在怎样的数量关系.探究3:如图,点A、B、C、D在同一个圆上,AC、BD为四边形ABCD的对角线.(1)完成下列填空:∠1= . ∠2= . ∠3=.∠5= . (2)若AB=AD,则∠1与∠2是否相等,为什么?(3)若AC是半圆,∠ADC= ,∠ABC= .探究4:四、圆内接四边形若一个多边形各顶点都在同一个圆上,那么,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆.如图,四边形ABCD为⊙O的内接四边形,⊙O为四边形ABCD的外接圆.猜想:∠A与∠C, ∠B与∠D之间的关系为 .活动2:探究归纳圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.推论1:同弧所对的圆周角相等推论2:等弧所对的圆周角相等推论3:半圆(或直径)所对的圆周角是直角.反之,直角所对的弦是直径.圆内接四边形的性质:圆内接四边形的对角互补.(三)重难点精讲例:如图,⊙O直径AC为10cm,弦AD为6cm.(1)求DC的长;(2)若∠ADC的平分线交⊙O于B, 求AB、BC的长.解:(1)∵AC 是直径, ∴ ∠ADC =90°. 在Rt△ADC 中,22221068;DC AC AD =-=-=(2)∵ AC 是直径, ∴ ∠ABC =90°. ∵BD 平分∠ADC, ∴∠ADB=∠CDB.又∵∠ACB =∠ADB , ∠BAC =∠BDC . ∴ ∠BAC =∠ACB, 在Rt△ABC 中,AB 2+BC 2=AC 2,221052(cm).22AD BC AC ∴==== 归纳:解答圆周角有关问题时,若题中出现“直径”这个条件,则考虑构造直角三角形来求解.(四)归纳小结 1、圆周角的定义; 2、圆周角定理及证明; 3、圆周角定理及推论的运用。

人教版九年级上册24.1.4圆周角教学设计

人教版九年级上册24.1.4圆周角教学设计

人教版九年级上册24.1.4圆周角教学设计一、教学目标1.知道圆周角的定义2.能够计算圆周角的度数3.熟悉圆周角在实际应用中的运用二、教学重点1.圆周角的定义2.计算圆周角的度数三、教学难点1.熟悉圆周角在实际应用中的运用四、教学方法1.讲解:通过讲解圆周角的定义和计算方法,让学生掌握基本概念和方法。

2.实验:通过展示圆形物品,让学生亲身体验圆周角的度数。

3.案例分析:通过实例分析,帮助学生了解圆周角在实际应用中的运用。

五、教学过程1. 导入新知识通过展示圆形物品,如扇形、轮胎等,让学生感受圆形的特征,并引入圆周角的概念。

2. 讲解圆周角的定义让学生掌握圆周角的定义:圆周角是指夹在圆内的两条弧所对的角。

3. 讲解圆周角的计算方法1.讲解圆周角的度数:圆的周长为360度,因此圆周角所对的弧长与圆周长的比例为所对的角与360度的比例。

2.计算圆周角的度数:根据所对弧的长度与圆周长的比例以及圆周的度数制求得圆周角的度数。

4. 实验展示通过展示圆形物品,让学生通过手动旋转掌握圆周角的度数,并在班级中交流讨论。

5. 案例分析1.讲解圆周角在电子产品外观设计中的应用。

2.讲解圆周角在建筑、机器等领域中的应用。

六、教学评价通过布置作业,检测学生对圆周角的掌握程度,并通过课堂互动,了解学生对圆周角在实际应用中的理解情况。

七、板书设计1.圆周角的定义:夹在圆内的两条弧所对的角。

2.圆周角的计算方法:所对弧长与圆周长的比例。

八、课堂设计本节课内容较为抽象,需要通过实物展示和案例分析来帮助学生掌握基本概念和方法。

同时,教师还需要与学生进行及时互动,以确保学生的参与度和掌握程度。

人教版数学九年级上册24.1.4《圆周角》教案

人教版数学九年级上册24.1.4《圆周角》教案
在实践活动环节,分组讨论和实验操作让学生们有了亲身体验,从实践中去理解圆周角的性质。看到他们动手操作、积极讨论,我觉得这个环节对他们的帮助很大。但我也注意到,有些小组在讨论时还是抓不住重点,需要我进一步引导。
学生小组讨论的环节,让我看到了学生们的思维碰撞。他们提出了很多有创意的想法,也尝试着去解决实际问题。不过,我也发现有些学生在讨论中过于依赖同伴,自己的思考还不够深入。
人教版数学九年级上册24.1.4《圆周角》教案
一、教学内容
人教版数学九年级上册24.1.4《圆周角》教案,主要包括以下内容:
1.圆周角的定义:通过直观演示和实例,让学生理解圆周角是由圆上的两条半径或弦所夹的角,并掌握圆周角的度数是360度。
2.圆周角定理:引导学生探究并证明圆周角等于其所对的圆心角的一半,以及圆内接四边形的对角互补。
-着重讲解圆周角定理的证明过程,特别是如何通过几何构造和演绎推理得出圆周角等于其所对圆心角的一半。
-结合实际例题,如测量圆形场地中的角度问题,强调圆周角定理在解决具体问题中的应用。
-对于特殊圆周角,通过对比分析,让学生掌握直角圆周角和锐角圆周角的性质,并能灵活应用。
2.教学难点
-理解并掌握圆周角定理的证明过程。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了圆周角的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对圆周角的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.重点难点解析:在讲授过程中,我会特别强调圆周角的定义和圆周角定理这两个重点。对于难点部分,如圆周角定理的证明过程,我会通过举例和比较来帮助大家理解。

人教版九年级数学上册24.1.4《圆周角》教学设计

人教版九年级数学上册24.1.4《圆周角》教学设计

人教版九年级数学上册24.1.4《圆周角》教学设计一. 教材分析《圆周角》是人民教育出版社九年级数学上册第24章《圆》的第四节内容。

本节主要让学生通过探究圆周角的性质,掌握圆周角定理及其推论,并能在实际问题中运用。

圆周角定理是圆的内接四边形定理的重要组成部分,对于学生理解圆的性质,解决与圆有关的问题具有重要意义。

二. 学情分析学生在学习本节内容前,已经掌握了圆的基本概念、圆的性质、圆的周长和面积等知识。

但学生对于圆周角的理解和应用还不够深入,需要通过本节内容的学习,进一步巩固和提高。

同时,学生对于几何图形的观察和分析能力有待提高,需要在教学过程中加强引导和培养。

三. 教学目标1.知识与技能目标:使学生掌握圆周角定理及其推论,能运用圆周角定理解决简单问题。

2.过程与方法目标:通过观察、分析、推理等方法,培养学生的几何思维能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识。

四. 教学重难点1.重点:圆周角定理及其推论。

2.难点:圆周角定理的证明和应用。

五. 教学方法1.采用问题驱动法,引导学生观察、分析、推理,从而得出圆周角定理。

2.运用案例教学法,让学生通过实际问题,运用圆周角定理解决问题。

3.采用小组合作学习法,培养学生的团队合作意识。

六. 教学准备1.准备相关的几何模型和图片,以便于学生观察和分析。

2.准备一些实际问题,供学生练习和应用。

3.准备PPT,用于展示和讲解。

七. 教学过程1.导入(5分钟)利用PPT展示一些与圆有关的实际问题,引导学生思考圆周角的概念。

2.呈现(10分钟)利用PPT展示圆周角定理的内容,让学生初步了解圆周角定理。

3.操练(10分钟)让学生分组讨论,通过观察、分析、推理,证明圆周角定理。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)让学生运用圆周角定理解决一些实际问题,巩固所学知识。

5.拓展(10分钟)让学生进一步探索圆周角定理的推论,了解圆周角定理在几何中的应用。

人教版数学九年级上册:24.1.4 圆周角 教案(附答案)

人教版数学九年级上册:24.1.4 圆周角  教案(附答案)

24.1.4 圆周角第1课时圆周角定理及其推论教学目标1.理解圆周角的定义,会区分圆周角和圆心角.2.掌握圆周角定理及其两个推论,能在证明或计算中熟练的应用它们处理相关问题.预习反馈阅读教材P85~87,完成下列问题.1.顶点在圆上,并且两边都与圆相交的角叫做圆周角.2.圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.3.如图所示,OA,OB是⊙O的两条半径,点C在⊙O上.若∠AOB=90°,则∠ACB的度数为45°.4.圆周角定理的推论:同弧或等弧所对的圆周角相等.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.5.如图所示,点A,B,C在圆周上,∠A=65°,则∠D的度数为65°.第5题图第6题图6.如图,A,B,C均在⊙O上,且AB是⊙O的直径,AC=BC,则∠C=90°,∠A=45°.例题讲解知识点1 圆周角定理例1 (教材补充例题)如图所示,点A ,B ,C 在⊙O 上,连接OA ,OB ,若∠ABO =25°,求∠C 的度数.【解答】 ∵OA =OB ,∠ABO =25°, ∴∠BAO =∠ABO =25°. ∴∠AOB =130°. ∴∠C =12∠AOB =65°.【跟踪训练1】 如图,点A ,B ,C 在⊙O 上,若∠ABC +∠AOC =90°,则∠AOC 大小为60°.知识点2 圆周角定理的推论例2 (教材P87例4)如图,⊙O 的直径AB 为10 cm ,弦AC 为6 cm ,∠ACB 的平分线交⊙O 于D ,求BC ,AD ,BD 的长.【解答】 连接OD. ∵AB 是直径,∴∠ACB =∠ADB =90°. 在Rt △ABC 中,BC=AB2-AC2=102-62=8(cm).∵CD平分∠ACB,∴∠ACD=∠BCD.∴∠AOD=∠BOD.∴AD=BD.又在Rt△ABD中,AD2+BD2=AB2,∴AD=BD=22AB=22×10=52(cm).例3(教材补充例题)如图,△ABC的顶点都在⊙O上,AD是⊙O的直径,AD=2,∠B=∠DAC,则AC=1.【归纳总结】 1.圆周角定理及其推论中的转化思想:(1)弧是圆周角、圆心角的中介,通过弧可实现圆周角、圆心角之间的转化;(2)在同圆或等圆中,90°的圆周角和直径之间可以相互转化.2.圆周角定理及其推论中常用的辅助线:当题目中出现直径时,通常作出直径所对的圆周角,可得直角,然后结合直角三角形解决问题,即“见直径作直角”.3.利用圆周角定理及其推论进行证明时常用的思路:(1)在同圆或等圆中,若要证弧相等,则考虑证明这两条弧所对的圆周角相等;(2)在同圆或等圆中,若要证圆周角相等,则考虑证明这两个圆周角所对的弧相等;(3)当有直径时,常利用直径所对的圆周角为直角解决问题.【跟踪训练2】如图所示,点A,B,C在⊙O上,已知∠B=60°,则∠CAO=30°.第2题图第3题图【点拨】 连接OC ,构造圆心角的同时构造等腰三角形.【跟踪训练3】 如图所示,AB 是⊙O 的直径,AC 是弦,若∠ACO =32°,则∠B =58°.巩固训练1.如图所示,已知圆心角∠BOC =100°,点A 为优弧BC ︵上一点,则圆周角∠BAC 的度数为50°.第1题图 第2题图2.如图所示,OA 为⊙O 的半径,以OA 为直径的⊙C 与⊙O 的弦AB 相交于点D ,若OD =5 cm ,则BE =10__cm .【点拨】 利用两个直径构造两个垂直,从而构造平行,产生三角形的中位线. 3.如图所示,在⊙O 中,∠AOB =100°,C 为优弧AB ︵的中点,则∠CAB 的度数为65°.第3题图 第4题图4.如图,OA ,OB ,OC 都是⊙O 的半径,∠AOB =2∠BOC.求证:∠ACB =2∠BAC. 证明:∵∠AOB 是劣弧AB ︵所对的圆心角,∠ACB 是劣弧AB ︵所对的圆周角, ∴∠AOB =2∠ACB.同理∠BOC =2∠BAC.∵∠AOB=2∠BOC,∴∠ACB=2∠BAC.【点拨】看圆周角一定先看它是哪条弧所对的圆周角,再看所对的圆心角.课堂小结圆周角的定义、定理及推论.第2课时圆内接四边形教学目标1.理解圆周角的定义,会区分圆周角和圆心角.2.理解同弧或等弧所对的圆心角和圆周角的关系,理解记忆各个推论,能在证明或计算中熟练的应用它们处理相关问题.预习反馈阅读教材P87~88,完成下列问题.1.如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做多边形的外接圆.如图,四边形ABCD是⊙O的内接四边形,⊙O是四边形ABCD的外接圆.第1,2题图第3题图2.圆内接四边形的对角互补.如图,∠A+∠C=180°,∠B+∠D=180°.3.如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=100°,则∠A=50°,∠BCD =130°.例题讲解例 如图所示,已知AB 是⊙O 的直径,∠BAC =32°,D 是AC ︵的中点,那么∠DAC 的度数是多少?【解答】 连接BC.∵AB 是⊙O 的直径,∴∠ACB =90°. 又∵∠BAC =32°, ∴∠B =90°-32°=58°.∴∠D =180°-∠B =122°(圆内接四边形的对角互补). 又∵D 是AC ︵的中点,∴∠DAC =∠DCA =12(180°-∠D)=29°.【跟踪训练1】 已知圆内接四边形ABCD 中,∠A ∶∠B ∶∠C =1∶3∶5,则∠D 的度数为90°.【跟踪训练2】 如图,在⊙O 的内接四边形ABCD 中,点E 在DC 的延长线上.若∠A =50°,则∠BCE =50°.巩固训练1.如图,⊙O 的内接四边形ABCD 中,∠A =120°,则∠BOD 等于120°.第1题图第2题图2.如图所示,圆内接四边形ABCD两组对边的延长线分别相交于点E,F,且∠A=56°,∠E=32°,则∠F=36°.课堂小结圆内接四边形的对角互补.。

人教版九年级数学上册24.1.4《圆周角》优秀教学案例

人教版九年级数学上册24.1.4《圆周角》优秀教学案例
2.引导学生通过讨论、交流、分享等方式,共同探讨圆周角的性质,提高他们的合作交流能力。
3.教师要关注小组合作的过程,及时发现和解决问题,确保小组合作活动的有效进行。
4.利用小组合作评价,鼓励学生积极参与,培养他们勇于承担责任的精神。
(四)总结归纳
1.引导学生对所学知识进行反思,巩固所学内容,提高他们的自我学习能力。
2.探究性学习的设计:在教学过程中,我设计了具有挑战性和梯度的问题,引导学生逐步深入探讨圆周角的性质和定理。同时,我鼓励学生提出问题,培养他们敢于质疑的精神,使他们在问题中发现问题、解决问题。这种探究性学习的设计有效地培养了学生的独立思考能力和解决问题的能力。
3.小组合作的学习方式:我设计了小组合作探究活动,让学生在小组内部分工合作,共同完成任务,培养他们的团队协作能力和沟通能力。通过小组合作,学生能够相互学习、相互帮助,提高了他们的合作交流能力,同时也增加了课堂的活力和互动性。
2.通过实物展示或模型制作,让学生直观地感受到圆周角的形成过程,帮助学生建立圆周角的概念。
3.设计具有启发性的问题,引导学生思考圆周角与日常生活的联系,提高他们的实际应用能力。
4.创设轻松愉快的学习氛围,使学生在愉悦的情感状态下学习,提高他们的学习效率。
(二)讲授新知
1.引导学生通过观察、操作、推理等方法,自主探索圆周角的性质,培养他们的独立思考能力。
2.引导学生通过观察、操作、推理等方法,自主探索圆周角的性质,培养他们的独立思考能力。
3.在问题解决过程中,教师要给予学生及时的点拨和指导,帮助他们克服困难,提高他们的解决问题的能力。
4.鼓励学生提出问题,培养他们敢于质疑的精神,使他们在问题中发现问题、解决问题。
(三)小组合作
1.设计小组合作探究活动,让学生在小组内部分工合作,共同完成任务,培养他们的团队协作能力。

24.1.4 圆周角 教案 —人教版数学九年级上册

24.1.4  圆周角 教案 —人教版数学九年级上册

24.1.4 圆周角第1课时圆周角定理及推论一、教学目标1.理解圆周角的概念,识别圆心角和圆周角.2.理解圆周角定理及其推论.3.熟练掌握圆周角定理及其推论的灵活运用.二、教学重难点重点掌握圆周角定理和推论及运用.难点运用分类思想证明圆周角定理.重难点解读1.圆周角定理及其推论1成立的前提是在同圆或等圆中.2.在同圆或等圆中,如果两个圆周角相等,那么它们所对的弧相等,所对的弦也相等.3.由圆周角定理推论2可知,如果一个三角形一条边上的中线等于这条边的一半,那么这个三角形是以这条边为斜边的直角三角形.4.求一条弦所对的圆周角的度数时,应注意这条弦所对的圆周角有两种情况.5.在同圆或等圆中,一条弦两侧所对的两个圆周角的度数之和是180°.6.圆心角与圆周角是圆内经常出现的两种角,巧用“一条弧所对的圆周角是它所对的圆心角的一半”这一结论,可以帮助我们实现圆周角与圆心角之间的转化.三、教学过程活动1 旧知回顾1.什么叫圆心角?2.圆心角、弦、弧之间有什么内在联系?3.如图,已知AB是⊙O的直径,C,D是⌒BE的三等分点,∠AOE=60°,则∠COE的大小是()A.40°B.60°C.80°D.120°活动2 探究新知1.将圆心角的顶点进行移动,如图1.(1)当角的顶点在圆心时,我们知道这样的角叫圆心角,如∠AOB.当角的顶点运动到圆周时,如∠ACB.∠ACB有什么特点?它与∠AOB有何异同?(2)观察图2,你能仿照圆心角的定义给这类角取一个名字并下个定义吗?(3)比较概念:圆心角定义中为什么没有提到“两边都与圆相交”呢?2.教材第85页探究.提出问题:(1)经过测量,图24.1-11中的圆周角∠ACB和圆心角∠AOB之间有什么关系?(2)任意作一个圆,任取一条弧,作出它所对的圆周角与圆心角,测量它们的度数,你发现什么规律?(3)一条弧所对的圆心角有几个?所对的圆周角有几个?(4)改变动点C在圆周上的位置,看看圆周角的度数有没有变化?你发现了什么?(5)如果把上述发现的结论中的“同弧”改为“等弧”,结论还正确吗?(6)观察下图,BC是⊙O的直径.请问:BC所对的圆周角∠BAC是锐角、直角还是钝角?(7)如图,若圆周角∠BAC=90°,那么它所对的弦BC经过圆心吗?为什么?由此能得出什么结论?活动3 知识归纳1.顶点在圆上,并且两边都与圆相交的角叫做圆周角.2.圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半 .推论1:同弧或等弧所对的圆周角相等 .推论2:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径 . 活动4 典例赏析及练习例1 如图,点A,B,C都在⊙O上,∠AOC=130°,∠ACB=40°,则∠BOC= 50° .例2 如图,BC是⊙O的弦,OA⊥BC,∠AOB=55°,则∠ADC的度数是( C )A.55°B.45°C.27.5°D.25°例3 教材第87页例4.涉及直径时,通常利用“直径所对的圆周角是直角”来构造直角三角形,并借助直角三角形的性质来解决问题.练习:1.教材第88页练习第1题.2.如图,AB是⊙O的直径,C,D是⊙O上的两点,且AC=CD.连接BC,BD,若∠CBD=20°,则∠A= 70 °.3.如图,A,D是⊙O上的两点,BC是直径,若∠D=40°,则∠ACO=( D )A.80°B.70°C.60°D.50°4.教材第88页练习第3题.5.如图,AB是⊙O的直径,CD是⊙O的弦,如果∠ACD=30°. (1)求∠BAD的度数;(2)若AD=3,求BD的长.【答案】解:(1)∵AB是⊙O的直径,∴∠ADB=90°.∵∠B=∠ACD=30°,∴∠BAD=90°-∠B=60°;(2)在Rt△ADB中,∵∠B=30°,∴AD=12 AB.∴AB=23,BD=22AB AD=3.活动5 课堂小结1.圆周角的概念.2.圆周角定理及推论.四、作业布置与教学反思第2课时圆内接四边形一、教学目标1.掌握圆内接多边形、多边形的外接圆的概念.2.理解圆内接四边形的性质.3.通过探究圆内接四边形的性质,发展学生的推理能力.二、教学重难点重点圆内接四边形对角互补的探索与运用.难点圆内接四边形性质的灵活应用以及添加辅助线.重难点解读圆内接四边形的对角互补,并且任何一个外角都等于它的内对角.三、教学过程活动1 旧知回顾1.回顾圆周角定理及其两个推论.2.如图,点C在以AB为直径的⊙O上,AB=10 cm,∠A=30°,则BC的长为_________cm.3.如图,点A,B,C在⊙O上,连接OA,OB,若∠ABO=25°,则∠C=_________.活动2 探究新知教材第87页思考.提出问题:(1)图24.1-17中,∠A是圆周角吗?∠ABC,∠C,∠ADC呢?(2)∠A与∠C,∠ABC与∠ADC之间有什么关系?用圆周角定理尝试证明;(3)由此你能得出圆内接四边形的什么结论?活动3 知识归纳1.如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆 .2.圆内接四边形的对角互补 .活动4 典例赏析及练习例1 如图,四边形ABCD内接于⊙O,E为CD延长线上一点,若∠B=100°,则∠ADE= 100° .例2 如图,点A,B,C,D四个点均在⊙O上,∠A=70°,则∠C为( C )A.35°B.70°C.110°D.120°练习:1.如图,四边形ABCD是⊙O的内接四边形,∠BOD=100°,则∠BCD= 130 °.2.圆内接四边形ABCD中,∠A∶∠B∶∠C=2∶3∶7,则∠D= 120 °.3.如图,四边形ABCD是⊙O的内接四边形,AB=AD,若∠C=68°,则∠ABD为( A )A.34°B.56°C.68°D.112°4.如图,四边形ABCD是⊙O的内接四边形,∠ABC=60°,点D是⌒AC的中点,点E在OC的延长线上,且CE=AD,连接DE.求证:四边形AOCD是菱形.【答案】证明:如图,连接OD.∵点D是⌒AC的中点,∴⌒AD=⌒DC.∴AD=DC,∠AOD=∠DOC.∵∠AOC=2∠ABC=120°,∴∠AOD=∠DOC=60°. ∵OC=OD,∴OA=OC=CD=AD,∴四边形AOCD是菱形.活动5 课堂小结1.圆内接多边形和多边形外接圆的概念.2.圆内接四边形的性质.四、作业布置与教学反思。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

24.1.4 圆周角
教学目标:
1.知识与技能:理解圆周角的概念,掌握圆周角定理,并会通过它进行证明和计算。

2.过程与方法:经历圆周角定理的发现、探究与证明,使学生感悟分类讨论的数学思想,体会数学知识的一般形成过程。

3.情感态度:通过学生自主探究圆周角的概念及定理,合作交流的学习过程,体验实现自身价值的愉悦和数学的应用。

教学重点:圆周角定理的理解与应用。

教学难点:运用分类讨论思想证明圆周角的定理。

教学过程:
一、情境导入
(课件展示海洋馆图片)在海洋馆里,人们可以通过圆弧形玻璃窗观看其中的海洋动物.
问题1如图,AB为圆弧形玻璃窗,同学甲站在圆心O的位置,同学乙站在正对着玻
璃窗的靠墙的位置C,他们的视角(∠AOB和∠ACB)有什么关系?
问题2如果同学丙,丁分别站在其他靠墙的位置D和E,他们的视角(∠ADB和∠AEB) 和同学乙的视角相同吗?
(相同,2∠ACB=2∠AEB=2∠ADB=∠AOB)
二、探索新知
1.圆周角的定义
顶点在圆上,并且两边都与圆相交的角叫做圆周角.
探究1判别下列各图形中的角是不是圆周角.
归纳总结圆周角必须具备的两个条件:(1)顶点在圆上;(2)两边都要圆相交.
2.圆周角定理
探究2 分别量一下图中AB所对的两个圆周角的度数,比较一下,再变动点C在圆周上的位置,圆周角的度数有没有变化?你能发现什么规律?再分别量
出图中AB所对的圆周角和圆心角的度数,比较一下,你有什么发现?
归纳总结在同圆或等圆中,同弧或等弧所对的圆周角相等,都
等于这条弧所对的圆心角的一半.
动手操作学生先动手画圆周角,将
圆对折,使折痕经过圆心和圆周角的顶点,再相互交流,比较探究圆心与圆周角的位置关系,并请学生代表上讲台展示交流成果,教师再利电脑动画展示圆心与圆周角可能具有的不同的位置关系,并由学生归纳圆心与圆周角具有的三种不同的位置关系.
(1)圆心在圆周角的一边上.
(2)圆心在圆周角的内角.
(3)圆心在圆周角的外部.
分析第(1)种情况:
圆心在∠BAC 的一条边上.
12OA OC A C A BOC BOC A C =⇒∠=∠⎫⇒∠=∠⎬∠=∠+∠⎭
. 归纳总结
圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.
注意 (1)定理运用的条件是“同圆或等圆中”,而且必须是“同弧或等弧”;(2)若将定理中的“同弧或等弧”改为“同弦或等弦”结论就不一定成立了,因为一条弧所对的圆周角有两种情况,它们一般不相等,而是互补.
3.圆周角定理的推论
议一议 (1)特殊的弧——半圆,它所对的圆周角是多少度?
(2)如果一条弧所对的圆周角是直角,那么这条弧所对的圆心角是多少度?
归纳总结
圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.
4.圆内接四边形
如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆.
探究 圆内接四边形的角之间有何关系?
如图,连接OB ,OD .∵∠A 所对的弧为BCD ,∠C 所对的弧为BAD ,
又BCD 和BAD 所对的圆心角的和是周角,∴∠A +∠C =3602
°=180°.同理 ∠B +∠D =180°.
由此可知圆内接四边形的性质:圆内接四边形的对角互补.
三、掌握新知
例1 如图,圆O 的直径AB 为10cm ,弦AC 为6cm ,∠ACB 的平分
线交圆O 于D .求BC ,AD ,BD 的长.
分析:根据直径所对的角是90°,判断出△ABC 和△ABD 是直角三角形,根据圆周角∠ACB 的平分线交⊙O 于D ,判断出△ADB 为等腰
直角三角形,然后根据勾股定理求出具体值.
解:∵AB 是直径,∴∠ACB =∠ADB
=90°
.
在Rt △ABC 中,222AB AC BC
=+,AB =10cm ,AC =6cm , ∴2222210664BC AB AC =-=-=.
∴BC =64=8(cm ).又CD 平分∠ACB ,
∴∠ACD =∠BCD ,∴A D DB =.∴AD =BD . 又在Rt △ABD 中,222AD BD AB +=,∴22210AD BD +=.∴AD =BD =1002=52cm. 例2 如图,AB 为圆O 的直径,点C ,D 在圆O 上,∠AOD =30°,求∠BCD 的度数. 分析:先根据等腰三角形的性质得到∠A =∠ADO ,再根据三角形内角和
定理计算出∠A =75°,然后根据圆的内接四边形的性质求∠BCD 的度数. 解:∵OD =OA ,∴∠A =∠ADO .∵∠AOD =30°,
∴∠A =12
(180°-30°)=75°.∵∠A +∠BCD =180°, ∴∠BCD =180°-75°=105°.
四、巩固练习
1.如图,∠A =50°,∠AOC =60°,BD 是⊙O 的直径,则∠AEB 等于
( )
A.70°
B.110°
C.90°
D.120°.
2.如图,△ABC 的顶点A ,B ,C 都在⊙O 上,∠C =30°,AB=2,则⊙O 的
半径是多少?
答案:1.B
2.连接OA ,OB .
∵∠C =30°,∴∠AOB =60°.
又OA =OB ,∴△AOB 是等边三角形.
∴OA =OB =AB =2,即半径为2.
五、归纳小结
本节课所学的知识点有哪些?常见的辅助线有哪些?。

相关文档
最新文档