洛必达法则
洛必达法则
0 ( 型) 0 0 ln x 1 1 ( 型) x 1 0 ln x
x
练习
3.03: (2)
作业
3.01: (8) 3.02: (2) 3.03: (3) ( 4)
3.2函数曲线的切线与法线
函数y f ( x) 在其上一点 M ( x0 , y0 ) 处, 切线方程: y y0 f ( x0 )( x x0 )
或能断定 的极限,
f ( x ) g ( x )
无极限,
则洛必达法则失效.
此时需用别的办法判断未定式
f ( x) g( x )
例7
1 x sin x 求 lim x 0 sin x
2
0 型未定式,但分子分母分别 解 这个问题是属于 0
求导后得
1 1 2 x sin cos x x cos x
例5 求
tan x lim x tan 3 x
2
2 2
2
解:
tan x sec2 x 1 cos2 3 x lim lim lim 2 x tan 3 x x 3 sec 3 x 3 x cos2 x
1 2 cos3 x( 3 sin x ) lim 3 x 2 cos x( sin x )
如果
f ( x ) lim x a g ( x )
0 还是 型未定式,且 f ( x ) 与 g ( x ) 0
能满足定理中 f ( x )与 g( x ) 应满足的条件,
f ( x) f ( x ) f ( x ) lim lim lim x a g ( x ) x a g ( x ) x a g ( x )
极值
驻点: 若 f ( x0 ) 0 ,则 x0 叫函数 y f ( x) 的驻点。 结论一:极值点一定是驻点,但驻点不一定是极值 点。(前提是 f ( x0 ) 存在) 结论二: x0 是驻点(或导数不存在的点),x 的取 值从 x0 的左边变化到右边时,若 (1)f ( x)变号,先正后负,x0 是极大值点。 (2)f ( x)变号,先负后正,x0 是极小值点。
洛必达法则
一、洛必达法则
1. 0/0型与∞/∞型未定式 定理1
பைடு நூலகம்
设
(1)当x→x0时,函数f(x)及g(x)都趋于零(或f(x)及g(x)都
趋于无穷大).
(2)在点x0的某去心邻域内,f′(x)及g′(x)都存在且g′(x)≠0.
(3)
存在或为无穷大.
则
一、洛必达法则
证明这里仅证当x→x0时的0/0型未定式的情形.对于当
一、洛必达法则
当x→x0时,有ξ→x0,所以
上述定理给出的这种在一定条件下通过对分子、 分母分别先求导、再求极限来确定未定式的值的 方法称为洛必达法则.
一、洛必达法则
注意
如果f′(x)/g′(x)当x→x0时仍是0/0型和∞/∞型未定 式,且这时f′(x)与g′(x)满足定理1中f(x),g(x)所要满足 的条件,那么可以继续使用洛必达法则,即
(3)
存在或为无穷大.
则
一、洛必达法则
【例6】
【例7】
一、洛必达法则
解这是∞/∞型未定式.当α是正整数时,连续应用α次洛 必达法则得
当α不是正整数时,显然必存在正整数k,使得k- 1<α<k,此时连续应用k次洛必达法则,即得
综上所述,对任意α>0,都有
二、其他类型的未定式
除了0/0型和∞/∞型两种基本未定式外,还有0·∞,∞- ∞,00,1∞,∞0型未定式,它们都可以经过适当变形,化为0/0型或∞/∞ 型未定式后,再应用洛必达法则来计算.
一、洛必达法则
【例1】
一、洛必达法则
注意
上式中的
已不再是未定式,故不能再
对它应用洛必达法则,否则要导致错误的结果.因此在每
次使用洛必达法则之前,都要验证极限是否为0/0型未定
洛必达法则概念
洛必达法则概念
洛必达法则是指在平面直角坐标系中一边固定的直线上,点到该直线距离的平方和最小等于每个点到该直线垂线距离的平方和。
该法则常被应用于线性回归分析中,用于确定最佳拟合直线。
具体而言,洛必达法则包含以下几个概念:
1. 直线:指在坐标系中固定的一条直线,其位置可以由方程y = mx + b表示,其中m为直线的斜率,b为其截距。
2. 点到直线距离的平方:指点到直线的垂线段长度的平方,可以用勾股定理求得。
3. 最小值:指在一组数据中,最小的数值,可以用微积分中的极值定理求得。
4. 拟合直线:指通过最小二乘法求得的最佳拟合直线,该直线与数据点的距离平方和最小。
洛必达法则的应用范围广泛,不仅可以在统计学中使用,还可以用于机器学习、金融、物理学等领域。
其原理简单易懂,但需要熟练掌握相关的数学知识才能进行有效的应用。
- 1 -。
洛必达法则
洛必达法则洛必达法则是一种由雷洛必达(RaymondLoewy)提出的设计原则,指的是设计者通过其革新能力来完成有效的设计。
洛必达提出这一原则的目的是强调设计的可操作性,并为设计者提供更多的自主权,以满足客户的需求并创造出更好的作品。
洛必达法则包括三个要素:可理解性、可操纵性和可部署性。
可理解性要求设计图形应即刻易懂,使用者不必事先读取它们。
可操纵性要求用户能够迅速找到有用信息,而可部署性要求设计能够在实际环境中进行灵活的部署。
洛必达法则的实施有助于简化复杂的设计问题,使设计者不必耗费过多的时间来完成任务。
让设计者只需要花费较少的时间就可以获得令人满意的结果。
此外,它还有助于提升设计者的设计效率,使设计者更有可能在更紧凑的时间内完成更多的任务。
洛必达法则有助于创造出简单易懂、高效操作的设计,为用户提供很大的便利。
同时,这一原则使设计者更有可能在限制条件之下完成任务,并节省时间和金钱。
洛必达法则的实施也可以帮助人们更深入的理解其所使用的设计理念,辅助设计者完成设计任务。
这一原则可以帮助人们更好地识别设计中的易操作性、可理解性和可部署性,从而更好地完成所面临的设计任务。
洛必达法则不仅仅适用于设计专业,还可以广泛应用于各行各业。
在工业设计方面,洛必达法则可以帮助企业更快捷地完成生产工业产品设计任务。
在软件设计领域,这一原则还可以帮助企业更快地完成软件的开发任务。
在建筑方面,洛必达法则可以帮助设计者寻求更加实用的方案,从而提高建筑设计的可操作性。
总之,洛必达法则是一种重要的设计原则,在不同行业中都可以得到广泛应用。
它有助于提高设计者的设计效率,同时为用户提供便利。
实施洛必达法则也有助于在限制条件下完成任务,使设计者更有可能以更实用和更易操作的方式完成设计任务。
洛必达法则
洛必达法则简介洛必达法则(L’Hôpital’s rule),又称洛必达法则(L’Hospital’s rule),是微积分中的一条重要定理,用于求解某些形式的极限。
这一定理由法国数学家洛必达(Guillaume-Roger-François, Marquis de L’Hôpital)在18世纪提出,被认为是微积分学中的重要工具之一。
洛必达法则主要用于解决形如f(x) / g(x)形式的函数极限问题,其中f(x)和g(x)是两个可导函数,并且极限结果存在不定型。
通过洛必达法则,我们可以将其转化为求f’(x) / g’(x)的极限,从而得到准确的结果。
洛必达法则的条件洛必达法则适用于以下情况:1.极限形式为f(x) / g(x);2.函数f(x)和g(x)在极限点的附近均连续;3.函数g’(x)不为零,除了可能在极限点上。
洛必达法则的表述洛必达法则的一般形式可表示为:若函数f(x)和g(x)满足洛必达法则的条件,并且极限:存在或为无穷大时,那么:其中,f’(x) 和g’(x) 分别表示函数f(x)和g(x)的导数。
洛必达法则的应用步骤使用洛必达法则解决极限问题的步骤如下:1.将函数f(x)和g(x)分别求导,得到f’(x)和g’(x);2.计算f’(x) / g’(x)的极限值。
若结果存在或为无穷大,则该极限值就是原始极限的结果;3.若求导后的函数又出现不定型,可以继续应用洛必达法则,依次求导,直到结果不再出现不定型。
示例让我们通过一个简单的例子来说明洛必达法则的应用。
假设我们需要求解如下极限问题:可以看到,分母g(x)在极限点0的附近为零,因此我们可以尝试使用洛必达法则来求解。
首先,我们计算函数f(x)和g(x)的导数:然后,我们计算f’(x) / g’(x)的极限:因此,根据洛必达法则,原始极限的结果为1。
总结洛必达法则是微积分中解决某些形式的极限问题的重要工具。
高数洛必达法则
与夹逼定理(Squeeze Theorem)结合使用,可以 求解一些复杂的不定式极限
问题。
与单调有界定理(Monotone Bounded Theorem)相关联, 可用于判断数列或函数的收敛
性。
02
洛必达法则证明过程
构造函数法证明
构造函数
01
通过构造一个与原函数在某点处切线斜率相同的辅助函数,将
适用范围及条件
适用于0/0型和∞/∞型的不定式极限。
使用条件:当x趋向于某一值时(可以是无穷大),函数f(x)与g(x)都趋向于0或者无穷大,且两者的导函数存在且比值为常(Taylor's Theorem)有密切关系,洛必 达法则是泰勒公式在求解极限
时的特殊应用。
变量替换法
在某些情况下,通过变量替换可以简化极限的计算过程。
05
洛必达法则拓展与延伸
多元函数洛必达法则
多元函数洛必达法则的定 义
对于多元函数,当其在某点的偏导数存在且 连续时,该点处的极限值可以通过洛必达法 则求解。
多元函数洛必达法则的应用 条件
要求函数在考察点处偏导数存在且连续,同时需要 满足一定的限制条件,如分母不为零等。
高数洛必达法则
• 洛必达法则基本概念 • 洛必达法则证明过程 • 洛必达法则应用举例 • 洛必达法则注意事项 • 洛必达法则拓展与延伸
01
洛必达法则基本概念
洛必达法则定义
洛必达法则(L'Hôpital's Rule)是微 积分学中的一个重要定理,用于求解 不定式极限。
该法则以法国数学家纪尧姆·弗朗索瓦· 安托万·德·洛必达命名。
解不等式
将不等式转化为函数值比较问题,利用洛必 达法则求解函数的极值点,进而确定不等式 的解集。
洛必达法则
求
lim
x0
(1
3x cos
sin 3x x)ln(1
2
x
)
.
解
当 x 0 时,
1
cos
x
~
1 2
x2,
ln(1
2x)
~
2
x,
故
lim
x0
(1
3x cos
x
sin 3x )ln(1
2
x
)
lim
x0
3
x
sin x3
3
x
lim
x0
3
3cos 3x2
3
x
lim
x0
3
sin 3 2x
x
9. 2
完
1
ln cot x
解 lim (cot x)ln x lim e ln x
x0
x0
e lim x0
ln cot ln x
x
e lim x0
tan
xcsc2 1
x
x
e lim x0
cos1xsinx
x
e1.
完
例22 求 lim (e3x 5 x)1x.(0 ) x
解
lim (e3x
1
5x) x
洛必达法则
取何值无关,故可补充定义 f (a) g(a) 0.
根据定理的条件,知函数 f ( x)与 g( x)在以 a与 x
为端点的区间上满足柯西中值定理的条件, 于是
f (x) g( x)
f (x) g(x)
f (a) g(a)
f '( ) g'( )
( 在
x 与 a
洛必达法则
§3.2 罗必达法则当( 或)时,两个函数与都趋向于零或都趋向于无穷大,那么,极限可能存在,也可能不存在。
通常把这种极限叫做不定式,并分别简记为型或型。
对不定式,不能简单地用“商的极限等于极限商”这一求极限法则来处理。
求不定式极限有一种简便方法 —— 罗必达法则,见下述两个重要定理。
一、基本类型的不定式 型【定理一】设(1)、当 时,函数及都趋于零;(2)、及在点的某个邻域内(点本身除处)存在,且;(3)、存在(或无穷大),则。
【证明】因为求极限 与函数值 、无关, 那么我们可设:, 这并不会影响极限。
由这一假设及条件(1)、(2)两款知:与在点 的某个邻域内是连续的, 设是这邻域内的一点,x a →x →∞f x ()F x ()lim()()()x a x f x F x →→∞00∞∞00,∞∞x a →f x ()F x ()'f x ()'F x ()a a '≠F x ()0lim()()x a f x F x →''lim()()lim()()x a x a f x F x f x F x →→=''lim()()x a f x F x →f a ()F a ()f a F a ()()==0lim()()x a f x F x →f x ()F x ()ax那么在以及为端点的区间上, 与全部地满足柯西中值定理的条件,因此有当时, ,而由(3)款知故。
为了更好地使用这一定理求极限,给出几点重要注解:1、此定理用来处理时的型不定式极限问题。
这种通过分子与分母导数之比的极限来确定不定式极限的方法称之为罗必达法则。
2、如果极限仍属于型, 且、又满足定理中的条件,则可以再使用罗必达法则。
即3、如果不存在,不能断言也不存在,只能说明该极限不适合用罗必达法则来求。
反例:极限存在, 而使用罗必达法则 不存在。
【例1】求极限(1)、(2)、x a f x ()F x ()f x F x f x f a F x F a f F ()()()()()()()()=--=''ξξx a →ξ→a lim ()()lim ()()x a x a f F f x F x →→''=''ξξlim()()lim()()x a x a f x F x f x F x →→=''x a →00lim()()x a f x F x →''00'f x ()'F x ()lim()()lim ()()lim()()x a x a x a f x F x f x F x f x F x →→→=''=''''lim()()x a f x F x →''lim()()x a f x F x →limsinlim sin x x x x x x x →→⋅=⋅=020110limsinlim(sin cos )x x x x x x x x →→⋅=⋅-0201211lim x e x x→-01limcos x x x →-012【解】上述定理仅是适合于时的型不定式;对于时的型不定式,我们也有相应定理。
洛必达法则
洛必达法则(L'Hôpital's rule)是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。
0/0型不定式极限若函数和满足下列条件:⑴,;⑵在点的某去心邻域内两者都可导,且;⑶(可为实数,也可为±∞ ),则洛必达法则∞/∞型不定式极限若函数和满足下列条件:⑴,;⑵在点的某去心邻域内两者都可导,且;⑶(可为实数,也可为或),则洛必达法则其他类型不定式极限不定式极限还有,,,,等类型。
经过简单变换,它们一般均可化为型或型的极限。
(1)型可将乘积中的无穷小或无穷大变形到分母上,化为型或型。
例:求解:原式=(2)型把两个无穷大变形为两个无穷小的倒数,再通分使其化为型。
例:求解:原式=(3)型可利用对数性质将函数化简成以e为底数的指数函数,对指数进行求极限。
针对不同的问题,还可以利用等价无穷小作替换,化简算式。
例:求解:原式======上式求解过程中,利用了等价无穷小的替换,即把替换成了。
(4)型同上面的化简方法例:求解:原式=(5)型同上面的化简方法例:求解:原式=洛必达法则注意不能在数列形式下直接用洛必达法则,因为对于离散变量是无法求导数的。
但此时有形式类近的斯托尔兹-切萨罗定理(Stolz-Cesàro theorem)作为替代。
洛必达法则
洛必达法则 一、00型约定用“0”表示无穷小,用“∞”表示无穷大.已知两个无穷小之比00或两个无穷大之比∞∞的极限可能有各种不同的情况.因此,求00或∞∞形式的极限都要根据函数的不同类型选用相应的方法,洛必达法则是求00或∞∞形式的极限的简便方法. 00或∞∞都称为待定型。
约定用“1”表示以1为极限的一类函数,待定型还有五种:0•∞,1∞,00 ,∞0,∞1,-∞2 这五种待定型都可以化为00或∞∞的待定型,例如:0•∞=∞10 =00 或 0•∞=01∞=∞∞. 1∞=e 1ln ∞=e 0•∞.00=e 0ln 0= e ∞•0.∞0=e ∞ln 0= e ∞•0.=∞∞∞-∞=∞-∞=∞-∞2112212*********0. 洛必达法则1 若函数f(x)与)(x ϕ满足下列条件:1) 在a 的某去心领域)(0a U 可导,且0)('≠x ϕ;2) 0)(lim =→x f a x 与0)(lim =→x a x ϕ; 3) l x a x =→)((x)f lim ''ϕ.则l x a x a x ==→→)((x)f lim (x)f(x)lim ''ϕϕ. 证法 证明洛必达法则要找到两个函数之比与这两个函数的倒数之比之间的联系.柯西中值定理正是实现这种联系的纽带.为了使函数f(x)与)(x ϕ在a 满足柯西中值定理的条件,将函数f(x)与)(x ϕ在a 作连续开拓.这不影响定理的证明,因为讨论函数(x )f(x )ϕ在a 的极限与函数f(x)与)(x ϕ在a 的函数值无关.证明 将函数f(x)与)(x ϕ在a 作连续延拓,即设⎩⎨⎧=≠=;,0,),()(1a x a x x f x f ⎩⎨⎧=≠=;,0,),()(1a x a x x x ϕϕ ∈∀x )(0a U .在以x 与a 为端点的区间上函数)(1x f 与)(1x ϕ满足满足柯西中值定理的条件,则在x 与a 之间至少存在一点c ,使)()()()()()('1'11111c c f a x a f x f ϕϕϕ=--. 已知)(1a f =)(1a ϕ=0,a x ≠∀,有)()(1x f x f =与)()(1x x ϕϕ=,)()(''1c f c f =,)()(''1c c ϕϕ=.从而,(x )f(x )ϕ=)((c)f ''c ϕ. 因为c 在x 与a 之间,所以当a x →时,有a c →,有条件3),有l x a c a x ==→→)((x)f lim (x)f(x)lim ''ϕϕ=)((x )f lim ''x a x ϕ→. 洛必达法则2 若函数f(x)与)(x ϕ满足下列条件:1)0>∃A ,在(-A -∞,)与(+∞,A )可导,且)('x ϕ0≠;2)0)(lim =∞→x f x 与0)(lim =∞→x x ϕ;3)l x x =∞→)((x)f lim ''ϕ 则l x x x ==∞→∞→)((x)f lim (x)f(x)lim ''ϕϕ. 证法 应用换元法 设y x 1=,就将∞→x 换成0→y .于是,函数)1(y f 与)1(y ϕ在y=0的领域内满足洛必达法则1.由洛必达法则1可证洛必达法则2.证明 设yx 1=.∞→x ⇔0→y .从而, (x )f(x )lim ϕ∞→x =)1()1(lim 0yy f y ϕ→, 其中0lim →y )1(y f =0与0lim →y )1(yϕ=0.根据洛必达法则1,有 )1()1(lim 0y y f y ϕ→=''0)]1([)]1([lim y y f y ϕ→==--→)1)(1()1)(1(lim 2'2'0yy y y f y ϕ)1()1(lim ''0y y f y ϕ→=l x x =∞→)((x )f lim ''ϕ 即l x x x ==∞→∞→)((x)f lim (x)f(x)lim ''ϕϕ. 应用洛必达法则,而极限)((x)f lim '')(x x a x ϕ∞→→仍是00的待定型,这是只要导函数(x )f '与)('x ϕ仍满足洛必达法则的条件,特别是极限)((x)f lim '''')(x x a x ϕ∞→→存在,则有)(f(x)lim )(x x a x ϕ∞→→=)((x)f lim '')(x x a x ϕ∞→→=)((x)f lim '''')(x x a x ϕ∞→→一般情况,若)((x)f lim '')(x x a x ϕ∞→→,)((x)f lim '')(x x a x ϕ∞→→,…,)((x)f lim )1(1)-(n )(x n x a x -∞→→ϕ 都是00的待定型,而导数(x )f 1)-(n 与(x )1)-(n ϕ满足洛必达法则的条件,特别是极限)((x)f lim )((n))(x n x a x ϕ∞→→存在,则有)(f(x)lim )(x x a x ϕ∞→→=)((x)f lim '')(x x a x ϕ∞→→=…=)((x)f lim )((n))(x n x a x ϕ∞→→. 例1 求极限).0,0(lim 0>>-→b a x b a x x x (00) 解 由洛必达法则1,有=-→x b a x x x 0lim =-→''0)()(lim x b a x x x 1ln ln lim 0b b a a x x x -→=ln a-ln b=ln b a . 例2 求极限x x x 1sin arctan 2lim -+∞→π.(00) 解 x x x 1sin arctan 2lim -+∞→π=x xx x 1cos 111lim 22-+-+∞→=x x x x 1cos 11lim 22++∞→=1. 例3 求极限.sin cos sin lim 30x x x x -→ (00) 解 x x x x 30sin cos sin lim -→='3'0)(sin )cos (sin lim x x x x -→=x x x x x cos sin 3sin lim 20→=x x x x cos sin 3lim 0→(00) =''0)cos sin 3()(lim x x x x → =)sin (cos 31lim 220x x x -→=31 例4 求极限.sin 2lim 0x x x e e x x x ----→(00)解 x x x e e x x x sin 2lim 0----→=.cos 12lim 0x e e x x x --+-→(00) =x e e x x x sin lim 0-→-(00) =2cos lim 0=+-→xe e xx x 二、∞∞型洛必达法则3 若函数f(x)与)(x ϕ满足下列条件:1)在a 的某去心领域)(0a U 可导,且0)('≠x ϕ; 2) ∞=→)(lim x a x ϕ,∞=→)(lim x f a x ; 3)l x a x =→)((x)f lim ''ϕ. 则l x a x a x ==→→)((x)f lim (x)f(x)lim ''ϕϕ. 证明 只证明-→a x 情况.同法可证+→a x 情况. 由条件3),0>∀ε,∈∃1x )(0a U ,a x <<∀ξξ1:,有 εξϕξ<-l f )()(''. (1) 取定1x .),(1a x x ∈∀,函数f(x)与)(x ϕ在区间[x x ,1]满足柯西中值定理的条件,根据柯西中值定理,∈∃c ),(1x x ,有 )()()()()()(''11c c f x x x f x f ϕϕϕ=-- 或 l c c f l x x x f x f -=---)()()()()()(''11ϕϕϕ,x c x <<1. 用)()(1x x ϕϕ-乘上式的等号的两端,有=---)]()([)()(11x x l x f x f ϕϕ[l c c f -)()(''ϕ][)()(1x x ϕϕ-]=-)()(x l x f ϕ[l c c f -)()(''ϕ][)()(1x x ϕϕ-]+[)()(11x l x f ϕ-]. 对上式再除以)(x ϕ,有l x x f -)()(ϕ=[l c c f -)()(''ϕ][)()(11x x ϕϕ-]+)()()(11x x l x f ϕϕ-. (2) 由条件2),有(1x 是常数)(x))(x lim 1ϕϕ-→a x =0 与 (x))(x l -)f(x lim 11ϕϕ-→a x =0. 从而,对上述的a x x x x x <<∀>∃>212:,,0ε,同时有 1(x))(x 1<ϕϕ 与εϕϕ<(x))(x l -)f(x 11. 由于c: x c x <<1,有a c x <<1,由(1)式,有εϕ<-l x x f )()(''. 于是,由(2)式,a x x x <<∀2:,有 |l x x f -)()(ϕ|≤|l c c f -)()(''ϕ|•(1+(x))(x 1ϕϕ)+(x))(x l -)f(x 11ϕϕ<εεε3)11(=++, 即 l a x =-→(x )f(x )lim ϕ. 同法可证, l a x =+→(x )f(x )limϕ 于是 l x a x a x ==→→)((x)f lim (x)f(x)lim ''ϕϕ 在洛必达法则3中,将a x →换成∞→x ,且满足相应的条件,结论仍然成立.证法与洛必达法则2相同. 例5。
洛必达法则通俗理解
洛必达法则通俗理解洛必达法则,又称为洛必达定理,是微积分中的基本定理之一。
它是由法国数学家洛必达于1696年提出的。
洛必达法则用于求解极限问题,是微积分中非常重要的工具之一。
下面我们来通俗理解洛必达法则。
我们需要了解一下极限的概念。
在数学中,极限是指函数在某一点无限接近于某个值的过程。
而洛必达法则则是用来求解某些特定函数在极限点处的极限值的方法。
洛必达法则的核心思想是将函数的极限转化为两个函数的极限之商的形式,从而更加方便地计算。
洛必达法则的具体表述是:如果函数f(x)和g(x)在某一点a的某个去心邻域内都可导,且g'(x)不等于0,那么当x趋近于a时,f(x)除以g(x)的极限等于f'(x)除以g'(x)的极限。
这个表述可能有些抽象,下面我们通过几个具体的例子来说明洛必达法则的应用。
我们来计算极限lim(x->0) (sinx)/x。
根据洛必达法则,我们可以将这个极限转化为lim(x->0) cosx/1。
因为cosx在x=0处可导,且cos(0)=1,那么根据洛必达法则,上述极限的值为1。
接下来,我们来计算极限lim(x->∞) (x^2+3x)/(2x^2+5)。
根据洛必达法则,我们可以将这个极限转化为lim(x->∞) (2x+3)/(4x),因为x^2在x趋近于无穷大时增长的速度远远大于x,所以x^2+3x 和2x^2+5的极限值相等。
那么根据洛必达法则,上述极限的值为1/2。
我们来计算极限lim(x->0) (e^x-1)/x。
根据洛必达法则,我们可以将这个极限转化为lim(x->0) e^x/1,因为e^x在x=0处可导,且e^0=1,那么根据洛必达法则,上述极限的值为1。
通过以上几个例子,我们可以看出洛必达法则在求解极限问题中的重要性和实用性。
它能够将复杂的极限问题转化为更简单的形式,从而更便于计算。
当然,在使用洛必达法则时,我们需要注意一些条件,比如函数可导性和分母不等于0等。
洛必达法则公式
洛必达法则公式
洛必达法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。
大意为两个无穷小之比或两个无穷大之比的极限可能存在,也可能不存在。
因此,求这类极限时往往需要适当的变形,转化成可利用极限运算法则或重要极限的形式进行计算。
洛必达法则便是应用于这类极限计算的通用方法。
设函数f(x)和f(x)满足下列条件:
⑴x→a时,lim f(x)=0,lim f(x)=0;
⑵在点a的某去心邻域内f(x)与f(x)都可导,且f(x)的导数不等于0;
⑶x→a时,lim(f'(x)/f'(x))存有或为无穷大
则x→a时,lim(f(x)/f(x))=lim(f'(x)/f'(x))
基本认知:
⑴本定理所有条件中,对x→∞的`情况,结论依然成立。
⑵本定理第一条件中,lim f(x)和lim f(x)的音速皆为∞时,结论依然设立。
⑶上述lim f(x)和lim f(x)的构型,可精练归纳为0/0、∞/∞;与此同时,下述构型也可用洛必达法则求极限,只需适当变型推导:0·∞、∞-∞、1的∞次方、∞的0次方、0的0次方。
(上述构型中0表示无穷小,∞表示无穷大。
)。
洛必达法则
洛必达法则洛必达法则(Pareto Principle)是指在许多情况下,80%的结果通常来自20%的原因。
这个法则最早由意大利经济学家洛达尔多·洛必达(Vilfredo Pareto)提出,他在19世纪末的研究中发现,意大利的财富大部分集中在少数人手中。
这个概念后来逐渐扩展到其他领域,并成为管理学、经济学、市场营销等领域中的重要理论之一。
洛必达法则的核心思想是不平等的分布规律。
在经济学中,洛必达法则可以用来解释财富分配不均的现象,即富者愈富,穷者愈穷。
在管理学中,洛必达法则可以用来解释企业中重要客户、关键任务、重要决策等只占总体的一小部分,却对整体结果起到决定性的作用。
在市场营销中,洛必达法则可以用来确定关键客户群体,投入更多的资源和精力来维护和发展这部分客户,从而取得更好的市场表现。
洛必达法则的应用非常广泛。
在个人生活中,我们常常会发现,只有极少数的活动和人际关系对我们的幸福感和成功起到决定性的作用。
比如,我们的朋友圈里只有少数几个好友对我们的生活和情感态度有深远的影响,而其他大部分人的作用相对较小。
同样,在工作中,我们可能发现只有很少的重要任务和决策对我们的能力和职业发展起到关键性的作用,而其他的琐碎工作相对较少。
洛必达法则的应用也对团队和组织管理非常有启示。
我们常常会发现,一个团队中只有少数几个核心成员能够决定大部分的结果。
这些核心成员通常具有极强的能力和经验,他们的贡献对整个团队的发展起到决定性的作用。
因此,团队的管理者应该注重培养和激励这些核心成员,为他们提供更多的机会和资源,以确保团队的成功。
在市场营销中,洛必达法则可以帮助企业识别关键客户群体。
根据洛必达法则,只有少数的顾客贡献了企业大部分的收益。
因此,企业应该重点关注这部分重要的顾客,与他们建立更紧密的合作关系,提供个性化的产品和服务,以提高客户满意度和忠诚度。
与此同时,企业还应该挖掘潜在的重要客户,以扩大市场份额和增加收益。
洛必达法则
洛必达法则如果当x →a(或x →∞)时,两个函数f(x)与F(x)都趋于零或都趋于无穷大,那么极限lim x→∞f(x)F(x)可能存在、也可能不存在,通常把这种极限叫做未定式,并分别简记为00 或∞∞ 。
对于未定式00 情况有以下定理:(1)当x →a 时,函数f(x)及F(x)都趋于零(2)在点a 的某去心领域内,f ´(x)及F ´(x)都存在且F ´(x )≠0(3)limx→∞f ´(x)F ´(x)存在(或为无穷大)则lim x→a f(x)F(x)=lim x→a f ´(x)F ´(x)对于未定式∞∞情况有以下定理: (1)当x →∞时,函数f(x)及f(x)都趋于零(2)当|x |>N 时f ´(x)与F ´(x)都存在,且F ´(x)≠0(3)limx→∞f ´(x)F ´(x)存在(或无穷大)则lim x→∞f(x)F(x)=lim x→∞f ´(x)F ´(x)例:1、求lim x→0sin ax sin bx (b ≠0) 解:lim x→0sin ax sin bx =lim x→0a cos ax b cos bx =a b2、求lim x→1x 3−3x+2x 3−x 2−x−1 解:lim x→1x 3−3x+2x 3−x 2−x+1=lim x→13x 2−33x 2−2x−1=lim x→16x 6x−2=32 3、求limx→+∞ln xx n (n>0) 解:limx→+∞ln x x n =lim x→+∞1x nx n−1=lim x→+∞1nx n =0(一些0·∞、∞-∞、00、1∞、∞0型的未定式,也可通过00或∞∞型的未定式来计算) 例:求lim x→0+x n ln n (n >0) 解:lim x→0+x n ln x =lim x→0+ln x x −n =lim x→0+1x −nx −n−1=lim x→0+(−x n )=0▗导数不存在情况①导数不存在点即函数不可导点②函数在该点不连续,且该点是函数的第二类间断点。
洛必达法则
注 7º 对数列极限不能直接用洛必达法则.
1
例7如:lim ln n×= lim n = 0
n→∞ n n→∞ 1
数列极限与函数极限关 系:
lim f ( x) = A ⇔
x→a
∀{xn}: xn → a(n → ∞),
正确解:
∞型 1
xn
≠
a, 有 lim
n→∞
f
( xn )
=
A.
∵
lim
ln x ∞ = lim
= lim
x→+∞
λ2eλ x
=⋯
∞型 ∞ ∞型 ∞ ∞型 ∞
n!
= lim
x→+∞
λneλ x
= 0.
例4-1 求 lim ln(1 + x2 ) .
0型
x→0 sec x − cos x
0
解 原式 = lim
x2
x→0 sec x − cos x
等价无穷小代换
= lim
2x
x→0sec x tan x − (− sin x)
0型
等价无穷0小量代换
解
原式 =
lim ex . lim
x→0 x→0
xe x
+
x − 2ex x3
+
2
0型 0
非零因子单独求极限
xex+ ex+ 1− 2ex
= lim
x→0
3x2
洛必达法则
=
lim
xex + 2ex − 2ex
=
ex lim
= 1.
x→0
6x
x→0 6 6
例5-3 求 lim
高等数学 第二节 洛必达法则
x
( 0 , 0 ) .5
应用罗彼塔法则后如果还是不定式 , 可以继续设法求 极限 , 包括继续使用罗彼塔法则 ( 如例 4 ) 或其它方法 , 如 等价无穷小代换等 . 1 2 arc tan x 0 1 2 ln 0 lim arc tan x x1 x 例 5 . lim x x x e e x 1 e 2 lim e x lim lim 2 x arctan x x 1 x x 2 x
1 2n , 1 x 右端极限不存在 , 也不是 . 1 ( 2n 1) , 1 x
但并不能说明原极限不存在 , 也不是 .
x 2 sin 1 sin x ~ x x 2 sin 1 x lim x 事实上 , lim x x 0 x 0 sin x
n Leabharlann x lim(n ) x
n 1
x
e
x
lim
( n ) ( n 1 ) ( n n ) x 1
x
n 1 x
e
0.
结论 : 当 x 时 ,
ln x x e
当 x 时 , x ( 0 ) 和 ln x 都趋于 , 但 x 速度
更快些 . 记为 ln x x . 例 4 . 当 0 , 0 1 , 整数 n 0 时 : ( n 复盖了 R )
lim x x e
1 x
1 x
1 x
nx
y y n ln ( a1y a2 an ) ln n lim ln f ( x ) lim y x y 0 y y n 0 y y a 1 ln a 1 a n ln a n a1 a n 0 lim y 0 1 ln a 1 ln a n ln ( a 1 a 2 a n )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
洛必达法则洛必达法则(L'Hospital法则),是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。
设(1)当x→a时,函数f(x)及F(x)都趋于零;(2)在点a的去心邻域内,f'(x)及F'(x)都存在且F'(x)≠0;(3)当x→a时lim f'(x)/F'(x)存在(或为无穷大),那么x→a时 lim f(x)/F(x)=lim f'(x)/F'(x)。
再设(1)当x→∞时,函数f(x)及F(x)都趋于零;(2)当|x|>N时f'(x)及F'(x)都存在,且F'(x)≠0;(3)当x→∞时lim f'(x)/F'(x)存在(或为无穷大),那么x→∞时 lim f(x)/F(x)=lim f'(x)/F'(x)。
利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意:①在着手求极限以前,首先要检查是否满足0/0或∞/∞型未定式,否则滥用洛必达法则会出错。
当不存在时(不包括∞情形),就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。
比如利用泰勒公式求解。
②若条件符合,洛必达法则可连续多次使用,直到求出极限为止。
③洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此一定要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因子用等价量替换等等. 泰勒公式(Taylor's formula)泰勒中值定理:若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于(x-x.)多项式和一个余项的和:f(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!*(x-x.)^2,+f'''(x.)/3!*(x-x.)^3+……+f(n)(x.)/n!*(x-x.)^n+Rn其中Rn=f(n+1)(ξ)/(n+1)!*(x-x.)^(n+1),这里ξ在x和x.之间,该余项称为拉格朗日型的余项。
(注:f(n)(x.)是f(x.)的n阶导数,不是f(n)与x.的相乘。
)证明我们知道f(x)=f(x.)+f'(x.)(x-x.)+α(根据拉格朗日中值定理导出的有限增量定理有limΔx→0 f(x.+Δx)-f(x.)=f'(x.)Δx),其中误差α是在limΔx→0 即limx→x.的前提下才趋向于0,所以在近似计算中往往不够精确;于是我们需要一个能够足够精确的且能估计出误差的多项式:P(x)=A0+A1(x-x.)+A2(x-x.)^2+……+An(x-x.)^n来近似地表示函数f(x)且要写出其误差f(x)-P(x)的具体表达式。
设函数P(x)满足P(x.)=f(x.),P'(x.)=f'(x.),P''(x.)=f''(x.),……,P(n)(x.)=f(n)(x.),于是可以依次求出A0、A1、A2、……、An。
显然,P(x.)=A0,所以A0=f(x.);P'(x.)=A1,A1=f'(x.);P''(x.)=2!A2,A2=f''(x.)/2!……P(n)(x.)=n!An,An=f(n)(x.)/n!。
至此,多项的各项系数都已求出,得:P(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!?(x-x.)^2+……+f(n)(x.)/n!?(x-x.)^n.接下来就要求误差的具体表达式了。
设Rn(x)=f(x)-P(x),于是有Rn(x.)=f(x.)-P(x.)=0。
所以可以得出Rn(x.)=Rn'(x.)=Rn''(x.)=……=Rn(n)(x.)=0。
根据柯西中值定理可得Rn(x)/(x-x.)^(n+1)=(Rn(x)-Rn(x.))/((x-x.)^(n+1)-0)=Rn'(ξ1)/(n+1)(ξ1-x.)^n(注:(x.-x.)^(n+1)=0),这里ξ1在x和x.之间;继续使用柯西中值定理得(Rn'(ξ1)-Rn'(x.))/((n+1)(ξ1-x.)^n-0)=Rn''(ξ2)/n(n+1)(ξ2-x.)^(n-1)这里ξ2在ξ1与x.之间;连续使用n+1次后得出Rn(x)/(x-x.)^(n+1)=Rn(n+1)(ξ)/(n+1)!,这里ξ在x.和x 之间。
但Rn(n+1)(x)=f(n+1)(x)-P(n+1)(x),由于P(n)(x)=n!An,n!An是一个常数,故P(n+1)(x)=0,于是得Rn(n+1)(x)=f(n+1)(x)。
综上可得,余项Rn(x)=f(n+1)(ξ)/(n+1)!?(x-x.)^(n+1)。
一般来说展开函数时都是为了计算的需要,故x往往要取一个定值,此时也可把Rn(x)写为Rn。
麦克劳林展开式:若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于x多项式和一个余项的和:f(x)=f(0)+f'(0)x+f''(0)/2!?x^2,+f'''(0)/3!?x^3+……+f(n)(0)/n!?x^n+Rn其中Rn=f(n+1)(θx)/(n+1)!?x^(n+1),这里0<θ<1。
证明:如果我们要用一个多项式P(x)=A0+A1x+A2x^2+……+Anx^n来近似表示函数f(x)且要获得其误差的具体表达式,就可以把泰勒公式改写为比较简单的形式即当x.=0时的特殊形式:f(x)=f(0)+f'(0)x+f''(0)/2!?x^2,+f'''(0)/3!?x^3+……+f(n)(0)/n!?x^n+f(n+1)(ξ)/(n+1)!?x^(n+1)由于ξ在0到x之间,故可写作θx,0<θ<1。
麦克劳林展开式的应用:1、展开三角函数y=sinx和y=cosx。
解:根据导数表得:f(x)=sinx , f'(x)=cosx , f''(x)=-sinx ,f'''(x)=-cosx , f(4)(x)=sinx……于是得出了周期规律。
分别算出f(0)=0,f'(0)=1, f''(x)=0, f'''(0)=-1, f(4)=0……最后可得:sinx=x-x^3/3!+x^5/5!-x^7/7!+x^9/9!-……(这里就写成无穷级数的形式了。
)类似地,可以展开y=cosx。
2、计算近似值e=lim x→∞ (1+1/x)^x。
解:对指数函数y=e^x运用麦克劳林展开式并舍弃余项:e^x≈1+x+x^2/2!+x^3/3!+……+x^n/n!当x=1时,e≈1+1+1/2!+1/3!+……+1/n!取n=10,即可算出近似值e≈2.7182818。
3、欧拉公式:e^ix=cosx+isinx(i为-1的开方,即一个虚数单位)证明:这个公式把复数写为了幂指数形式,其实它也是由麦克劳林展开式确切地说是麦克劳林级数证明的。
过程具体不写了,就把思路讲一下:先展开指数函数e^z,然后把各项中的z写成ix。
由于i的幂周期性,可已把系数中含有土i的项用乘法分配律写在一起,剩余的项写在一起,刚好是cosx,sinx的展开式。
然后让sinx乘上提出的i,即可导出欧拉公式。
有兴趣的话可自行证明一下。
泰勒展开式原理e的发现始于微分,当 h 逐渐接近零时,计算之值,其结果无限接近一定值 2.71828...,这个定值就是 e,最早发现此值的人是瑞士著名数学家欧拉,他以自己姓名的字头小写 e 来命名此无理数.计算对数函数的导数,得 ,当 a=e 时, 的导数为 ,因而有理由使用以 e 为底的对数,这叫作自然对数.若将指数函数 ex 作泰勒展开,则得以 x=1 代入上式得此级数收敛迅速,e 近似到小数点后 40 位的数值是将指数函数 ex 扩大它的定义域到复数 z=x+yi 时,由透过这个级数的计算,可得由此,De Moivre 定理,三角函数的和差角公式等等都可以轻易地导出.譬如说,z1=x1+y1i, z2=x2+y2i,另方面,所以,我们不仅可以证明 e 是无理数,而且它还是个超越数,即它不是任何一个整系数多项式的根,这个结果是 Hermite 在1873年得到的.甲)差分.考虑一个离散函数(即数列) R,它在 n 所取的值 u(n) 记成 un,通常我们就把这个函数书成或 (un).数列 u 的差分还是一个数列,它在 n 所取的值以定义为以后我们干脆就把简记为(例):数列 1, 4, 8, 7, 6, -2, ... 的差分数列为 3, 4, -1, -1, -8 ...注:我们说「数列」是「定义在离散点上的函数」如果在高中,这样的说法就很恶劣.但在此地,却很恰当,因为这样才跟连续型的函数具有完全平行的类推.差分算子的性质(i) [合称线性](ii) (常数) [差分方程根本定理](iii)其中 ,而 (n(k) 叫做排列数列.(iv) 叫做自然等比数列.(iv)' 一般的指数数列(几何数列)rn 之差分数列(即「导函数」)为 rn(r-1) (乙).和分给一个数列 (un).和分的问题就是要算和 . 怎么算呢我们有下面重要的结果:定理1 (差和分根本定理) 如果我们能够找到一个数列 (vn),使得 ,则和分也具有线性的性质:甲)微分给一个函数 f,若牛顿商(或差分商) 的极限存在,则我们就称此极限值为f 为点 x0 的导数,记为 f'(x0) 或 Df(x),亦即若 f 在定义区域上每一点导数都存在,则称 f 为可导微函数.我们称为 f 的导函数,而叫做微分算子.微分算子的性质:(i) [合称线性](ii) (常数) [差分方程根本定理](iii) Dxn=nxn-1(iv) Dex=ex(iv)' 一般的指数数列 ax 之导函数为(乙)积分.设 f 为定义在 [a,b] 上的函数,积分的问题就是要算阴影的面积.我们的办法是对 [a,b] 作分割:;其次对每一小段 [xi-1,xi] 取一个样本点 ;再求近似和 ;最后再取极限(让每一小段的长度都趋近于 0).若这个极限值存在,我们就记为的几何意义就是阴影的面积.(事实上,连续性也「差不多」是积分存在的必要条件.)积分算子也具有线性的性质:定理2 若 f 为一连续函数,则存在.(事实上,连续性也「差不多」是积分存在的必要条件.)定理3 (微积分根本定理) 设 f 为定义在闭区间 [a,b] 上的连续函数,我们欲求积分如果我们可以找到另一个函数 g,使得 g'=f,则注:(1)(2)两式虽是类推,但有一点点差异,即和分的上限要很小心!上面定理1及定理3基本上都表述着差分与和分,微分与积分,是两个互逆的操作,就好像加法与减法,乘法与除法是互逆的操作一样.我们都知道差分与微分的操作比和分与积分简单多了,而上面定理1及定理3告诉我们,要计算 (un) 的和分及 f 的积分,只要去找另一个 (vn) 及 g 满足 , g'=f (这是差分及微分的问题),那么对 vn 及 g 代入上下限就得到答案了.换句话说,我们可以用较简单的差分及微分操作来掌握较难的和分及积分操作,这就是"以简御繁"的精神.牛顿与莱布尼慈对微积分最大的贡献就在此.甲)Taylor展开公式这分别有离散与连续的类推.它是数学中「逼近」这个重要想法的一个特例.逼近想法的意思是这样的:给一个函数 f,我们要研究 f 的行为,但 f 本身可能很复杂而不易对付,于是我们就想法子去找一个较「简单」的函数 g,使其跟 f 很「靠近」,那么我们就用 g 来取代 f.这又是以简御繁的精神表现.由上述我们看出,要使用逼近想法,我们还需要澄清两个问题:即如何选取简单函数及逼近的尺度.(一) 对于连续世界的情形,Taylor 展式的逼近想法是选取多项函数作为简单函数,并且用局部的「切近」作为逼近尺度.说得更明白一点,给一个直到到 n 阶都可导微的函数 f,我们要找一个 n 次多项函数 g,使其跟 f 在点 x0 具有n 阶的「切近」,即 ,答案就是此式就叫做 f 在点 x0 的 n 阶 Taylor 展式.g 在 x0 点附近跟 f 很靠近,于是我们就用 g 局部地来取代 f.从而用 g 来求得 f 的一些局部的定性行为.因此 Taylor 展式只是局部的逼近.当f是足够好的一个函数,即是所谓解析的函数时,则 f可展成 Taylor 级数,而且这个Taylor 级数就等于 f 自身.值得注意的是,一阶 Taylor 展式的特殊情形,此时 g(x)=f(x0)+f'(x0)(x-x0) 的图形正好是一条通过点 (x0,f(x0)) 而且切于 f 的图形之直线.因此 f 在点 x0 的一阶 Taylor 展式的意义就是,我们用过点 (x0,f(x0)) 的切线局部地来取代原来 f 曲线.这种局部化「用平直取代弯曲」的精神,是微分学的精义所在.利用 Taylor 展式,可以帮忙我们做很多事情,比如判别函数的极大值与极小值,求积分的近似值,作函数表(如三角函数表,对数表等),这些都是意料中事.事实上,我们可以用逼近的想法将微积分「一以贯之」.复次我们注意到,我们选取多项函数作为逼近的简单函数,理由很简单:在众多初等函数中,如三角函数,指数函数,对数函数,多项函数等,从算术的观点来看,以多项函数最为简单,因为要计算多项函数的值,只牵涉到加减乘除四则运算,其它函数就没有这么简单.当然,从别的解析观点来看,在某些情形下还另有更有用更重要的简单函数.例如,三角多项式,再配合上某种逼近尺度,我们就得到 Fourier 级数展开,这在应用数学上占有举足轻重的地位.(事实上,Fourier 级数展开是采用最小方差的逼近尺度,这在高等数学中经常出现,而且在统计学中也有应用.) 注:取 x0=0 的特例,此时 Taylor 展式又叫做 Maclaurin 展式.不过只要会做特例的展开,欲求一般的 Taylor 展式,作一下平移(或变数代换)就好了.因此我们大可从头就只对 x=0 点作 Taylor 展式.(二) 对于离散的情形,Taylor 展开就是:给一个数列 ,我们要找一个 n 次多项式数列 (gt),使得 gt 与 ft 在 t=0 点具有 n 阶的「差近」.所谓在 0 点具有 n 阶差近是指:答案是此式就是离散情形的 Maclaurin 公式.乙)分部积分公式与Abel分部和分公式的类推(一) 分部积分公式:设 u(x),v(x) 在 [a,b] 上连续,则(二) Abel分部和分公式:设(un),(v)为两个数列,令 sn=u1+......+un,则上面两个公式分别是莱布尼慈导微公式 D(uv)=(Du)v+u(Dv),及莱布尼慈差分公式的结论.注意到,这两个莱布尼慈公式,一个很对称,另一个则不然.(丁)复利与连续复利 (这也分别是离散与连续之间的类推)(一) 复利的问题是这样的:有本金 y0,年利率 r,每年复利一次,要问 n 年后的本利和 yn= 显然这个数列满足差分方程 yn+1=yn(1+r)根据(丙)之(二)得知 yn=y0(1+r)n 这就是复利的公式.(二) 若考虑每年复利 m 次,则 t 年后的本利和应为令 ,就得到连续复利的概念,此时本利和为y(t)=y0ert换句话说,连续复利时,t 时刻的本利和 y(t)=y0ert 就是微分方程 y'=ry 的解答.由上述我们看出离散复利问题由差分方程来描述,而连续复利的问题由微分方程来描述.对于常系数线性的差分方程及微分方程,解方程式的整个要点就是叠合原理,因此求解的办法具有完全平行的类推.(戊)Fubini 重和分定理与 Fubini 重积分定理(也是离散与连续之间的类推)(一) Fubini 重和分定理:给一个两重指标的数列 (ars),我们要从 r=1 到m,s=1到 n, 对 (ars) 作和 ,则这个和可以这样求得:光对 r 作和再对 s 作和(反过来亦然).亦即我们有(二)Fubini 重积分定理:设 f(x,y) 为定义在上之可积分函数,则当然,变数再多几个也都一样.(己)Lebesgue 积分的概念(一) 离散的情形:给一个数列 (an),我们要估计和 ,Lebesgue 的想法是,不管这堆数据指标的顺序,我们只按数值的大小来分堆,相同的分在一堆,再从每一堆中取一个数值,乘以该堆的个数,整个作和起来,这就得到总和.(二)连续的情形:给一个函数 f,我们要定义曲线 y=f(x) 跟 X 轴从 a 到b 所围出来的面积.Lebesgue 的想法是对 f 的影域作分割:函数值介 yi-1 到 yi 之间的 x 收集在一齐,令其为 , 于是 [a,b] 就相应分割成 ,取样本点 ,作近似和让影域的分割加细,上述近似和的极限若存在的话,就叫做 f 在 [a,b] 上的 Lebesgue 积分. 余项泰勒公式的余项f(x)=f(a) + f'(a)(x-a)/1! +f''(a)(x-a)^2/2! + …… + f(n)(a)(x-a)^n/n! + Rn(x) [其中f(n)是f的n 阶导数]泰勒余项可以写成以下几种不同的形式:1.佩亚诺(Peano)余项:Rn(x) = o((x-a)^n)2.施勒米尔希-罗什(Schlomilch-Roche)余项:Rn(x) = f(n+1)(a+θ(x-a))(1-θ)^(n+1-p)(x-a)^(n+1)/(n!p)[f(n+1)是f的n+1阶导数,θ∈(0,1)]3.拉格朗日(Lagrange)余项:Rn(x) = f(n+1)(a+θ(x-a))(x-a)^(n+1)/(n+1)![f(n+1)是f的n+1阶导数,θ∈(0,1)]4.柯西(Cauchy)余项:Rn(x) = f(n+1)(a+θ(x-a))(1-θ)^n (x-a)^(n+1)/n![f(n+1)是f的n+1阶导数,θ∈(0,1)]5.积分余项:Rn(x) = [f(n+1)(t)(x-t)^n在a到x上的积分]/n![f(n+1)是f的n+1阶导数]也叫Cauchy中值定理。