2014年考研数学高等数学(张宇)笔记
(最新)张宇高数18讲数学二知识点总结笔记
![(最新)张宇高数18讲数学二知识点总结笔记](https://img.taocdn.com/s3/m/0d1d4a79302b3169a45177232f60ddccda38e6a3.png)
张宇高数18讲数学二知识点总结笔记●1.函数极限与连续1)函数极限的定义及使用●定义●使用●是常数、唯一性、局部有界性、局部保号性●等式脱帽法2)函数极限的计算●化简先行●等价无穷小替换●恒等变形●及时提出极限存在且不为0的因式●洛必达法则●泰勒公式●熟记常用公式●展开原则●无穷小比阶●函数极限的存在性●具体性●若洛必达失效,用夹逼准则●抽象性●单调有界准则●连续与间断●研究位置●无定义点、分段函数的分段点●连续●内点处、端点处●间断●2.数列极限1)数列极限的定义及使用●定义●使用●是常数、唯一性、有界性、保号性●收敛的充要条件2)数列极限的存在性与计算●海涅定理的使用●直接计算法●定义法(先斩后奏法)●单调有界准则●用已知不等式●题设给出条件来推证●夹逼准则●用基本放缩法●题设给出条件来推证●综合题总结●用导数、积分、中值定理综合●用方程列、区间列综合●用极限综合●3.一元微分的概念1)导数定义(导数在一点的问题)●分段函数(或含绝对值函数)在分段点●抽象函数在一点●特指点x_0●泛指点x●四则运算中的特殊点●太复杂的函数●f=f_1+f_2●f=f_1* f_2* f_3* ...*●求导公式无定义的点2)微分定义●4.一元微分的计算1)复合函数求导2)隐函数求导3)反函数求导4)分段函数求导(含绝对值)●在分段点用导数定义●在非分段点用导数公式●对数求导法●幂指函数求导法●参数方程确定的函数求导●高阶导数●归纳法(记公式)●莱布尼茨公式●展开式(记公式)5)难点●计算量大●含参数的讨论●高阶导数●5.一元微分的几何应用1)研究对象●“祖孙三代”●f(x)●具体●抽象●f_n(x) 函数族●f_1·f_2·...·f_n● f'(x) ; \frac{\mathrm{d}[f(x)]}{\mathrm{d}{(x^2)}} ; {f}^{(n)}(x)●\int_{a}^{x}f(x)dx●分段函数(含绝对值)●参数方程●x=x(t), y=y(t)●x=r(\theta)cos\theta,y=r(\theta)sin\theta●隐函数F(x,y)=02)研究内容●切线、法线、截距●极值、单调性●单调性的判别●一阶可导点是极值点的必要条件●判别极值的第1,2,3充分条件●拐点、凹凸性●凹凸性的定义●拐点定义●凹凸性与拐点的判别●判别凹凸性的充分必要条件●二阶可导点是拐点的必要条件●判别拐点的第1,2,3充分条件●6.中值定理、微分等式与微分不等式1)中值定理●确定区间●确定辅助函数●确定使用的定理●零点定理●介值定理●费马定理●罗尔定理●拉格朗日中值定理●泰勒公式●柯西中值定理2)微分等式问题●理论依据●考法3)微分不等式问题●用单调性●用最值●用凹凸性●用拉格朗日中值定理●用柯西中值定理●用带有拉格朗日余项的泰勒公式●7.一元微分物理应用1)物理应用●以“A对B的变化率”为核心写\frac{\mathrm{d}A}{\mathrm{d}B}●8.一元积分的概念与性质1)祖孙三代●\int_{a}^{x}f(x)dx ,f(x),{ f^{'}(x) } 的奇偶性,周期性2)积分比大小●用几何意义●看面积大小●用保号性●做差●看正负3)定积分定义●基本形(能凑成\frac{i}{n})●\lim_{n \to \infty}\sum_{i=1}^n f(0+\frac{1-0}{n}i)\frac{1-0}{n} =\int_{0}^{1}f(x)dx●\lim_{n \to \infty}\sum_{i=0}^{n-1} f(0+\frac{1-0}{n}i)\frac{1-0}{n} =\int_{0}^{1}f(x)dx●放缩形(凑不成\frac{i}{n})●夹逼准则●放缩后再凑\frac{i}{n}●变量形●\lim_{n \to \infty}\sum_{i=1}^n f(0+\frac{x-0}{n}i)\frac{x-0}{n} =\int_{0}^{x}f(x)dx4)反常积分的判敛●概念●判别●9.一元积分的计算1)基本积分公式2)不定积分的计算●凑微分法●思想●方法●常用的凑微分公式●程序●换元法●思想●方法●三角函数代换●恒等变形后作三角代换●跟式代换●倒代换●复杂函数的直接带换●思想●方法●u,v的选取原则●推广公式(表格法)●有理函数的积分●定义●思想●方法3)定积分的计算●区间再现公式●华里士公式●其他常用含三角函数的积分等式●区间简化公式●对称性下的积分问题●定积分分部积分法中的“升阶”降阶“”公式●分段函数的定积分●10.一元积分几何应用1)研究对象●f(x)●f_n(x)●参数方程●x=x(t)●y=y(t)●\frac{\partial f}{\partial x}●\int_{a}^{x}f(x)dx●微分方程的解函数f(x)2)研究内容●面积、旋转体体积、平均值●平面曲线的弧长、旋转曲面的面积(侧面积)●“平面上的曲边梯形”的形心坐标公式●平行截面面积为已知的立体体积●11.积分等式与积分不等式1)积分等式●通过证明某特殊积分等式求某特殊积分●积分形式的中值定理2)积分不等式●用函数的单调性●处理被积函数●已知f(x) \leq g(x),用积分保号性证得\int_{a}^{b}f(x)dx \leq\int_{a}^{b}g(x)dx,a<b●用拉格朗日中值定理●用泰勒公式●用放缩法●用分部积分法●用换元法●用夹逼准则求解一类积分的极限问题●曲边梯形面积的连续化与离散化问题●12.一元积分的物理应用1)位移大小与总路程●位移大小●\int_{t_1}^{t_2}v(t)dt●总路程●\int_{t_1}^{t_2}|v(t)|dt2)变力沿直线做功●W=\int_{a}^{b}F(x)dx3)提取物体做功●W=\rho g\int_{a}^{b}xA(x)dx4)静水压力●P=\rho g\int_{a}^{b}x[f(x)-h(x)]dx5)细杆质心●\bar x=\frac{\int_{a}^{b}x\rho (x)dx}{\int_{a}^{b}\rho (x)dx}6)其他重要应用(微元法总结)●13.多元函数微分学1)概念●极限、连续、偏导数、可微2)复合函数求导法●链式求导规则●全导数●全微分形式不变3)隐函数求导●隐函数存在定理●一个方程的情形●方程组的情形4)多元函数的极值、最值●无条件极值●取极值的必要条件●取极值的充分条件●条件极值与拉氏乘数法5)偏微分方程●已知偏导数(或偏增量)的表达式,求z=f(x,y)●给出变换,化已知偏微分方程为常微分方程,求f(u)●给出变换,化已知偏微分方程为指定偏微分方程及其反问题●14.二重积分1)概念●和式极限●普通对称性●轮换对称性●二重积分比大小●用对称性●用保号性●二重积分中值定理●周期性2)计算●直角坐标系与换序●极坐标系与换序●直极互化3)应用●面积●\iint_{D}dxdy●15.微分方程1)一阶微分方程的求解●能写成 y'=f(x)·g(x)●能写成 y'=f(ax+by+c)●能写成 y'=f(\frac{y}{x})●能写成 \frac{1}{y'}=f(\frac{x}{y})●能写成 y'+p(x)y=q(x)2)二阶可降阶微分方程的求解●能写成 y''=f(x,y')●能写成 y''=f(y,y')3)高阶常系数线性微分方程的求解●能写成 y''+py'+qy=f(x)●能写成 y''+py'+qy=f_1(x)+f_2(x)4)用换元法求解微分方程●用求导公式逆用来换元●用自变量来换元●用因变量来换元●用x,y地位互换来换元5)应用题●用极限、导数定义或积分等式建方程●用几何应用建方程●用曲线切线斜率●用两曲线f(x)与g(x)的公切线斜率●用截距●用面积●用体积●用平均值●用弧长●用侧面积●用曲率●用形心。
(完整版)高等数学完全归纳笔记(全)
![(完整版)高等数学完全归纳笔记(全)](https://img.taocdn.com/s3/m/bf025ea5b90d6c85ec3ac6a2.png)
一、函数与极限 (2)1、集合的概念 (2)2、常量与变量 (3)2、函数 (4)3、函数的简单性态 (4)4、反函数 (5)5、复合函数 (6)6、初等函数 (6)7、双曲函数及反双曲函数 (7)8、数列的极限 (9)9、函数的极限 (10)10、函数极限的运算规则 (12)一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。
集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。
比如“身材较高的人”不能构成集合,因为它的元素不是确定的。
我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。
如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集。
记作N+或N+。
⑶、全体整数组成的集合叫做整数集。
记作Z。
⑷、全体有理数组成的集合叫做有理数集。
记作Q。
⑸、全体实数组成的集合叫做实数集。
记作R。
集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合。
集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。
⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。
⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。
⑷、空集:我们把不含任何元素的集合叫做空集。
记作,并规定,空集是任何集合的子集。
⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。
2014年高考数学备考笔记
![2014年高考数学备考笔记](https://img.taocdn.com/s3/m/51546a996bec0975f465e226.png)
高中数学常用公式及常用结论1. 元素与集合的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉. 2.德摩根公式();()U U U U U U C A B C A C B C A B C A C B ==.3.包含关系A B A A B B=⇔=U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=ΦU C A B R ⇔= 64.容斥原理()()card A B cardA cardB card A B =+-()()card A B C cardA cardB cardC card A B =++-()()()()card A B card B C card C A card A B C ---+.5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n–1个;非空的真子集有2n–2个.6.二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式()N f x M <<⇔[()][()]0f x M f x N --<⇔|()|22M N M N f x +--<⇔()0()f x NM f x ->- ⇔11()f x N M N>--. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(21<k f k f 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程)0(02≠=++a c bx ax 有且只有一个实根在),(21k k 内,等价于0)()(21<k f k f ,或0)(1=k f 且22211k k a bk +<-<,或0)(2=k f 且22122k abk k <-<+. 9.闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在abx 2-=处及区间的两端点处取得,具体如下:(1)当a>0时,若[]q p a bx ,2∈-=,则{}min max max ()(),()(),()2b f x f f x f p f q a=-=; []q p abx ,2∉-=,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =. (2)当a<0时,若[]q p abx ,2∈-=,则{}min ()min (),()f x f p f q =,若[]q p abx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =.10.一元二次方程的实根分布依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 . 设q px x x f ++=2)(,则(1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为0)(=m f 或2402p q p m ⎧-≥⎪⎨->⎪⎩;(2)方程0)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <或2()0()0402f m f n p q p m n >⎧⎪>⎪⎪⎨-≥⎪⎪<-<⎪⎩或()0()0f m af n =⎧⎨>⎩或()0()0f n af m =⎧⎨>⎩; (3)方程0)(=x f 在区间(,)n -∞内有根的充要条件为()0f m <或2402p q p m ⎧-≥⎪⎨-<⎪⎩ .11.定区间上含参数的二次不等式恒成立的条件依据(1)在给定区间),(+∞-∞的子区间L (形如[]βα,,(]β,∞-,[)+∞,α不同)上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是min (,)0()f x t x L ≥∉.(2)在给定区间),(+∞-∞的子区间上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是(,)0()man f x t x L ≤∉.(3)0)(24>++=c bx ax x f 恒成立的充要条件是000a b c ≥⎧⎪≥⎨⎪>⎩或2040a b ac <⎧⎨-<⎩.12.13.14.四种命题的相互关系15.充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件.注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 16.函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数. (2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.17.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.18.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.19.若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+.20.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2b a x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2ba x +=对称.21.若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a 对称; 若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.22.多项式函数110()n n n n P x a x a x a --=+++的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零. 23.函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=.(2)函数()y f x =的图象关于直线2a bx +=对称()()f a mx f b mx ⇔+=- ()()f a b mx f mx ⇔+-=.24.两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. (2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a bx m+=对称. (3)函数)(x f y =和)(1x f y -=的图象关于直线y=x 对称.25.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.26.互为反函数的两个函数的关系a b f b a f =⇔=-)()(1.27.若函数)(b kx f y +=存在反函数,则其反函数为])([11b x f ky -=-,并不是)([1b kx f y +=-,而函数)([1b kx f y +=-是])([1b x f ky -=的反函数. 28.几个常见的函数方程(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=.(2)指数函数()xf x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠. (4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==.(5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+,()(0)1,lim1x g x f x→==. 29.几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ; (2)0)()(=+=a x f x f ,或)0)(()(1)(≠=+x f x f a x f , 或1()()f x a f x +=-(()0)f x ≠,或[]1(),(()0,1)2f x a f x +=+∈,则)(x f 的周期T=2a ;(3))0)(()(11)(≠+-=x f a x f x f ,则)(x f 的周期T=3a ;(4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则)(x f 的周期T=4a ;(5)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++()()(2)(3)(4)f x f x a f x a f x a f x a =++++,则)(x f 的周期T=5a ; (6))()()(a x f x f a x f +-=+,则)(x f 的周期T=6a.30.分数指数幂(1)m na =0,,a m n N *>∈,且1n >). (2)1m nm naa-=(0,,a m n N *>∈,且1n >).31.根式的性质 (1)n a =.(2)当na =; 当n,0||,0a a a a a ≥⎧==⎨-<⎩.32.有理指数幂的运算性质 (1) (0,,)r s r s a a a a r s Q +⋅=>∈. (2) ()(0,,)r s rs a a a r s Q =>∈.(3)()(0,0,)r r r ab a b a b r Q =>>∈.注: 若a >0,p 是一个无理数,则a p表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.33.指数式与对数式的互化式log b a N b a N =⇔=(0,1,0)a a N >≠>.34.对数的换底公式log log log m a m NN a=(0a >,且1a ≠,0m >,且1m ≠, 0N >).推论 log log m na a nb b m =(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >).35.对数的四则运算法则若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+;(2) log log log aa a MM N N =-; (3)log log ()na a M n M n R =∈.36.设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验.37. 对数换底不等式及其推广若0a >,0b >,0x >,1x a ≠,则函数log ()ax y bx =(1)当a b >时,在1(0,)a 和1(,)a +∞上log ()ax y bx =为增函数., (2)当a b <时,在1(0,)a 和1(,)a+∞上l o g ()ax y bx =为减函数. 推论:设1n m >>,0p >,0a >,且1a ≠,则 (1)log ()log m p m n p n ++<. (2)2log log log 2a a am nm n +<. 38. 平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)x y N p =+.39.数列的同项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++).40.等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+ 211()22d n a d n =+-. 41.等比数列的通项公式1*11()n nn a a a q q n N q-==⋅∈; 其前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.42.等比差数列{}n a :11,(0)n n a qa d a b q +=+=≠的通项公式为1(1),1(),11n n n b n d q a bq d b q d q q -+-=⎧⎪=+--⎨≠⎪-⎩;其前n 项和公式为(1),(1)1(),(1)111n n nb n n d q s d q db n q q q q +-=⎧⎪=-⎨-+≠⎪---⎩. 43.分期付款(按揭贷款)每次还款(1)(1)1nnab b x b +=+-元(贷款a 元,n 次还清,每期利率为b ). 44.常见三角不等式 (1)若(0,)2x π∈,则sin tan x x x <<.(2) 若(0,)2x π∈,则1sin cos x x <+≤(3) |sin ||cos |1x x +≥.45.同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=. 46.正弦、余弦的诱导公式(奇变偶不变,符号看象限)212(1)sin ,sin()2(1)s ,nn n co απαα-⎧-⎪+=⎨⎪-⎩212(1)s ,s ()2(1)s i n ,nn co n co απαα+⎧-⎪+=⎨⎪-⎩47.和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±=;tan tan tan()1tan tan αβαβαβ±±=.22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式);22cos()cos()cos sin αβαβαβ+-=-.sin cos a b αα+=)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ= ).48.二倍角公式sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-.49. 三倍角公式3sin 33sin 4sin 4sin sin()sin()33ππθθθθθθ=-=-+.3cos34cos 3cos 4cos cos()cos()33ππθθθθθθ=-=-+.323tan tan tan 3tan tan()tan()13tan 33θθππθθθθθ-==-+-.50.三角函数的周期公式函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A≠0,ω>0)的周期T πω=. 51.正弦定理2sin sin sin a b cR A B C===. 52.余弦定理2222cos a b c bc A =+-; 2222cos b c a ca B =+-; 2222cos c a b ab C =+-.53.面积定理(1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高). (2)111sin sin sin 222S ab C bc A ca B ===.(3)OAB S ∆=54.三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A B π+⇔=-222()C A B π⇔=-+. 55. 简单的三角方程的通解sin (1)arcsin (,||1)kx a x k a k Z a π=⇔=+-∈≤. s 2arccos (,||1)co x a x k a k Z a π=⇔=±∈≤.tan arctan (,)x a x k a k Z a R π=⇒=+∈∈.特别地,有sin sin (1)()k k k Z αβαπβ=⇔=+-∈.s cos 2()co k k Z αβαπβ=⇔=±∈.tan tan ()k k Z αβαπβ=⇒=+∈.56.最简单的三角不等式及其解集sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ>≤⇔∈++-∈.sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ<≤⇔∈--+∈. cos (||1)(2arccos ,2arccos ),x a a x k a k a k Z ππ>≤⇔∈-+∈.cos (||1)(2arccos ,22arccos ),x a a x k a k a k Z πππ<≤⇔∈++-∈.tan ()(arctan ,),2x a a R x k a k k Z πππ>∈⇒∈++∈.tan ()(,arctan ),2x a a R x k k a k Z πππ<∈⇒∈-+∈.57.实数与向量的积的运算律 设λ、μ为实数,那么(1) 结合律:λ(μa)=(λμ)a; (2)第一分配律:(λ+μ)a=λa+μa; (3)第二分配律:λ(a+b)=λa+λb. 58.向量的数量积的运算律: (1) a ·b= b ·a (交换律); (2)(λa )·b= λ(a ·b )=λa ·b= a ·(λb ); (3)(a +b )·c= a ·c +b ·c. 59.平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2.不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 60.向量平行的坐标表示设a=11(,)x y ,b=22(,)x y ,且b ≠0,则a b(b ≠0)12210x y x y ⇔-=. 53. a 与b 的数量积(或内积) a ·b=|a ||b|cos θ. 61. a ·b 的几何意义数量积a ·b 等于a 的长度|a|与b 在a 的方向上的投影|b|cos θ的乘积. 62.平面向量的坐标运算(1)设a=11(,)x y ,b=22(,)x y ,则a+b=1212(,)x x y y ++.(2)设a=11(,)x y ,b=22(,)x y ,则a-b=1212(,)x x y y --. (3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a=(,),x y R λ∈,则λa=(,)x y λλ.(5)设a=11(,)x y ,b=22(,)x y ,则a ·b=1212()x x y y +. 63.两向量的夹角公式cos θ=(a =11(,)x y ,b=22(,)x y ).64.平面两点间的距离公式 ,A Bd =||AB AB AB =⋅=11(,)x y ,B 22(,)x y ).65.向量的平行与垂直设a=11(,)x y ,b=22(,)x y ,且b ≠0,则 A||b ⇔b=λa 12210x y x y ⇔-=. a ⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=. 66.线段的定比分公式设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12PP 的分点,λ是实数,且12PP PP λ=,则121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121OP OP OP λλ+=+⇔12(1)OP tOP t OP =+-(11t λ=+). 67.三角形的重心坐标公式△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,)33x x x y y y G ++++. 68.点的平移公式''''x x h x x h y y k y y k⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''OP OP PP ⇔=+ . 注:图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''(,)P x y ,且'PP 的坐标为(,)h k .69.“按向量平移”的几个结论(1)点(,)P x y 按向量a=(,)h k 平移后得到点'(,)P x h y k ++.(2) 函数()y f x =的图象C 按向量a=(,)h k 平移后得到图象'C ,则'C 的函数解析式为()y f x h k =-+.(3) 图象'C 按向量a=(,)h k 平移后得到图象C ,若C 的解析式()y f x =,则'C 的函数解析式为()y f x h k =+-.(4)曲线C :(,)0f x y =按向量a=(,)h k 平移后得到图象'C ,则'C 的方程为(,)0f x h y k --=.(5) 向量m=(,)x y 按向量a=(,)h k 平移后得到的向量仍然为m=(,)x y .70. 三角形五“心”向量形式的充要条件设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则 (1)O 为ABC ∆的外心222OA OB OC ⇔==. (2)O 为ABC ∆的重心0OA OB OC ⇔++=.(3)O 为ABC ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅. (4)O 为ABC ∆的内心0aOA bOB cOC ⇔++=. (5)O 为ABC ∆的A ∠的旁心aOA bOB cOC ⇔=+. 71.常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).(2),a b R +∈⇒2a b+≥当且仅当a =b 时取“=”号). (3)3333(0,0,0).a b c abc a b c ++≥>>>(4)柯西不等式22222()()(),,,,.a b c d ac bd a b c d R ++≥+∈(5)b a b a b a +≤+≤-. 72.极值定理已知y x ,都是正数,则有(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2; (2)若和y x +是定值s ,则当y x =时积xy 有最大值241s . 推广 已知R y x ∈,,则有xy y x y x 2)()(22+-=+ (1)若积xy 是定值,则当||y x -最大时,||y x +最大;当||y x -最小时,||y x +最小.(2)若和||y x +是定值,则当||y x -最大时, ||xy 最小; 当||y x -最小时, ||xy 最大.73.一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->,如果a 与2ax bx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间. 121212()()0()x x x x x x x x x <<⇔--<<;121212,()()0()x x x x x x x x x x <>⇔--><或.74.含有绝对值的不等式 当a> 0时,有22x a x a a x a <⇔<⇔-<<.22x a x a x a >⇔>⇔>或x a <-.75.无理不等式 (1()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩. (22()0()0()()0()0()[()]f x f x g x g x g x f x g x ≥⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或. (32()0()()0()[()]f x g x g x f x g x ≥⎧⎪⇔>⎨⎪<⎩. 76.指数不等式与对数不等式 (1)当1a >时,()()()()f x g x a a f x g x >⇔>;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩.(2)当01a <<时,()()()()f x g x a a f x g x >⇔<;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩77.斜率公式2121y y k x x -=-(111(,)P x y 、222(,)P x y ).78.直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).(4)截距式1x ya b+=(a b 、分别为直线的横、纵截距,0a b ≠、) (5)一般式 0Ax By C ++=(其中A 、B 不同时为0).79.两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ⇔=≠; ②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零,①11112222||A B C l l A B C ⇔=≠;②1212120l l A A B B ⊥⇔+=; 80.夹角公式(1)2121tan ||1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan ||A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A AB B +≠). 直线12l l ⊥时,直线l 1与l 2的夹角是2π.81. 1l 到2l 的角公式(1)2121tan 1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A AB B +≠). 直线12l l ⊥时,直线l 1到l 2的角是2π.82.四种常用直线系方程(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数; 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.(2)共点直线系方程:经过两直线1111:0l A x B y C ++=,2222:0l A x B y C ++=的交点的直线系方程为111222()()0A x B y C A x B y C λ+++++=(除2l ),其中λ是待定的系数. (3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.(4)垂直直线系方程:与直线0Ax By C ++= (A ≠0,B ≠0)垂直的直线系方程是0Bx Ay λ-+=,λ是参变量.83.点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).84. 0Ax By C ++>或0<所表示的平面区域设直线:0l Ax By C ++=,则0Ax By C ++>或0<所表示的平面区域是: 若0B ≠,当B 与Ax By C ++同号时,表示直线l 的上方的区域;当B 与Ax By C ++异号时,表示直线l 的下方的区域.简言之,同号在上,异号在下.若0B =,当A 与Ax By C ++同号时,表示直线l 的右方的区域;当A 与Ax By C ++异号时,表示直线l 的左方的区域. 简言之,同号在右,异号在左.85. 111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域设曲线111222:()()0C A x B y C A x B y C ++++=(12120A A B B ≠),则 111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域是: 111222()()0A x B y C A x B y C ++++>所表示的平面区域上下两部分; 111222()()0A x B y C A x B y C ++++<所表示的平面区域上下两部分.86. 圆的四种方程(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).(3)圆的参数方程 cos sin x a r y b r θθ=+⎧⎨=+⎩.(4)圆的直径式方程 1212()()()()0x x x x y y y y --+--=(圆的直径的端点是11(,)A x y 、22(,)B x y ).87. 圆系方程(1)过点11(,)A x y ,22(,)B x y 的圆系方程是1212112112()()()()[()()()()]0x x x x y y y y x x y y y y x x λ--+--+-----=1212()()()()()0x x x x y y y y ax by c λ⇔--+--+++=,其中0ax by c ++=是直线AB 的方程,λ是待定的系数.(2)过直线l :0Ax By C ++=与圆C :220x y Dx Ey F ++++=的交点的圆系方程是22()0x y Dx Ey F Ax By C λ+++++++=,λ是待定的系数.(3) 过圆1C :221110x y D x E y F ++++=与圆2C :222220x y D x E y F ++++=的交点的圆系方程是2222111222()0x y D x E y F x y D x E y F λ+++++++++=,λ是待定的系数.88.点与圆的位置关系点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若d =d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内.89.直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ; 0>∆⇔⇔<相交r d .其中22BA C Bb Aa d +++=.90.两圆位置关系的判定方法设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21条公切线外离421⇔⇔+>r r d ; 条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ; 条公切线内切121⇔⇔-=r r d ; 无公切线内含⇔⇔-<<210r r d .91.圆的切线方程(1)已知圆220x y Dx Ey F ++++=.①若已知切点00(,)x y 在圆上,则切线只有一条,其方程是0000()()022D x xE y y x x y yF ++++++=. 当00(,)x y 圆外时, 0000()()022D x xE y y x x y yF ++++++=表示过两个切点的切点弦方程.②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线.(2)已知圆222x y r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=;②斜率为k 的圆的切线方程为y kx =±92.椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩.93.椭圆22221(0)x y a b a b+=>>焦半径公式)(21c a x e PF +=,)(22x ca e PF -=.94.椭圆的的内外部(1)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的内部2200221x y a b ⇔+<. (2)点00(,)P x y 在椭圆22221(0)x y a b a b+=>>的外部2200221x y a b ⇔+>. 95. 椭圆的切线方程(1)椭圆22221(0)x y a b a b+=>>上一点00(,)P x y 处的切线方程是00221x x y y a b +=.(2)过椭圆22221(0)x y a b a b+=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b+=. (3)椭圆22221(0)x y a b a b+=>>与直线0Ax By C ++=相切的条件是22222A a B b c +=.96.双曲线22221(0,0)x y a b a b -=>>的焦半径公式21|()|a PF e x c =+,22|()|a PF e x c=-.97.双曲线的内外部(1)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ⇔->. (2)点00(,)P x y 在双曲线22221(0,0)x y a b a b-=>>的外部2200221x y a b ⇔-<. 98.双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-by a x ⇒渐近线方程:22220x y a b -=⇔x a by ±=.(2)若渐近线方程为x a by ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222by a x .(3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x (0>λ,焦点在x轴上,0<λ,焦点在y 轴上).99. 双曲线的切线方程(1)双曲线22221(0,0)x y a b a b-=>>上一点00(,)P x y 处的切线方程是00221x x y y a b -=.(2)过双曲线22221(0,0)x y a b a b-=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b-=. (3)双曲线22221(0,0)x y a b a b-=>>与直线0Ax By C ++=相切的条件是22222A a B b c -=.100. 抛物线px y 22=的焦半径公式抛物线22(0)y px p =>焦半径02pCF x =+.过焦点弦长p x x px p x CD ++=+++=212122.101.抛物线px y 22=上的动点可设为P ),2(2 y py 或或)2,2(2pt pt P P (,)x y ,其中22y px =.102.二次函数2224()24b ac b y ax bx c a x a a-=++=++(0)a ≠的图象是抛物线:(1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a-+-;(3)准线方程是2414ac b y a--=.103.抛物线的内外部(1)点00(,)P x y 在抛物线22(0)y px p =>的内部22(0)y px p ⇔<>. 点00(,)P x y 在抛物线22(0)y px p =>的外部22(0)y px p ⇔>>. (2)点00(,)P x y 在抛物线22(0)y px p =->的内部22(0)y px p ⇔<->. 点00(,)P x y 在抛物线22(0)y px p =->的外部22(0)y px p ⇔>->. (3)点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =>的外部22(0)x py p ⇔>>. (4) 点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =->的外部22(0)x py p ⇔>->. 104. 抛物线的切线方程(1)抛物线px y 22=上一点00(,)P x y 处的切线方程是00()y y p x x =+.(2)过抛物线px y 22=外一点00(,)P x y 所引两条切线的切点弦方程是00()y y p x x =+.(3)抛物线22(0)y px p =>与直线0Ax By C ++=相切的条件是22pB AC =.105.两个常见的曲线系方程(1)过曲线1(,)0f x y =,2(,)0f x y =的交点的曲线系方程是12(,)(,)0f x y f x y λ+=(λ为参数).(2)共焦点的有心圆锥曲线系方程22221x y a k b k+=--,其中22max{,}k a b <.当22min{,}k a b >时,表示椭圆; 当2222min{,}max{,}a b k a b <<时,表示双曲线.106.直线与圆锥曲线相交的弦长公式 AB =1212||AB x x y y ==-=-(弦端点A ),(),,(2211y xB y x ,由方程⎩⎨⎧=+=0)y ,x (F b kx y 消去y 得到02=++c bx ax ,0∆>,α为直线AB 的倾斜角,k 为直线的斜率).107.圆锥曲线的两类对称问题(1)曲线(,)0F x y =关于点00(,)P x y 成中心对称的曲线是00(2-,2)0F x x y y -=.(2)曲线(,)0F x y =关于直线0Ax By C ++=成轴对称的曲线是22222()2()(,)0A Ax By C B Ax By C F x y A B A B ++++--=++.108.“四线”一方程对于一般的二次曲线220Ax Bxy Cy Dx Ey F +++++=,用0x x 代2x ,用0y y 代2y ,用002x y xy +代xy ,用02x x +代x ,用02y y +代y 即得方程0000000222x y xy x x y yAx x B Cy y D E F ++++⋅++⋅+⋅+=,曲线的切线,切点弦,中点弦,弦中点方程均是此方程得到.109.证明直线与直线的平行的思考途径 (1)转化为判定共面二直线无交点; (2)转化为二直线同与第三条直线平行; (3)转化为线面平行; (4)转化为线面垂直;(5)转化为面面平行.110.证明直线与平面的平行的思考途径 (1)转化为直线与平面无公共点; (2)转化为线线平行; (3)转化为面面平行.111.证明平面与平面平行的思考途径 (1)转化为判定二平面无公共点; (2)转化为线面平行; (3)转化为线面垂直.112.证明直线与直线的垂直的思考途径 (1)转化为相交垂直; (2)转化为线面垂直;(3)转化为线与另一线的射影垂直; (4)转化为线与形成射影的斜线垂直. 113.证明直线与平面垂直的思考途径(1)转化为该直线与平面内任一直线垂直; (2)转化为该直线与平面内相交二直线垂直; (3)转化为该直线与平面的一条垂线平行; (4)转化为该直线垂直于另一个平行平面; (5)转化为该直线与两个垂直平面的交线垂直. 114.证明平面与平面的垂直的思考途径 (1)转化为判断二面角是直二面角; (2)转化为线面垂直.115.空间向量的加法与数乘向量运算的运算律 (1)加法交换律:a +b=b +a .(2)加法结合律:(a +b)+c=a +(b +c). (3)数乘分配律:λ(a +b)=λa +λb .116.平面向量加法的平行四边形法则向空间的推广始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量.117.共线向量定理对空间任意两个向量a 、b(b ≠0 ),a ∥b ⇔存在实数λ使a=λb .P A B 、、三点共线⇔||AP AB ⇔AP t AB =⇔(1)OP t OA tOB =-+.||AB CD ⇔AB 、CD 共线且AB CD 、不共线⇔AB tCD =且AB CD 、不共线.118.共面向量定理向量p 与两个不共线的向量a 、b 共面的⇔存在实数对,x y ,使p ax by =+. 推论 空间一点P 位于平面MAB 内的⇔存在有序实数对,x y ,使MP xMA yMB =+, 或对空间任一定点O ,有序实数对,x y ,使OP OM xMA yMB =++.119.对空间任一点O 和不共线的三点A 、B 、C ,满足OP xOA yOB zOC =++(x y z k ++=),则当1k =时,对于空间任一点O ,总有P 、A 、B 、C 四点共面;当1k ≠时,若O ∈平面ABC ,则P 、A 、B 、C 四点共面;若O ∉平面ABC ,则P 、A 、B 、C 四点不共面.C A B 、、、D 四点共面⇔AD 与AB 、AC 共面⇔AD xAB yAC =+⇔(1)OD x y OA xOB yOC =--++(O ∉平面ABC ).120.空间向量基本定理如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组x ,y ,z ,使p =xa +yb +zc .推论 设O 、A 、B 、C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数x ,y ,z ,使OP xOA yOB zOC =++.121.射影公式已知向量AB =a 和轴l ,e 是l 上与l 同方向的单位向量.作A 点在l 上的射影'A ,作B 点在l 上的射影'B ,则''||cos A B AB =〈a ,e 〉=a ·e122.向量的直角坐标运算设a =123(,,)a a a ,b =123(,,)b b b 则 (1)a +b =112233(,,)a b a b a b +++; (2)a -b =112233(,,)a b a b a b ---; (3)λa =123(,,)a a a λλλ (λ∈R); (4)a ·b =112233a b a b a b ++; 123.设A 111(,,)x y z ,B 222(,,)x y z ,则AB OB OA =-= 212121(,,)x x y y z z ---.124.空间的线线平行或垂直设111(,,)a x y z =r ,222(,,)b x y z =r,则a b r r P ⇔(0)a b b λ=≠r r r r ⇔121212x x y y z zλλλ=⎧⎪=⎨⎪=⎩;a b ⊥r r ⇔0a b ⋅=r r⇔1212120x x y y z z ++=.125.夹角公式设a =123(,,)a a a ,b =123(,,)b b b ,则 cos 〈a ,b 〉.推论 2222222112233123123()()()a b a b a b a a a b b b ++≤++++,此即三维柯西不等式.126. 四面体的对棱所成的角四面体ABCD 中, AC 与BD 所成的角为θ,则2222|()()|cos 2AB CD BC DA AC BDθ+-+=⋅.127.异面直线所成角cos |cos ,|a b θ=r r=||||||a b a b ⋅=⋅r rr r (其中θ(090θ<≤o o)为异面直线a b ,所成角,,a b r 分别表示异面直线a b ,的方向向量)128.直线AB 与平面所成角sin||||AB marc AB m β⋅=(m 为平面α的法向量).129.若ABC ∆所在平面若β与过若AB 的平面α成的角θ,另两边AC ,BC 与平面α成的角分别是1θ、2θ,A B 、为ABC ∆的两个内角,则2222212sin sin (sin sin )sin A B θθθ+=+.特别地,当90ACB ∠=时,有22212sin sin sin θθθ+=.130.若ABC ∆所在平面若β与过若AB 的平面α成的角θ,另两边AC ,BC 与平面α成的角分别是1θ、2θ,''A B 、为ABO ∆的两个内角,则222'2'212tan tan (sin sin )tan A B θθθ+=+.特别地,当90AOB ∠=时,有22212sin sin sin θθθ+=. 131.二面角l αβ--的平面角cos||||m n arc m n θ⋅=或cos ||||m narc m n π⋅-(m ,n 为平面α,β的法向量).132.三余弦定理设AC 是α内的任一条直线,且BC ⊥AC ,垂足为C ,又设AO 与AB 所成的角为1θ,AB 与AC 所成的角为2θ,AO 与AC 所成的角为θ.则12cos cos cos θθθ=.133. 三射线定理若夹在平面角为ϕ的二面角间的线段与二面角的两个半平面所成的角是1θ,2θ,与二面角的棱所成的角是θ,则有22221212sin sin sin sin 2sin sin cos ϕθθθθθϕ=+- ;1212||180()θθϕθθ-≤≤-+(当且仅当90θ=时等号成立).134.空间两点间的距离公式若A 111(,,)x y z ,B 222(,,)x y z ,则,A B d =||AB AB AB =⋅=.135.点Q 到直线l 距离h =(点P 在直线l 上,直线l 的方向向量a=PA ,向量b=PQ ).136.异面直线间的距离||||CD n d n ⋅=(12,l l 是两异面直线,其公垂向量为n ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离).137.点B 到平面α的距离||||AB n d n ⋅=(n 为平面α的法向量,AB 是经过面α的一条斜线,A α∈). 138.异面直线上两点距离公式d θ.',d EA AF =.d ='E AA F ϕ=--).(两条异面直线a 、b 所成的角为θ,其公垂线段'AA 的长度为h.在直线a 、b 上分别取两点E 、F ,'A E m =,AF n =,EF d =). 139.三个向量和的平方公式2222()222a b c a b c a b b c c a ++=+++⋅+⋅+⋅2222||||cos ,2||||cos ,2||||cos ,a b c a b a b b c b c c a c a =+++⋅+⋅+⋅140. 长度为l 的线段在三条两两互相垂直的直线上的射影长分别为123l l l 、、,夹角分别为123θθθ、、,则有2222123l l l l =++222123cos cos cos 1θθθ⇔++=222123sin sin sin 2θθθ⇔++=.(立体几何中长方体对角线长的公式是其特例). 141. 面积射影定理'cos S S θ=.(平面多边形及其射影的面积分别是S 、'S ,它们所在平面所成锐二面角的为θ). 142. 斜棱柱的直截面已知斜棱柱的侧棱长是l ,侧面积和体积分别是S 斜棱柱侧和V 斜棱柱,它的直截面的周长和面积分别是1c 和1S ,则①1S c l =斜棱柱侧. ②1V S l =斜棱柱.143.作截面的依据三个平面两两相交,有三条交线,则这三条交线交于一点或互相平行. 144.棱锥的平行截面的性质如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积的比等于顶点到截面距离与棱锥高的平方比(对应角相等,对应边对应成比例的多边形是相似多边形,相似多边形面积的比等于对应边的比的平方);相应小棱锥与小棱锥的侧面积的比等于顶点到截面距离与棱锥高的平方比.145.欧拉定理(欧拉公式)2V F E +-=(简单多面体的顶点数V 、棱数E 和面数F).(1)E =各面多边形边数和的一半.特别地,若每个面的边数为n 的多边形,则面数F 与棱数E 的关系:12E nF =; (2)若每个顶点引出的棱数为m ,则顶点数V 与棱数E 的关系:12E mV =. 146.球的半径是R ,则其体积343V R π=, 其表面积24S R π=.147.球的组合体(1)球与长方体的组合体:长方体的外接球的直径是长方体的体对角线长. (2)球与正方体的组合体:正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体的面对角线长, 正方体的外接球的直径是正方体的体对角线长. (3) 球与正四面体的组合体:棱长为a a ,. 148.柱体、锥体的体积13V Sh =柱体(S 是柱体的底面积、h 是柱体的高).13V Sh =锥体(S 是锥体的底面积、h 是锥体的高).149.分类计数原理(加法原理) 12n N m m m =+++. 150.分步计数原理(乘法原理) 12n N m m m =⨯⨯⨯. 151.排列数公式mnA =)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤).注:规定1!0=. 152.排列恒等式(1)1(1)m m n nA n m A -=-+; (2)1mmn n n A A n m -=-; (3)11m m n n A nA --=;(4)11n n n n n n nA A A ++=-; (5)11m m m n n nA A mA -+=+. (6) 1!22!33!!(1)!1n n n +⋅+⋅++⋅=+-.153.组合数公式m n C=m n mmA A =m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ∈N *,m N ∈,且m n ≤). 154.组合数的两个性质(1)m n C =mn n C - ; (2) m n C +1-m n C =m n C 1+. 注:规定10=n C .155.组合恒等式(1)11mm n n n m C C m --+=; (2)1m mn n n C C n m -=-; (3)11mm n n n C C m--=;(4)∑=nr r nC0=n2;(5)1121++++=++++r n rn rr rr r rC C C C C . (6)nnn rn n n n C C C C C 221=++++++ . (7)1425312-+++=+++n n n n n n n C C C C C C .(8)1321232-=++++n nn n n n n nC C C C .(9)rn m r n r m n r m n r m C C C C C C C +-=+++0110 . (10)n n n n n n n C C C C C 22222120)()()()(=++++ .156.排列数与组合数的关系m mn nA m C =⋅! . 157.单条件排列以下各条的大前提是从n 个元素中取m 个元素的排列. (1)“在位”与“不在位”①某(特)元必在某位有11--m n A 种;②某(特)元不在某位有11---m n m n A A (补集思想)1111---=m n n A A (着眼位置)11111----+=m n m m n A A A (着眼元素)种.(2)紧贴与插空(即相邻与不相邻)①定位紧贴:)(n m k k ≤≤个元在固定位的排列有km k n k k A A --种.②浮动紧贴:n 个元素的全排列把k 个元排在一起的排法有k k k n k n A A 11+-+-种.注:此类问题常用捆绑法;③插空:两组元素分别有k 、h 个(1+≤h k ),把它们合在一起来作全排列,k 个的一组互不能挨近的所有排列数有k h h h A A 1+种.(3)两组元素各相同的插空m 个大球n 个小球排成一列,小球必分开,问有多少种排法?当1+>m n 时,无解;当1+≤m n 时,有n m n nn m C A A 11++=种排法.(4)两组相同元素的排列:两组元素有m 个和n 个,各组元素分别相同的排列数为n n m C +.158.分配问题(1)(平均分组有归属问题)将相异的m 、n 个物件等分给m 个人,各得n 件,其分配方法数共有mnn nn nn mn nn mn nmn n mn C C C C C N )!()!(22=⋅⋅⋅⋅⋅=-- . (2)(平均分组无归属问题)将相异的m ·n 个物体等分为无记号或无顺序的m 堆,其分配方法数共有mn nn n n n mn n n mn n mn n m mn m C C C C C N )!(!)!(!...22=⋅⋅⋅⋅=--. (3)(非平均分组有归属问题)将相异的)12m P(P=n +n ++n 个物体分给m 个人,物件必须被分完,分别得到1n ,2n ,…,m n 件,且1n ,2n ,…,m n 这m 个数彼此不相等,则其分配方法数共有!!...!!!! (212)11m n n n n p n p n n n m p m C C C N m m=⋅⋅=-.(4)(非完全平均分组有归属问题)将相异的)12m P(P=n +n ++n 个物体分给m 个人,物件必须被分完,分别得到1n ,2n ,…,m n 件,且1n ,2n ,…,m n 这m 个数中分别有a 、b 、c 、…个相等,则其分配方法数有!...!!! (2)11c b a m C C C N m mn n n n p n p ⋅⋅=- 12!!!!...!(!!!...)m p m n n n a b c =.(5)(非平均分组无归属问题)将相异的)12m P(P=n +n ++n 个物体分为任意的1n ,2n ,…,m n 件无记号的m 堆,且1n ,2n ,…,m n 这m 个数彼此不相等,则其分配方法。
张宇老师带你学高数上册导学 全
![张宇老师带你学高数上册导学 全](https://img.taocdn.com/s3/m/e63a508216fc700abb68fc85.png)
存在准则 两个重要极限(注意
两个重要极 极限成立的条件,熟 限 悉等价表达式)
掌握(两个重要极限 要会证明)【重点
】,“柯西极限存在 准则”考研不要求.
例1-4 4
利用函数极限求数列
极限
无穷小阶的概念(同
例1-5,例1
阶无穷小、等价无穷 小、高阶无穷小、低 §1.7无穷 阶无穷小、k阶无穷
掌握【重点】
掌握 掌握【重点】 掌握【重点】
§ 4.4 有 理 有理函数积分法,可 函数积分 化为有理函数的积分
§ 4.5 积 分 考研不作要求
表的使用
会求
总习题四
总结归纳本章的基本 概念、基本定理、基 本公式、基本方法
必做例题 精做练习
P192习4-1: 例1-3,5- 1(1),2(5)(8)(
15 13)(17)(19)( 21) (25),5,7
掌握
掌握 掌握 掌握
必做例题 精做练习 ——
例1-5 例6-10 例11-13
P286习6-2: 1(1)(4),2(1), 4,5(1),7,9,1 1,12,15(1)(3 ) ,16,19,21,22 (数二,数 三不用 做),28(数 二,数三不 用做)
例1-5
P293习6-3: 5,11(数三 全不用做)
方程
不要求)
例1-2
P314习7-3: 1(1)(5),2(2)
一阶线性微分方程的形式和解 掌握(熟记公式)
法 §7.4一阶
线性微分方
程
伯努利方程的形式和解法(记
1(5)(10)(12) 例1-10
(15)(16),2,3,
4
§3.3泰勒 泰勒中值定理 公式 麦克劳林展开式
张宇数学基础班笔记
![张宇数学基础班笔记](https://img.taocdn.com/s3/m/9cd64b8ab9d528ea81c779ae.png)
张宇数学基础班笔记一、 三种层次层次一:感知——形式上 层次二:再现——本质上注1:2013年人数众多、题目特别难注2:洛必达法则在两种情况下要慎用:(狠下功夫) (1) f(x)/g(x)时,f 、g 为抽象函数 (2) f(x)/g(x)时,f 、g 含参数(半抽象)注3:洛必达法则的证明及其使用前提、拉格朗日中值定理的证明之类的题要注意注4:有限个无穷小的和是无穷小;有限个无穷小的积是无穷小。
无限个无穷小的 和不一定是无穷小;无限个无穷小的积也不一定是无穷小。
(到此为止)层次三:融通——解题能力(听课听得懂、看书看得懂,都不算解题能力,应该是在无任何提示的情况下独立做对题目)1. 泰勒公式:碰上此类难背的工具——具体学、不抽象学、不单纯背书。
用泰勒公式解决A+/-B 型函数的极限计算——泰勒公式是等价替换的精确化;等价替换是近似代换,泰勒公式是精确代换。
——泰勒公式:事不过三,只记两项。
SinX=X-1/6((X)的三次方)o(X 的m 次方)——代表任何一个X 的m 次方的高阶无穷小arcsinX-arctanX=1/2(X3)sinX-tanX=-1/2(X3) 注意:lim (A+B )=limA+limB ——后验逻辑(极限计算:能不能拆?拆了再说。
)注意:通法——目标:干掉f (x )去掉抽象函数,分母相同时直接(2)式-(1)式 练习:SinX+X~2X二、三、 真题——好又多(1987-2001-2012:一、二、三、四)四、大纲——不能拘泥大纲五、特点(高数)1.注意:答题纸跟草稿纸非常像,一定小心。
不要塞进草稿纸2.高等数学难度加大,远远高于线代、概率。
重点在高数。
3.重心前移:在二重积分及其以前。
4.数学二的真题最有价值——最好的习题:数学二、四。
5.必备资料:(1)教材:高等数学:同济大学第六版(2)辅导书:(很好)概率:陈希孺院士、高数18讲(3)真题:2013考研数学历年真题分析与演练第二讲高等数学考试内容分析1.关于函数:(1)复合——分段函数的复合(2)(必考)考察函数的微分或者积分形式下的四个性质:奇偶性、单调性、周期性、有界性。
张宇考研数学基础30讲线性代数分册
![张宇考研数学基础30讲线性代数分册](https://img.taocdn.com/s3/m/1416ae842dc58bd63186bceb19e8b8f67c1cef90.png)
内容摘要
本书介绍了二次型的定义、性质和标准型,以及二次型的配方法和正定性。同时,还讲解了二次 型与对称矩阵的关系,以及如何利用二次型解决实际问题。 内容全面:本书涵盖了考研数学线性代数所需的所有知识点,从基本概念到解题技巧都有详细的 讲解。 实用性强:本书不仅注重知识点的讲解,还提供了大量的例题和练习题,便于学生理解和掌握。 难度适中:本书的难度适中,既不过于简单也不过于复杂,适合大多数学生的需求。 语言简洁易懂:本书的语言简洁易懂,易于理解和学习。
阅读感受
《张宇考研数学基础30讲线性代数分册》读后感
作为一名数学爱好者,我一直对张宇老师的数学课程抱有极高的兴趣。最近, 我阅读了张宇老师的《张宇考研数学基础30讲线性代数分册》,这本书给我留下 了深刻的印象,让我对线性代数有了更深入的理解。
这本书的内容非常丰富,涵盖了线性代数的各个方面,包括矩阵、向量、行 列式、特征值、空间等。每个主题都从基础概念讲起,逐步引入复杂的理论和应 用。同时,书中还配有很多实例和练习题,这些题目非常有代表性,有助于读者 加深对知识的理解和应用。
张宇考研数学基础30讲线性 代数分册
读书笔记
01 思维导图
03 精彩摘录 05 目录分析
目录
02 内容摘要 04 阅读感受 06 作者简介
思维导图
本书关键字分析思维导图
讲解
向量
分册
数学
介绍
线性
包括
数学
基础
矩阵 方程组
定义
张宇
利用
二次型
考研
对角
性质
知识
内容摘要
内容摘要
《张宇考研数学基础30讲线性代数分册》是一本专门针对考研数学线性代数部分的辅导教材。本 书涵盖了考研数学线性代数所需的所有知识点,包括行列式、矩阵、向量、线性方程组、特征值 与特征向量、矩阵的对角化、二次型等。 本书首先介绍了行列式的定义、性质和计算方法,包括展开式和递推式等。同时,还讲解了克拉 默法则,以及如何利用行列式解线性方程组。 矩阵是线性代数的核心概念之一。本书详细介绍了矩阵的定义、性质和操作,包括矩阵的加法、 减法、乘法、转置等。还讲解了逆矩阵的概念和计算方法,以及如何利用矩阵解线性方程组。 向量是线性代数的基本对象之一。本书介绍了向量的定义、性质和操作,包括向量的加法、数乘、 内积和外积等。同时,还讲解了向量组的线性相关性和向量组的秩,以及如何利用向量解线性方 程组。
张宇高数30讲笔记
![张宇高数30讲笔记](https://img.taocdn.com/s3/m/c9f6529732d4b14e852458fb770bf78a65293a92.png)
张宇高数30讲笔记
张宇高数30讲是一套备受学生欢迎的高等数学教学视频,这里我将为你提供一些关于张宇高数30讲的笔记。
1. 张宇高数30讲的内容涵盖了高等数学的基础知识和重要概念,包括函数、极限、导数、微分、积分等。
这些知识是高等数学学习的基础,对于理解和掌握高等数学的其他分支如微积分、线性代数等都非常重要。
2. 在函数部分,张宇讲解了函数的定义、性质、图像和常见函数的特点。
他通过举例和图示的方式生动地解释了函数的概念,帮助学生建立起对函数的直观理解。
3. 极限是高等数学中的重要概念,张宇在讲解极限时注重深入浅出,通过一些典型的极限例题,帮助学生理解极限的概念和计算方法。
4. 在导数和微分部分,张宇详细介绍了导数的定义和性质,以及一些常见函数的导数计算方法。
他还讲解了微分的概念和应用,如泰勒展开等。
5. 积分是高等数学中的另一个重要概念,张宇在讲解积分时着
重讲解了定积分和不定积分的概念、性质和计算方法。
他通过一些
实例和练习题,帮助学生掌握积分的基本技巧。
6. 在整个教学过程中,张宇注重培养学生的解题思维和方法,
他强调理论与实践的结合,通过一些典型例题和考点分析,帮助学
生掌握解题的技巧和方法。
7. 张宇高数30讲的教学风格幽默风趣,讲解深入浅出,容易
理解。
他善于用生动的语言和具体的例子解释抽象的数学概念,帮
助学生建立起对数学的兴趣和信心。
总结起来,张宇高数30讲是一套内容丰富、讲解详细、教学风
格幽默的高等数学教学视频。
通过学习这套视频,学生可以全面掌
握高等数学的基础知识和解题技巧,为后续的学习打下坚实的基础。
2014考研数学大纲
![2014考研数学大纲](https://img.taocdn.com/s3/m/371b7faa6aec0975f46527d3240c844769eaa0c8.png)
2014考研数学大纲2014年考研数学大纲2014年考研数学大纲是考研复习数学的重要参考资料之一。
本大纲是由中国教育部制定的,旨在统一数学考试的内容和标准,为考生提供参考和复习的方向。
本文将全面介绍2014年考研数学大纲的各章节内容及其重点,帮助考生更全面地了解考研数学的复习重点。
第一章:数列本章主要讲述数列的定义、数列的极限、数列极限的性质以及常见数列如等比数列、等差数列等的性质和应用。
数列是高数的基础知识,对后续的解析几何等学科也有很大的影响。
第二章:函数本章主要讲述函数的概念、函数的极限、函数的连续性、函数的导数和函数的积分等内容。
函数是数学的基本概念,在高数中占据了很大的比重。
这一章节的重点是函数的极限和导数的计算以及相关的应用。
第三章:极限与连续本章主要讲述函数极限的计算、函数的连续性和函数的一致连续性等内容。
这是一个比较抽象和难以理解的章节,需要考生多加练习。
第四章:导数与微分本章主要讲述函数的导数和微分的定义、导数的计算方法、高阶导数以及高阶导数的应用等内容。
这是高数中的重要章节,也是后续学习微积分和应用数学的基础。
第五章:微分中值定理与导数应用本章主要讲述微分中值定理和导数应用,如泰勒展开、极大极小值问题、函数图像的研究等内容。
这是高数中的较难章节,需要考生多加理解和习题练习。
第六章:不定积分本章主要讲述不定积分的概念、基本积分方法和常见函数的积分等内容。
这是高数的一大难点,需要考生熟练掌握积分的基本方法和技巧。
第七章:定积分本章主要讲述定积分的概念、定积分的计算方法和定积分的应用等内容。
定积分是高数的另一个难点,需要考生掌握积分的计算方法和应用的技巧。
第八章:曲线的快速绘制本章主要讲述函数图像的研究和曲线的快速绘制等内容。
这是高数中的一大难点,考生需要通过理论学习和习题练习来提高自己的绘图能力。
第九章:常微分方程本章主要讲述常微分方程的基本概念、常微分方程的解法和常微分方程的应用等内容。
张宇高数笔记
![张宇高数笔记](https://img.taocdn.com/s3/m/fccc9c7b6137ee06eef91885.png)
:第一章节 极限与连续数列收敛(有极限),则:①任何子列都收敛,反之就不是收敛数列。
②它的极限存在且唯一。
③它是有界的。
(收敛一定有界,但有界不一定收敛,可能振荡) ④它有保号性。
数列极限存在的解题手段: ,①夹逼法。
②定积分定义法。
③对于给定递推式的数列求极限:(1)用单调有界证明极限存在,然后让等式两边极限相等解出A 。
(2)先斩后奏解出A ,然后用压缩映象原理列出|x x −x |<k |x x −1−x |,其中0<k <1 ④对于未给出递推式的数列求极限:根据题设条件得出x x +1和x x 的递推关系,然后用③的方法。
⑤充分运用题目中给出的函数关系式: .(1)x x +1=x (x x ),x (ξ)=x ;则x x +1−x x =x (x x )−x (x x −1),|x x +1−x |=|x (x x )−x (x )|(2)任何|x ′(x )|≤k 的函数,都可由拉氏定理得|x (x 1)−x (x 2)|≤x |x 1−x 2|(3)若知x (x )的单调性,可把x x +1和x x 的大小判断转化为对x (x x +1)和x (x x )的判断。
(4)若给出x x +1=x (x x ),x ′(x )和x 0的初值,则用拉氏定理:|x x +1−x 0|=|x (x x )−x (x 0)|=|x′(x )(x x −x 0)|≤A |(x x −x 0)|压缩映象 ⑥对于累加型数列x x =∑x (x ,x )x x =1求极限,常用无穷项相加放缩的方式夹逼出来。
函数极限存在(设为A ),则: ①左右极限都为A 。
(证明题证极限存在的思路) |②唯一性、有界性、保号性。
③∀ε>0,∃δ>0,当0<|x −x 0|<δ时,有|f (x )−A |<ε 此定义在广义上,ε可以为任何形式,但必须满足“可以任意小”。
张宇 题 习题详解
![张宇 题 习题详解](https://img.taocdn.com/s3/m/98bed373a32d7375a41780e1.png)
=
lim
x→0
(1− cos x)2
x5 + x6
⋅x
56
56
56
x2
2
⋅
x
=
lim
x→0
2 x5
+
x6
= 5. 4
56
24. 【答案】(B)
【解】
∫ lim ∫ x→0
x 0
f (t )sin tdt x tϕ (t ) dt
= lim x→0
f
( x)sin x xϕ ( x)
=
lim
x→0
= e6
50. 【答案】2
=
lim
x→0
tan x − x x2 tan x
=
lim
x→0
tan x − x x3
= lim x→0
1 x3 3 x3
=
1 3
6
46. 【答案】 − 1 6
( ) 【解】 lim x→0
arctan ln 1+
x−x 2x3
=
lim
x→0
arctan x − 2x3
x
=
lim
x→0
− 1 x3 3 2x3
3
21. 【答案】(B)
( ) ( ) 1− cos x ln 1+ x2
【解】由 lim x→0
x sin xn
= lim x→0
x2 ⋅ x2 2 xn+1
=
1 lim
2 x→0
x4 xn+1
=0,
lim
x→0
x sin xn ex2 −1
= lim x→0
xn+1 x2
张宇高数笔记
![张宇高数笔记](https://img.taocdn.com/s3/m/d1d1052edd3383c4ba4cd231.png)
第一章节 极限与连续数列收敛(有极限),则:①任何子列都收敛,反之就不是收敛数列。
②它的极限存在且唯一。
③它是有界的。
(收敛一定有界,但有界不一定收敛,可能振荡) ④它有保号性。
数列极限存在的解题手段: ①夹逼法。
②定积分定义法。
③对于给定递推式的数列求极限:(1)用单调有界证明极限存在,然后让等式两边极限相等解出A 。
(2)先斩后奏解出A ,然后用压缩映象原理列出|x n −A |<k|x n−1−A|,其中0<k <1 ④对于未给出递推式的数列求极限:根据题设条件得出x n+1和x n 的递推关系,然后用③的方法。
⑤充分运用题目中给出的函数关系式:(1)x n+1=f(x n ),f (ξ)=ξ;则x n+1−x n =f (x n )−f(x n−1),|x n+1−ξ|=|f (x n )−f (ξ)| (2)任何|f ′(x )|≤k 的函数,都可由拉氏定理得|f (x 1)−f (x 2)|≤k|x 1−x 2| (3)若知f(x)的单调性,可把x n+1和x n 的大小判断转化为对f (x n+1)和f(x n )的判断。
(4)若给出x n+1=f(x n ),f ′(x )和x 0的初值,则用拉氏定理:|x n+1−x 0|=|f (x n )−f (x 0)|=|f′(ξ)(x n −x 0)|≤A|(x n −x 0)|压缩映象 ⑥对于累加型数列x n =∑f(n,k)n k=1求极限,常用无穷项相加放缩的方式夹逼出来。
函数极限存在(设为A ),则: ①左右极限都为A 。
(证明题证极限存在的思路) ②唯一性、有界性、保号性。
③∀ε>0,∃δ>0,当0<|x −x 0|<δ时,有|f (x )−A |<ε此定义在广义上,ε可以为任何形式,但必须满足“可以任意小”。
重要结论与具体解题技巧:①闭区间上连续的函数必有界;开区间上连续的函数,两端点极限都存在才有界。
高等数学基础班讲义(张宇)
![高等数学基础班讲义(张宇)](https://img.taocdn.com/s3/m/e809a107ba1aa8114431d9ed.png)
f
(x) x
dx, 其中f
(x)
=
x
∫1
ln(1 + t
t)
dt
【考点分析】本题核心考察了求解积分的四种基本方法:
凑积分:
把被积分式凑成某个函数的微分的积分方法。
换元积分法: 利用中间变量的代换,得到复合函数的积分法。
分部积分法: ∫ udv = uv − ∫ vdu
有理函数的积分: Pn (t) n < m
全国免费咨询电话:400-668-2190
4
课程铸就品质 服务感动学员
( ) 【例】求 lim sin x + 2014 − sin x x→+∞
【答案简析】
对f (t) = sin t在[ x, x + 2014]上用拉格朗日中值定理
⇒ sin x + 2014 − sin x = 1 cos ξ ⋅ 2014 ξ ∈( x, x + 2014)
cos x cos 2x (1− 3 cos 3x )
= lim x→0
x2
+ lim x→0
x2
+ lim x→0
x2
= 1 +1+ 3 = 3 22
【练习】求 lim1− cos x cos 2x cos 3x 求a,b
x→0
axb
2、加强计算 指标:①准 ②快
1.用思想 2.用知识 3.熟能生巧
a,
b]
∫ 上的一个原函数,则 b a
f
(x)dx
=
F (b)
−
F (a)
全国免费咨询电话:400-668-2190
3
课程铸就品质 服务感动学员
考研数学张宇强化36讲
![考研数学张宇强化36讲](https://img.taocdn.com/s3/m/f3fb04e6ac51f01dc281e53a580216fc700a538d.png)
编写风格独特:本书的编写风格简洁明了,语言通俗易懂,让考生能够轻松理解和掌握数学知识。 同时,书中的插图和表格也使得内容更加生动形象,便于考生记忆和理解。
《考研数学张宇强化36讲》是一本非常优秀的考研数学辅导书籍。通过阅读 这本书,我不仅掌握了数学知识,还提高了自己的数学思维能力和解题能力。我 相信这本书对其他考生也一定会有很大的帮助和启示作用。
目录分析
《考研数学张宇强化36讲》是考研数学领域的重要参考书籍,其深入浅出的 讲解方式,深受广大考研学生的喜爱。以下是对这本书目录的详细分析。
全书共分为六大部分,分别是:极限与连续、微分中值定理与导数应用、积 分与微分、多元函数微分与积分、常微分方程和线性代数初步。这六大部分基本 涵盖了考研数学的主要知识点,按照难度的递增进行排列,符合学生的学习习惯。
每一部分又细分成六个模块,共三十六个讲。例如在积分与微分部分,包括 了原函数与不定积分、定积分及其性质、多重积分、微分方程初步、无穷级数和 特殊函数这六个模块。每个模块都以一个具体的例子或者问题为起点,引导学生 思考并掌握相关的数学理论和应用。
阅读感受
《考研数学张宇强化36讲》是一本备受推崇的考研数学辅导书籍,被广大考 生视为必备的数学复习资料之一。通过阅读这本书,我感受到了张宇老师的深厚 教学经验和扎实的数学知识。
这本书的内容非常丰富,涵盖了考研数学所涉及的所有知识点。每个知识点 都讲解得非常详细,而且每个章节都由浅入深地分为三个层次,让读者能够逐步 深入地理解和掌握数学知识。书中还提供了大量的例题和练习题,这些题目质量 很高,能够帮助读者巩固所学知识。
张宇高数30讲笔记
![张宇高数30讲笔记](https://img.taocdn.com/s3/m/eb3c9e60a4e9856a561252d380eb6294dd88221a.png)
张宇高数30讲笔记摘要:一、引言1.笔记来源及重要性2.适用对象二、张宇高数30讲内容概述1.高等数学基本概念与方法2.微积分及其应用3.线性代数与概率论初步4.数学分析与数学建模三、张宇高数30讲亮点1.实例丰富,贴近实际2.逻辑清晰,易于理解3.难点解析,深入浅出4.同步练习,巩固提高四、如何高效学习张宇高数30讲1.课前预习,明确重点2.课后复习,巩固知识3.动手练习,提高解题能力4.交流讨论,拓展思维五、学习建议与资源推荐1.学习计划与目标设定2.辅助教材与网络资源3.学习小组与导师指导六、结语1.张宇高数30讲的价值2.学习高等数学的必要性3.鼓励与期望正文:一、引言众所周知,张宇高数30讲是一套非常受欢迎的高等数学课程教材。
它以丰富的实例、清晰的逻辑和深入浅出的解析,为广大学子提供了便捷的学习途径。
本文将从以下几个方面对张宇高数30讲进行简要介绍,以期帮助大家更好地学习和掌握高等数学知识。
二、张宇高数30讲内容概述张宇高数30讲涵盖了高等数学的基本概念、方法,以及微积分、线性代数、概率论等领域的初步知识。
通过学习这套课程,学生可以全面了解高等数学的体系,为后续的深入学习打下坚实基础。
三、张宇高数30讲亮点1.实例丰富,贴近实际:张宇高数30讲运用了大量生动的实例,使抽象的数学知识变得具体形象,更容易被学生理解和接受。
2.逻辑清晰,易于理解:教材在编排上注重逻辑性,由浅入深地展开各个知识点,便于学生跟进学习进度。
3.难点解析,深入浅出:对于较难理解的知识点,张宇高数30讲提供了详细的解析,帮助学生攻克学习难题。
4.同步练习,巩固提高:教材附有同步练习题,有利于学生巩固所学知识,并提高解题能力。
四、如何高效学习张宇高数30讲1.课前预习,明确重点:在学习每一讲之前,先进行预习,了解本讲的主要内容,以便上课时能更好地关注重点。
2.课后复习,巩固知识:每讲课后,认真复习所学内容,加深对知识点的理解,并整理笔记。
张宇基础30讲题目讲解
![张宇基础30讲题目讲解](https://img.taocdn.com/s3/m/994d666b2e60ddccda38376baf1ffc4ffe47e235.png)
张宇基础30讲题目讲解摘要:1.张宇基础30讲概述2.张宇基础30讲的学习方法3.张宇基础30讲的免费资源获取4.学习张宇基础30讲的注意事项5.总结正文:【张宇基础30讲概述】张宇基础30讲是针对考研数学的基础课程,由著名考研数学辅导专家张宇博士主讲。
这个系列课程旨在帮助考生巩固数学基础,为考研数学考试做好充分准备。
内容涵盖了高等数学、线性代数、概率论与数理统计等考研数学的主要知识点,适合于初学者和有一定基础的考生进行系统性学习。
【张宇基础30讲的学习方法】要学好张宇基础30讲,首先要具备扎实的高中数学基础。
在此基础上,建议考生按照以下方法进行学习:1.系统学习:按照课程顺序,逐步学习每个章节,建立起完整的数学知识体系。
2.做好笔记:整理课堂内容,将自己的理解和解题技巧记录下来,方便复习。
3.大量练习:通过刻意练习,不断提高解题能力。
可以从基础题目开始,逐步挑战高难度题目。
4.及时复习:定期回顾所学内容,巩固记忆。
【张宇基础30讲的免费资源获取】张宇基础30讲的视频可以在微博关注张宇,在他的微博视频里找到。
同时,网上也有其他平台提供张宇基础30讲的免费资源,如B站等。
【学习张宇基础30讲的注意事项】1.保持耐心:学习过程中遇到难题,不要轻易放弃,要耐心分析解题思路。
2.充分利用学习资源:结合教材、习题集、在线课程等多种资源,提升数学能力。
3.注重基础:牢记基础知识,高等数学的解题技巧都是建立在基础概念之上的。
4.定期总结:学习一段时间后,要进行自我总结,查漏补缺。
【总结】学习张宇基础30讲,需要坚持不懈地学习、练习和思考。
通过系统性的学习和大量的练习,考生可以扎实地掌握考研数学的基础知识,为考试做好充分准备。
张宇总结高数积分知识
![张宇总结高数积分知识](https://img.taocdn.com/s3/m/fa850fe99b89680203d8252f.png)
1 1 2 ( 2 1)dt 8 t t 1 1 ( 2 ln t t ) C 8 t 1 x 1 x 1 x 1 ( 2 ln )C 8 x 1 x 1 x 1 x 1 x 1 ln C 2 2(1 x ) 4 x 1 1 3 5 x 1 x 故原式= x 2 x ln +C. 2 3 4 x 1 2(1 x )
6
1 对于不定积分 2 dx作一次变换, 2 ( x 1) x 1 2t 2 2 令t , 则x 1 , x 1 , dx dt 2 x 1 1 t 1 t (1 t ) 1 1 dx dx 2 2 2 2 ( x 1) ( x 1) ( x 1) 1 t 2 1 t 2 2 ( ) ( ) dt 2 2t 2 (1 t ) 1 1 t 2 ( ) dt 8 t
( x y) ( x y ) ln xy dxdy 1 x y D
2
( x y ) ln( x y ) ( x y ) ln x 2 dxdy 2 dxdy 1 x y 1 x y D D 于是I = dx
0 令x y u 视x为常数 1 1 x 0 1 1 x ( x y ) ln( x y ) x y dy ln xdx 0 0 1 x y 1 x y 1 1 1 1 u ln u u du ln xdx du 0 x 1 u 1 u
2 0
1
0
r dr. 1 r
2
于是分别只需计算
2 0
ln(1 tan ) sin 2 d 和
2
1
0
r dr即可. 1 r
高等数学(张宇)手写笔记
![高等数学(张宇)手写笔记](https://img.taocdn.com/s3/m/2b51b72aed630b1c59eeb5c7.png)
ÿÿ目录第一讲极限一极限定义 (3)二极限性质 (4)三函数极限基本计算 (8)四综合计算 (11)五数列极限计算 (14)六函数连续与间断 (16)第二讲一元函数微积分一概念 (17)1. 导数 (18)2. 微分 (20)3. 不定积分 (21)4. 定积分 (23)5. 变限积分 (28)6. 反常积分 (29)二计算 (29)1. 求导 (29)2. 求积 (33)三应用 (40)1. 微分应用 (40)2. 积分应用 (43)四逻辑推理 (43)1. 中值定理 (49)2. 等式证明 (50)3. 不等式证明 (51)第三讲多元函数的微分学(公共部分)一概念 (51)1. 极限的存在性 (51)2. 极限的连续性 (52)3. 偏导数的存在性 (52)4. 可微性 (53)5. 偏导数的连续性 (54)二计算 (54)三应用 (56)第四讲二重积分(公共部分)一概念与性质 (59)二计算 (60)1. 基础题 (60)2. 技术题 (61)三综合计算 (62)第五讲微分方程一概念及其应用 (63)二一阶方程的求解 (64)三高阶方程的求解 (66)第六讲无穷级数一数项级数的判敛 (67)二幂级数求收敛域 (69)三展开与求和 (69)四傅里叶级数 (71)第七讲多元函数微分学一基础知识 (73)二应用 (75)第八讲多元函数积分学一三重积分 (76)二第一型曲线、曲面积分 (78)1. 一线 (78)2. 一面 (79)三第二型曲线、曲面积分 (80)1. 二线 (81)2. 二面 (83)。
张宇高数30讲笔记
![张宇高数30讲笔记](https://img.taocdn.com/s3/m/d1c97260182e453610661ed9ad51f01dc3815761.png)
张宇高数30讲笔记摘要:1.张宇高数30 讲笔记概述2.笔记的主要内容3.笔记的价值和意义正文:【张宇高数30 讲笔记概述】张宇高数30 讲笔记是一份针对高等数学课程的笔记,该课程由知名教育专家张宇教授讲授。
这份笔记详细记录了张宇教授在30 次课程中的重要讲解和知识点,对于学习高等数学的同学具有很高的参考价值。
【笔记的主要内容】张宇高数30 讲笔记涵盖了高等数学的主要内容,包括:1.函数、极限与连续:笔记对函数的性质、极限的定义及其性质、连续函数的判断方法等进行了详细记录。
2.导数与微分:笔记对导数的概念、求导法则、高阶导数、隐函数求导、参数方程求导等内容进行了总结。
3.微分中值定理与导数的应用:笔记对拉格朗日中值定理、罗尔中值定理、柯西中值定理等内容进行了详细讲解,并介绍了导数在函数性质分析、函数求极值、曲线拟合等方面的应用。
4.不定积分:笔记对不定积分的概念、基本积分公式、换元积分、分部积分等方法进行了总结。
5.定积分:笔记对定积分的概念、性质、牛顿- 莱布尼茨公式、定积分的换元法和分部积分法等进行了讲解。
6.定积分的应用:笔记介绍了定积分在面积、体积、弧长、质心等方面的应用。
7.微分方程:笔记对微分方程的基本概念、解法(如:齐次、线性、伯努利、常系数等微分方程的解法)进行了总结。
【笔记的价值和意义】张宇高数30 讲笔记具有很高的价值和意义,主要表现在以下几点:1.知识点梳理:笔记对高等数学的重要知识点进行了系统梳理,有助于学习者更好地掌握课程内容。
2.学习方法指导:笔记中记录了张宇教授的讲授方法和解题技巧,对学习者的学习方法具有指导意义。
3.复习资料:笔记内容详实,结构清晰,是学习者复习高等数学的重要资料。
4.教师教学参考:笔记也可以作为教师教学的参考资料,帮助教师更好地进行教学设计和教学辅导。
考研张宇书使用顺序
![考研张宇书使用顺序](https://img.taocdn.com/s3/m/00cb530386c24028915f804d2b160b4e767f81d9.png)
考研张宇书使用顺序《考研张宇书使用顺序》考研备战是每一个考生都会经历的一段决战期,而选择合适的复习资料则至关重要。
考研辅导教材中,张宇老师的系列书籍备受考生的青睐。
那么,在使用这些书籍进行复习的过程中,我们应当遵循怎样的顺序呢?下面将为大家详细介绍一下。
第一步:把握基础张宇老师的系列书籍以其深入浅出、通俗易懂的风格被广大考生所喜爱。
因此,作为初次接触张宇的考生,首先应该选择《高数必修》和《线性代数必修》这两本书。
这两本书是考研数学的基础,通过系统地学习这两本书,可以打下扎实的数学基础,为后续的学习打下牢固的基础。
第二步:拔高阶段当考生对基础知识有了一定掌握之后,可以选择进一步提高自己的书籍。
《高数强化》,《概率论与数理统计》以及《计算机基础》等都是非常好的选择。
这些书籍通过深入浅出的讲解和例题分析,帮助考生理解相关概念和方法,逐渐提升自己的解题能力。
第三步:刷题冲刺在前两步的基础上,考生对于数学的掌握程度已经有了一定的提高。
这个阶段,考生应该选择《全程班笔记》,这本书旨在总结历年真题的考点和解题技巧,对于考生来说非常实用。
同时,考生还可以选择《考研数学真题精析》,通过解析真题,帮助考生进一步熟悉考试题型和解题思路。
第四步:提升综合能力考研的数学科目除了需要对各个知识点的理解和掌握之外,还需要考生具备一定的综合能力。
在这一阶段,考生可以选择《全程班笔记》中的解析习题,通过解析这些习题,帮助考生培养自己的综合运用能力,同时也能够检验自己的学习成果。
第五步:冲刺阶段在考研备考的后期,考生需要通过大量的模拟试卷来检验自己的复习进度和能力水平。
在这个阶段,考生应该选择《考研数学全程班冲刺班》。
这本书通过提供大量的模拟试题和详细的解析,帮助考生熟悉考试形式和时间分配,做到心中有数,从而更好地应对考试。
总结起来,考研张宇书籍的使用顺序是从基础到拔高,再到刷题冲刺,然后是提升综合能力,最后进入冲刺阶段。
通过按照这样的顺序进行复习,考生可以循序渐进地掌握复习要点和解题技巧,为考研取得好成绩打下坚实的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录
第一讲极限
一极限定义 (3)
二极限性质 (4)
三函数极限基本计算 (8)
四综合计算 (11)
五数列极限计算 (14)
六函数连续与间断 (16)
第二讲一元函数微积分
一概念 (17)
1. 导数 (18)
2. 微分 (20)
3. 不定积分 (21)
4. 定积分 (23)
5. 变限积分 (28)
6. 反常积分 (29)
二计算 (29)
1. 求导 (29)
2. 求积 (33)
三应用 (40)
1. 微分应用 (40)
2. 积分应用 (43)
四逻辑推理 (43)
1. 中值定理 (49)
2. 等式证明 (50)
3. 不等式证明 (51)
第三讲多元函数的微分学(公共部分)
一概念 (51)
1. 极限的存在性 (51)
2. 极限的连续性 (52)
3. 偏导数的存在性 (52)
4. 可微性 (53)
5. 偏导数的连续性 (54)
二计算 (54)
三应用 (56)
第四讲二重积分(公共部分)
一概念与性质 (59)
二计算 (60)
1. 基础题 (60)
2. 技术题 (61)
三综合计算 (62)
第五讲微分方程
一概念及其应用 (63)
二一阶方程的求解 (64)
三高阶方程的求解 (66)
第六讲无穷级数
一数项级数的判敛 (67)
二幂级数求收敛域 (69)
三展开与求和 (69)
四傅里叶级数 (71)
第七讲多元函数微分学
一基础知识 (73)
二应用 (75)
第八讲多元函数积分学
一三重积分 (76)
二第一型曲线、曲面积分 (78)
1. 一线 (78)
2. 一面 (79)
三第二型曲线、曲面积分 (80)
1. 二线 (81)
2. 二面 (83)
考研数学狂人笔记QQ 807784058,本资料为收集的考研中数学成绩达到146分的牛人所做的总结笔记。
笔记中的知识点、考点、重难点总结条理清晰,成功之鉴,便于对考点的把握,少走弯路,本资料为笔记的手写复印版,原滋原味,包含高数、线代、概率一套,资料为备考数学一所做,但是同样适用于数学二、三(只需要对照各自考纲,删除部分考点即可)。
以下为笔记样例:
高数:在笔记本上2-3页,两页复印在一页A4上
/item.htm?spm=686.1000925.1000774.16.J0oNlW&id=20357 707412。