2018考研数学:高数、线代及概率三大科目规律

合集下载

2018年考研数学大纲解析:线性代数与概率论复习建议

2018年考研数学大纲解析:线性代数与概率论复习建议

2018年考研数学大纲解析:线性代数与概率论复习建议的更新!2018年考研数学大纲解析:线性代数与概率论复习建议2018考研大纲已公布,第一时间收录并整理了最新的考研大纲,为考生全方位解读2018考研大纲的最新变动并指导后续备考。

今年考研数学大纲并无变化,对考试并无影响。

下面老师将带领大家对大纲进行解读,并对线性代数与概率论提出一些复习上的建议。

今年大纲知识点无论数学一、数学二还是数学三都没有变化。

这样的话从知识本身来说同学们可以按照原计划进行。

成建军老师在全年复习规划时讲过,数学科目稳定,希望大家一定要稳定扎实按复习规划进行。

大家知道考研数学历来是整个考研所有学科当中最为稳定的一门,考研数学的知识经过多年考察已经达到了非常稳定的命题结构、知识,不会有巨大的变化。

尤其在考前一百多天时间里。

考研数学有三个科目构成,高等数学、线性代数与概率论与数理统计,高等数学占比很大,她是考研数学的半壁江山,因此复习周期很长,且需要将基础打牢。

许多考生在复习数学时,对高数的复习都很重视。

但不少考生却对线代与概率的复习重视不够。

事实上相比高数来看,线代与概率更容易拿分。

但从历年考试数据来看,线代与概率得分率偏低,平均分通常在十几分。

这个原因,一方面由于高数在考试中花费时间太多,后面的线代与概率大题没时间作答,而更重要在于,概率与线代复习不到位,题目不会做。

根据历年考生概率与线代复习中存在的问题,成建军老师将带领大家对线性代数与概率论的相关考点进行解读,并对线性代数与概率论提出一些复习上的建议。

我相信有许多同学在刚一开始学习线性代数和概率论与数理统计时有难处,认为看书举步维艰,对此我想谈一下我的看法,希望对那些还在这两门课上迷茫的同学能有一些启发。

首先谈一下我的看法:事实上线性代数应该是考研数学三门课中最好拿分的,但是这门课有一个特点,就是入门难,但是一旦入门就一通百通,这门课由于思维上与高数大不相同,所以一上来会很不适应,总体而言6章内容环环相扣,所以很多同学一上来看第一章发现内容涉及到第五章,看到第二章发现竟有第4章的知识点,无法形成完整的知识网络,自然无法入门,总的来说线代6章内容可分为三个部分逐个攻破,首先行列式和矩阵,这是基础,第二向量与方程组,第三特征值与特征向量,这三个内容联系得相当紧密,必须逐个攻破,这样以两章为单位,每个单位中出现的知识点定理罗列出来,找到他们彼此的关系,构建属于你的知识网络,这一部分有哪些板块,每个板块有哪些定义知识点,比如行列式的定义,矩阵的定义各是什么,你是怎么理解的,向量与方程组有什么联系与区别,这些最基础的一定要搞清。

2018考研数学:科目一二三的共同点

2018考研数学:科目一二三的共同点

2018考研数学:科目一二三的共同点1、这三者的考试科目都包含了高等数学和线性代数2、线性代数考察内容占比22%(2道选择题,1道填空题,2道大题);3、高数部分:函数、极限、连续、一元函数微积分学、常微分方程,这几个方面的凯程都是考察点线性代数:行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量,这几个部分也都为考察点。

4、试卷结构是一样的选择题:8题(每题4分);填空题:6题(每题4分);解答题:9题(每题10分左右);满分150分,考试时间3小时。

5、考试特点一致①总分150分,在公共课中所占分值大,分数之间差距较大;②注重基础,遵循考试大纲出题,考查公式定理,凯程固定;③注重高质量的考点训练与题型总结。

其实看看凯程考研怎么样,最简单的一个办法,看看他们有没有成功的学生,最直观的办法是到凯程网站,上面有大量学员经验谈视频,这些都是凯程扎扎实实的辅导案例,其他机构网站几乎没有考上学生的视频,这就是凯程和其他机构的优势,凯程是扎实辅导、严格管理、规范教学取得如此优秀的成绩。

辨别凯程和其他机构谁靠谱的办法。

第一招:看经验谈视频,凯程网站有经验谈视频,其他机构没有。

第二招:看有没有讲义。

凯程有课程讲义,其他机构几乎没有,或者没有现成的讲义,说明他们没有辅导历史。

第三招:问问该专业今年辅导多少人。

如果就招1-2个学生,那就无法请最好的老师,凯程大多数专业都是小班授课,招生人数多,自然请的老师质量高,授课量大,学习更加扎实。

并且凯程和这些学校的老师联系更加紧密。

第四招:看集训营场地正规不正规。

有些机构找个写字楼,临时租个宾馆,学习没有气氛,必须是正规教学楼、宿舍楼、操场、食堂,凯程就是正规教学楼、宿舍楼、食堂、操场等,配备空调、暖气、热水器、独立卫浴等。

在凯程网站有大量集训营环境的照片,每个学员对我们的集训营学习气氛满意度超高。

其他机构很多遮遮掩掩不提供,那就是集训营环境不行。

第五招:实地考察看看。

2018年考研数学一考试大纲(免费word版)

2018年考研数学一考试大纲(免费word版)

2018年全国硕士研究生入学考试数学(一)考试大纲考试科目:数学高等数学、线性代数、概率论与数理统计试卷结构(一)题分及考试时间试卷满分为150分,考试时间为180分钟。

(二)内容比例高等教学约60%线性代数约20%概率论与数理统计约20%(三)题型比例填空题与选择题约40%解答题(包括证明题)约60%一、函数、极限、连续考试内容函数的概念及表示法函数的有界性(有界和收敛的关系存在正数M 使f(x)<M 恒成立则有界,不存在M 则无界,注意与无穷大的区别-如振荡型函数)、单调性、周期性(注意周期函数的定积分性质)和奇偶性(奇偶性的前提是定义域关于原点对称)复合函数(两个函数的定义域值域之间关系)、反函数(函数必须严格单调,则存在单调性相同的反函数且与其原函数关于y=x 对称)、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立(应用题)0sin lim 1x x x →=1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭数列极限(转化为函数极限单调有界定积分夹逼定理)与函数极限(四则变换无穷小代换积分中值定理洛必塔法则泰勒公式-要齐次展开)的定义及其性质(局部保号性)函数的左极限与右极限(注意正负号)无穷小(以零为极限)和无穷大(大于任意正数)的概念及其关系无穷小的性质(和性质积性质)及无穷小的比较(求导定阶)极限的四则运算(要在各自极限存在的条件下)极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念(点极限存在且等于函数值)函数间断点的类型(第一型(有定义):可去型,跳跃型第二型(无定义):无穷型,振荡型)初等函数的连续性闭区间上连续函数的性质(零点定理介值定理)考试要求1.理解函数的概念,掌握函数的表示法,并会建立简单应用问题中的函数关系式。

2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念(点可导与域可导的关系)导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数(数学归纳法赖布妮子公式法)一阶微分形式的不变性微分中值定理(闭区间连续开区间可导ζ不是常数)洛必达(L’Hospital)法则(注意使用条件洛必塔求解不存在时,原极限可能存在)函数单调性的判别(利用导数)函数的极值(极值的判定:定义一阶去心邻域可导且左右邻域导数异号二阶可导且该点一阶导为零)函数图形的凹凸性(证明)、拐点及渐近线(求解步骤:垂直水平斜)函数图形的描绘函数最大值和最小值弧微分曲率的概念(有绝对值注意参数方程公式)曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分(后面要加上dx).3.了解高阶导数的概念,会求简单函数的n阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数5.理解并会用罗尔定理、拉格朗日中值定理和泰勒定理(典型函数的展开),了解并会用柯西中值定理.6.掌握用洛必达法则求未定式极限的方法.(洛必达法则受阻时:拆项积分中值中值定理)7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法(一阶导定点二阶导定性),掌握函数最大值和最小值的求法及其简单应用.8.会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率和曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念(被积函数的要求连续只是原函数存在的充分条件)不定积分的基本性质(线性和差与求导互逆)基本积分公式定积分的概念(求极限的应用)和基本性质(注意上下限的位置线性分区间上限大于下限时比大小估值定理)定积分中值定理用定积分表达和计算质心积分上限的函数及其导数牛顿一莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法(换元要彻底,不要忘了dx定积分换元要注意上下限也要换)与分部积分法有理函数、三角函数的有理式和简单无理函数的积分广义积分概定积分的应用考试要求1.理解原函数概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法(常见代换:倒代换三角换元万能代换不要跳步计算,以免出现毁灭性的低级失误).3.会求有理函数、三角函数有理式及简单无理函数的积分.4.理解积分上限的函数,会求它的导数(用处远非于此,常与罗尔定理结合解决零点问题),掌握牛顿一莱布尼茨公式.5.了解广义积分的概念,会计算广义积分(用极限的观点).6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力)及函数的平均值等.四、向量代数和空间解析几何考试内容向量的概念(自由移动)向量的线性运算向量的数量积(是数可交换)和向量积(是向量交换后变号)向量的混合积(交换的性质与行列式性质相同几何意义用于求异面直线的距离)两向量垂直(数量积为零)、平行(向量积与零向量)的条件两向量的夹角(面面线线线面)向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程(点法式截距式一般式平面束方程)、直线方程(对称式参数式一般式)平面与平面、平面与直线、直线与直线的以及平行、垂直的条件(转化为向量之间的关系)点到平面和点到直线的距离(利用平行四边形)球面母线平行于坐标轴的柱面旋转轴为坐标轴的旋转曲面的方程常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程考试要求1.理解空间直角坐标系,理解向量的概念及其表示。

2018年考研数学(高数、线代、概率论)最全公式手册

2018年考研数学(高数、线代、概率论)最全公式手册

dy (ln x) 1 x
1 dx x ln a d (ln x) 1 dx x
特例 y ln x (5) y sin x (6) y cos x (7) y tan x (8) y cot x (9) y sec x (10) y csc x
y cos x y sin x
x x0
f ( x) f ( x0 ) x x0
(2)
2 函数 f ( x) 在 x0 处的左、右导数分别定义为: 左导数:
f ( x0 ) lim
x 0
f ( x0 x) f ( x0 ) f ( x) f ( x0 ) lim , ( x x0 x) x x0 x x x0
x 的复合函数.例如
1 , y 2 , ln y , e y 等均是 x 的复合函数. y
F ( x, y) dy ,其中, Fx( x, y) , x dx Fy( x, y )
对 x 求导应按复合函数连锁法则做. (2)公式法.由 F ( x, y) 0 知
Fy( x, y) 分别表示 F ( x, y) 对 x 和 y 的偏导数
常用的等阶无穷小:当x 0时 sin x arcsin x tan x x, arctan x ln(1 x) ex 1
1 cos x
1 2 x 2 1 1 (1 x) n 1 x n
无穷小的性质 (1) 有限个无穷小的代数和为无穷小 (2) 有限个无穷小的乘积为无穷小 (3) 无穷小乘以有界变量为无穷小 Th 在同一变化趋势下,无穷大的倒数为无穷小;非零的 无穷小的倒数为无穷大
设函数f ( x)在x x0处可导,则f ( x)在M ( x0 , y0 )处的

[实用参考]2018年考研数学一考试大纲及其解读

[实用参考]2018年考研数学一考试大纲及其解读

2017-09-18考试科目:高等数学、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等教学约56%线性代数约22%概率论与数理统计约22%四、试卷题型结构单选题8小题,每小题4分,共32分填空题6小题,每小题4分,共24分解答题(包括证明题)9小题,共94分1高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:,函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.函数——对任意自变量,只有唯一因变量与之对应(知道就行)2.了解函数的有界性、单调性、周期性和奇偶性.一般性了解(知道就行),有界性(连续函数必有界),单调性、周期性、奇偶性后面几章会用到3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.会求分段函数的复合函数,知道反函数的基本性质(与原函数对应关系相反),隐函数了解概念即可(非显函数)4.掌握基本初等函数的性质及其图形,了解初等函数的概念.要求同考纲,初等函数在定义域内均连续5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.了解(知道)极限定义,相关证明没有要求,左右极限需要掌握6.掌握极限的性质及四则运算法则.唯一性和保号性(重要),熟练掌握四则运算法则7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.掌握用夹逼定理(适用于函数和数列)和单调有界定理(适用于数列)求极限8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.知道什么是无穷小量(趋于0)、无穷大量(趋于正负无穷),掌握无穷小量的比较方法(作比,理解低阶、同阶、等价和高阶无穷小),熟练掌握用等价无穷小求极限(只适用于因式)9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.掌握连续判断、间断点类型及其判断10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.熟练掌握并会使用有界性(闭区间连续函数必有界)、最值定理、零点定理和介值定理解题2二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.导数定义式必须熟练掌握并会使用,其他要求同上(会计算)2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.尽可能掌握一阶微分形式不变性并会用其解题,其他要求同上3.了解高阶导数的概念,会求简单函数的高阶导数.知道什么是高阶导数,会用莱布尼茨公式求高阶导数4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.要求同上,特别注意分段点的导数(用定义式)5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(TaPlor)定理,了解并会用柯西(CauchP)中值定理.熟练掌握并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理、柯西中值定理和泰勒(TaPlor)定理,前三个定理证明也需要掌握6.掌握用洛必达法则求未定式极限的方法.要求同上,牢记洛必达法则使用的三个条件7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.以上内容需全部掌握,还需要分清极值与最值,极值与导数为零的点的关系8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.函数形态、拐点、渐近线重点掌握9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.会计算曲率和曲率半径(两个公式),曲率圆一般性了解3三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.非常清晰的理解原函数和可积的关系,弄清不定积分(函数)和定积分(常数)的本质2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.不定积分和定积分计算是重点内容,近年不定积分解答题出题频率变小,定积分出解答题频率变大,两块都不能掉以轻心3.会求有理函数、三角函数有理式和简单无理函数的积分.必须掌握,可能以填空题形式出现4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.重要考点,常与极限洛必达法则联用,必须掌握5.了解反常积分的概念,会计算反常积分.掌握反常积分和其计算(重点是计算)6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.积分的实际应用必须掌握,大概率解答题内容4四、向量代数和空间解析几何考试内容向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程考试要求1.理解空间直角坐标系,理解向量的概念及其表示.2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法.5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题.6.会求点到直线以及点到平面的距离.7.了解曲面方程和空间曲线方程的概念.8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.1~9加粗部分为本章必须掌握的重点,其余内容一般性了解5五、多元函数微分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用考试要求1.理解多元函数的概念,理解二元函数的几何意义.知道是什么东西就行2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.2.3会求二重极限和判断连续、可微、可偏导等、理解偏导数和全微分及其表达形式,会用全微分形式不变性求偏导4.理解方向导数与梯度的概念,并掌握其计算方法.掌握方向导数与梯度意义和公式并计算5.掌握多元复合函数一阶、二阶偏导数的求法.多元函数微分学重点——会求偏导数6.了解隐函数存在定理,会求多元隐函数的偏导数.会用多种方法求隐函数的偏导数(树形图、全微分等)7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.掌握空间曲线的切线和法平面及曲面的切平面和法线的求法以及应用8.了解二元函数的二阶泰勒公式.知道就行9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.掌握二元函数极值存在条件并会用公式判断,会用拉格朗日乘数法求条件极值并解决简单的应用题6六、多元函数积分学考试内容二重积分与三重积分的概念、性质、计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林(Green)公式平面曲线积分与路径无关的条件二元函数全微分的原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯(Gauss)公式斯托克斯(Stokes)公式散度、旋度的概念及计算曲线积分和曲面积分的应用考试要求1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理.2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.4.掌握计算两类曲线积分的方法.5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.7.了解散度与旋度的概念,并会计算.8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、形心、转动惯量、引力、功及流量等).1~8条加粗的部分是本章必须掌握的重点内容7七、无穷级数考试内容常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法交错级数与莱布尼茨定理任意项级数的绝对收敛与条件收敛函数项级数的收敛域与和函数的概念幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式函数的傅里叶(Fourier)系数与傅里叶级数狄利克雷(Dirichlet)定理函数在上的傅里叶级数函数在上的正弦级数和余弦级数考试要求1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.2.掌握几何级数与级数的收敛与发散的条件.3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.4.掌握交错级数的莱布尼茨判别法.5.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.6.了解函数项级数的收敛域及和函数的概念.7.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法.8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.9.了解函数展开为泰勒级数的充分必要条件.10.掌握...及麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数.11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在上的函数展开为傅里叶级数,会将定义在上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.1~11加粗部分为本章必须掌握的重点部分,其余部分一般性了解,计算是重点8八、常微分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程伯努利(Bernoulli)方程全微分方程可用简单的变量代换求解的某些微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程欧拉(Euler)方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.非常清楚解、通解、初始条件和特解概念2.掌握变量可分离的微分方程及一阶线性微分方程的解法.重点掌握内容3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.4.会用降阶法解下列形式的微分方程:和.2.3.4要求同上5.理解线性微分方程解的性质及解的结构.掌握齐次方程与非齐次方程通解的性质和结构6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.6.7掌握常见二阶常系数齐次线性微分方程解的形式,并会分析解的结构,组合自由项即将微分方程拆为若干项再按一般方法分别求解(重要)8.会解欧拉方程.要求同上9.会用微分方程解决一些简单的应用问题.能解决微分方程相关的实际应用题(重点是把实际问题转换为数学问题)9线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.知道什么是行列式,熟练掌握行列式的性质(计算)2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.掌握求行列式方法(重要)二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.知道什么是单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵,并掌握它们的性质用于解题2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.有关矩阵的运算性质及方阵与行列式之间的关系必须熟练掌握并会解题3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.逆矩阵和伴随矩阵是线代中两个非常重要的概念,相关性质以及应用需要熟练掌握4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.掌握常见分块矩阵的运算三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量空间及其相关概念维向量空间的基变换和坐标变换过渡矩阵向量的内积线性无关向量组的正交规范化方法规范正交基正交矩阵及其性质考试要求1.理解维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.1.2.3.4需要全部熟练掌握5.了解维向量空间、子空间、基底、维数、坐标等概念.6.了解基变换和坐标变换公式,会求过渡矩阵.7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.8.了解规范正交基、正交矩阵的概念以及它们的性质.5.6.7.8施密特正交化和正交矩阵概念、性质是掌握重点,其他了解即可四、线性方程组考试内容线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解考试要求1.会用克拉默法则.克拉默法则必会2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.2.3.4.5关于齐次和非齐次线性方程组的求解必须熟练掌握,这是线代大题必考的步骤(结合五六章)五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.1.2.3所列内容均需全部掌握,有关特征值、特征向量必考大题六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理.二次型概念及其矩阵、合同矩阵、标准型、规范性及惯性定理需要掌握(等价、合同、相似要清晰分辨)2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.配方法了解即可,出题概率非常小,正交变换法化二次型为标准型是重点3.理解正定二次型、正定矩阵的概念,并掌握其判别法.考点之一,可能以选择题或填空题方式考察概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.有关随机事件关系及运算需要掌握,相关题目会做2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(BaPes)公式.这五大公式特别重要,后续章节涉及相关计算性的问题有可能会用到。

2018考研数一大纲完整版

2018考研数一大纲完整版

2018考研数一大纲完整版2018年考研数学一大纲完整版一、数理统计与概率论1. 集合论和事件(1)集合,包含比较基本的集合概念和运算,A,B,A∩B,A∪B,Ac,Bc,A-B。

(2)事件,事件以及事件运算,全集和空集,和事件的差与补,事件之间的包含关系和等价关系。

2. sigma域和随机事件(1)sigma域,虽然很多人对此并不是很熟悉,但是它却是和概率密切相关的,必须掌握。

(2)随机事件,随机事件是和概率密切相关的,必须掌握。

3. 条件概率和全概率公式(1)条件概率,条件概率是概率论研究的核心内容之一,其应用范围非常广。

(2)全概率公式,全概率公式是求解某些事件的概率时非常重要的方法。

4. 贝叶斯公式贝叶斯公式是概率论中非常重要的公式,应用范围十分广泛,所以必须掌握。

5. 随机变量和概率密度函数(1)随机变量,随机变量的概念、离散型和连续型变量。

(2)概率密度函数,概率密度函数是随机变量的重要概念,因为它可以用来计算随机变量取特定值的概率,所以必须掌握。

6. 分布函数和矩(1)分布函数,分布函数又称为累积分布函数,它是随机变量的重要概念之一,因为它可以用来计算随机变量取特定值的概率。

(2)矩,矩是随机变量的重要概念之一,它不仅可以用来计算随机变量的期望值,还可以计算随机变量的各种特征,比如方差和偏度等。

7. 常见分布(1)离散型分布,包括0-1分布、二项分布、泊松分布等。

(2)连续型分布,包括均匀分布、正态分布、指数分布等。

二、高等代数1. 线性代数初步(1)向量、线性方程组,以及它们的基本性质和运算法则。

(2)矩阵、行列式,它们的基本性质和运算法则。

2. 矩阵初等变换矩阵初等变换是将一个矩阵通过一系列基本变换变成标准型的过程,是线性代数中重要的概念,必须掌握。

3. 线性空间的基本概念和性质线性空间是线性代数研究的重要对象,其中包括向量空间、矩阵空间等多种空间,所以必须掌握其基本概念和性质。

2018考研数学:线性代数三大主义事项

2018考研数学:线性代数三大主义事项

为学生引路,为学员服务第 1 页 共 1 页 2018考研数学:线性代数三大注意事项考研数学主要考查三门课程:高等数学、线性代数和概率论与数理统计,高等数学与概率统计两门学科有着密切的联系,概率中的很多题目都是利用高等数学中的积分来解决的,因此概率论与数理统计的复习要以高等数学为基础,高数学不好或者复习的不到位建议先不复习概率,但是线性代数与高等数学、概率论与数理统计没有任何的联系,所以广大2018年的考研学子们可以将高等数学与线性代数的复习同时进行。

为了使考生更好更有效的进行复习,本文特意针对线性代数这门学科为广大考生提出以下复习建议。

一、注重基础,理清知识点之间的联系。

每年的考研试题均以考查数学的基本概念、基本方法和基本原理为主,从多年的考试分析中看,考生对数学的基本概念掌握的不够牢固,理解的不够透彻。

有些同学看到题目后不知道如何下手、该用哪个公式等,建议考生在数学复习中一定要重视基础知识的复习,要复习所有的公式、定理、定义,多做一些基础题来帮助巩固基本知识。

另外,线性代数的内容不多,但基本概念和性质较多,它们之间的联系也比较多。

广大考生可总结真题中线性代数部分的两道大题,不难发现每道大题所涉及到的概念与方法不止一种,要找到它们之间的联系与区别,对大家在解题思路和方法上会有很大的帮助。

二、参照往年的大纲,通过做题来巩固三基本。

虽然2018年的考研大纲还没有出来,但是根据以往的经验来看,考研数学大纲的变化不会很大,尤其是线性代数部分,所以考生可以继续参考往年的考试大纲进行复习。

线性代数的复习要重视基础,建议大家选一本好的辅导讲义即可,要边看书,边做题,通过做题来巩固概念和性质等。

三、多做题目,加强训练,培养分析与解决问题的能力。

从近几年的考研真题来看,考研数学中加强了对考生分析问题和解决问题能力的考核。

在线性代数的两个大题中,基本上都是多个知识点的综合,从而达到对考生的运算能力、抽象概括能力、逻辑思维能力和综合运用所学知识解决实际问题的能力的考核。

数学做题必须遵循的“三必须、三禁忌”原则

数学做题必须遵循的“三必须、三禁忌”原则

数学做题必须遵循的“三必须、三禁忌”原则考研数学的基础积累就是靠做题来完成的。

特别是在巩固提高阶段,同学们的目标就是通过钻研历年的真题和高质量的模拟题达到考研数学考高分的要求。

时间一般是在十一月、十二月。

这一强化阶段首先推荐给大家的资料是10年历年真题、李永乐400题,一共是460道左右题目。

真提和模拟题都是很值得同学们去好好钻研一番。

那么同学们在第一遍做套题的时候应该注意怎样的问题呢?万学海文给大家的建议是遵循“三必须、三禁忌”原则:一、必须:定时、整套(3h/套),真刀真枪地模拟考场上的情况。

不做套题你或许不能理解,脑袋高强度地运转3个小时,还是非常耗费体力的。

有人说,如果考研前没有足够的训练,连续4科的考试很难坚持下来,即使“坐”下来了,也很难保证状态。

有很多同学反映第一次做完套题时,走路时都有一种轻飘飘的感觉,确实是很累的。

但锻炼多了,坐3个小时也就成为一种习惯了。

禁忌:边做边对答案、超时、将套题割裂开来,分块来做。

这样既没有做套题的经验,也没有发挥整套真题的价值。

因为套题是将高等数学、线性代数、概率论很好的结合在一起形成的,如果分开来做头脑里面知识还是断裂开的,做高数的时候只知道高数,线代的时候只知道线代,概率的时候只知道概率,三部分没有结合,还有的同学超时,用4个小时,或者3.5小时做整套试卷,这样做完即使得到了140分以上也大大折扣,真正考试时至少减掉30分以上。

二、必须:打分、总结。

这样才能够更加清楚地了解自己的情况,给自己压力,总结时间通常会超过做题的时间,也就是超过3h。

总结的过程,实际上就是知识在你大脑中有序地存储的过程。

禁忌:做完不打分,不总结。

有的同学前面已经养成依赖答案的习惯,看到答案会做题,扔掉答案什么都不会。

这样的做法一定要做套题的时候校正过来。

只赶进度,只做新题,不总结,草草看一遍答案,说声“原来如此”就结束了。

如果这样对待,我相信有的题目你遇到3遍也不一定能够掌握,最后的结果也许就是:你从考场下来的时候,看到答案时也是那声“原来如此”,只不过可能再加上个“TMD”。

2018考研数学必备解题思路和考点

2018考研数学必备解题思路和考点

2018考研数学必备解题思路和考点2018考研数学必备解题思路和考点考研数学做题时间180分钟,每年都有不少同学出现做不完题的情况,不是因为知识点不会,而是因为自己没有形成一个完整的思路。

今天小编给大家整理了一些2018考研数学必备解题思路知识,希望对大家有所帮助。

2018考研数学必备解题九大思路2018考研数学36个考点1.极限问题的快速分析与处理;2.巧用极限的保序性、有界性与唯一性,正确快速运用极限运算法则;3.准确快速判断分段函数特性(连续、可导与导数连续等);4.导数与微分的特别考点;5.等式与不等式证明技巧;6.处理积分计算与综合分析问题的有效方法;7.正确运用定积分性质,处理变限积分与含参积分的技巧;8.用积分表达与计算应用问题的技巧;9.级数收敛性分析与判断的快速程序化方法;10.级数展开与求和零部件组合安装法;11.“按类求解”和“观察侍定”是解微分方程的两把钥匙;12.“规律翻译”与“微量平衡分析” 是解应用题的基本方法;13.用函数观点来考察微分方程问题;14.用“多元问题”“一元化”的方法研究多元函数;15.分析“函数结构”是“抽象函数”导数的计算的关键;16.多元极(最)值问题应抓住“三个什么” “三个步骤”;17.“三定”( 坐标系、积分序和积分限 )是计算重积分的三步曲;18.灵活运用“分块积分、对称性、几何和物理意义”是计算重积分的捷径;20.掌握曲面的定向是正确利用Guass公式、Stokes公式的前提;21.将矩阵按列分块之技巧及应用;22.利用矩阵的参数的技巧;23.利用初等矩阵表示矩阵的初等变换的技巧;24.应用行列式的展开定理的技巧;25.关于向量组的线性相关与线性无关的技巧;26.利用简化行阶梯形的技巧;27.关于矩阵对角化问题的技巧;28.判断二次型正定性的技巧;29.加减求逆乘法律,全概逆概独立性,事件化简是关键,三大概型应活用;30.变量分布特征清,参数确定容易定,重要分布记背景,离散变量靠列表;31.一维连续画密度,正态计算标准化,指数分布无记忆,函数分布直接求;32.由联合分布求边缘分布的技巧,判断独立性;由联合分布求概率;33.函数期望是关键,常用分布背特征,特征性质要牢记,二维特征定相关;34.大数中心规范记,收敛方式有区别,切比雪夫估概率,近似计算用中心;35.抽样分布定义明,正态抽样四式推,矩法似然原理清,无偏有效算特征;36.区间估计靠枢轴,分位定义应明确,假设检验步骤定,两类错误会计算。

2018年考研数学三

2018年考研数学三

2018年考研数学三(原创版)目录1.2018 年考研数学三概述2.考试内容及难度分析3.备考建议4.总结正文【2018 年考研数学三概述】2018 年考研数学三是全国硕士研究生入学统一考试的数学科目之一,主要测试考生的数学基础知识、基本技能和综合运用能力。

数学三主要针对理工类专业的考生,涵盖了高等数学、线性代数、概率论与数理统计等课程内容。

【考试内容及难度分析】2018 年考研数学三的考试内容包括三个部分:选择题、填空题和解答题。

选择题和填空题主要测试考生的基本知识和技能,解答题则主要测试考生的综合运用能力。

在难度方面,2018 年考研数学三的整体难度相对稳定,但部分题目难度略有提高。

选择题和填空题的难度适中,要求考生熟练掌握基础知识和技能。

解答题部分,题目设置较为灵活,需要考生具备较强的综合运用能力和解题技巧。

【备考建议】1.扎实掌握基础知识:数学三考试的基础知识非常重要,考生需要对高等数学、线性代数、概率论与数理统计等课程内容有扎实的掌握。

建议考生从教材入手,系统学习相关知识点,并辅以一定的习题训练。

2.提高解题技巧:考研数学三的题目设置灵活多变,考生需要具备一定的解题技巧。

建议考生多做真题和模拟题,总结解题方法和技巧,提高解题速度和准确率。

3.注重模拟考试:模拟考试可以帮助考生了解自己的考试水平,提高应试能力。

考生可以在备考过程中定期进行模拟考试,以检验自己的学习成果,并针对自己的薄弱环节进行有针对性的复习。

4.调整心态:考研数学三是一项重要的考试,但考生需要保持良好的心态,避免过度紧张影响考试表现。

在备考过程中,考生可以适当参加一些休闲活动,缓解压力,保持身心健康。

【总结】2018 年考研数学三考试在基础知识和解题技巧方面对考生提出了较高的要求。

2018考研数学概率论重要考点总结.doc

2018考研数学概率论重要考点总结.doc

2018考研数学概率论重要考点总结第一章随机事件和概率一、本章的重点内容:四个关系:包含,相等,互斥,对立﹔五个运算:并,交,差﹔四个运算律:交换律,结合律,分配律,对偶律(德摩根律)﹔概率的基本性质:非负性,规范性,有限可加性,逆概率公式﹔五大公式:加法公式、减法公式、乘法公式、全概率公式、贝叶斯公式﹔·条件概率﹔利用独立性进行概率计算﹔·重伯努利概型的计算。

近几年单独考查本章的考题相对较少,从考试的角度来说不是重点,但第一章是基础,大多数考题中将本章的内容作为基础知识来考核,都会用到第一章的知识。

二、常见典型题型:1.随机事件的关系运算﹔2.求随机事件的概率﹔3.综合利用五大公式解题,尤其是常用全概率公式与贝叶斯公式。

第二章随机变量及其分布一、本章的重点内容:随机变量及其分布函数的概念和性质(充要条件)﹔分布律和概率密度的性质(充要条件)﹔八大常见的分布:0-1分布、二项分布、几何分布、超几何分布、泊松分布、均匀分布、正态分布、指数分布及它们的应用﹔会计算与随机变量相联系的任一事件的概率﹔随机变量简单函数的概率分布。

近几年单独考核本章内容不太多,主要考一些常见分布及其应用、随机变量函数的分布二、常见典型题型:1.求一维随机变量的分布律、分布密度或分布函数﹔2.一个函数为某一随机变量的分布函数或分布律或分布密度的判定﹔3.反求或判定分布中的参数﹔4.求一维随机变量在某一区间的概率﹔5.求一维随机变量函的分布。

第三章二维随机变量及其分布一、本章的重点内容:二维随机变量及其分布的概念和性质,边缘分布,边缘密度,条件分布和条件密度,随机变量的独立性及不相关性,一些常见分布:二维均匀分布,二维正态分布,几个随机变量的简单函数的分布。

本章是概率论重点部分之一!应着重对待。

二、常见典型题型:1.求二维随机变量的联合分布律或分布函数或边缘概率分布或条件分布和条件密度﹔2.已知部分边缘分布,求联合分布律﹔3.求二维连续型随机变量的分布或分布密度或边缘密度函数或条件分布和条件密度﹔4.两个或多个随机变量的独立性或相关性的判定或证明﹔5.与二维随机变量独立性相关的命题﹔6.求两个随机变量的相关系数﹔7.求两个随机变量的函数的概率分布或概率密度或在某一区域的概率。

2018考研数学三知识点总结

2018考研数学三知识点总结

2018考研数学三知识点总结考研数学三复习有哪些重要知识点需要看?结合大纲和历年真题来看,凯程网考研频道为2018考生总结分享考研数学三必看知识点,大家注意不要遗漏。

2018考研数学三知识点总结考研数学复习一定要打好基础,对于重要知识点一定要强化练习,深刻巩固。

下面凯程网考研频道整合了考研数学三在高数、线性代数及概率各部分的核心知识点、考察题型及重要度,2018考生注意参考。

2018考研数学三考前必看核心知识点科目大纲章节知识点题型高等数学第一章函数、极限、连续等价无穷小代换、洛必达法则、泰勒展开式求函数的极限函数连续的概念、函数间断点的类型判断函数连续性与间断点的类型第二章一元函数微分学导数的定义、可导与连续之间的关系按定义求一点处的导数,可导与连续的关系函数的单调性、函数的极值讨论函数的单调性、极值闭区间上连续函数的性质、罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理微分中值定理及其应用第三章一元函数积分学积分上限的函数及其导数变限积分求导问题定积分的应用用定积分计算几何量第四章多元函数微积分学隐函数、偏导数、全微分的存在性以及它们之间的因果关系函数在一点处极限的存在性,连续性,偏导数的存在性,全微分存在性与偏导数的连续性的讨论与它们之间的因果关系二重积分的概念、性质及计算二重积分的计算及应用第五章无穷级数级数的基本性质及收敛的必要条件,正项级数的比较判别法、比值判别法和根式判别法,交错级数的莱布尼茨判别法数项级数敛散性的判别第六章常微分方程一阶线性微分方程、齐次方程,微分方程的简单应用用微分方程解决一些应用问题线性代数第一章行列式行列式的运算计算抽象矩阵的行列式第二章矩阵矩阵的运算求矩阵高次幂等矩阵的初等变换、初等矩阵与初等变换有关的命题第三章向量向量组的线性相关及无关的有关性质及判别法向量组的线性相关性线性组合与线性表示判定向量能否由向量组线性表示第四章线性方程组齐次线性方程组的基础解系和通解的求法求齐次线性方程组的基础解系、通解第五章矩阵的特征值和特征向量实对称矩阵特征值和特征向量的性质,化为相似对角阵的方法有关实对称矩阵的问题相似变换、相似矩阵的概念相似矩阵的判定及逆问题及性质第六章二次型二次型的概念求二次型的矩阵和秩合同变换与合同矩阵的概念判定合同矩阵概率论与数理统计第一章随机事件和概率概率的加、减、乘公式事件概率的计算第二章随机变量及其分布常见随机变量的分布及应用常见分布的逆问题第三章多维随机变量及其分布两个随机变量函数的分布二维随机变量函数的分布随机变量的独立性和不相关性随机变量的独立性第四章随机变量的数字特征随机变量的数学期望、方差、标准差及其性质,常用分布的数字特征有关数学期望与方差的计算第五章大数定律大数定理用大数定理估计、计算概率和中心极限定理第六章数理统计常用统计量的性质求统计量的数字特征的基本概念第七章/ /参数估计。

2018年 考研数学一 精讲

2018年 考研数学一 精讲

2018年考研数学一精讲2018年的考研数学一科目是学生们备考的一大难关。

为了应对这个考试,很多考生选择参加培训班,从而提高自己的学习效果。

以下是对2018年考研数学一科目的一些精讲。

2018年考研数学一共有12个大题,其中包括数学分析、高等代数、概率论与数理统计、数值分析和离散数学等内容。

接下来,我们将依次对各个大题进行精讲。

第一大题是数学分析,涵盖了函数极限、连续性与间断点、一元函数的微分学和一元函数的积分学等内容。

这部分的难度主要集中在题目的变形和思维方式上,考生需要熟练掌握相关的概念和定理,并能够将其应用到实际问题中去。

第二大题是高等代数,主要包括线性方程组、矩阵与行列式、线性空间、线性变换和特征值特征向量等内容。

这部分的题目较为理论化,考生需要对相关概念有清晰的认识,并能够运用相关方法解决问题。

第三大题是概率论与数理统计,主要包括随机事件与概率、随机变量及其分布、多维随机变量及其分布、样本及抽样分布以及参数估计与假设检验等内容。

这部分的题目相对来说比较繁琐,考生需要耐心分析题目,并能够对概念的定义和定理的应用有清晰的认识。

第四大题是数值分析,主要包括插值与逼近、数值微积分、线性方程组的数值解法、非线性方程的数值解法以及常微分方程的初值问题的数值解法等内容。

这部分的题目与实际应用结合较为紧密,考生需要掌握各种数值方法的原理和算法,并能够熟练地计算。

第五大题是离散数学,主要包括命题逻辑、集合论、代数系统、图论和数论等内容。

这部分的题目相对来说较为独立,考生需要掌握各种定义和定理,并能够熟练运用它们解决问题。

总的来说,2018年考研数学一科目的难度较为适中,重点考察考生的逻辑思维能力和解题能力。

对于考生来说,除了熟练掌握相关的知识点和技巧,还需要在备考过程中注重实际操作和刷题练习。

同时,考生还需要掌握一些解题方法和技巧,例如通过画图、列式子、分析问题特点等方式。

在考试中,要保持冷静、沉着,并注意时间的合理分配。

2018年考研数学大纲重难点解析

2018年考研数学大纲重难点解析

凯程考研,为学员服务,为学生引路!第 1 页 共 1 页 2018年考研数学大纲重难点解析 从科目上看,从数一到数三,分量最重的都是高等数学,它在数一数三中占了56%,在数二中更是占了百分之78%,因此科目上的重头戏在高数。

在高数里边比较难的有微分中值定理以及定积分的证明题,这一部分题目技巧性比较强,考生普遍反映难度比较大。

另外数一的曲线积分和曲面积分在考试中得分率也不高,而数二和数三在多元函数微积分里的要求虽然比数一低很多,但得分率也不高。

这个现象,根本原因在考生的复习规划上,大多数考生对这一部分重视程度不够,导致对这一部分的内容很生疏,那到考试中得分率当然就不高了,这是高数需要我们注意的地方。

而线代的内容,我本身认为比较简单,考试的时候出题的套路也比较固定。

但线代的考题对考生对基本概念的理解要求很高,很多考生往往是读完了题却不知道题目的实际含义是什么。

这就要求我们在复习时多注意一下基本概念,只要能抓准概念认清题型,拿到线代的分数还是很容易的。

概率论里边考生反映最大的问题就是不知道怎么把实际的问题抽象转化为数学问题。

这就要求大家学习知识要灵活,在做题的时候不要想着生搬硬套,要真正去理解一些数学概念的实际意义。

当然了,考研数学的出题也并不一定都是按照我们预想的规律的来出题。

分析历年的试卷,会发现数学出题存在这样一种现象:出题人为了避免考生猜题,会有很多不按常理出牌的行为。

比如说傅里叶级数,以往出现的频率很低,大概四五年才会出一道小题,但是在08年数一里,考了一道傅里叶级数的大题,11分,这是任何人都事先都没有想到的。

又比如说数一在考查多元函数积分学时,它的大题大多数时候都是出在第二类曲线积分或是第二类曲面积分上的,因为这里有一些很重要的公式和定理,题目比较好出。

但2010年,我们的数一考的却是一道第一类曲面积分的题目;2018年也只考了一道二重积分的题目,这在以往的考研中都是很少见的,但是看这道题的要求又是在大纲范围之内的,不能说它超纲。

2018考研数学 数学二各科指导

2018考研数学 数学二各科指导

2018考研数学数学二各科指导考研数学中,数学二是唯一不考概率的一个,少了一个科目,压力可不小,大家要好好规划复习。

下面分别谈谈考研数学二中高数及线代该怎么复习。

一、高等数学同济六版高等数学中除了第七章微分方程考带*号的伯努利方程外,其余带*号的都不考;所有“近似”的问题都不考;第四章不定积分不考积分表的使用;不考第八章空间解析几何与向量代数;第九章第五节不考方程组的情形;到第十章二重积分、重积分的应用为止,后面不考了;二、线性代数数学二用的教材是同济五版线性代数,1-5章:行列式、矩阵及其运算、矩阵的初等变换及其方程组、向量组的线性相关性、相似矩阵及二次型;三、数学二不考概率与数理统计研究典型题型对于数二的同学来说,需要做大量的试题。

即使在初始阶段,数二的很多同学都在对典型题型进行研究,问题在于你如何研究它,我认为应该对典型题型进行全方位立体式的研究。

面对一道典型例题,在做这道题以前你必须考虑,它该从哪个角度切入,为什么要从这个角度切入。

做题的过程中,必须考虑为什么要用这几个定理,而不用那几个定理,为什么要这样对这个式子进行化简,而不那样化简。

做完之后,必须要回过头看一下,这个解题方法适合这个题的关键是什么,为什么偏偏这个方法在这道题上出现了最好的效果,有没有更好的解法。

就这样从开始到最后,每一步都进行全方位的思考,那么这道题的价值就会得到充分的发掘。

学习数学二,重在做题,熟能生巧。

对于数学的基本概念、公式、结论等也只有在反复练习中才能真正理解与巩固。

数学试题虽然千变万化,其知识结构却基本相同,题型也相对固定,往往存在一定的解题套路,熟练掌握后既能提高正确率,又能提高解题速度。

训练解答综合题此外,还要初步进行解答综合题的训练。

数学二的重要特征之一就是综合性强、知识覆盖面广,近几年来较为新颖的综合题愈来愈多。

这类试题一般比较灵活,难度也要大一些,应逐步进行训练,积累解题经验。

这也有利于进一步理解并彻底弄清楚知识点的纵向与横向联系,转化为自己真正掌握了的东西,能够在理解的基础上灵活运用、触类旁通。

2018考研数学

2018考研数学

2018考研数学一、绪论1.1 考研概述考研,即研究生入学考试,是中国高等教育体系中的一项重要考试。

作为考研的一部分,数学是综合素质考试中的一门必修科目。

本文将以2018年考研数学为主题,探讨考研数学的考试形式、考点以及备考技巧等内容。

1.2 考试形式2018年考研数学分为两个科目:高数和线性代数。

高数科目包括数列、极限、连续性、微分和积分等内容;线性代数科目包括向量、矩阵、行列式、特征值和特征向量等内容。

考试形式主要为选择题和解答题。

选择题是考察考生的基本理解能力,解答题是考察考生的问题解决能力和计算能力。

二、高数2.1 基础知识高数作为数学的一门基础学科,是考研数学中的重点和难点。

考生需要掌握数列的概念、极限的计算方法、连续性的判断条件、微分和积分的相关公式和运算规则等基础知识。

2.2 考点分析在2018年高数考研中,重点考察的考点包括但不限于:一致收敛、导数的性质、微分中值定理、泰勒公式、定积分的计算方法等。

考生需要根据以往的考试情况和教材重点来有针对性地备考。

2.3 备考技巧高数的备考主要需要从两个方面入手:理论与实践。

理论方面,考生需要系统地学习教材,掌握基础知识和考点。

实践方面,考生需要多做题,在不同难度的题目中寻找规律和方法,提高解题能力和速度。

此外,考生还需要注意总结经验,及时复习和整理错题,不断提高复习效果。

三、线性代数3.1 基础知识线性代数是数学的一个分支,是考研数学中的另一个重要学科。

考生需要掌握向量的运算、矩阵的基本概念、行列式的性质、特征值和特征向量的求解方法等基础知识。

3.2 考点分析2018年线性代数考研中的考点包括但不限于:向量组的线性相关性、矩阵的秩、矩阵的特征值和特征向量的求解、对角化、相似矩阵等。

考生需要针对这些考点进行重点复习和练习。

3.3 备考技巧线性代数的备考主要需要从两个方面入手:理论与实践。

理论方面,考生需要对线性代数的基本概念和定理有深入理解,掌握基础知识和考点。

2018考研数学难度

2018考研数学难度

2018考研数学难度近年来,考研已经成为了广大本科生继续深造的主要途径之一。

然而,很多人都对考研的数学科目感到困惑和挑战,纷纷探讨2018年考研数学的难度。

本文将对2018年考研数学的难度进行分析和评估。

首先,我们需要明确考研数学科目的涉及范围。

在考研数学中,主要包括高等数学、线性代数、概率论与数理统计三个学科。

因此,考生在备考过程中需要对这三个学科进行全面掌握。

在2018年考研数学科目中,难度相对较高的内容集中在高等数学和概率论与数理统计两个学科范围内。

高等数学作为数学基础学科,涉及的内容繁多且难度逐渐递增。

在考研中,重点考察的部分主要涵盖了极限、连续与导数、微分和积分以及微分方程等。

这些内容需要考生具备扎实的数学基础和良好的分析解题能力,因此在考试中的难度相对较高。

概率论与数理统计作为应用数学的一个重要分支,主要考察考生的概率统计知识和问题解决能力。

在2018年考研中,难度较大的概率论与数理统计主要集中在离散型随机变量和连续型随机变量的概率分布、参数估计和假设检验等内容上。

这些内容需要考生熟练掌握相关的概念和公式,并能够在解决实际问题时应用灵活。

然而,值得一提的是,虽然高等数学和概率论与数理统计在考研数学中的难度相对较高,但只有这两门学科的掌握是不够的。

线性代数作为考研数学的一个重要组成部分,尽管难度较高的内容相对较少,但考生仍需要对其基本概念和相关运算有一定的理解和掌握。

针对2018年考研数学的难度,考生需要在备考过程中制订合理的学习计划,并注重对重点知识点的理解和强化训练。

除了课堂上的学习之外,考生还需要积极参与自主学习和问题解决,可以通过刷题、做习题集和模拟题等方式提高自己的应试能力。

此外,考生还可以参加一些辅导班和培训班来加强自身的学习效果,特别是在数学基础薄弱的情况下,这种方式能够帮助考生系统地学习和掌握数学知识,提高解题能力。

综上所述,2018年考研数学的难度主要集中在高等数学和概率论与数理统计两个学科范围内。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018考研数学:高数、线代及概率三大科目规律来源:智阅网
考研数学这三大科目的复习,大家要掌握其规律,把握其科学的复习方法,这样大家的复习效率才会提高。

下面总结各科目的复习规律,大家要认真复习。

1.高数
(1)知识多
高数复习需花费最多的时间,它的成败直接关系到考研的成败。

(2)模块感清晰
高数的题会了一道,一类的就会了。

如幂级数求和展开,记住常见的几个泰勒级数公式,会通过基本变形或求导求积把已知函数(或级数)朝常见公式转化,这类问题就基本解决了。

而线代不是这样,基本类型题目会了。

2.概率
概率的知识结构是个倒树形结构。

第一章随机事件与概率是基础,在此基础上引入随机变量,而分布是随机变量的描述方式。

第二章和第三章介绍随机变量及分布。

分布描述了随机变量全部的信息,而数字特征仅描述了部分信息(如离散型随机变量的数学期望可以理解成该随机变量在概率意义下的平均值)。

之后讨论整个概率的理论基础——大数定律和中心极限定理。

概率论部分就到此为止了。

数理统计看成对概率论的应用。

3.线代
线代的知识结构是个网状结构:知识点之间的联系非常多,交错成一个网状。

以矩阵A可逆为例,请大家考虑一下有哪些等价条件。

从向量组的角度,为矩阵A的列向量组(或行向量组)线性无关;从行列式的角度,为矩阵A的行列式不为零;从线性方程组的角度,为Ax=0仅有零解(或Ax=b有唯一解);从二次型的角度,为A转置乘A正定从秩的角度,为矩阵的秩为矩阵的阶数;从特征值的角度,为矩阵的特
征值不含零。

不难发现,以矩阵可逆这个基本的概念可以把整个线代串起来。

大家要认真复习上述讲解的内容,多总结归纳。

毛纲源 2018《考研数学常考题型解题方法技巧归纳》这本书对大家现阶段的复习帮助很大,大家要认真学习,好好利用哦。

相关文档
最新文档