15 欧拉图与哈密顿图
欧拉图与哈密顿图
.
欧拉图与哈密顿图 1.2 哈密顿图及哈密顿通路
➢ 定义8.21
图G称为可2-着色(2-chromatic),
如果可用两种颜色给G的所有顶点着色, 使每个顶点着一种颜色,而同一边的两端点 必须着不同颜色。
.
欧拉图与哈密顿图 1.2 哈密顿图及哈密顿通路
✓ 定理8.16
设图G是可2-着色的。如果G是哈密顿 图,那么着两种颜色的顶点数目相等;如 果G有哈密顿通路,那么着两种颜色的顶点 数目之差至多为一。
✓定理8.14
设图G为具有n个顶点的简单无向图,如果G的 每一对顶点的度数之和都不小于n – 1 ,那么G中有 一条哈密顿通路;如果G的每一对顶点的度数之和 不小于n,且n≥3,那么G为一哈密顿图。
.
欧拉图与哈密顿图 1.2 哈密顿图及哈密顿通路
✓ 定理8.15
当n为不小于3的奇数时,
Kn上恰有 n 1 条互相均无任何公共边的 2
离散数学导论
.
欧拉图与哈密顿图 1.1欧拉图与欧拉路径
➢ 定义8.19
图G称为欧拉图(Euler graph),
如果图G上有一条经过G的所有顶点、所有
边的闭路径。图G称为欧拉路径(Euler
walk),如果图G上有一条经过G 所有顶点、所有边的路径。
.
欧拉图与哈密顿图 1.1欧拉图与欧拉路径
✓ 定理8.11
.
欧拉图与哈密顿图 1.2 哈密顿图及哈密顿通路
➢ 定义8.20
无向图G称为哈密顿图(Hamilton graph),
如果G上有一条经过所有顶点的回路
(也称这一回路为哈密顿回路)。称无向图有哈密顿 通路(非哈密顿图),如果G上有一条经过所有顶点的
离散数学课件15欧拉图与哈密顿图
下面设G为非平凡图,设G是m条边的n阶无 向图,
并设G的顶点集V={v1,v2,…,vn}。 必要性。因为G为欧拉图,所以G中存在欧 拉回路,
设C为G中任意一条欧拉回路,vi,vj∈V, v2i0,2v0/7j/都23 在C上,
定理15.1的证明
充分性。由于G为非平凡的连通图可知,G中边数 m≥1。
2020/7/23
半欧拉图的判定定理
定理15.2 无向图G是半欧拉图当且仅当G是连通的 ,且G中恰有两个奇度顶点。
证明 充分性。设G的两个奇度顶点分别为u0和v0, 对G加新边(u0,v0),得G =G∪(u0,v0), 则G 是连通且无奇度顶点的图, 由定理15.1可知,G 为欧拉图, 因而存在欧拉回路C ,而C=C -(u0,v0)为G中一 条欧拉通路, 所以G为半欧拉图。
并2行从020/7遍/C23 上G 的i中某的顶欧点拉vr回开路始C行遍i,,i=每1遇,2,到…v,s*j,i,最就后
半欧拉图的判定定理
定理15.2 无向图G是半欧拉图当且仅当G是连通的 ,且G中恰有两个奇度顶点。
证明 必要性。设G是m条边的n阶无向图,因为G为 半欧拉图, 因而G中存在欧拉通路(但不存在欧拉回路), 设Г=vi0ej1vi1…vim-1ejmvim为G中一条欧拉通路, vi0≠vim。 v∈V(G),若v不在Г的端点出现,显然d(v)为偶 数, 若v在端点出现过,则d(v)为奇数,
欧拉对物理力学、天文学、弹道学、航海学、建筑学、音 乐都有研究!有许多公式、定理、解法、函数、方程、常数等 是以欧拉名字命名的。欧拉写的数学教材在当时一直被当作标 准教程。19世纪伟大的数学家高斯曾说过“研究欧拉的著作永 远是了解数学的好方法”。欧拉还是数学符号发明者,他创设 的许多数学符号,例如π,i,e,sin,cos,tg,Σ,f (x)等等, 至今202沿0/7/2用3 。
欧拉图和哈密而顿图
17
15.欧拉图与哈密顿图 欧拉图与哈密顿图
15.2 哈密顿图
证明: 证明: 是图的一条哈密尔顿回路, 设 C是图的一条哈密尔顿回路, 则对于 的任一 是图的一条哈密尔顿回路 则对于V的任一 非空真子集S可知 可知: 非空真子集 可知: w(C-S) ≤|S| w(C-S)表示 删去 顶点集后得到的图的连通分 表示C删去 表示 删去S顶点集后得到的图的连通分 图的个数。由于G是由 和一些不在C中的边构 是由C和一些不在 图的个数。由于 是由 和一些不在 中的边构 成的, 的生成子图, 成的,C-S是G-S的生成子图,所以 是 的生成子图 w(G-S) ≤ w(C-S) ≤|S|
11
15.欧拉图与哈密顿图 欧拉图与哈密顿图
15.1 欧拉图
定理15.5 G是非平凡的欧拉图当且仅当 是连通 是非平凡的欧拉图当且仅当G是连通 定理 是非平凡的欧拉图当且仅当 的且为若干个边不重的圈的并。 的且为若干个边不重的圈的并。
12
15.欧拉图与哈密顿图 欧拉图与哈密顿图
15.1 欧拉图
Fleury算法: 算法: 算法 1) 任取 0∈V(G),令P0=v0; 任取v , 2) 设 Pi=v0e1v1e2…eivi 已经行遍 , 按下面方法 来从E(G)-{e1,e2…ei}中选取 i+1: 中选取e 来从 中选取
4
15.欧拉图与哈密顿图 欧拉图与哈密顿图
15.1 欧拉图 现从G’中取二个顶点 中取二个顶点v 现从 中取二个顶点 i和vj,且vi和vj没有直接联 之间加一根联线变为图G, 现在v 线,现在 i和vj之间加一根联线变为图 ,则变 为奇数点,则从v 一定存在一条欧拉通路 通路。 为奇数点,则从 i到vj一定存在一条欧拉通路。
第十五章欧拉图与哈密顿图
具有哈密顿回路的图称为半哈密顿图。平 凡图是哈密顿图。
图中所示的三个无向图都有哈密顿回路, 所以都是哈密顿图。有向图中,()具有哈 密顿回路,因而它是哈密顿图。()只有哈 密顿通路,但无哈密顿回路,因而它是半哈 密顿图,而()中既无哈密顿回路,也没有 哈密顿通路,因而不是哈密顿图,也不是半 哈密顿图。
∈(),若不在Г的端点出现,显然 ()为偶数,若在端点出现过,则()为 奇数,因为Г只有两个端点且不同,因而 中只有两个奇数顶点。另外,的连通 性是显然的。
充分性: 设的两个奇度顶点分别 为 和,对加新边(),
得' ∪(),则'是连通且无奇度 顶点 的图,由定理可知,‘为欧拉 图,因而存在欧拉回路',而' () 为中一条欧拉通路,所以为半欧拉图。
图
由定理立即可知,图()图 为欧拉图,本图既可以看成圈, ,,之并(为 清晰起见,将个圈画在()中),也 可看成圈与圈 之并(两个圈画在()中)。将() 分解成若干个边不重的圈的并不是() 图特有的性质,任何欧拉图都有这个性 质。
定理 是非平凡的欧拉图当且仅 当是连通的且为若干个边不重的圈的并。
证 读者用定理证明。
下面给出一些哈密顿图和半哈密顿图 的充分条件。
定理 设是阶无向简单图,若对
于中任意不相邻的顶点,均有
()()≥
()
则中存在哈密顿通路。
证: 首先证明是连通图。否则至少 有两个连通分支,设是阶数为 的两个连通分支,设∈(),∈(), 因为是简单图,所以 ()()
()()≤≤
这与()矛盾所以必为连通图。
可以证明,当算法停止时所得简单回路 …()为中一条欧拉回路。
例 图()是给定的欧拉图。某人用算法 求中的欧拉回路时, 走了简单回路 之 后(观看他的错误走法),无法行遍了,试 分析在哪步他犯了错误?
欧拉图和哈密尔顿图ppt课件
全部结点为偶结点, 有欧拉回路
有欧拉通路
。a
a、b、c、e
。a
全部结点为
b。 。c 都为奇结点, 。 。 。 无欧拉通路
b。
。c
d
e
f 与欧拉回路 。 。 。
偶结点, 有欧拉回路
d e f 有欧拉通路
ppt课件
8
例7-8 如图街道,是否存在一条投递线路使 邮递员从邮局a出发通过所有街到一次在回 到邮局a?
可达的:在图G中,结点u和结点v之间存在一
条路,则称结点u到结点v是可达的。
ppt课件
2
无向图的连通性
连通:在无向图G中,结点u和结点v之间存在一 条路,则称结点u与结点v是连通的。约定:任一 结点与自身总是连通的。 连通图:若图G中,任意两个结点均连通,则称G 是连通图,否则称非连通图。对非连通图可分成几
个无公共结点的连通分支。无向图中结点间的连通
关系是等价关系。 图是连通的判定法则:从图中任意一结点出发,
通过某些边一定能到达其它任意一结点,则称
图是连通的。
ppt课件
3
练习1:连通图的判定
指出下列各图是否连通
(1)
(2)
(3)
(4)
(5)
(6)
ppt课件 (7)
(8)
4
欧拉图
设G=<V,E>是连通无向图 欧拉通路:在图G中存在一条通路,经过图G 中每条边一次且仅一次。
第二节 图的连通性
通路和回路 无向图的连通性 有向图的连通性 欧拉图 哈密顿图
ppt课件
1
通路和回路 给定图G V , E
通路: G中前后相互关联的点边交替序列 w=v0e1v1e2…envn称为连接v0到vn的通路。 W中边的数目K称为通路W的长。
第十五章欧拉图与哈密顿图
定理15.5 G是非平凡的欧拉图当且仅当G是 连通的且为若干个边不重的圈的并.
本定理的证明可用归纳法. 例15.1 设G是非平凡的且非环的欧拉图,证明:
(1)λ(G)≥2. (2)对于G中任意两个不同顶点u, v,都存在 简单回路C含 u 和 v.
证 (1)由定理15.5可知,e E(G), 存在圈C, e 在C中,因而 p(G - e) p(G), 故 e 不是桥。 由 e 的任意性λ(G)≥2,即G是2边-连通图。
在这里做个规定: 平凡图是欧拉图.
例1 下列各图中 是否有欧拉回路、欧位通路? 图15.1
解:e1 e2 e3 e4 e5 为(1)中的欧拉回路,所以(1)图为欧拉图. e1 e2 e3 e4 e5 为(2)中的一条欧拉通路,但图中不存在 欧拉回路(为什么?),所以(2)为半欧拉图。
(3)中既没有欧拉回路也没有欧拉通路(为什么?), 所以(3)不是欧拉图,也不是半欧拉图。
设(2)中图为G2,则 G2 V1,V2 , E , 其中 V1 {a, g,h,i,c},V2 {b,e, f , j,k,d }, 易知, p(G2 -V1) |V2 | 6 |V1 | 5,由定理15.6可知, G2不是哈密顿图,但G2是半哈密顿图,其实, baegjckhfid 为G2中一条哈密顿通路.
图示:
(a)
“周游世界” 智力题
(b)
哈密顿图
一、哈密顿通路、哈密顿回路、 哈密顿图、 半哈密顿图的定义
定义15.2 经过图(有向图或无向图)中所有 顶点一次且仅一次的通路称为哈密顿通路;
经过图中所有顶点一次且仅一次的回路称为哈密 顿回路;
具有哈密顿回路的图称为哈密顿图; 具有哈密顿通路但不具有哈密顿回路的图称为半哈 密顿图.
离散数学--第十五章 欧拉图和哈密顿图
实例
在上图中, (1),(2) 是哈密顿图; (3)是半哈密顿图; (4)既不是哈密顿图,也不是半哈密顿图,为什么?
14
无向哈密顿图的一个必要条件
定理15.6 设无向图G=<V,E>是哈密顿图,对于任意V1V且 V1,均有 p(GV1) |V1|
证 设C为G中一条哈密顿回路。
当V1顶点在C上均不相邻时, p(CV1)达到最大值|V1|,
求图中1所示带权图k29主要内容欧拉通路欧拉回路欧拉图半欧拉图及其判别法哈密顿通路哈密顿回路哈密顿图半哈密顿图带权图货郎担问题基本要求深刻理解欧拉图半欧拉图的定义及判别定理深刻理解哈密顿图半哈密顿图的定义
第十五章 欧拉图与哈密顿图
主要内容
➢ 欧拉图 ➢ 哈密顿图 ➢ 带权图与货郎担问题
1
15.1 欧拉图
大时,计算量惊人地大
27
例6 求图中(1) 所示带权图K4中最短哈密顿回路.
(1)
(2)
解 C1= a b c d a,
W(C1)=10
C2= a b d c a,
W(C2)=11
C3= a c b d a,
W(C3)=9
可见C3
(见图中(2))
是最短的,其权为9. 28
第十五章 习题课
主要内容 欧拉通路、欧拉回路、欧拉图、半欧拉图及其判别法 哈密顿通路、哈密顿回路、哈密顿图、半哈密顿图 带权图、货郎担问题
点.
由vi 的任意性,结论为真. 充分性 对边数m做归纳法(第二数学归纳法). (1) m=1时,G为一个环,则G为欧拉图. (2) 设mk(k1)时结论为真,m=k+1时如下证明:
5
从以上证明不难看出:欧拉图是若干个边不重的圈之 并,见示意图3.
离散数学课件15欧拉图与哈密顿图
04
欧拉图与哈密顿图的应用 场景
欧拉图的应用场景
路径规划
欧拉图可以用于表示从一 个点到另一个点的路径, 常用于物流、交通和旅行 等领域。
网络流问题
欧拉图可以用于解决最大 流和最小割等问题,在网 络优化、资源分配和计划 制定等方面有广泛应用。
组合优化
欧拉图可以用于表示组合 优化问题,如旅行商问题、 排班问题等,是求解这些 问题的常用工具。
一个图存在哈密顿回路当且仅当其所有顶点的度都大于等于2 。
哈密顿图的性质
哈密顿图中的所有顶点的度都 大于等于2。
一个图存在哈密顿回路当且仅 当其所有顶点的度都大于等于2。回 路。
哈密顿图的构造方法
添加边法
在所有顶点的度都大于等于2的图 中,不断添加边,直到所有顶点的 度都大于等于2,最后得到的图就 是哈密顿图。
哈密顿图的应用场景
社交网络分析
哈密顿图可以用于表示社交网络 中的路径,分析人际关系和信息
传播路径。
生物信息学
哈密顿图可以用于表示基因组、蛋 白质组等生物信息数据,进行基因 序列比对、蛋白质相互作用分析等。
推荐系统
哈密顿图可以用于表示用户和物品 之间的关系,进行个性化推荐和智 能推荐。
欧拉图与哈密顿图在计算机科学中的应用
欧拉图的构造方法
欧拉图的构造方法1
总结词
通过添加一条边将所有顶点连接起来, 从而形成一个欧拉图。
详细描述了两种构造欧拉图的方法, 为实际应用中构造欧拉图提供了思路。
欧拉图的构造方法2
通过将两个欧拉图合并,并连接它们 的所有顶点,从而形成一个新的欧拉 图。
02
哈密顿图
哈密顿图的定义
哈密顿图(Hamiltonian Graph)是指一个图存在一个遍历其 所有边且每条边只遍历一次的路径,这个路径称为哈密顿路径, 如果该路径的起点和终点是同一点,则称这个路径为哈密顿回 路。
欧拉图与哈密顿图s
该五边形是哈密顿图,但任意两个不相邻的顶点度 数之和为4,图形阶数为5。
座位问题
例 在某次国际会议的预备会中,共有8人参加,他 们来自不同的国家。如果他们中任两个无共同语言的人 与其余有共同语言的人数之和大于或等于8,问能否将这 8个人排在圆桌旁,使其任何人都能与两边的人交谈。
例15.2(P296) v2e2v3e3v4e14v9e10v2e1v1e8v8e9v2
例15.2(P296)
利用欧拉图可以解决哥尼斯堡七桥问题: 从某地出发,对每座跨河桥只走一次,而在遍历 了七座桥之后,却又能回到原地。
由定理15.1(无向欧拉图的判定定理)可知该问题无解。
思考 如下图所示,从一房间出发,问能否不重复地
(1)
(2)
(3)
(4)
(5)
(6)
(1)(2)(3)(4)为哈密顿图 (5)为半哈密顿图 (6)既不是哈密顿图,又不是半哈密顿图。
到目前为止,还没有找到判断哈密顿图简单的充分必 要条件。
下面介绍哈密顿图和半哈密顿图的必要条件
定理15.6 设无向图G=<V,E>是哈密顿图,V1是V的任意 非空子集,则有p(G-V1)≤|V1|,其中p(G-V1)为G-V1的连 通分支数。
定义(哈密顿通路和哈密顿回路) 经过图(有向图或无向图)每个顶点一次
且仅一次的通路称为哈密顿通路。 经过图每个结点一次且仅一次的回路(初
级回路)称为哈密顿回路。 定义(哈密顿图和半哈密顿图)
存在哈密顿回路的图称为哈密顿图。 存在哈密顿通路但不存在哈密顿回路的图 称为半哈密顿图。 平凡图是哈密顿图。
由两判定定理,立即可知 (4)为欧拉图, (5)、(6)即不是欧拉图,也不是半欧拉图。
图论中的哈密顿图与欧拉图
图论中的哈密顿图与欧拉图图论是数学的一个分支,研究图的性质及其应用。
在图论中,哈密顿图和欧拉图是两个重要的概念。
本文将介绍哈密顿图和欧拉图的定义、性质和应用,并探讨它们在现实生活中的实际应用。
一、哈密顿图的定义与性质哈密顿图是指一种包含了图中所有顶点的路径的图。
具体来说,哈密顿图是一个简单图,其中任意两个不同的顶点之间都存在一条路径,使得该路径经过图中的每个顶点且不重复。
哈密顿图具有以下的性质:1. 哈密顿图是一个连通图,即图中的每两个顶点之间都存在通路。
2. 图中每个顶点都是度数大于等于2的点,即每个顶点都至少连接着两条边。
二、欧拉图的定义与性质欧拉图是指一种可以通过图中每条边恰好一次的路径来穿越图的图。
具体来说,欧拉图是一个简单图,其中经过图中每条边且路径不重复的路径称为欧拉路径,而形成闭合回路的欧拉路径称为欧拉回路。
欧拉图具有以下的性质:1. 每个顶点的度数都是偶数,即每个顶点都连接着偶数条边。
2. 欧拉图中至少有两个连通分量,即图中有至少两个不同的部分可以从一部分通过路径到达另一部分。
三、哈密顿图与欧拉图的应用哈密顿图和欧拉图在实际生活中有广泛的应用,下面将分别介绍它们的应用领域。
1. 哈密顿图的应用:哈密顿图在旅行商问题中有着重要的应用。
旅行商问题是指一个旅行商要依次拜访若干个城市,然后返回起始城市,而要求找到一条最短的路径使得每个城市都被访问一次。
哈密顿图可以解决这个问题,通过寻找一条哈密顿路径来确定最短的路径。
2. 欧拉图的应用:欧拉图在电路设计和网络规划中发挥着重要的作用。
在电路设计中,欧拉图可以帮助我们确定如何安排电线的布线以最大程度地减少电线的长度和复杂度。
在网络规划中,欧拉图可以用于确定如何正确地连接不同的网络节点以实现高效的信息传输。
四、结论哈密顿图和欧拉图是图论中的两个重要概念。
哈密顿图是一种包含了图中所有顶点的路径的图,而欧拉图是一种可以通过图中每条边恰好一次的路径来穿越图的图。
欧拉图及哈密顿
哈密顿图的性质
哈密顿图具有连通性,即任意两 个顶点之间都存在一条路径。
哈密顿图的顶点数必须大于等于 3,因为至少需要3个顶点才能 形成一条遍历所有顶点的路径。
哈密顿图的边数必须为奇数,因 为只有奇数条边才能形成一条闭
欧拉图及哈密顿
• 欧拉图 • 哈密顿图 • 欧拉图与哈密顿图的应用 • 欧拉回路与哈密顿回路 • 欧拉路径与哈密顿路径
目录
01
欧拉图
欧拉图的定义
总结词
欧拉图是指一个图中存在一条路径,这条路径可以遍历图中的每条边且每条边 只遍历一次。
详细描述
欧拉图是由数学家欧拉提出的一种特殊的图,它满足特定的连通性质。在欧拉 图中,存在一条路径,这条路径从图的一个顶点出发,经过每条边一次且仅一 次,最后回到起始顶点。
互作用网络的研究。
04
欧拉回路与哈密顿回路
欧拉回路的概念与性质
概念
欧拉回路是指一个图形中,从一点出 发,沿着一条路径,可以回到起始点 的路径。
性质
欧拉回路必须是连续的,不能中断, 也不能重复经过同一条边。此外,欧 拉回路必须是闭合的,起始点和终点 必须是同一点。
哈密顿回路的概念与性质
概念
哈密顿回路是指一个图形中,存在一 条路径,该路径经过了图中的每一条 边且每条边只经过一次。
随机构造法
通过随机选择边和顶点,不断扩展图,直到满足哈密顿图的条件。这种方法需要大量的计 算和随机性,但可以用于构造大规模的哈密顿图。
03
欧拉图与哈密顿图的应用
欧拉图在计算机科学中的应用
算法设计
欧拉图理论是算法设计的重要基础,特别是在图算法和动态规划 中,用于解决诸如最短路径、最小生成树等问题。
离散数学中的欧拉图与哈密顿图
欧拉图和哈密顿图是离散数学中的两个重要的图论概念。
它们分别研究了图中的路径问题,对于解决一些实际问题具有很大的应用价值。
欧拉图是指一个无向图中存在一条路径,经过图中的每条边一次且仅一次,这条路径称为欧拉路径。
如果这个路径的起点和终点重合,则称为欧拉回路。
而对于有向图,存在一条路径,使得经过每一个有向边恰好一次,称为欧拉有向路径,如果该路径起点和终点相同,则称为欧拉有向回路。
1722年,瑞士数学家欧拉首次提出了这个概念,并证明了一系列欧拉图的性质。
欧拉图的性质是其路径的存在性。
既然有了这个概念,那如何判断一个图是不是欧拉图就是一个非常重要的问题。
根据欧拉图的定义,我们可以发现,图中的每个节点的度数都应该是偶数,否则该节点无法成为路径中的中间节点。
因此,一个图是欧拉图的充分必要条件是该图中每个节点的度数都是偶数。
哈密顿图是指一个图中存在一条路径,经过图中的每个顶点一次且仅一次,这条路径称为哈密顿路径。
如果这个路径的起点和终点重合,则称为哈密顿回路。
哈密顿图的概念由19世纪初英国数学家哈密顿引入,其研究对象是关于骑士巡游问题。
与欧拉图不同的是,哈密顿路径并没有一个十分明显的判定条件。
唯一已知的是某些图是哈密顿图,比如完全图和圈图。
至于一般的图是否存在哈密顿路径,目前尚无通用的判定方法。
这也是全世界许多数学家所面临的一个著名且具有挑战性的开放问题,被命名为“哈密顿路径问题”。
欧拉图和哈密顿图在实际问题中具有广泛的应用。
欧拉图的应用包括电子电路和网络的设计,路线规划等。
而哈密顿图的应用更多地涉及路径的优化问题,比如旅行商问题。
在实际应用中,我们常常需要通过对欧拉图和哈密顿图的研究,来寻找最优解或者设计最佳路径。
总的来说,离散数学中的欧拉图和哈密顿图是两个重要的图论概念,它们研究的是图中的路径问题。
欧拉图的判定条件相对明确,而哈密顿图的判定则是一个尚未完全解答的开放问题。
这两个概念在实际中具有广泛的应用,对于解决一些路径优化问题具有重要的参考价值。
欧拉图与哈密顿图
Fleury算法示例 Fleury算法示例
例1.2
下图是给定的欧拉图G。某人用 算法求G中的欧拉回路时 下图是给定的欧拉图 。某人用Fleury算法求 中的欧拉回路时 算法求 走了简单回路v 之后( ,走了简单回路 2e2v3e3v4e14v9e10v2e1v1e8v8e9v2之后(观看他的 错误走法) 无法行遍了,试分析在哪步他犯了错误? 错误走法),无法行遍了,试分析在哪步他犯了错误? 此人行遍v 解答 此人行遍 8时犯了能不走桥就不走桥 的错误,因而他没行遍出欧拉回路。 的错误,因而他没行遍出欧拉回路。 当他走到v 当他走到 8时,G-{e2,e3,e14,e10,e1,e8} 为下图所示。 为下图所示。 此时e 为该图中的桥, 均不是桥, 此时 9为该图中的桥,而e7,e11均不是桥, 他不应该走e 而应该走e 他不应该走 9,而应该走 7或e11,他没 有走,所以犯了错误。注意, 有走,所以犯了错误。注意,此人在行 遍中, 3遇到过桥e 遍中,在v3遇到过桥 3,v1处遇到过桥 e8,但当时除桥外他无别的边可走,所 但当时除桥外他无别的边可走, 以当时均走了桥,这是不会犯错误的。 以当时均走了桥,这是不会犯错误的。
定理1.1的证明 定理1.1的证明 1.1
中一个圈, 上的全部边, 的生成子图G 设C为G中一个圈,删除 上的全部边,得G的生成子图 ′, 为 中一个圈 删除C上的全部边 的生成子图 个连通分支G 设G ′有s个连通分支 ′1,G ′2,…,G ′s, 个连通分支 每个连通分支至多有k条边,且无奇度顶点, 每个连通分支至多有 条边,且无奇度顶点, 条边 并且设G 的公共顶点为v 并且设 ′i与C的公共顶点为 *ji,i=1,2,…,s, 的公共顶点为 =1,2,… , 由归纳假设可知, 都是欧拉图, 由归纳假设可知,G ′1,G ′2,…,G ′s都是欧拉图, 都是欧拉图 因而都存在欧拉回路C 因而都存在欧拉回路 ′i,i=1,2,…,s。 =1,2,… 。 最后将C还原 即将删除的边重新加上), 还原( 最后将 还原(即将删除的边重新加上), 并从C上的某顶点 开始行遍,每遇到v 上的某顶点v 就行遍G 并从 上的某顶点 r开始行遍,每遇到 *ji,就行遍 ′i中的欧拉 回路C 回路 ′i,i=1,2,…,s,最后回到 r, =1,2,… ,最后回到v 得回路v 得回路 r…v*j1…v*j1…v*j2…v*j2…v*js…v*js…vr, 1 1 2 2 此回路经过G中每条边一次且仅一次并行遍 中所有顶点, 中每条边一次且仅一次并行遍G中所有顶点 此回路经过 中每条边一次且仅一次并行遍 中所有顶点, 因而它是G中的欧拉回路 演示这条欧拉回路), 中的欧拉回路( 因而它是 中的欧拉回路(演示这条欧拉回路), 故G为欧拉图。 为欧拉图。 为欧拉图
离散数学15 欧拉图与哈密顿图
15.2 哈密顿图
1859年,爱尔兰数学家威廉·哈密尔顿发明 了一个旅游世界的游戏。将一个正十二面体的 20个顶点分别标上世界上大城市的名字,要求 玩游戏的人从某城市出发沿12面体的棱,通过 每个城市恰一次,最后回到出发的那个城市。
哈密尔顿游戏是在左图中如何 找出一个包含全部顶点的圈。
定义(哈密顿通路和哈密顿回路) 经过图(有向图或无向图)每个顶点一次
且仅一次的通路称为哈密顿通路。 经过图每个结点一次且仅一次的回路(初
级回路)称为哈密顿回路。 定义(哈密顿图和半哈密顿图)
存在哈密顿回路的图称为哈密顿图。 存在哈密顿通路但不存在哈密顿回路的图 称为半哈密顿图。 平凡图是哈密顿图。
由两判定定理,立即可知 (4)为欧拉图, (5)、(6)即不是欧拉图,也不是半欧拉图。
例15.2(P296) v2e2v3e3v4e14v9e10v2e1v1e8v8e9v2
◼ Fleury算法
◼ (1)任取v0V(G),令P0=v0。 ◼ (2)设Pi=v0e1v1e2…..eivi已经行遍,则按下面
判断所示两图是否为欧拉图、半欧拉图?
无向欧拉图与无向半欧拉图的判断方法
定理15.1(无向欧拉图的判定)无向图G是欧拉图当 且仅当G是连通图,且G中没有奇度顶点。
定理15.2(无向半欧拉图的判定)无向图G是半欧拉 图当且仅当G是连通图,且G中恰有两个奇度顶点。
(1)
(2)
(3)
有向欧拉图与有向半欧拉图的判断方法
(1)
(2)
(3)
(4)
(5)
(6)
(1)(2)(3)(4)为哈密顿图 (5)为半哈密顿图 (6)既不是哈密顿图,又不是半哈密顿图。
15欧拉图与哈密顿图
哈密顿图的判定 定理1(必要条件): 设无向图G=<V, E>是哈密顿 图, V1是V的任意非空子集, 则p(G-V1)≤V1. 推论: 设无向图G=<V, E>是半哈密顿图, V1是V 的任意非空子集, 则p(G-V1)≤V1+1.
在Peterson图中, 虽然对任意顶 点集V1, 都满足p(G-V1)|V1|,但 它不是哈密顿图.
基本思想:能不走桥就不走桥
15.2 哈密顿图 定义1. 经过无向(有向)图中所有顶点恰好一次 的路(圈)称为哈密顿路(圈). 定义2. 具有哈密顿圈的图称为哈密顿图. 定义3. 具有哈密顿路但不具有哈密顿圈的图 称为半哈密顿图. 例1. 判断下列图形是否哈密顿图或半哈密顿图.
半哈密顿图 哈密顿图
都不是
例4. 判断下列有向图是否欧拉图或半欧拉图.
都不是 半欧拉图
欧拉图
一笔画问题:从某点出发,不间断地画完整个图. 即在图中找出欧拉通路(回路).
Fleury算法: (1) 任取v0∊V(G), (2) 设Pi=v0e1v1e2eivi,
若E(G)-{e1,e2,ei}中没有与vi关联的边, 则计 算停止; 否则在vi关联的边中优先选择非桥的边 添加. (3) 令i=i+1, 返回(2).
定理2(充分条件): 设G=<V, E>是无向简单图. 若对任意两个不相邻顶点u,vV, 均有 d(u)+d(v)|V|-1, 则G中存在哈密顿路; 若对任意两个不相邻顶点u,vV, 均有 d(u)+d(v)|V|, 则G是哈密顿图.
推论: n阶无向简单图G中, n>2, (G)n/2, 则G是
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小结
同欧拉图不同,到目前为止,还没有找到 哈密顿图的简单充分必要条件。对哈密顿图 来讲,只有充分条件或必要条件。 如果在图中能找到哈密顿回路或者满足某 充分性定理的条件,则该图为哈密顿图。 人们可以根据哈密顿图的某些必要条件判断 某些图不是哈密顿图。 欧拉图和哈密顿图的区别在于欧拉图是生 成简单回路,而哈密顿图是生成初级回路。
14
弗罗莱(Fleury)算法
图示动态过程
15
15.2 哈密顿图
历史背景:哈密顿周游世界问题与哈密顿图
16
哈密顿图
定义15.2 经过图(有向图或无向图)中所有顶点一 次且仅一次的通路称为哈密顿通路。经过图中所有 顶点一次且仅一次的回路称为哈密顿回路。具有哈 密顿回路的图称为哈密顿图,具有哈密顿通路但不 具有哈密顿回路的图称为半哈密顿图。 规定:平凡图是哈密顿图。 说明:哈密顿通路是图中生成的初级通路, 哈密顿回路是生成的初级回路。
v3 (v1, ∞) (v1, 7) (v2, 5)** (v2, 5)* (v2, 5)* (v2, 5)* (v2, 5)*
v4 (v1, ∞) (v1, 5) (v1, 5) (v1, 5)** (v1, 5)* (v1, 5)* (v1, 5)*
v5 (v1, ∞) (v1, ∞) (v2, 9) (v3, 8) (v3, 8) (v3, 8)** (v3, 8)*
离散数学
第15章 欧拉图与哈密顿图
1
本章内容
15.1 欧拉图 15.2 哈密顿图 15.3 最短路问题与货郎担问题 基本要求 作业
2
15.1 欧拉图
历史背景--哥尼斯堡七桥问题
欧拉图是一笔画出的边不重复的回路。
3
欧拉图
定义15.1 通过图(无向图或有向图)中所有边一次 且仅一次行遍图中所有顶点的通路称为欧拉通路, 通过图中所有边一次并且仅一次行遍所有顶点的回 路称为欧拉回路。具有欧拉回路的图称为欧拉图, 具有欧拉通路而无欧拉回路的图称为半欧拉图。 规定:平凡图是欧拉图。 说明:欧拉通路是图中经过所有边的生成的简单通路 (经过所有顶点的通路称为生成通路)。 欧拉回路是经过所有边的生成的简单回路。
例15.5
下图所示的三个图中哪些是哈密顿图?哪些是半哈密顿图?
(1)存在哈密顿回路,所以(1)为哈密顿图。 (2)取V1={a,b,c,d,e},从图中删除V1得7个连通分支, 由定理15.6和推论可知,不是哈密顿图,也不是半哈密顿图。 (3)取V1={b,e,h},从图中删除V1得4个连通分支,由定理15.6可 32 知,它不是哈密顿图。但存在哈密顿通路,所以是半哈密顿图。
有欧拉通路 半欧拉图
无欧拉通路
有欧拉通路 半欧拉图
9
有向欧拉图的判定定理
定理15.5 G是非平凡的欧拉图当且仅当G是连通的 且为若干个边不重的圈的并。
10
求欧拉图中欧拉回路的算法
Fleury(弗罗莱)算法,能不走桥就不走桥 (1) 任取v0∈V(G),令P0=v0。 (2) 设Pi=v0e1v1e2…eivi已经行遍,按下面方法来从 E(G)-{e1,e2,…,ei}中选取ei+1: (a) ei+1与vi相关联; (b) 除非无别的边可供行遍,否则ei+1不应该为 Gi=G-{e1,e2,…,ei}中的桥。 (3)当(2)不能再进行时,算法停止。 说明 可以证明,当算法停止时所得简单回路 Pm=v0e1v1e2…emvm(vm=v0)
17
例题
(1)(2)是哈密顿图。 (3)是半哈密顿图。 (4)既不是哈密顿图,也不是半哈密顿图。
18
哈密顿图的充要条件
判断一个图是否为哈密顿图,就是判断能否将图中所 有顶点都放置在一个初级回路(圈)上,但这不是一件 易事。 与判断一个图是否为欧拉图不一样,到目前为止,人 们还没有找到哈密顿图简单的充分必要条件。
33
欧拉图遍历边,而哈密顿图遍历顶点,它 们之间没有联系。 有的图只是欧拉图,有的只是哈密顿图, 有的两者都是,有的两者皆不是。 有割点或桥的图不是哈密顿图。 彼得松图既不是欧拉图也不是哈密顿图
34Biblioteka 都不是哈密顿图欧拉图
35
哈密顿图,欧拉图
15.3 最短路问题与货郎担问题
定义15.3 给定图G=<V,E>(G为无向图或有向图),设W: E→R(R为实数集),对G中任意的边e=(vi,vj)(G为有向图 时,e=<vi,vj>),设W(e)=wij,称实数wij为边e上的权,并 将wij标注在边e上,称G为带权图,此时常将带权图G记作 <V,E,W>。 设P是G中的一条通路 ,P 中所有边的权之和称为P的长度. 并记作W(P), 即 W(P)=
v6 (v1, ∞) (v1, ∞) (v1, ∞) (v1, ∞) (v4, 7)** (v4, 7)* (v4, 7)*
7
无欧拉通路
有向欧拉图的判定定理
定理15.3 有向图D是欧拉图当且仅当D是连通的且每个 顶点的入度都等于出度。 定理15.4 有向图D是半欧拉图当且仅当D是连通的,且 D中恰有两个奇度顶点,其中一个的入度比出度大1 ,另一个的出度比入度大1,而其余顶点的入度都等 于出度。
8
实例
欧拉图
无欧拉通路
无欧拉通路
29
(15.1)
例 有7个人,A会讲英语,B会讲英语和汉语,C会讲 英语、意大利语和俄语,D会讲日语和汉语,E会讲 德语和意大利语,F会讲法语、日语和俄语,G会讲 法语和德语。问能否将他们沿圆桌安排就坐成一圈 ,使得每个人都能与两旁的人交谈? 解 作无向图, 每人是一个顶点, 2人之间有边⇔他们有共同的语言. ACEGFDBA是一条哈密顿回 路,按此顺序就坐即可.
21
实例
验证彼得松图满足此条件,但不是哈密顿图。 右图满足 p(G-V1)≤|V1| 证明下述各图不是哈密顿图: 只要证不满足 p(G-V1)≤|V1|
彼得松图
(a)
(b)
22
(c)
推论(了解)
推论 设无向图G=<V,E>是半哈密顿图,对于任意的 V1⊂V且V1≠∅,均有 p(G-V1)≤|V1|+1
v2
2 2 7 3 3 6 5 3 3 2
v5
v1
1 5
v3
8 2
7
v7
4
v4
37
2 6
v6
问题:求从v1到其余各点的最短路径和距离?
v2
3 2 2 7 3 3 6 5 3
v5
2
start v1 1
5
v3
8 2
7
v7
4
2 6
v4
38
v6
Dijkstra(迪杰斯特拉)算法
步骤 1 ∞
2 3 2 7 3 3 6 3
e∈ E(P)
∑
W (e)
类似地,可定义回路C 的长度W(C)。 带权图应用的领域是相当广泛的,许多图论算法都是针 对带权图的。
36
最短路问题
G=<V,E>(无向图或有向图),其中每一条边 e的权W(e)为非 负实数。 u,v之间的短程线的长度称为u,v之间的距离,记作 d(u,v)。 约定d(u,u)=0.当u,v不连通时,d(u,v)=∞。 最短路问题:给定带权图G=<V,E,W>及顶点u,v ,其中每一 条边e的权W(e)为非负实数,求u到v的最短路径。 Dijkstra(迪杰斯特拉)算法:是典型最短路算法,用于计算一 个节点到其他所有节点的最短路径。主要特点是以起始点为 中心向外层层扩展,直到扩展到终点为止。
4
举例
无向图
欧拉图 有向图
半欧拉图
无欧拉通路
欧拉图
半欧拉图
5
无欧拉通路
无向欧拉图的判定定理
定理15.1 无向图G是欧拉图当且仅当G是连通图, 且G中没有奇度顶点。
定理15.2 无向图G是半欧拉图当且仅当G是连通的 ,且G中恰有两个奇度顶点。
6
实例
无欧拉通路
欧拉图
欧拉图
有欧拉通路 半欧拉图
有欧拉通路 半欧拉图
二合一:无 分开单独:有 只考虑:无向图
19
哈密顿图的必要条件 单个:有 具体内容:如下页
20
定理15.6
定理15.6 设无向图G=<V,E>是哈密顿图,对于任意 V1⊂V,且V1≠∅,均有 p(G-V1)≤|V1| 其中,p(G-V1)为G-V1的连通分支数。 说明 本定理是哈密顿图的必要条件,但不是充分条件。 若一个图不满足此条件,它一定不是哈密顿图。
哈密顿图的充分条件 单个:有 具体内容:如下页
28
定理15.7及推论
定理15.7(了解) 设G是n阶无向简单图,若对于G 中任意不相邻的顶点u,v,均有 d(u)+d(v)≥n-1 则G中存在哈密顿通路。 推论(掌握) 设G为n(n≥3)阶无向简单图,若对于 G中任意两个不相邻的顶点u,v,均有 d(u)+d(v)≥n (15.2) 则G中存在哈密顿回路,从而G为哈密顿图。
23
例15.3
例15.3 在下图中给出的三个图都是二部图。它们中 的哪些是哈密顿图?哪些是半哈密顿图?为什么? |V2|≥|V1|+2
易知互补顶点子集 V1={a,f } V2={b,c,d,e } 设此二部图为G1,则G1=<V1,V2,E > p(G1-V1)=4 > |V1|=2, 由定理15.6及其推论可知,G1不是哈 密顿图,也不是半哈密顿图。
11 为G中一条欧拉回路。
Fleury算法示例
12
Fleury算法示例
13
例15.2
下图是给定的欧拉图G。某人用Fleury算法求G中的欧拉回路时 ,走了简单回路v2e2v3e3v4e14v9e10v2e1v1e8v8e9v2之后(观看他的 错误走法),无法行遍了,试分析在哪步他犯了错误? 解答 此人行遍v8时犯了能不走桥就不走桥 的错误,因而他没行遍出欧拉回路。 当他走到v8时,G-{e2,e3,e14,e10,e1,e8} 为下图所示。 此时e9为该图中的桥,而e7,e11均不是桥, 他不应该走e9,而应该走e7或e11,他没 有走,所以犯了错误。注意,此人在行 遍中,在v3遇到过桥e3,v1处遇到过桥 e8,但当时除桥外他无别的边可走,所 以当时均走了桥,这是不会犯错误的。