8.欧拉图与哈密顿图

合集下载

欧拉图与哈密顿图

欧拉图与哈密顿图
哈密顿回路。
.
欧拉图与哈密顿图 1.2 哈密顿图及哈密顿通路
➢ 定义8.21
图G称为可2-着色(2-chromatic),
如果可用两种颜色给G的所有顶点着色, 使每个顶点着一种颜色,而同一边的两端点 必须着不同颜色。
.
欧拉图与哈密顿图 1.2 哈密顿图及哈密顿通路
✓ 定理8.16
设图G是可2-着色的。如果G是哈密顿 图,那么着两种颜色的顶点数目相等;如 果G有哈密顿通路,那么着两种颜色的顶点 数目之差至多为一。
✓定理8.14
设图G为具有n个顶点的简单无向图,如果G的 每一对顶点的度数之和都不小于n – 1 ,那么G中有 一条哈密顿通路;如果G的每一对顶点的度数之和 不小于n,且n≥3,那么G为一哈密顿图。
.
欧拉图与哈密顿图 1.2 哈密顿图及哈密顿通路
✓ 定理8.15
当n为不小于3的奇数时,
Kn上恰有 n 1 条互相均无任何公共边的 2
离散数学导论
.
欧拉图与哈密顿图 1.1欧拉图与欧拉路径
➢ 定义8.19
图G称为欧拉图(Euler graph),
如果图G上有一条经过G的所有顶点、所有
边的闭路径。图G称为欧拉路径(Euler
walk),如果图G上有一条经过G 所有顶点、所有边的路径。
.
欧拉图与哈密顿图 1.1欧拉图与欧拉路径
✓ 定理8.11
.
欧拉图与哈密顿图 1.2 哈密顿图及哈密顿通路
➢ 定义8.20
无向图G称为哈密顿图(Hamilton graph),
如果G上有一条经过所有顶点的回路
(也称这一回路为哈密顿回路)。称无向图有哈密顿 通路(非哈密顿图),如果G上有一条经过所有顶点的

欧拉图和哈密尔顿图

欧拉图和哈密尔顿图

例 “一笔划”问题——G中有欧拉 通路

实例
上图中,(1) ,(4) 为欧拉图
中国邮递员问题-模型
数学模型:
构造无向权图G,以道路为边,路长为权 问题的解 ——G 中包含所有边的回路权最小,称为 最优回路(未必是简单回路)。 当G是欧拉图,则最优回路即欧拉回路。
周游世界的游戏
1859 哈密尔顿 “周游世界”游戏: 20个城市,每个城市恰游一次,回到出发地

a
10 12 9
从a出发的“较好的”回路 , a
7
14Biblioteka b7 13 11d
6
c
8
e
5
b
14
a
c
5
6
8
长度:40
e
e
d
算法精度下限
设算法所得的回路长度为d, d0 是最小H_
回路的长度,G有n点,则

d / d0 ½ [ln(n)+1]+ ½
改进:
如果在已有回路中,W(vi,vj)+ W(vi+1,vj+1)< W(vi,vi+1)+ W(vj,vj+1),
货郎担/旅行推销员(TSP)问题:
在一个赋权的完全图中,找出一个具有最小权 的H_回路,也即回路边的权之和最小 对该赋权图上的边,满足三角不等式(距离不 等式) W(a,b) W(a,c) + W(c,b)
数学模型
构造无向带权图G, VG中的元素对应于每个城市, EG中每 个元素对应于城市之间的道路,道路长度用相应边的权表示。 则问题的解对应于G中包含所有边的权最小的哈密尔顿回路。 G是带权完全图,总共有n!/2条哈密尔顿回路。因此,问题 是如何从这n!/2条中找出最短的一条 eg:含20个顶点的完全图中不同的哈密尔顿回路有约6000万 亿条-(1.216451017)/2,若机械地检查,每秒处理10万条,需 2万年

欧拉图和哈密尔顿图

欧拉图和哈密尔顿图
欧拉回路是指不重复地走过所有路 径的回路,而哈密尔顿环是指不重复地
走过所有的点,并且最后还能回到起点的回 路
哈密尔顿图
定义:通过图G的每个结点一次且仅一次的环称为哈密尔顿环。具 有哈密尔顿环的图称为哈密尔顿图。通过图G的每个结点一次且仅 一次的开路称为哈密尔顿路。具有哈密尔顿路的图称为半哈密尔 顿图。
f:说法语、日语和俄语;
g:说法语和德语.
c f
g
解 设7个人为7个结点, 将两个懂同一语言的人之间连一条边
(即他们能直接交谈), 这样就得到一个简单图G, 问题就转化为
G是否连通. 如图所示, 因为G的任意两个结点是连通的, 所以
G是连通图. 因此, 上述7个人中任意两个人能交谈.
解二
c


e
a

半哈密尔顿图
哈密尔顿图 哈密尔顿图
N
周游世界的游戏——的解
哈密顿图
哈密顿图
无哈密顿 通路
哈密顿图
存在哈密 顿通路
实例
在上图中, (1),(2) 是哈密顿图;
实例
已知有关人员a, b, c, d, e, f, g 的有关信息
a:说英语;
b:说英语或西班牙语;
c;说英语,意大利语和俄语;
a:说英语; b:说英语或西班牙语;


c;说英语,意大利 语和俄语;
b
g
d:说日语和西班牙语 e:说德语和意大利语; f:说法语、日语和俄语; g:说法语和德语.
西
d


f
如果题目改为:试问这7个人应如何安排座位, 才能使每个人都能与
他身边的人交谈?
解:用结点表示人,用边表示连接的两个人能说讲一种语言,够造

欧拉图与哈密顿_OK

欧拉图与哈密顿_OK
转化为图论问题:以城市为结点,两城市之间 的路为边,路程长度为边上的权,则问题转化为 在带权无向图G=<V,E,W>中找一个权和最小的 哈密尔顿回路。
37
例15.7 下图为4阶完全带权图,求出它的不同的哈密顿 回路,并指出最短的哈密顿回路。
解:求哈密顿回路可以从任何顶点出发。下面从a点出发, 并考虑顺时针与逆时针顺序不同的哈密顿回路。
解:将这8个人看为平面上的8个点,设为v1,v2,v3,v4,v5, v6,v7,v8。
如果vi和vj有共同语言,就在vi和vj之间连无向边(vi,v j)。
这样得到一个8阶无向简单图G。 viV,d(vi)为与vi有共同语言的人数。 由已知条件可知,vi,vjV且ij,均有d(vi)+d(vj)8。 由定理15.7的推论可知,G中存在哈密顿回路, 的设顺C序=v安i1v排i2座…次vi7即vi8可为。G中一条哈密顿回路,按这条回路
定理15.2(无向半欧拉图的判定)无向图G是半欧拉图当 且仅当G是连通图,且G中恰有两个奇度顶点。
(1)
(2)
(3)
6
判断所示两图是否为欧拉图、半欧拉图?
7
有向欧拉图与有向半欧拉图的判断方法
定理15.3 (有向欧拉图的判定)有向图D是欧拉图当且 仅当D是强连通的且每个顶点的入度都等于出度。
定理15.4(有向半欧拉图的判定)有向图D是半欧拉图 当且仅当D是单向连通的,且D中恰有两个奇度顶点, 其中一个的入度比出度大1,另一个的出度比入度大1, 而其余顶点的入度都等于出度。
这样可以得到另一可行方案:
这一方案中,重复边的权和为15,并且图中每个圈的 重复边的权和不大于该圈权和的一半。
35
课后练习:求下图所示的中国邮递员问题。

离散数学--第十五章 欧拉图和哈密顿图

离散数学--第十五章 欧拉图和哈密顿图
13
实例
在上图中, (1),(2) 是哈密顿图; (3)是半哈密顿图; (4)既不是哈密顿图,也不是半哈密顿图,为什么?
14
无向哈密顿图的一个必要条件
定理15.6 设无向图G=<V,E>是哈密顿图,对于任意V1V且 V1,均有 p(GV1) |V1|
证 设C为G中一条哈密顿回路。
当V1顶点在C上均不相邻时, p(CV1)达到最大值|V1|,
求图中1所示带权图k29主要内容欧拉通路欧拉回路欧拉图半欧拉图及其判别法哈密顿通路哈密顿回路哈密顿图半哈密顿图带权图货郎担问题基本要求深刻理解欧拉图半欧拉图的定义及判别定理深刻理解哈密顿图半哈密顿图的定义
第十五章 欧拉图与哈密顿图
主要内容
➢ 欧拉图 ➢ 哈密顿图 ➢ 带权图与货郎担问题
1
15.1 欧拉图
大时,计算量惊人地大
27
例6 求图中(1) 所示带权图K4中最短哈密顿回路.
(1)
(2)
解 C1= a b c d a,
W(C1)=10
C2= a b d c a,
W(C2)=11
C3= a c b d a,
W(C3)=9
可见C3
(见图中(2))
是最短的,其权为9. 28
第十五章 习题课
主要内容 欧拉通路、欧拉回路、欧拉图、半欧拉图及其判别法 哈密顿通路、哈密顿回路、哈密顿图、半哈密顿图 带权图、货郎担问题
点.
由vi 的任意性,结论为真. 充分性 对边数m做归纳法(第二数学归纳法). (1) m=1时,G为一个环,则G为欧拉图. (2) 设mk(k1)时结论为真,m=k+1时如下证明:
5
从以上证明不难看出:欧拉图是若干个边不重的圈之 并,见示意图3.

离散数学课件15欧拉图与哈密顿图

离散数学课件15欧拉图与哈密顿图

04
欧拉图与哈密顿图的应用 场景
欧拉图的应用场景
路径规划
欧拉图可以用于表示从一 个点到另一个点的路径, 常用于物流、交通和旅行 等领域。
网络流问题
欧拉图可以用于解决最大 流和最小割等问题,在网 络优化、资源分配和计划 制定等方面有广泛应用。
组合优化
欧拉图可以用于表示组合 优化问题,如旅行商问题、 排班问题等,是求解这些 问题的常用工具。
一个图存在哈密顿回路当且仅当其所有顶点的度都大于等于2 。
哈密顿图的性质
哈密顿图中的所有顶点的度都 大于等于2。
一个图存在哈密顿回路当且仅 当其所有顶点的度都大于等于2。回 路。
哈密顿图的构造方法
添加边法
在所有顶点的度都大于等于2的图 中,不断添加边,直到所有顶点的 度都大于等于2,最后得到的图就 是哈密顿图。
哈密顿图的应用场景
社交网络分析
哈密顿图可以用于表示社交网络 中的路径,分析人际关系和信息
传播路径。
生物信息学
哈密顿图可以用于表示基因组、蛋 白质组等生物信息数据,进行基因 序列比对、蛋白质相互作用分析等。
推荐系统
哈密顿图可以用于表示用户和物品 之间的关系,进行个性化推荐和智 能推荐。
欧拉图与哈密顿图在计算机科学中的应用
欧拉图的构造方法
欧拉图的构造方法1
总结词
通过添加一条边将所有顶点连接起来, 从而形成一个欧拉图。
详细描述了两种构造欧拉图的方法, 为实际应用中构造欧拉图提供了思路。
欧拉图的构造方法2
通过将两个欧拉图合并,并连接它们 的所有顶点,从而形成一个新的欧拉 图。
02
哈密顿图
哈密顿图的定义
哈密顿图(Hamiltonian Graph)是指一个图存在一个遍历其 所有边且每条边只遍历一次的路径,这个路径称为哈密顿路径, 如果该路径的起点和终点是同一点,则称这个路径为哈密顿回 路。

第三章 哈密顿图

第三章 哈密顿图
– –
(1) G的每条边在G*至多重复一次;
(2) G的每个(初级)圈在G*重复边权的和不超过该圈 权的一半。

算法过程

1.用Dijstra算法求所有奇度顶点对之间的最短路径。 (若G是欧拉图,直接用Fleury算法) 2.以G中所有奇度顶点构造带权完全图G2k, 每边的 权是两端点间最短路径长度。
1
2
20
17
19
18Biblioteka 义: 图G中的一圈,若它通过G中每个顶 点恰好一次,则该圈称为哈密尔顿圈,具 有哈密尔顿圈的图称为哈密尔顿无向图。 完全图必是哈密尔顿图。
从定义可知,一个图的Hamilton圈与
Euler环游是很相似的,差别在于Hamilton
圈是环游G的所有顶点圈(点不重,当然
边也不重),而Euler环游是环游G的所
道的交叉点,街道长度用相应边的权表示。 则问题的解对应于G中包含所有边的权最小 的圈,称为最优圈(注意:未必是简单圈)。 当G是欧拉图,则最优圈即欧拉圈。 若G不是欧拉图,则通过加边来消除G中的 奇度顶点,要求使加边得到的欧拉图G'中重复边
的权和最小。
C是带正权无向连通图G中的最优圈当且仅当对 应的欧拉图G*满足:
边外,,每经过G中顶点xi(包括a和b),都为顶点xi
贡献2度,而C的第一边为a贡献1度,C的最后一条
边为b贡献1度.因此,a和b的度数均为奇数,其余
结点度数均为偶数.
充分性:设连通图G恰有两个奇数度结点,
不妨设为a和b,在图G中添加一条边e={a,b} 得G’,则G’的每个结点的度数均为偶数,因 而G’中存在欧拉圈,故G中必存在欧拉路.
J K
例3 一张纸上画有如下图所示的图,你能否用剪刀 一次连续剪下图中的三个正方形和两个三角形?

图论中的哈密顿图与欧拉图

图论中的哈密顿图与欧拉图

图论中的哈密顿图与欧拉图图论是数学的一个分支,研究图的性质及其应用。

在图论中,哈密顿图和欧拉图是两个重要的概念。

本文将介绍哈密顿图和欧拉图的定义、性质和应用,并探讨它们在现实生活中的实际应用。

一、哈密顿图的定义与性质哈密顿图是指一种包含了图中所有顶点的路径的图。

具体来说,哈密顿图是一个简单图,其中任意两个不同的顶点之间都存在一条路径,使得该路径经过图中的每个顶点且不重复。

哈密顿图具有以下的性质:1. 哈密顿图是一个连通图,即图中的每两个顶点之间都存在通路。

2. 图中每个顶点都是度数大于等于2的点,即每个顶点都至少连接着两条边。

二、欧拉图的定义与性质欧拉图是指一种可以通过图中每条边恰好一次的路径来穿越图的图。

具体来说,欧拉图是一个简单图,其中经过图中每条边且路径不重复的路径称为欧拉路径,而形成闭合回路的欧拉路径称为欧拉回路。

欧拉图具有以下的性质:1. 每个顶点的度数都是偶数,即每个顶点都连接着偶数条边。

2. 欧拉图中至少有两个连通分量,即图中有至少两个不同的部分可以从一部分通过路径到达另一部分。

三、哈密顿图与欧拉图的应用哈密顿图和欧拉图在实际生活中有广泛的应用,下面将分别介绍它们的应用领域。

1. 哈密顿图的应用:哈密顿图在旅行商问题中有着重要的应用。

旅行商问题是指一个旅行商要依次拜访若干个城市,然后返回起始城市,而要求找到一条最短的路径使得每个城市都被访问一次。

哈密顿图可以解决这个问题,通过寻找一条哈密顿路径来确定最短的路径。

2. 欧拉图的应用:欧拉图在电路设计和网络规划中发挥着重要的作用。

在电路设计中,欧拉图可以帮助我们确定如何安排电线的布线以最大程度地减少电线的长度和复杂度。

在网络规划中,欧拉图可以用于确定如何正确地连接不同的网络节点以实现高效的信息传输。

四、结论哈密顿图和欧拉图是图论中的两个重要概念。

哈密顿图是一种包含了图中所有顶点的路径的图,而欧拉图是一种可以通过图中每条边恰好一次的路径来穿越图的图。

欧拉图和哈密而顿图

欧拉图和哈密而顿图
15.1 欧拉图 欧拉(1707-1783):瑞士著名的数学家。13岁进入 欧拉 :瑞士著名的数学家。 岁进入 巴塞尔大学, 岁取得哲学硕士学位 岁取得哲学硕士学位。 巴塞尔大学,16岁取得哲学硕士学位。1736年, 年 他证明了欧拉定理, 他证明了欧拉定理,并解决了哥尼斯堡桥的问 从而成为图论的创始人。 题,从而成为图论的创始人。 定义15.1 通过图(无向图或有向图)中每一条边 通过图(无向图或有向图) 定义 一次且仅一次行遍图中所有顶点的通路称为欧 拉通路。通过图(无向图或有向图) 拉通路。通过图(无向图或有向图)中每一条 边一次且仅一次行遍图中所有顶点的回路称为 欧拉回路。具有欧拉回路的图称为欧拉图, 欧拉回路。具有欧拉回路的图称为欧拉图,具 有欧拉通路而无欧拉回路的图称为半欧拉图。 有欧拉通路而无欧拉回路的图称为半欧拉图。
16
15.欧拉图与哈密顿图 欧拉图与哈密顿图
15.2 哈密顿图
到目前为止, 到目前为止,还没有找到哈密尔顿通路存在的充 分必要条件。下面介绍一个必要定理。 分必要条件。下面介绍一个必要定理。 定理15.6:设无向图 G=<V , E> 是哈密尔顿 G=<V, 定理 : 设无向图G=<V E>是哈密尔顿 图,则对V的每个非空真子集 均成立: 则对 的每个非空真子集S均成立: 的每个非空真子集 均成立 w(G-S) ≤|S| 其中, 中的顶点数, 表示G删去 其中, |S| 是S中的顶点数, w(G-S)表示 删去 中的顶点数 表示 删去S 顶点集后得到的图的连通分图的个数。 顶点集后得到的图的连通分图的个数。
9
15.欧拉图与哈密顿图 欧拉图与哈密顿图
例:用定理解决哥尼斯堡桥的问题
15.1 欧拉图
个结点为奇次数, 有4个结点为奇次数, ∴不存在欧拉回路,也不存在欧拉路径。 不存在欧拉回路,也不存在欧拉路径。 故要从一点出发经过桥一次且仅一次的路径, 故要从一点出发经过桥一次且仅一次的路径 , 再回到出发点是不可能的。 再回到出发点是不可能的。

离散数学中的欧拉图与哈密顿图

离散数学中的欧拉图与哈密顿图

欧拉图和哈密顿图是离散数学中的两个重要的图论概念。

它们分别研究了图中的路径问题,对于解决一些实际问题具有很大的应用价值。

欧拉图是指一个无向图中存在一条路径,经过图中的每条边一次且仅一次,这条路径称为欧拉路径。

如果这个路径的起点和终点重合,则称为欧拉回路。

而对于有向图,存在一条路径,使得经过每一个有向边恰好一次,称为欧拉有向路径,如果该路径起点和终点相同,则称为欧拉有向回路。

1722年,瑞士数学家欧拉首次提出了这个概念,并证明了一系列欧拉图的性质。

欧拉图的性质是其路径的存在性。

既然有了这个概念,那如何判断一个图是不是欧拉图就是一个非常重要的问题。

根据欧拉图的定义,我们可以发现,图中的每个节点的度数都应该是偶数,否则该节点无法成为路径中的中间节点。

因此,一个图是欧拉图的充分必要条件是该图中每个节点的度数都是偶数。

哈密顿图是指一个图中存在一条路径,经过图中的每个顶点一次且仅一次,这条路径称为哈密顿路径。

如果这个路径的起点和终点重合,则称为哈密顿回路。

哈密顿图的概念由19世纪初英国数学家哈密顿引入,其研究对象是关于骑士巡游问题。

与欧拉图不同的是,哈密顿路径并没有一个十分明显的判定条件。

唯一已知的是某些图是哈密顿图,比如完全图和圈图。

至于一般的图是否存在哈密顿路径,目前尚无通用的判定方法。

这也是全世界许多数学家所面临的一个著名且具有挑战性的开放问题,被命名为“哈密顿路径问题”。

欧拉图和哈密顿图在实际问题中具有广泛的应用。

欧拉图的应用包括电子电路和网络的设计,路线规划等。

而哈密顿图的应用更多地涉及路径的优化问题,比如旅行商问题。

在实际应用中,我们常常需要通过对欧拉图和哈密顿图的研究,来寻找最优解或者设计最佳路径。

总的来说,离散数学中的欧拉图和哈密顿图是两个重要的图论概念,它们研究的是图中的路径问题。

欧拉图的判定条件相对明确,而哈密顿图的判定则是一个尚未完全解答的开放问题。

这两个概念在实际中具有广泛的应用,对于解决一些路径优化问题具有重要的参考价值。

(完整word版)第三章欧拉图和哈密顿图

(完整word版)第三章欧拉图和哈密顿图

第三章欧拉图与哈密顿图(七桥问题与一笔画,欧拉图与哈密顿图)教学安排的说明章节题目:§3.1环路;§3.2 欧拉图;§3。

3 哈密顿图学时分配:共2课时本章教学目的与要求:认识七桥问题的实质,理解一笔画问题的解决方法,会正确理解关于欧拉图和哈密顿图的判断定理,并进行识别.其它:由于欧拉图与一笔画问题密切相关,因此本章首先从一笔画问题讲起,章节内容与教材有所不同。

课堂教学方案课程名称:§3.1环路;§3。

2欧拉图;§3。

3哈密顿图授课时数:2学时授课类型:理论课教学方法与手段:讲授法教学目的与要求:认识七桥问题的实质,理解一笔画问题的解决方法,会正确理解关于欧拉图和哈密顿图的判断定理,并进行识别.教学重点、难点:(1)理解环路的概念;(2)掌握欧拉图存在的充分必要条件;(3)理解哈密顿图的一些充分和必要条件;教学内容:看图1,有点像“回"字,能不能从某一点出发,不重复地一笔把它画出来?这就是中国民间古老的一笔画游戏,而这个图形实际上也是来源于生活。

中国古代量米用的“斗"?上下都是四方的,底小口大,从上往下看就是这样的图形.这类“一笔画”问题中最著名的当属“哥尼斯堡七桥问题”了。

一、问题的提出图1哥尼斯堡七桥问题.18世纪,哥尼斯堡为东普鲁士的首府,有一条横贯全市的普雷格尔河,河中的两个岛与两岸用七座桥联结起来,见图2(1),当时那里的居民热衷于一个难题:游人怎样不重复地走遍七桥,最后回到出发点。

1735年,一群执着好奇的大学生写信请教当时正在圣彼得堡科学院担任教授的著名数学家欧拉。

欧拉通过数学抽象成功地解决了这一问题。

欧拉发现欧几里得几何并不适用于这个问题,因为桥不涉及“大小",也不能用“量化计算”来解决.相反地,这问题属于提出的“位置几何"。

欧拉想到,岛与河岸陆地仅是桥梁的连接地点和通往地点,桥仅是从一地通往另一地的路径,一次能否不重复走遍七桥与河岸陆地大小是没有本质联系的,与桥的宽窄也是没有关系的。

欧拉图和汉密尔顿图

欧拉图和汉密尔顿图

生物信息学
在生物信息学中,欧拉图 和汉密尔顿图可以用于表 示和分析基因组、蛋白质 组等生物分子网络。
社会学
在社会学中,欧拉图和汉 密尔顿图可以用于表示和 分析社会关系、社交网络 等方面的问题。
05
总结与展望
对欧拉图和汉密尔顿图的总结
01
欧拉图和汉密尔顿图是 图论中的重要概念,分 别由数学家欧拉和汉密 尔顿提出。
人工智能
汉密尔顿图在人工智能领域也有应用,例如在知识表示和推理中,可以利用汉密尔顿路径 来表示和推理复杂的逻辑关系。
机器学习
汉密尔顿图还可以应用于机器学习中,特别是在图神经网络(GNN)中,可以利用汉密尔顿 路径进行节点间的信息传递和传播。
欧拉图与汉密尔顿图在其他领域的应用
01
02
03
交通运输
欧拉图和汉密尔顿图在交 通运输领域有广泛应用, 例如在路线规划、物流配 送和交通控制等方面。
汉密尔顿图是指一个图中存在一条遍历其所有顶点的路径,且每条边只遍 历一次。
当一个汉密尔顿图的起点和终点是同一点时,该路径就成为欧拉路径,此 时汉密尔顿图也就是欧拉图。
欧拉图与汉密尔顿图的判定问题
欧拉图的判定问题
给定一个图,判断是否存在一条遍历 其所有边且每条边只遍历一次的路径。
汉密尔顿图的判定问题
02
欧拉图是指存在一条或 多条路径能够遍历图的 所有边且每条边只遍历 一次的图。
03
汉密尔顿图是指存在一 条路径能够遍历图的所 有顶点且每条边只遍历 一次的图。
04
欧拉图和汉密尔顿图在 计算机科学、运筹学、 电子工程等领域有广泛 的应用。
对欧拉图和汉密尔顿图未来的研究方向
寻找更高效的算法来判断一个图是否为欧拉图或汉密尔 顿图,以及寻找更多的应用场景。

离散数学15 欧拉图与哈密顿图

离散数学15 欧拉图与哈密顿图
穿过每一道门,通过所有房间?
15.2 哈密顿图
1859年,爱尔兰数学家威廉·哈密尔顿发明 了一个旅游世界的游戏。将一个正十二面体的 20个顶点分别标上世界上大城市的名字,要求 玩游戏的人从某城市出发沿12面体的棱,通过 每个城市恰一次,最后回到出发的那个城市。
哈密尔顿游戏是在左图中如何 找出一个包含全部顶点的圈。
定义(哈密顿通路和哈密顿回路) 经过图(有向图或无向图)每个顶点一次
且仅一次的通路称为哈密顿通路。 经过图每个结点一次且仅一次的回路(初
级回路)称为哈密顿回路。 定义(哈密顿图和半哈密顿图)
存在哈密顿回路的图称为哈密顿图。 存在哈密顿通路但不存在哈密顿回路的图 称为半哈密顿图。 平凡图是哈密顿图。
由两判定定理,立即可知 (4)为欧拉图, (5)、(6)即不是欧拉图,也不是半欧拉图。
例15.2(P296) v2e2v3e3v4e14v9e10v2e1v1e8v8e9v2
◼ Fleury算法
◼ (1)任取v0V(G),令P0=v0。 ◼ (2)设Pi=v0e1v1e2…..eivi已经行遍,则按下面
判断所示两图是否为欧拉图、半欧拉图?
无向欧拉图与无向半欧拉图的判断方法
定理15.1(无向欧拉图的判定)无向图G是欧拉图当 且仅当G是连通图,且G中没有奇度顶点。
定理15.2(无向半欧拉图的判定)无向图G是半欧拉 图当且仅当G是连通图,且G中恰有两个奇度顶点。
(1)
(2)
(3)
有向欧拉图与有向半欧拉图的判断方法
(1)
(2)
(3)
(4)
(5)
(6)
(1)(2)(3)(4)为哈密顿图 (5)为半哈密顿图 (6)既不是哈密顿图,又不是半哈密顿图。

欧拉图和哈密顿图

欧拉图和哈密顿图

例如,由定理可知,下图 (a)图为欧拉图,本图 既v成圈8 可圈画v6之v以在1并(看vc2)(成v中为3 圈v)清。4 vv晰1将5v起v2(6av见v)87分v,v1解8,将v成1v与42若个v圈3干圈vv42个画vv24边在,v6不(vb4v)8重v中5v2的v)之6,圈v并也4,的(可两v并6看个v7 不是(a)图特有性质,任何欧拉图都有这个性质。
尽管讨论哈密顿通路和哈密顿回路在形式上与欧
拉通路和欧拉回路非常相似,但遗憾的是到目前为止, 仍然没有找到一个合适的条件来作为判断哈密顿通路 或哈密顿回路存在的充要条件。不过,可以给出哈密 顿通路和哈密顿回路存在的充分条件或必要条件。
定理9.2.1设无向图G=<V, 的任意非空子集,则
E>是哈密顿图,V1是V
下面给出一些哈密顿图的充分条件。
定理9.2.2设G=<V, E>是具有n个节点的简单无向图,若
对任意的u, v∈V均有
deg(v) +deg(u) ≥n-1
则G中存在哈密顿通路。
容易看出,定理9.2.2中的条件对图中是否存在哈密顿路 是充分而不必要的。
如图9.2.6所示的六边形G,虽然任意两个节点度数之和 等于4<6-1(n=6),但G中却显然有哈密顿路(实际上G是哈密 顿图)。
只要数一下图中节点的度数即可。
❖ 9.1.4 欧拉图的应用 一笔画问题 所谓“一笔画问题”就是画一个图形,笔不离纸,每条 边只画一次而不许重复地画完该图。“一笔画问题”本质上 就是一个无向图是否存在欧拉通路(回路)的问题。如果该 图为欧拉图,则能够一笔画完该图,并且笔又回到出发点; 如果该图只存在欧拉通路,则能够一笔画完该图,但笔回不 到出发点;如果该图中不存在欧拉通路,则不能一笔画完该 图。

第13节欧拉图与哈密顿图

第13节欧拉图与哈密顿图
18/25
集合与图论
哈密顿图的充分条件之一
若顶点vir-1,(r=2,3,...,k)与顶点vp相邻, 则G 有哈密顿圈v1v2...vi(r-1)vpvp-1...virv1.
因此vp至少与v1,v2,...,vp-1中的k个顶点不相邻. vp的度数为h,于是h≤p-1-k,从而k+h≤p-1, 因此k与h中至少有一个小于p/2,G 中有一个顶 点的度小于p/2.
集合与图论
欧拉图的判别定理
若G2中还有边,则同样的方式,G2中有圈Z3,如 此等等,最后必得到一个图Gn,Gn中无边. 于是我们得到了G中的n个圈Z1,Z2,...,Zn,,它们是两 两无公共边的,因此,G的每条边在且仅在其中的一个 圈上,于是G的边集被划分为n个圈. 由于G是连通的,所以每个圈Zi至少与其余的某个 圈有公共顶点,从而图G由一些边不重的相互之间有公 6/25 共顶点的圈构成.
19/25
集合与图论
哈密顿图的充分条件之二
定理3 设G是有p(p≥3)个顶点的图,如果 对G的任意一对不相邻的顶点u和v,均有 degu+degv≥p, 则G是一个哈密顿图. 只需证明p(p≥3)个顶点的每个非哈密顿图中至少 有两个不相邻的顶点u和v,有degu+degv≤p-1即可. 刚才的证明中的v1,vp就满足这个性质.
22/25
集合与图论
实 例
例4:某次国际会议8人参加,已知每人至少与其余7 人中的4人有共同语言,问服务员能否将他们安排在 同一张圆桌就座,使得每个人都与两边的人交谈? 解 做无向图G=<V,E>, 其中 V={v| v为与会者}, E={{u,v} | u,vV且u与v有共同语言,且u v}. 易知G为无向图且vV, deg(v)4,于是,u,vV, 有 deg(u)+deg(v) 8,可知G为哈密顿图. 服务员在G中 找一条哈密顿圈C,按C中相邻关系安排座位即可.

哈密顿图pdf

哈密顿图pdf
31
小结
• 欧拉图 Easy – 充要条件 • 哈密顿图 Hard – 必要条件 – 充分条件
32
13
无向半哈密顿图的充分条件
• 定理8.7: 设G是n(2)阶无向简单图, 若对G中任意 不相邻顶点u与v有 d(u)+d(v)n-1 则G是半哈密顿图. • 证: 只需证明 (1) G连通 (2) 由极大路径可得圈 (3) 由圈可得更长路径
14
定理8.7证明(1)
• (1) G连通: uv( (u,v)E w((u,w)E(w,v)E )
18
无向哈密顿图的充分条件二
• 推论2: 设G是n(3)阶无向简单图,若对G中任意顶点 u有 d(u)n/2 则G是哈密顿图. #
• 定理8.8: 设u,v是无向n阶简单图G中两个不相 邻顶点,且d(u)+d(v)n, 则 G是哈密顿图 G(u,v)是哈密顿图. #
19
有向半哈密顿图的充分条件
vi-1
vi
定理8.10证明(2)
• 则 C’=v1v2…vi-1vvi…vkv1 是长度为k+1的圈.
vi-1 v vi v
vi-1 vi
24
定理8.10证明(2)
• 否则, 令 V1={vV(D-C) | uV(C), <u,v>E(D) } V2={vV(D-C) | uV(C), <v,u>E(D) } 则 V1,V2, V1V2 = .
7
无向哈密顿图的必要条件
• 定理8.6: 设G=<V,E>是无向哈密顿图, 则对V的任意 非空真子集V1有 p(G-V1) |V1|。 • 证明:设C是G中任意哈密顿回路, 当V1中顶点在C 中都不相邻时, p(C-V1)=|V1|最大; 否则, p(C-V1)<|V1|. C是G的生成子图, 所以p(G-V1)P(C-V1)|V1|. #

欧拉图与哈密顿

欧拉图与哈密顿
哈密顿图
通过一系列的节点,将所有节点 两两连接起来,且每条边只使用 一次。
性质的异同比较
欧拉图 哈密顿图
应用领域的ቤተ መጻሕፍቲ ባይዱ较
欧拉图
在计算机科学、运筹学、交通运输等 领域有广泛应用。
哈密顿图
在计算机科学、电子工程、通信网络 等领域有广泛应用。
05
欧拉图与哈密顿图的未来研
究展望
欧拉图的研究展望
欧拉路径与欧拉回路
通过模拟生物进化过程的遗传 算法来寻找哈密顿路径,适用 于大规模的图。
元胞自动机法
通过模拟元胞自动机的演化过 程来寻找哈密顿路径,适用于
具有特定结构的图。
03
欧拉图与哈密顿图的应用
欧拉图在计算机科学中的应用
算法设计
01
欧拉图在计算机科学中常被用于算法设计,如最短路径算法、
最小生成树算法等。
数据结构
欧拉图与哈密顿图在其他领域的应用
经济学
欧拉图和哈密顿图在经济 学中被用于描述市场供需 关系和生产网络。
社会学
欧拉图和哈密顿图在社会 学中被用于研究社会网络 和人际关系。
交通工程
欧拉图和哈密顿图在交通 工程中用于描述交通流和 路网结构。
04
欧拉图与哈密顿图的比较
构造方法的比较
欧拉图
通过一系列的边和节点,将起点 和终点连接起来,且每条边只使 用一次。
欧拉图的扩展研究
深入研究欧拉路径和欧拉回路的性质 和构造方法,探索其在图论、组合数 学和计算机科学等领域的应用。
将欧拉图的研究扩展到其他领域,如 社交网络分析、生物信息学和交通网 络规划等。
欧拉图的算法优化
针对欧拉图的算法进行优化,提高算 法的效率和稳定性,以解决大规模图 数据的计算问题。

浅谈欧拉图、哈密顿图的起源与应用

浅谈欧拉图、哈密顿图的起源与应用

浅谈欧拉图、哈密顿图的起源与应用发表时间:2019-07-26T15:22:27.333Z 来源:《基层建设》2019年第14期作者:王海燕王浩岳秀明[导读] 摘要:图论是计算机科学中最重要的一部分,欧拉图和哈密顿图在图论研究中具有重要的地位,是图论中不可或缺的一部分,它两类的研究已经应用到各种领域,为人们节约了大量的时间。

山东协和学院摘要:图论是计算机科学中最重要的一部分,欧拉图和哈密顿图在图论研究中具有重要的地位,是图论中不可或缺的一部分,它两类的研究已经应用到各种领域,为人们节约了大量的时间。

合理利用欧拉图和哈密顿图,不仅可以将复杂的问题简单化,还能提高工作效率。

因此,很多学者喜欢研究欧拉图和哈密顿图,并在其中有不少成就。

关键词:欧拉图、哈密顿图、起源、应用1 欧拉图的起源18世纪,普鲁土的哥尼斯堡,有一条贯穿全城的普雷格尔河,河中有两个岛屿,有七座桥将两岸与岛屿及岛屿之间连接,当地人们热衷于一个难题:一个散步者怎样不重复地走完七桥,最后回到出发点这就是哥尼斯堡七桥问题。

试验者很多,但都没成功。

为了寻找客案瑞士数学家昂哈德。

欧拉(Leonhard Euler)对此问题进行研究。

他将4块陆地抽象成4个顶点A。

B。

C,D。

若两块陆地之间有桥,就在代表它们的顶点之间连边。

哥尼斯堡七桥问题就是要寻找经过图中每条边一次且仅一次的简单回路。

欧拉在1736年的论文中指出,这样的回路是不存在的,从而得出哥尼斯保七桥问题无解的结论这就是欧拉回路的来源。

欧拉图的判定方法:图中有一点,由该点出发经过每条边一次并且仅一次的通路称作欧拉通路;图中有一点,由该点出发经过每条边一次且仅一次的回路称作欧拉回路,具有欧拉回路的图称为欧拉图。

只有欧拉通路而无欧拉回路的图不是欧拉图。

2 哈密顿图的起源哈密尔顿(Hamilton)是爱尔兰的一位数学家和天文学家。

他的一生是多姿多彩的,自从哈密尔顿发现“四元数”之后,他又发现了另外一种他命名为“The Icosian Calculus”的代数系统,这系统有加法和乘法的运算子(operators),可是乘法不满足交换律(Commutative law)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所有圈遍历依次,显然符合v0是可以任意遍历的条件,但v0所不在的圈上的边没有经过

这与v0是可以任意遍历的相矛盾。
综合4.1.1和4.1.2,如果v0是任意行遍的,则G-v0中无圈。
2)充分性:4.2 证明如果G-v0中无圈,则v0是任意行遍的:
显然v0是G中所有圈的共同交点。
4.2.1 如果G是由1个圈组成,从v0出发,行遍这个圈。此时G上所有的边被遍历,形成一
(V v11,v12,...,v1n,V,v21,v22,...v2nV,v3.....,V)其实很容易证明,割点两侧的圈都
是连通的,且度数都为偶数,必要性得证
充分性
每个块都是欧拉图, 都是圈 其中得割点是V1,V2...,Vn,那么 V1,v11,v12,...,V2,v
G上哈密尔顿回路,G是哈密尔顿图。
11.,这道题又要画图,所以略,构成图的模型:把每个人看作顶点,如果两个人都会某种
语言,则这两个顶点之间连边!,所以能画出一个图,然后再在这个图上找出一条哈密顿
回路即可!
我找到 b a c e g f d b
12.今有2k个人去完成k项任务,已知每个人均能与另外2k-1个人中的k个人中的任何一个
那么内圈、外圈中分别还有1个点没有连接,根据回路的性质,外圈必须有2条1类边分别
和外圈的该点连接成一个通路,该通路的两端分别连接பைடு நூலகம்4条3类边中2条在外圈的端点,
显然此时至少有2条3类边不可能在回路中。因此不可能存在4条3类边的回路。
综合8.1和8.2,彼得森图不是哈密尔顿图。
9.设G为n阶无向简单图,边数m=1/2(n-1)*(n-2)+2,证明G为哈密顿图,再举例说明,当
它们为Ps'和Ps'',则P1,P2,…,Ps-1,Ps',Ps'',…,Pr为所求的r+1条简单通路,即
它们的边不重,并且含G的全部边。
4,设G为欧拉图,V0∈V(G),若从Vo开始行遍,无论行遍到哪个顶点,只要未行过的边就可
以行遍,最后行遍所有的边回到Vo,就可以得到一条欧拉回路,则称Vo是可以任意行遍的,
14.在四分之一国际象棋棋盘(4x4黑白格棋盘)上跳马,使马经过每个格一次且仅一
次,最后回到出发点能否办到,为什么?
解将每个棋格看作1个顶点,如果2个棋格之间可以跳马,就在它们代表的顶点之间画1条

线,
这样得到一个无向图G。于是问题转为求无向图G的哈密尔顿回路。
将4×4棋盘的中间4个角上得棋格所代表的顶点 a、b、c、d作为V1,此时|V1|=4,
如果v1与G上顶点vj相连,那么vn肯定不能与G上顶点vj-1相连,否则
v1 ... vj-1 vn ... vj v1构成一条哈密尔顿回路,与已知矛盾。
如果v1连接有d(v1)个顶点,那么vn与除v1、vn外的n-2个顶点中至少d(v1)-1个顶点
不相联。即d(vn) <= (n-2)-(d(v1)-1) = n-1-d(v1),即d(v1)+d(vn) <= n-1。
图略
10,设G为无向连通图,C为G中一条初级回路(圈),若删除C上任何一条边后,C上剩下边
的导出子图均为G中最长的路径,证明C为G的哈密顿回路,从而G为哈密顿图。
证明:首先证明C经过G上所有顶点。
用反证法:如果G上有顶点C没有经过,不妨设这些顶点为v1, ...,vn,v1, ...,vn中
根据哈密尔顿回路的定义,Ci是哈密尔顿回路。
17.2 证明E(Ci)∩E(Cj)=φ(i≠j)
Ci中有4种边:(v2k+1, vi), (vi-k, v2k+1), (vi-x, vi+x)(1<=x<=k-1),
(vi+(x-1), vi-x)(1<=x<=k-1)。
Cj中有4种边:(v2k+1, vj), (vj-k, v2k+1), (vj-y, vj+y)(1<=y<=k-1),
k,使得E(G)=U(I=1,k)E(Pi)
证明:方法二 对k做归纳法
(1)k=1时,G为半欧拉图,因而存在欧拉通路P,则P为所求,所以结论为真。
(2)设k=r时,结论为真。要证:k=r+1时结论为真。
设G的2k=2r+2个奇度顶点分别为
V1,V2,…,Vr,Vr+1
综合4.1和4.2,v0是任意行遍的当且仅当G-v0中无圈。
5.如何将16个二进制数字(8个0,8个1)排成一个圆形,使得16个长为4 的二进制数在其中
各出现且仅出现一次?
6.如何将9个a,9个b,9个c排成圆形,使得由a,b,c产生的27个长为3的符号串在其中均出
现且仅出现1次?
这两题,通过画图的方法非常好解,由于BBS上画图比较麻烦,所以略去,如果有问题的
人组成小组(每个小组两个人)去完成他们共同熟悉的任务,问这2k个人能否分成k组,
每组完成一项他们共同熟悉的任务?
解:构造一个哈密顿回路,那么就可以取出k组相邻的点,
因为每个点的度数都是k,所以 任意两个点的度数和为2k, 所以存在哈密顿回路
得证
13.今有n个人,已他们中任何两个人合起来认识其余的n-2人,试证明当n≥3时,这
n个人能够排放成一列,使得中间任何人都认识两旁的人,而两头的人认识左边(或
右边)的人.而当n≥4时,这n个人能排成一个圆圈,使得每个人都认识两旁的人。
证明
1)求存在哈密顿通路。
任取两个人,如果这两个人认识,那么 d(v1)+d(v2) ≥n-2+2=3 那么显然存在哈密
顿通路
如果存在两个人(v1.,v2)不认识,那么v1和v2中必存在一点和 其余的点vj相联,不
若干个边不重的边,不一定是块。
块是指没有割点的极大连通子图
证明:必要性
如果G是欧拉图,根据定理8.1及其推论:G是若干边不相交的圈的并,G是欧拉图当且
仅当G时连通的且G中无奇度顶点,所以我们在G中找块时,无非就是找割点两侧的圈,割
点在每个圈中出现的所得的度数都是偶数,割点为V
边形图可知2条3类边在外圈的端点必须是相邻的,那么这2条3类边在内圈的端点也是
相邻的。由五角星形可知只能有2或3条2类边将内圈的3个点连接成一个通路,该通路的
两端分别连接那2条3类边在内圈的端点。此时回路由8或9个边组成,与已知的10条边矛
盾。因此不可能存在2条3类边的回路。
8.2 如果回路中有4条3类边
妨设v1,
根据条件 v1和vj 中必存在一点和v2相连,因为 v1和v2不相联,所以vj和v2相联,
也就是vj和v1,v2都相联
所以d(v1)+d(v2) ≥n-2+1=n-1 存在哈密顿通路 得证
2)所以对于vi,vj来说,任取 vk都与vi和vj相联,所以
d(vi)+d(vj) ≥n-2+n-2=2n-4≥n(n=4) 所以 存在哈密顿回路,得证
V1',V2',…,Vr',Vr+1'
在Vr+1与Vr+1'之间加一条新边er+1=(Vr+1,Vr+1'),得图G',则G'连通且有2r个奇度
顶点。由归纳假设,G'中存在r条边不重的简单通路P1,P2,…,Pr,使得
显然存在某条Ps(1≤s≤r)含边er+1=(Vr+1,Vr+1'),则Ps-er+1为两条简单通路。设
仅当G∪ (u,v)为哈密顿图。
证明:
1) 必然性显然成立
2) 充分性
证明当G∪(u, v)是哈密尔顿图时,G一定为哈密尔顿图:
用反证法:
如果G∪(u, v)是哈密尔顿图,而G不是哈密尔顿图,那么G中一定存在哈密尔顿通路
v1 ... vj-1 vj ... vn,其中v1=u,vn=v,v1和vn不相邻。
1.设G为n (n≥2)阶欧拉图,证明G是2-边连通图
证明:存在一条欧拉回路,所以去掉其中任何一边e,该图G-e仍然是连通得,去掉两条边
,该图可能是不连通的,所以λ(G)≥2,所以该图是2-边连通图
2.设G为无向连通图,证明:G为欧拉图当且仅当G的每个块都是欧拉图
证明:根据理题G为欧拉图当且仅当G可表示为若干个边不重的圈之并,易证
p(G-V1)=6,所以G不是哈密尔顿图,该种跳法无法办到
15,在国际象棋棋盘上跳马,要求同第14题,能办到吗?
答:我用Java语言实现了,可是,我不知道如何证明,这是一道难题!!
16.完成定理8.8的证明
设 u, v为无向n阶简单图G中得两个不相邻的顶点,且d(u)+d(v) ≥n,则G为哈密顿图当且
话,可以通过QQ 和我联系
8.证明彼得森图不是哈密顿图!
证明将彼得森图中的15条边分为3种:连接外部大五边形顶点的5条边,连接内部小五角星

顶点的5条边,连接外部大五边形顶点和内部小五角星形顶点的5条边,分别记为1类边,
2类边和3类边。
如果彼得森图是哈密尔顿图,那么一定存在一条由10个边组成的回路(彼得森图有10个
(vj+(y-1), vj-y)(1<=y<=k-1)。
显然,当i≠j时有:
(v2k+1, vi)≠(v2k+1, vj)
(v2k+1, vi)≠(vj-k, v2k+1)
相关文档
最新文档