广东省潮州市中考数学二模考试试卷

合集下载

广东省潮州市2019-2020学年中考数学二模考试卷含解析

广东省潮州市2019-2020学年中考数学二模考试卷含解析

广东省潮州市2019-2020学年中考数学二模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知一个多边形的内角和是外角和的3倍,则这个多边形是()A.五边形B.六边形C.七边形D.八边形2.1.桌面上放置的几何体中,主视图与左视图可能不同的是( )A.圆柱B.正方体C.球D.直立圆锥3.某自行车厂准备生产共享单车4000辆,在生产完1600辆后,采用了新技术,使得工作效率比原来提高了20%,结果共用了18天完成任务,若设原来每天生产自行车x辆,则根据题意可列方程为( )A.1600x+4000(120%)x+=18 B.1600x40001600(120%)x-++=18C.1600x+4000160020%x-=18 D.4000x40001600(120%)x-++=184.如图,已知AB∥DE,∠ABC=80°,∠CDE=140°,则∠C=()A.50°B.40°C.30°D.20°5.下列说法正确的是()A.掷一枚均匀的骰子,骰子停止转动后,5点朝上是必然事件B.明天下雪的概率为12,表示明天有半天都在下雪C.甲、乙两人在相同条件下各射击10次,他们成绩的平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定D.了解一批充电宝的使用寿命,适合用普查的方式6.如图,在菱形纸片ABCD中,AB=4,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F、G分别在边AB、AD上.则sin∠AFG的值为()A 21B27C57D77.如图所示,点E是正方形ABCD内一点,把△BEC绕点C旋转至△DFC位置,则∠EFC的度数是( )A.90°B.30°C.45°D.60°8.老师随机抽查了学生读课外书册数的情况,绘制成条形图和不完整的扇形图,其中条形图被墨迹遮盖了一部分,则条形图中被遮盖的数是()A.5 B.9 C.15 D.229.如图,在△ABC中,AB=AC=3,BC=4,AE平分∠BAC交BC于点E,点D为AB的中点,连接DE,则△BDE的周长是()A.3 B.4 C.5 D.610.如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为()A.80°B.90°C.100°D.102°11.罚球是篮球比赛中得分的一个组成部分,罚球命中率的高低对篮球比赛的结果影响很大.如图是对某球员罚球训练时命中情况的统计:下面三个推断:①当罚球次数是500时,该球员命中次数是411,所以“罚球命中”的概率是0.822;②随着罚球次数的增加,“罚球命中”的频率总在0.812附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.812;③由于该球员“罚球命中”的频率的平均值是0.1,所以“罚球命中”的概率是0.1.其中合理的是( ) A .①B .②C .①③D .②③12.根据下表中的二次函数2y ax bx c =++的自变量x 与函数y 的对应值,可判断该二次函数的图象与x轴( ).x…1-12…y…1-74-2-74-…A .只有一个交点B .有两个交点,且它们分别在y 轴两侧C .有两个交点,且它们均在y 轴同侧D .无交点二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图是由大小完全相同的正六边形组成的图形,小军准备用红色、黄色、蓝色随机给每个正六边形分别涂上其中的一种颜色,则上方的正六边形涂红色的概率是_______.14.已知n >1,M =1n n -,N =1n n-,P =1nn +,则M 、N 、P 的大小关系为 . 15.如图,P 是⊙O 的直径AB 延长线上一点,PC 切⊙O 于点C ,PC=6,BC :AC=1:2,则AB 的长为_____.16.掷一枚材质均匀的骰子,掷得的点数为合数的概率是__________ .17.定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(﹣1,1),Q(2,3),则P,Q的“实际距离”为1,即PS+SQ=1或PT+TQ=1.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A(3,1),B(1,﹣3),C(﹣1,﹣1),若点M表示单车停放点,且满足M到A,B,C的“实际距离”相等,则点M的坐标为_____.18.如图,在△ABC中,AB=AC,AH⊥BC,垂足为点H,如果AH=BC,那么sin∠BAC的值是____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知抛物线y=ax2+bx+5经过A(﹣5,0),B(﹣4,﹣3)两点,与x轴的另一个交点为C,顶点为D,连结CD.求该抛物线的表达式;点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t.①当点P在直线BC的下方运动时,求△PBC的面积的最大值;②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.20.(6分)“绿水青山就是金山银山”的理念已融入人们的日常生活中,因此,越来越多的人喜欢骑自行车出行.某自行车店在销售某型号自行车时,以高出进价的50%标价.已知按标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同.求该型号自行车的进价和标价分别是多少元?若该型号自行车的进价不变,按(1)中的标价出售,该店平均每月可售出51辆;若每辆自行车每降价20元,每月可多售出3辆,求该型号自行车降价多少元时,每月获利最大?最大利润是多少?21.(6分)如图,抛物线y=ax2+ax﹣12a(a<0)与x轴交于A、B两点(A在B的左侧),与y轴交于点C,点M是第二象限内抛物线上一点,BM交y轴于N.(1)求点A、B的坐标;(2)若BN=MN,且S△MBC=274,求a的值;(3)若∠BMC=2∠ABM,求MNNB的值.22.(8分)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:求n的值;若该校学生共有1200人,试估计该校喜爱看电视的学生人数;若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.23.(8分)旅游公司在景区内配置了50辆观光车共游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数.发现每天的营运规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入﹣管理费)(2)当每辆车的日租金为多少元时,每天的净收入最多?24.(10分)如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.(1)求证:四边形ACDF是平行四边形;(2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.25.(10分)如今很多初中生购买饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:A:自带白开水;B:瓶装矿泉水;C:碳酸饮料;D:非碳酸饮料.根据统计结果绘制如下两个统计图(如图),根据统计图提供的信息,解答下列问题:(1)请你补全条形统计图;(2)在扇形统计图中,求“碳酸饮料”所在的扇形的圆心角的度数;(3)为了养成良好的生活习惯,班主任决定在自带白开水的5名同学(男生2人,女生3人)中随机抽取2名同学担任生活监督员,请用列表法或树状图法求出恰好抽到一男一女的概率.26.(12分)已知,在菱形ABCD中,∠ADC=60°,点H为CD上任意一点(不与C、D重合),过点H 作CD的垂线,交BD于点E,连接AE.(1)如图1,线段EH、CH、AE之间的数量关系是;(2)如图2,将△DHE绕点D顺时针旋转,当点E、H、C在一条直线上时,求证:AE+EH=CH.27.(12分)某销售商准备在南充采购一批丝绸,经调查,用10000元采购A型丝绸的件数与用8000元采购B型丝绸的件数相等,一件A型丝绸进价比一件B型丝绸进价多100元.(1)求一件A型、B型丝绸的进价分别为多少元?(2)若销售商购进A型、B型丝绸共50件,其中A型的件数不大于B型的件数,且不少于16件,设购进A型丝绸m件.①求m的取值范围.②已知A 型的售价是800元/件,销售成本为2n 元/件;B 型的售价为600元/件,销售成本为n 元/件.如果50≤n≤150,求销售这批丝绸的最大利润w (元)与n (元)的函数关系式.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.D 【解析】 【分析】根据多边形的外角和是360°,以及多边形的内角和定理即可求解. 【详解】设多边形的边数是n ,则 (n−2)⋅180=3×360, 解得:n=8. 故选D. 【点睛】此题考查多边形内角与外角,解题关键在于掌握其定理. 2.B【解析】试题分析:根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图,正方体主视图与左视图可能不同,故选B . 考点:简单几何体的三视图. 3.B 【解析】 【分析】根据前后的时间和是18天,可以列出方程. 【详解】若设原来每天生产自行车x 辆,根据前后的时间和是18天,可以列出方程()16004000160018120x x -+=+%. 故选B 【点睛】本题考核知识点:分式方程的应用. 解题关键点:根据时间关系,列出分式方程.4.B 【解析】试题解析:延长ED 交BC 于F ,∵AB ∥DE,∴380,1180318080100ABC ∠=∠=∠=-∠=-=o o o o o ,218018014040.CDE o o o o∠=-∠=-= 在△CDF 中,1100,240∠=∠=o o,故180121801004040.C ∠=-∠-∠=--=o o o o o故选B. 5.C 【解析】 【分析】根据必然事件、不可能事件、随机事件的概念、方差和普查的概念判断即可. 【详解】A. 掷一枚均匀的骰子,骰子停止转动后,5点朝上是随机事件,错误;B. “明天下雪的概率为12”,表示明天有可能下雪,错误; C. 甲、乙两人在相同条件下各射击10次,他们成绩的平均数相同,方差分别是S 甲2=0.4,S 乙2=0.6,则甲的射击成绩较稳定,正确;D. 了解一批充电宝的使用寿命,适合用抽查的方式,错误; 故选:C 【点睛】考查方差, 全面调查与抽样调查, 随机事件, 概率的意义,比较基础,难度不大. 6.B 【解析】 【分析】如图:过点E 作HE ⊥AD 于点H ,连接AE 交GF 于点N ,连接BD ,BE .由题意可得:DE=1,∠HDE=60°,△BCD 是等边三角形,即可求DH 的长,HE 的长,AE 的长,NE的长,EF的长,则可求sin∠AFG的值.【详解】解:如图:过点E作HE⊥AD于点H,连接AE交GF于点N,连接BD,BE.∵四边形ABCD是菱形,AB=4,∠DAB=60°,∴AB=BC=CD=AD=4,∠DAB=∠DCB=60°,DC∥AB∴∠HDE=∠DAB=60°,∵点E是CD中点∴DE=12CD=1在Rt△DEH中,DE=1,∠HDE=60°∴DH=1,3∴AH=AD+DH=5在Rt△AHE中,22AH HE+7∴7,AE⊥GF,AF=EF∵CD=BC,∠DCB=60°∴△BCD是等边三角形,且E是CD中点∴BE⊥CD,∵BC=4,EC=1∴3∵CD∥AB∴∠ABE=∠BEC=90°在Rt△BEF中,EF1=BE1+BF1=11+(AB-EF)1.∴EF=7 2由折叠性质可得∠AFG=∠EFG,∴sin∠EFG= sin∠AFG =77772ENEF==,故选B.【点睛】本题考查了折叠问题,菱形的性质,勾股定理,添加恰当的辅助线构造直角三角形,利用勾股定理求线段长度是本题的关键.7.C【解析】【分析】根据正方形的每一个角都是直角可得∠BCD=90°,再根据旋转的性质求出∠ECF=∠BCD=90°,CE=CF,然后求出△CEF是等腰直角三角形,然后根据等腰直角三角形的性质解答.【详解】∵四边形ABCD是正方形,∴∠BCD=90°,∵△BEC绕点C旋转至△DFC的位置,∴∠ECF=∠BCD=90°,CE=CF,∴△CEF是等腰直角三角形,∴∠EFC=45°.故选:C.【点睛】本题目是一道考查旋转的性质问题——每对对应点到旋转中心的连线的夹角都等于旋转角度,每对对应边 为等腰直角三角形.相等,故CEF8.B【解析】【分析】条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.【详解】课外书总人数:6÷25%=24(人),看5册的人数:24﹣5﹣6﹣4=9(人),故选B.【点睛】本题考查了统计图与概率,熟练掌握条形统计图与扇形统计图是解题的关键.9.C【解析】【分析】根据等腰三角形的性质可得BE=12BC=2,再根据三角形中位线定理可求得BD、DE长,根据三角形周长公式即可求得答案.【详解】解:∵在△ABC中,AB=AC=3,AE平分∠BAC,∴BE=CE=12BC=2,又∵D是AB中点,∴BD=12AB=32,∴DE是△ABC的中位线,∴DE=12AC=32,∴△BDE的周长为BD+DE+BE=32+32+2=5,故选C.【点睛】本题考查了等腰三角形的性质、三角形中位线定理,熟练掌握三角形中位线定理是解题的关键.10.A【解析】分析:根据平行线性质求出∠A,根据三角形内角和定理得出∠2=180°-∠1−∠A,代入求出即可.详解:∵AB∥CD.∴∠A=∠3=40°,∵∠1=60°,∴∠2=180°-∠1−∠A=80°,故选:A.点睛:本题考查了平行线的性质:两直线平行,内错角相等.三角形内角和定理:三角形内角和为180°. 11.B【解析】【分析】根据图形和各个小题的说法可以判断是否正确,从而解答本题【详解】当罚球次数是500时,该球员命中次数是411,所以此时“罚球命中”的频率是:411÷500=0.822,但“罚球命中”的概率不一定是0.822,故①错误;随着罚球次数的增加,“罚球命中”的频率总在0.2附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.2.故②正确;虽然该球员“罚球命中”的频率的平均值是0.1,但是“罚球命中”的概率不是0.1,故③错误.故选:B .【点睛】此题考查了频数和频率的意义,解题的关键在于利用频率估计概率.12.B【解析】【分析】根据表中数据可得抛物线的对称轴为x=1,抛物线的开口方向向上,再根据抛物线的对称性即可作出判断.【详解】解:由题意得抛物线的对称轴为x=1,抛物线的开口方向向上则该二次函数的图像与x 轴有两个交点,且它们分别在y 轴两侧故选B.【点睛】本题考查二次函数的性质,属于基础应用题,只需学生熟练掌握抛物线的对称性,即可完成.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.13 【解析】试题分析:上方的正六边形涂红色的概率是,故答案为.考点:概率公式.14.M >P >N【解析】∵n >1,∴n-1>0,n>n-1,∴M>1,0<N<1,0<P<1,∴M 最大; ()11011n n P N n n n n --=-=>++Q , ∴P N >,∴M>P>N. 点睛:本题考查了不等式的性质和利用作差法比较两个代数式的大小.作差法比较大小的方法是:如果a-b>0,那么a>b; 如果a-b=0,那么a=b; 如果a-b<0,那么a<b;另外本题还用到了不等式的传递性,即如果a>b,b>c,那么a>b>c.15.1【解析】PC切⊙O于点C,则∠PCB=∠A,∠P=∠P,∴△PCB∽△PAC,∴12 BP BCPC AC==,∵BP=12PC=3,∴PC2=PB•PA,即36=3•PA,∵PA=12∴AB=12-3=1.故答案是:1.16.1 3【解析】分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.详解:掷一枚质地均匀的骰子,掷得的点数可能是1、2、3、4、5、6中的任意一个数,共有六种可能,其中4、6是合数,所以概率为26=13.故答案为13.点睛:本题主要考查概率的求法,用到的知识点为:概率=所求情况数与总情况数之比.17.(1,﹣2).【解析】【详解】若设M(x,y),则由题目中对“实际距离”的定义可得方程组:3-x+1-y=y+1+x+1=1-x+3+y,解得:x=1,y=-2,则M(1,-2).故答案为(1,-2).18.45【解析】【分析】过点B 作BD ⊥AC 于D ,设AH=BC=2x ,根据等腰三角形三线合一的性质可得BH=CH=12BC=x ,利用勾股定理列式表示出AC ,再根据三角形的面积列方程求出BD ,然后根据锐角的正弦=对边:斜边求解即可.【详解】如图,过点B 作BD ⊥AC 于D ,设AH=BC=2x ,∵AB=AC ,AH ⊥BC ,∴BH=CH=12BC=x , 根据勾股定理得,2222(2)AH CH x x +=+5, S △ABC =12BC•AH=12AC•BD , 即12•2x•2x=125, 解得25x , 所以,sin ∠BAC=454555x BD AB x==.故答案为45.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)y=x2+6x+5;(2)①S△PBC的最大值为278;②存在,点P的坐标为P(﹣32,﹣74)或(0,5).【解析】【分析】(1)将点A、B坐标代入二次函数表达式,即可求出二次函数解析式;(2)①如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=x+1,设点G(t,t+1),则点P(t,t2+6t+5),利用三角形面积公式求出最大值即可;②设直线BP与CD交于点H,当点P在直线BC下方时,求出线段BC的中点坐标为(﹣52,﹣32),过该点与BC垂直的直线的k值为﹣1,求出直线BC中垂线的表达式为:y=﹣x﹣4…③,同理直线CD 的表达式为:y=2x+2…④,、联立③④并解得:x=﹣2,即点H(﹣2,﹣2),同理可得直线BH的表达式为:y=12x﹣1…⑤,联立⑤和y=x2+6x+5并解得:x=﹣32,即可求出P点;当点P(P′)在直线BC上方时,根据∠PBC=∠BCD求出BP′∥CD,求出直线BP′的表达式为:y=2x+5,联立y=x2+6x+5和y=2x+5,求出x,即可求出P.【详解】解:(1)将点A、B坐标代入二次函数表达式得:25550 16453a ba b-+=⎧⎨-+=-⎩,解得:16 ab=⎧⎨=⎩,故抛物线的表达式为:y=x2+6x+5…①,令y=0,则x=﹣1或﹣5,即点C(﹣1,0);(2)①如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=x+1…②,设点G(t,t+1),则点P(t,t2+6t+5),S△PBC=12PG(x C﹣x B)=32(t+1﹣t2﹣6t﹣5)=﹣32t2﹣152t﹣6,∵-32<0,∴S△PBC有最大值,当t=﹣52时,其最大值为278;②设直线BP与CD交于点H,当点P在直线BC下方时,∵∠PBC=∠BCD,∴点H在BC的中垂线上,线段BC的中点坐标为(﹣52,﹣32),过该点与BC垂直的直线的k值为﹣1,设BC中垂线的表达式为:y=﹣x+m,将点(﹣52,﹣32)代入上式并解得:直线BC中垂线的表达式为:y=﹣x﹣4…③,同理直线CD的表达式为:y=2x+2…④,联立③④并解得:x=﹣2,即点H(﹣2,﹣2),同理可得直线BH的表达式为:y=12x﹣1…⑤,联立①⑤并解得:x=﹣32或﹣4(舍去﹣4),故点P(﹣32,﹣74);当点P(P′)在直线BC上方时,∵∠PBC=∠BCD,∴BP′∥CD,则直线BP′的表达式为:y=2x+s,将点B坐标代入上式并解得:s=5,即直线BP′的表达式为:y=2x+5…⑥,联立①⑥并解得:x=0或﹣4(舍去﹣4),故点P(0,5);故点P 的坐标为P(﹣32,﹣74)或(0,5). 【点睛】 本题考查的是二次函数,熟练掌握抛物线的性质是解题的关键.20.(1)进价为1000元,标价为1500元;(2)该型号自行车降价80元出售每月获利最大,最大利润是26460元.【解析】分析:(1)设进价为x 元,则标价是1.5x 元,根据关键语句:按标价九折销售该型号自行车8辆的利润是1.5x×0.9×8-8x ,将标价直降100元销售7辆获利是(1.5x-100)×7-7x ,根据利润相等可得方程1.5x×0.9×8-8x=(1.5x-100)×7-7x ,再解方程即可得到进价,进而得到标价;(2)设该型号自行车降价a 元,利润为w 元,利用销售量×每辆自行车的利润=总利润列出函数关系式,再利用配方法求最值即可.详解:(1)设进价为x 元,则标价是1.5x 元,由题意得:1.5x×0.9×8-8x=(1.5x-100)×7-7x ,解得:x=1000,1.5×1000=1500(元),答:进价为1000元,标价为1500元;(2)设该型号自行车降价a 元,利润为w 元,由题意得:w=(51+20a ×3)(1500-1000-a ), =-320(a-80)2+26460, ∵-320<0, ∴当a=80时,w 最大=26460,答:该型号自行车降价80元出售每月获利最大,最大利润是26460元.点睛:此题主要考查了二次函数的应用,以及元一次方程的应用,关键是正确理解题意,根据已知得出w 与a 的关系式,进而求出最值.21.(1)A (﹣4,0),B (3,0);(2)14;(3)56. 【解析】【分析】(1)设y=0,可求x 的值,即求A ,B 的坐标;(2)作MD ⊥x 轴,由CO ∥MD 可得OD=3,把x=-3代入解析式可得M 点坐标,可得ON 的长度,根据S △BMC =274,可求a 的值; (3)过M 点作ME ∥AB ,设NO=m ,MN NB =k ,可以用m ,k 表示CO ,EO ,MD ,ME ,可求M 点坐标,代入可得k,m,a的关系式,由CO=2km+m=-12a,可得方程组,解得k,即可求结果.【详解】(1)设y=0,则0=ax2+ax﹣12a (a<0),∴x1=﹣4,x2=3,∴A(﹣4,0),B(3,0)(2)如图1,作MD⊥x轴,∵MD⊥x轴,OC⊥x轴,∴MD∥OC,∴MBMN=OBOD且NB=MN,∴OB=OD=3,∴D(﹣3,0),∴当x=﹣3时,y=﹣6a,∴M(﹣3,﹣6a),∴MD=﹣6a,∵ON∥MD∴12 ON OBMD BD==,∴ON=﹣3a,根据题意得:C(0,﹣12a),∵S△MBC=274,∴12(﹣12a+3a)×6=274,a=﹣14,(3)如图2:过M点作ME∥AB,∵ME∥AB,∴∠EMB=∠ABM且∠CMB=2∠ABM,∴∠CME=∠NME,且ME=ME,∠CEM=∠NEM=90°,∴△CME≌△MNE,∴CE=EN,设NO=m,MNNB=k(k>0),∵ME∥AB,∴ENON=MN MENB OB==k,∴ME=3k,EN=km=CE,∴EO=km+m,CO=CE+EN+ON=2km+m=﹣12a,即1221 ma k-=+,∴M(﹣3k,km+m),∴km+m=a(9k2﹣3k﹣12),(k+1)×ma=(k+1)(9k﹣12),∴1221k-+=9k-12,∴k=56,∴5=6 MNNB.【点睛】本题考查的知识点是函数解析式的求法,二次函数的图象和性质,是二次函数与解析几何知识的综合应用,难度较大.22.(1)50;(2)240;(3)1 2 .【解析】【分析】用喜爱社会实践的人数除以它所占的百分比得到n的值;先计算出样本中喜爱看电视的人数,然后用1200乘以样本中喜爱看电视人数所占的百分比,即可估计该校喜爱看电视的学生人数;画树状图展示12种等可能的结果数,再找出恰好抽到2名男生的结果数,然后根据概率公式求解.【详解】解:(1)510%50n=÷=;(2)样本中喜爱看电视的人数为501520510---=(人),10120024050⨯=,所以估计该校喜爱看电视的学生人数为240人;(3)画树状图为:共有12种等可能的结果数,其中恰好抽到2名男生的结果数为6,所以恰好抽到2名男生的概率61 122 ==.【点睛】本题考查了列表法与树状图法;利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A 或B的结果数目m,然后利用概率公式计算事件A或事件B的概率,也考查了统计图.23.(1)每辆车的日租金至少应为25元;(2)当每辆车的日租金为175元时,每天的净收入最多是5025元.【解析】试题分析:(1)观光车全部租出每天的净收入=出租自行车的总收入﹣管理费,由净收入为正列出不等式求解即可;(2)由函数解析式是分段函数,在每一段内求出函数最大值,比较得出函数的最大值.试题解析:(1)由题意知,若观光车能全部租出,则0<x≤100,由50x﹣1100>0,解得x>22,又∵x是5的倍数,∴每辆车的日租金至少应为25元;(2)设每辆车的净收入为y元,当0<x≤100时,y1=50x﹣1100,∵y1随x的增大而增大,∴当x=100时,y1的最大值为50×100﹣1100=3900;当x>100时,y2=(50﹣1005x-)x﹣1100=﹣15x2+70x﹣1100=﹣15(x﹣175)2+5025,当x=175时,y2的最大值为5025,5025>3900,故当每辆车的日租金为175元时,每天的净收入最多是5025元.考点:二次函数的应用.24.(1)证明见解析;(2)BC=2CD,理由见解析.【解析】分析:(1)利用矩形的性质,即可判定△FAE≌△CDE,即可得到CD=FA,再根据CD∥AF,即可得出四边形ACDF是平行四边形;(2)先判定△CDE是等腰直角三角形,可得CD=DE,再根据E是AD的中点,可得AD=2CD,依据AD=BC,即可得到BC=2CD.详解:(1)∵四边形ABCD是矩形,∴AB∥CD,∴∠FAE=∠CDE,∵E是AD的中点,∴AE=DE,又∵∠FEA=∠CED,∴△FAE≌△CDE,∴CD=FA,又∵CD∥AF,∴四边形ACDF是平行四边形;(2)BC=2CD.证明:∵CF平分∠BCD,∴∠DCE=45°,∵∠CDE=90°,∴△CDE是等腰直角三角形,∴CD=DE,∵E是AD的中点,∴AD=2CD,∵AD=BC,∴BC=2CD.点睛:本题主要考查了矩形的性质以及平行四边形的判定与性质,要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角、分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的.25.(1)详见解析;(2)72°;(3)【解析】【分析】(1)由B类型的人数及其百分比求得总人数,在用总人数减去其余各组人数得出C类型人数,即可补全条形图;(2)用360°乘以C类别人数所占比例即可得;(3)用列表法或画树状图法列出所有等可能结果,从中确定恰好抽到一男一女的结果数,根据概率公式求解可得.【详解】解:(1)∵抽查的总人数为:(人)∴类人数为:(人)补全条形统计图如下:(2)“碳酸饮料”所在的扇形的圆心角度数为:(3)设男生为、,女生为、、,画树状图得:∴恰好抽到一男一女的情况共有12 种,分别是∴ (恰好抽到一男一女).【点睛】本题考查的是条形统计图和扇形统计图的综合运用以及概率的求法,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.26. (1) EH 2+CH 2=AE 2;(2)见解析.【解析】分析:(1)如图1,过E 作EM ⊥AD 于M ,由四边形ABCD 是菱形,得到AD=CD ,∠ADE=∠CDE ,通过△DME ≌△DHE ,根据全等三角形的性质得到EM=EH ,DM=DH ,等量代换得到AM=CH ,根据勾股定理即可得到结论;(2)如图2,根据菱形的性质得到∠BDC=∠BDA=30°,DA=DC ,在CH 上截取HG ,使HG=EH ,推出△DEG 是等边三角形,由等边三角形的性质得到∠EDG=60°,推出△DAE ≌△DCG ,根据全等三角形的性质即可得到结论.详解:(1)EH 2+CH 2=AE 2,如图1,过E 作EM ⊥AD 于M ,∵四边形ABCD 是菱形,∴AD=CD ,∠ADE=∠CDE ,∵EH ⊥CD ,∴∠DME=∠DHE=90°,在△DME 与△DHE 中,DME DHE MDE HDE DE DE ===∠∠⎧⎪∠∠⎨⎪⎩,∴△DME ≌△DHE ,∴EM=EH ,DM=DH ,∴AM=CH ,在Rt △AME 中,AE 2=AM 2+EM 2,∴AE 2=EH 2+CH 2;故答案为:EH 2+CH 2=AE 2;(2)如图2,∵菱形ABCD ,∠ADC=60°,∴∠BDC=∠BDA=30°,DA=DC ,∵EH ⊥CD ,∴∠DEH=60°,在CH 上截取HG ,使HG=EH ,∵DH ⊥EG ,∴ED=DG ,又∵∠DEG=60°,∴△DEG 是等边三角形,∴∠EDG=60°,∵∠EDG=∠ADC=60°,∴∠EDG ﹣∠ADG=∠ADC ﹣∠ADG ,∴∠ADE=∠CDG ,在△DAE 与△DCG 中,DA DC ADE CDG DE DG ⎧⎪∠∠⎨⎪⎩=== ,∴△DAE ≌△DCG ,∴AE=G C ,∵CH=CG+GH ,∴CH=AE+EH .点睛:考查了全等三角形的判定和性质、菱形的性质、旋转的性质、等边三角形的判定和性质,解题的关键是正确的作出辅助线.27.(1)一件A 型、B 型丝绸的进价分别为500元,400元;(2)①1625m ≤≤,②7512500(50100)5000(100)6611600(100150)n n w n n n -+≤<⎧⎪==⎨⎪-+<≤⎩.【解析】【分析】(1)根据题意应用分式方程即可;(2)①根据条件中可以列出关于m 的不等式组,求m 的取值范围;②本问中,首先根据题意,可以先列出销售利润y 与m 的函数关系,通过讨论所含字母n 的取值范围,得到w 与n 的函数关系.【详解】(1)设B 型丝绸的进价为x 元,则A 型丝绸的进价为()100x +元, 根据题意得:100008000100x x=+, 解得400x =,经检验,400x =为原方程的解,100500x ∴+=,答:一件A 型、B 型丝绸的进价分别为500元,400元.(2)①根据题意得:5016m m m -⎧⎨⎩„…, m ∴的取值范围为:1625m 剟,②设销售这批丝绸的利润为y ,根据题意得:()()()8005002600400?50y n m n m =--+---,()1001000050n m n =-+-50150n Q 剟,∴(Ⅰ)当50100n <„时,1000n ->,25m =时,销售这批丝绸的最大利润()2510010000507512500w n n n =-+-=-+;(Ⅱ)当100n =时,1000n -=,销售这批丝绸的最大利润5000w =;(Ⅲ)当100150n <„时,1000n -<当16m =时,销售这批丝绸的最大利润6611600w n =-+.综上所述:7512500(50100)50001006611600(100150)n n w n n n -+<⎧⎪==⎨⎪-+<⎩„„.【点睛】本题综合考察了分式方程、不等式组以及一次函数的相关知识.在第(2)问②中,进一步考查了,如何解决含有字母系数的一次函数最值问题.。

广东省潮州市2019-2020学年中考数学二模试卷含解析

广东省潮州市2019-2020学年中考数学二模试卷含解析

广东省潮州市2019-2020学年中考数学二模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.港珠澳大桥是连接香港、珠海、澳门的超大型跨海通道,全长约55000米,把55000用科学记数法表示为( )A .55×103B .5.5×104C .5.5×105D .0.55×105 2.二次函数y=ax²+bx+c (a ,b ,c 为常数)中的x 与y 的部分对应值如表所示:x -1 0 1 3 y135- 3 2953 下列结论:(1)abc <0(2)当x >1时,y 的值随x 值的增大而减小;(3)16a+4b+c <0(4)x=3是方程ax²+(b-1)x+c=0的一个根;其中正确的个数为( ) A .4个 B .3个 C .2个 D .1个 3.据资料显示,地球的海洋面积约为360000000平方千米,请用科学记数法表示地球海洋面积面积约为多少平方千米( )A .73610⨯B .83.610⨯C .90.3610⨯D .93.610⨯4.一个数和它的倒数相等,则这个数是( )A .1B .0C .±1D .±1和05.如图,在△ABC 中,∠B =90°,AB =3cm ,BC =6cm ,动点P 从点A 开始沿AB 向点B 以1cm/s 的速度移动,动点Q 从点B 开始沿BC 向点C 以2cm/s 的速度移动,若P ,Q 两点分别从A ,B 两点同时出发,P 点到达B 点运动停止,则△PBQ 的面积S 随出发时间t 的函数关系图象大致是( )A .B .C .D .A.﹣1<x<4 B.﹣1<x<3 C.x<﹣1或x>4 D.x<﹣1或x>37.下列说法正确的是()A.负数没有倒数B.﹣1的倒数是﹣1C.任何有理数都有倒数D.正数的倒数比自身小8.地球上的陆地面积约为149 000 000千米2,用科学记数法表示为( )A.149×106千米2B.14.9×107千米2C.1.49×108千米2D.0.149×109千29.如图1是2019年4月份的日历,现用一长方形在日历表中任意框出4个数(如图2),下列表示a,b,c,d之间关系的式子中不正确的是( )A.a﹣d=b﹣c B.a+c+2=b+d C.a+b+14=c+d D.a+d=b+c10.下列四个数表示在数轴上,它们对应的点中,离原点最远的是()A.﹣2 B.﹣1 C.0 D.111.已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是( )A.B.C.D12.已知圆锥的底面半径为2cm,母线长为5cm,则圆锥的侧面积是()13.如图是由6个棱长均为1的正方体组成的几何体,它的主视图的面积为_____.14.如图,在平面直角坐标系中,抛物线y=﹣x2+4x与x轴交于点A,点M是x轴上方抛物线上一点,过点M作MP⊥x轴于点P,以MP为对角线作矩形MNPQ,连结NQ,则对角线NQ的最大值为_________.15.甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少10%,若设甲每小时检测x个,则根据题意,可列出方程:__________.16.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P=______°.17.如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=3x在第一象限的图象经过点B,则△OAC 与△BAD 的面积之差S△OAC﹣S△BAD 为_______.18.如图,点P是边长为2的正方形ABCD的对角线BD上的动点,过点P分别作PE⊥BC于点E,PF⊥DC 于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EF交AH于点G,当点P在BD 上运动时(不包括B、D两点),以下结论:①MF=MC;②AH⊥EF;③AP2=PM•PH;④EF的最小值是2.其中正确的是________.(把你认为正确结论的序号都填上)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.独施工30天完成该项工程的13,这时乙队加入,两队还需同时施工15天,才能完成该项工程.若乙队单独施工,需要多少天才能完成该项工程?若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程? 20.(6分)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载,某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C ,再在笔直的车道l 上确定点D ,使CD 与l 垂直,测得CD 的长等于24米,在l 上点D 的同侧取点A 、B ,使∠CAD =30°,∠CBD =60°.求AB 的长(结果保留根号);已知本路段对校车限速为45千米/小时,若测得某辆校车从A 到B 用时1.5秒,这辆校车是否超速?说明理由.(参考数据:3≈1.7,2≈1.4)21.(6分)(1)解不等式组:2322112323x x x x >-⎧⎪-⎨≥-⎪⎩; (2)解方程:22212x x x x +=--. 22.(8分)先化简,再求值:(231x x --﹣2)÷11x -,其中x 满足12x 2﹣x ﹣4=0 23.(8分)化简: 23x 11x 2?x 4+⎛⎫+÷ ⎪--⎝⎭ 24.(10分)先化简,再求值:(x ﹣2﹣52x +)÷2(3)2x x ++,其中3. 25.(10分)如图所示,抛物线y =x 2+bx+c 经过A 、B 两点,A 、B 两点的坐标分别为(﹣1,0)、(0,﹣3).求抛物线的函数解析式;点E 为抛物线的顶点,点C 为抛物线与x 轴的另一交点,点D 为y 轴上一点,且DC =DE ,求出点D 的坐标;在第二问的条件下,在直线DE 上存在点P ,使得以C 、D 、P 为顶点的三角形与△DOC 相似,请你直接写出所有满足条件的点P 的坐标.26.(12分)某同学报名参加学校秋季运动会,有以下5 个项目可供选择:径赛项目:100m、200m、1000m (分别用A1、A2、A3 表示);田赛项目:跳远,跳高(分别用T1、T2 表示).该同学从 5 个项目中任选一个,恰好是田赛项目的概率P 为;该同学从 5 个项目中任选两个,求恰好是一个径赛项目和一个田赛项目的概率P1,利用列表法或树状图加以说明;该同学从5 个项目中任选两个,则两个项目都是径赛项目的概率P2 为.27.(12分)为了解某市市民上班时常用交通工具的状况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如图所示的尚不完整的统计图:根据以上统计图,解答下列问题:本次接受调查的市民共有人;扇形统计图中,扇形B的圆心角度数是;请补全条形统计图;若该市“上班族”约有15万人,请估计乘公交车上班的人数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】55000是5位整数,小数点向左移动4位后所得的数即可满足科学记数法的要求,由此可知10的指数为4,所以,55000用科学记数法表示为5.5×104,故选B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.B【解析】【分析】(1)利用待定系数法求出二次函数解析式为y=-75x2+215x+3,即可判定正确;(2)求得对称轴,即可判定此结论错误;(3)由当x=4和x=-1时对应的函数值相同,即可判定结论正确;(4)当x=3时,二次函数y=ax2+bx+c=3,即可判定正确.【详解】(1)∵x=-1时y=-135,x=0时,y=3,x=1时,y=295,∴1352953a b ca b cc⎧-+-⎪⎪⎪++⎨⎪=⎪⎪⎩==,解得7 =52153 abc⎧-⎪⎪⎪⎨⎪=⎪⎪⎩=∴abc<0,故正确;(2)∵y=-75x2+215x+3,∴对称轴为直线x=-21572()5⨯-=32,所以,当x>32时,y的值随x值的增大而减小,故错误;(3)∵对称轴为直线x=32,∴当x=4和x=-1时对应的函数值相同,∴16a+4b+c<0,故正确;(4)当x=3时,二次函数y=ax2+bx+c=3,∴x=3是方程ax2+(b-1)x+c=0的一个根,故正确;综上所述,结论正确的是(1)(3)(4).故选:B.【点睛】本题考查了二次函数的性质,主要利用了待定系数法求二次函数解析式,二次函数的增减性,二次函数与不等式,根据表中数据求出二次函数解析式是解题的关键.3.B【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解:将360000000用科学记数法表示为:3.6×1.故选:B.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.C【解析】【分析】根据倒数的定义即可求解.【详解】±1的倒数等于它本身,故C符合题意.故选:C.【点睛】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.【解析】【分析】根据题意表示出△PBQ的面积S与t的关系式,进而得出答案.【详解】由题意可得:PB=3﹣t,BQ=2t,则△PBQ的面积S=12PB•BQ=12(3﹣t)×2t=﹣t2+3t,故△PBQ的面积S随出发时间t的函数关系图象大致是二次函数图象,开口向下.故选C.【点睛】此题主要考查了动点问题的函数图象,正确得出函数关系式是解题关键.6.B【解析】试题分析:观察图象可知,抛物线y=x2+bx+c与x轴的交点的横坐标分别为(﹣1,0)、(1,0),所以当y<0时,x的取值范围正好在两交点之间,即﹣1<x<1.故选B.考点:二次函数的图象.1061447.B【解析】【分析】根据倒数的定义解答即可.【详解】A、只有0没有倒数,该项错误;B、﹣1的倒数是﹣1,该项正确;C、0没有倒数,该项错误;D、小于1的正分数的倒数大于1,1的倒数等于1,该项错误.故选B.【点睛】本题主要考查倒数的定义:两个实数的乘积是1,则这两个数互为倒数,熟练掌握这个知识点是解答本题的关键.8.C【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.解:149 000 000=1.49×2千米1.把一个数写成a×10n的形式,叫做科学记数法,其中1≤|a|<10,n为整数.因此不能写成149×106而应写成1.49×2.9.A【解析】【分析】观察日历中的数据,用含a的代数式表示出b,c,d的值,再将其逐一代入四个选项中,即可得出结论.【详解】解:依题意,得:b=a+1,c=a+7,d=a+1.A、∵a﹣d=a﹣(a+1)=﹣1,b﹣c=a+1﹣(a+7)=﹣6,∴a﹣d≠b﹣c,选项A符合题意;B、∵a+c+2=a+(a+7)+2=2a+9,b+d=a+1+(a+1)=2a+9,∴a+c+2=b+d,选项B不符合题意;C、∵a+b+14=a+(a+1)+14=2a+15,c+d=a+7+(a+1)=2a+15,∴a+b+14=c+d,选项C不符合题意;D、∵a+d=a+(a+1)=2a+1,b+c=a+1+(a+7)=2a+1,∴a+d=b+c,选项D不符合题意.故选:A.【点睛】考查了列代数式,利用含a的代数式表示出b,c,d是解题的关键.10.A【解析】【分析】由于要求四个数的点中距离原点最远的点,所以求这四个点对应的实数绝对值即可求解.【详解】∵|-1|=1,|-1|=1,∴|-1|>|-1|=1>0,∴四个数表示在数轴上,它们对应的点中,离原点最远的是-1.故选A.【点睛】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力,也利用了数形结合的思想.11.D【解析】先根据三角形的周长公式求出函数关系式,再根据三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出x 的取值范围,然后选择即可.【详解】由题意得,2x+y=10,所以,y=-2x+10,由三角形的三边关系得,()2210210x x x x x -+--+⎧⎨⎩>①<②, 解不等式①得,x >2.5,解不等式②的,x <5,所以,不等式组的解集是2.5<x <5,正确反映y 与x 之间函数关系的图象是D 选项图象.故选:D .12.C【解析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入,圆锥的侧面积=2π×2×5÷2=10π. 故答案为C二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1.【解析】【分析】根据立体图形画出它的主视图,再求出面积即可.【详解】主视图如图所示,∵主视图是由1个棱长均为1的正方体组成的几何体,∴主视图的面积为1×12=1.故答案为:1.【点睛】本题是简单组合体的三视图,主要考查了立体图的左视图,解本题的关键是画出它的左视图.∵四边形MNPQ 是矩形,∴NQ=MP ,∴当MP 最大时,NQ 就最大.∵点M 是抛物线24y x x =-+在x 轴上方部分图象上的一点,且MP ⊥x 轴于点P ,∴当点M 是抛物线的顶点时,MP 的值最大.∵224(2)4y x x x =-+=--+,∴抛物线24y x x =-+的顶点坐标为(2,4),∴当点M 的坐标为(2,4)时,MP 最大=4,∴对角线NQ 的最大值为4.15.300200(110%)20x x =⨯-- 【解析】 【分析】若设甲每小时检测x 个,检测时间为300x ,乙每小时检测()20x -个,检测时间为20020x -,根据甲检测300个比乙检测200个所用的时间少10%,列出方程即可. 【解答】若设甲每小时检测x 个,检测时间为300x ,乙每小时检测()20x -个,检测时间为20020x -,根据题意有:()300200110%20x x =⨯--. 故答案为()300200110%.20x x =⨯-- 【点评】考查分式方程的应用,解题的关键是找出题目中的等量关系.16.30【解析】【分析】根据角平分线的定义可得∠PBC=20°,∠PCM=50°,根据三角形外角性质即可求出∠P 的度数.【详解】∵BP 是∠ABC 的平分线,CP 是∠ACM 的平分线,∠ABP=20°,∠ACP=50°,∴∠PBC=20°,∠PCM=50°,∵∠PBC+∠P=∠PCM ,∴∠P=∠PCM-∠PBC=50°-20°=30°,故答案为:30【点睛】本题考查及角平分线的定义及三角形外角性质,三角形的外角等于和它不相邻的两个内角的和,熟练掌握三角形外角性质是解题关键.17.32【解析】【分析】设△OAC 和△BAD 的直角边长分别为a 、b,结合等腰直角三角形的性质及图像可得出B 的坐标,根据三角形的面积公式结合反比例函数系数k 的几何意义即可求解.【详解】设△OAC 和△BAD 的直角边长分别为a 、b,则B 点坐标为(a+b,a-b )∵点B 在反比例函数y=3x在第一象限的图象上, ∴(a+b )(a-b )=a 2-b 2=3∴S △OAC ﹣S △BAD =12a 2-12b 2=32 【点睛】此题主要考查等腰直角三角形的面积求法和反比例函数k 值的定义,解题的关键是熟知等腰直角三角形的性质及反比例函数k 值的性质.18.②③④【解析】【分析】①可用特殊值法证明,当P 为BD 的中点时,0MC =,可见MF MC ≠.②可连接PC ,交EF 于点O ,先根据SAS 证明ADP CDP ≅V V ,得到DAP DCP ∠=∠,根据矩形的性质可得DCP CFE ∠=∠,故DAP CFE ∠=∠,又因为90DAP AMD ∠+∠=︒,故90CFE AMD ∠+∠=︒,故AH EF ⊥.③先证明CPM HPC V :V ,得到PC PM HP PC=,再根据ADP CDP ≅V V ,得到AP PC =,代换可得. ④根据EF PC AP ==,可知当AP 取最小值时,EF 也取最小值,根据点到直线的距离也就是垂线段最短可得,当AP BD ⊥时,EF 取最小值,再通过计算可得.【详解】解:①错误.当P 为BD 的中点时,0MC =,可见MF MC ≠;②正确.如图,连接PC ,交EF 于点O ,Q 45AD CD ADP CDP DP DP =⎧⎪∠=∠=︒⎨⎪=⎩∴()ADP CDP SAS ≅V V∴DAP DCP ∠=∠,Q PF CD ⊥,PE BC ⊥,90BCD ∠=︒,∴四边形PECF 为矩形,∴OF OC =,∴DCP CFE ∠=∠,∴DAP CFE ∠=∠,Q 90DAP AMD ∠+∠=︒,∴90CFE AMD ∠+∠=︒,∴90FGM ∠=︒,∴AH EF ⊥.③正确.Q //AD BH ,∴H DAP ∠=∠,Q ADP CDP ≅V V ,∴DAP DCP ∠=∠,∴H DCP ∠=∠,又Q CPH MPC ∠=∠,∴CPM HPC V :V , ∴PC PM HP PC=, Q AP PC =, ∴AP PM HP AP=, ∴2AP PM PH =g .④正确.Q ()ADP CDP SAS ≅V V 且四边形PECF 为矩形,∴EF PC AP ==,∴当AP BD ⊥时,EF 取最小值,此时sin 4522AP AB =︒=⨯=g故EF .故答案为:②③④.【点睛】本题是动点问题,综合考查了矩形、正方形的性质,全等三角形与相似三角形的性质与判定,线段的最值问题等,合理作出辅助线,熟练掌握各个相关知识点是解答关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)乙队单独施工需要1天完成;(2)乙队至少施工l8天才能完成该项工程.【解析】【分析】(1)先求得甲队单独施工完成该项工程所需时间,设乙队单独施工需要x 天完成该项工程,再根据“甲完成的工作量+乙完成的工作量=1”列方程解方程即可求解;(2)设乙队施工y 天完成该项工程,根据题意列不等式解不等式即可.【详解】(1)由题意知,甲队单独施工完成该项工程所需时间为1÷13=90(天).设乙队单独施工需要x 天完成该项工程,则 301515190x++=, 去分母,得x+1=2x .解得x=1.经检验x=1是原方程的解.答:乙队单独施工需要1天完成.(2)设乙队施工y 天完成该项工程,则 1-363090y ≤ 解得y≥2.答:乙队至少施工l8天才能完成该项工程.20. (1);(2)此校车在AB 路段超速,理由见解析.【解析】【分析】(1)结合三角函数的计算公式,列出等式,分别计算AD和BD的长度,计算结果,即可.(2)在第一问的基础上,结合时间关系,计算速度,判断,即可.【详解】解:(1)由题意得,在Rt△ADC中,tan30°==,解得AD=24.在Rt△BDC 中,tan60°==,解得BD=8所以AB=AD﹣BD=24﹣8=16(米).(2)汽车从A到B用时1.5秒,所以速度为16÷1.5≈18.1(米/秒),因为18.1(米/秒)=65.2千米/时>45千米/时,所以此校车在AB路段超速.【点睛】考查三角函数计算公式,考查速度计算方法,关键利用正切值计算方法,计算结果,难度中等.21.(1)﹣2≤x<2;(2)x=45.【解析】【分析】(1)先求出不等式组中每个不等式的解集,再求出不等式组的解集即可;(2)先把分式方程转化成整式方程,求出整式方程的解,再进行检验即可.【详解】(1)2322x112323x xx①②>-⎧⎪⎨-≥-⎪⎩,∵解不等式①得:x<2,解不等式②得:x≥﹣2,∴不等式组的解集为﹣2≤x<2;(2)方程两边都乘以(2x﹣1)(x﹣2)得2x(x﹣2)+x(2x﹣1)=2(x﹣2)(2x﹣1),解得:x=45,检验:把x=45代入(2x﹣1)(x﹣2)≠0,所以x=45是原方程的解,即原方程的解是x=45.【点睛】本题考查了解一元一次不等式组和解分式方程,根据不等式的解集找出不等式组的解集是解(1 )的关键,能把分式方程转化成整式方程是解(2)的关键.22.1【解析】【分析】首先运用乘法分配律将所求的代数式去括号,然后再合并化简,最后整体代入求解.【详解】解:(231xx--﹣2)÷11x-==x2﹣3﹣2x+2 =x2﹣2x﹣1,∵12x2﹣x﹣4=0,∴x2﹣2x=8,∴原式=8﹣1=1.【点睛】分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.注意整体代入思想在代数求值计算中的应用.23.x+2【解析】【分析】先把括号里的分式通分,化简,再计算除法.【详解】解:原式=x1x2+-x2x2x1()+-⨯+=x+2【点睛】此题重点考察学生对分式的化简的应用,掌握通分和约分是解题的关键. 2432【解析】【分析】根据分式的运算法则即可求出答案.【详解】原式()2245223x x x x --+=⨯++, ()()()2+33223x x x x x -+=⨯++,33x x -=+.当x ==2= 【点睛】 本题考查的知识点是分式的化简求值,解题关键是化简成最简再代入计算.25.(1)y=x 2﹣2x ﹣3;(2)D (0,﹣1);(3)P 点坐标(﹣13,0)、(13,﹣2)、(﹣3,8)、(3,﹣10). 【解析】【分析】(1)将A,B 两点坐标代入解析式,求出b,c 值,即可得到抛物线解析式;(2)先根据解析式求出C 点坐标,及顶点E 的坐标,设点D 的坐标为(0,m ),作EF ⊥y 轴于点F ,利用勾股定理表示出DC,DE 的长.再建立相等关系式求出m 值,进而求出D 点坐标;(3)先根据边角边证明△COD ≌△DFE ,得出∠CDE=90°,即CD ⊥DE ,然后当以C 、D 、P 为顶点的三角形与△DOC 相似时,根据对应边不同进行分类讨论:①当OC 与CD 是对应边时,有比例式OC OD DC DP=,能求出DP 的值,又因为DE=DC,所以过点P 作PG ⊥y 轴于点G ,利用平行线分线段成比例定理即可求出DG ,PG 的长度,根据点P 在点D 的左边和右边,得到符合条件的两个P 点坐标;②当OC 与DP 是对应边时,有比例式OC OD DP DC =,易求出DP ,仍过点P 作PG ⊥y 轴于点G ,利用比例式DG PG DP DF EF DE==求出DG ,PG 的长度,然后根据点P 在点D 的左边和右边,得到符合条件的两个P 点坐标;这样,直线DE 上根据对应边不同,点P 所在位置不同,就得到了符合条件的4个P 点坐标.【详解】解:(1)∵抛物线y=x 2+bx+c 经过A (﹣1,0)、B (0,﹣3),∴10{3b c c -+==-,解得2{3b c =-=-, 故抛物线的函数解析式为y=x 2﹣2x ﹣3;(2)令x 2﹣2x ﹣3=0,解得x 1=﹣1,x 2=3,则点C 的坐标为(3,0),∵y=x 2﹣2x ﹣3=(x ﹣1)2﹣4,∴点E 坐标为(1,﹣4),设点D 的坐标为(0,m ),作EF ⊥y 轴于点F (如下图),∵DC 2=OD 2+OC 2=m 2+32,DE 2=DF 2+EF 2=(m+4)2+12,∵DC=DE ,∴m 2+9=m 2+8m+16+1,解得m=﹣1,∴点D 的坐标为(0,﹣1);(3)∵点C (3,0),D (0,﹣1),E (1,﹣4),∴CO=DF=3,DO=EF=1,根据勾股定理,,在△COD 和△DFE 中,∵{90CO DFCOD DFE DO EF=∠=∠=︒=,∴△COD ≌△DFE (SAS ),∴∠EDF=∠DCO ,又∵∠DCO+∠CDO=90°,∴∠EDF+∠CDO=90°,∴∠CDE=180°﹣90°=90°,∴CD ⊥DE ,①当OC 与CD 是对应边时,∵△DOC ∽△PDC , ∴OC OD DC DP=1DP , 解得过点P 作PG ⊥y 轴于点G , 则DG PG DP DF EF DE ==,即31DG PG ==解得DG=1,PG=13, 当点P 在点D 的左边时,OG=DG ﹣DO=1﹣1=0,所以点P (﹣13,0), 当点P 在点D 的右边时,OG=DO+DG=1+1=2,所以,点P(13,﹣2);②当OC与DP是对应边时,∵△DOC∽△CDP,∴OC ODDP DC=,即3DP=10,解得DP=310,过点P作PG⊥y轴于点G,则DG PG DPDF EF DE==,即3103110DG PG==,解得DG=9,PG=3,当点P在点D的左边时,OG=DG﹣OD=9﹣1=8,所以,点P的坐标是(﹣3,8),当点P在点D的右边时,OG=OD+DG=1+9=10,所以,点P的坐标是(3,﹣10),综上所述,在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,满足条件的点P共有4个,其坐标分别为(﹣13,0)、(13,﹣2)、(﹣3,8)、(3,﹣10).考点:1.相似三角形的判定与性质;2.二次函数动点问题;3.一次函数与二次函数综合题.26.(1)25;(1)35;(3)310;【解析】【分析】(1)直接根据概率公式求解;(1)先画树状图展示所有10种等可能的结果数,再找出一个径赛项目和一个田赛项目的结果数,然后根据概率公式计算一个径赛项目和一个田赛项目的概率P1;(3)找出两个项目都是径赛项目的结果数,然后根据概率公式计算两个项目都是径赛项目的概率P1.【详解】解:(1)该同学从5个项目中任选一个,恰好是田赛项目的概率P=;(1)画树状图为:共有10种等可能的结果数,其中一个径赛项目和一个田赛项目的结果数为11,所以一个径赛项目和一个田赛项目的概率P1==;(3)两个项目都是径赛项目的结果数为6,所以两个项目都是径赛项目的概率P1==.故答案为.考点:列表法与树状图法.27.(1)1;(2)43.2°;(3)条形统计图如图所示:见解析;(4)估计乘公交车上班的人数为6万人.【解析】【分析】(1)根据D组人数以及百分比计算即可.(2)根据圆心角度数=360°×百分比计算即可.(3)求出A,C两组人数画出条形图即可.(4)利用样本估计总体的思想解决问题即可.【详解】(1)本次接受调查的市民共有:50÷25%=1(人),故答案为1.(2)扇形统计图中,扇形B的圆心角度数=360°×24200=43.2°;故答案为:43.2°(3)C组人数=1×40%=80(人),A组人数=1﹣24﹣80﹣50﹣16=30(人).条形统计图如图所示:(4)15×40%=6(万人).答:估计乘公交车上班的人数为6万人.【点睛】本题考查条形统计图,扇形统计图,样本估计总体等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.。

潮州市数学中考二模试卷

潮州市数学中考二模试卷

潮州市数学中考二模试卷姓名:________ 班级:________ 成绩:________一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给 (共10题;共30分)1. (3分)下列计算中正确的是()A .B .C .D .2. (3分)一个长方体的三视图如图,若其俯视图为正方形,则这个长方体的表面积为()A . 66B . 48C . 48+36D . 573. (3分)(2019·常德) 某公司全体职工的月工资如下:月工资(元)18000120008000600040002500200015001200人数1(总经理)2(副总经理)34102022126该公司月工资数据的众数为2000,中位数为2250,平均数为3115,极差为16800,公司的普通员工最关注的数据是()A . 中位数和众数B . 平均数和众数C . 平均数和中位数D . 平均数和极差4. (3分) (2019七下·南昌期末) 若m>n ,则下列不等式正确的是()A . m﹣2<n﹣2B . 3m<3nC . >D . ﹣5m>﹣5n5. (3分)(2020·澄海模拟) 如图,直线∥ ,AB=BC,CD⊥AB于点D,若∠DCA=25°,则∠1的度数为()A . 70°B . 65°C . 60°D . 55°6. (3分)咖啡A与咖啡B按x:y(以重量计)的比例混合.A的原价为每千克50元,B的原价为每千克40元,如果A的价格增加10%,B的价格减少15%,那么混合咖啡的价格保持不变.则x:y为()A . 5:6B . 6:5C . 5:4D . 4:57. (3分) (2018九上·台州期中) 如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置,若四边形AECF的面积为25,DE=3,则AE的长为()A .B . 5C . 8D . 48. (3分) (2019八上·兴仁期末) 如图,将三角形纸片ABC沿直线DE折叠后,使得点B与点A 重合,折痕分别交BC,AB于点D,E.如果AC=5cm,△ADC的周长为17cm,那么BC的长为().A . 7cmB . 10cmC . 12cmD . 22cm9. (3分)(2020·云南模拟) 已知二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①abc>0,②2a+b=O,③b2﹣4ac<0,④4a+2b+c>0其中正确的是()A . ①③B . 只有②C . ②④D . ③④10. (3分)在△ABC中,∠C=90°,∠A=72°,AB=10,则边AC的长约为(精确到0.1)()A . 9.1B . 9.5C . 3.1D . 3.5二、填空题:本题有6个小题,每小题4分,共24分. (共6题;共24分)11. (4分) (2018九上·翁牛特旗期末) 把3x2-12x+12因式分解的结果是________.12. (4分) (2019七上·东区月考) 已知当 x = -2 时,代数式的值为 99 ,那么当 x = 2 时,代数式的值是________.13. (4分)(2020·南充模拟) 下个月学校将为片区学校展示“音乐、体育、美术”兴趣活动观摩,小明、小丽随机从三个场所选择一个担任志愿者服务,两人恰好选择同一场所的概率是________.14. (4分)(2017·黄冈模拟) 如果圆锥的底面周长是20π,侧面展开后所得的扇形的圆心角为120°,则其侧面积为________(结果用含π的式子表示).15. (4分)(2019·赤峰模拟) 如图所示,⊙O是△ABC的外接圆,AD⊥BC于D ,且AB=5,AC=4 ,AD=4,则⊙O的直径的长度是________.16. (4分) (2016九上·宝丰期末) 已知一次函数y1=kx+m和二次函数y2=ax2+bx+c的图象如图所示,它们的两个交点的横坐标是1和4,那么能够使得y1<y2的自变量x的取值范围是________.三、解答题:本题有7小题,共66分.解答应写出文字说明、证明过程 (共7题;共66分)17. (6分)(2017·福建) 先化简,再求值:(1﹣)• ,其中a= ﹣1.18. (8分) (2017八下·宝坻期中) 如图,在▱ABCD中,已知点E、F分别在边BC和AD上,且BE=DF.求证:AE=CF.19. (8.0分)(2017·西华模拟) 2015年是中国人民抗日战争暨世界反法西斯战争胜利70周年,9月3日全国各地将举行有关纪念活动.为了解初中学生对二战历史的知晓情况,某初中课外兴趣小组在本校学生中开展了专题调查活动,随机抽取了部分学生进行问卷调查,根据学生的答题情况,将结果分为A、B、C、D四类,其中A类表示“非常了解”,B类表示“比较了解”,C类表示“基本了解”;D类表示“不太了解”,调查的数据经整理后形成尚未完成的条形统计图(如图①)和扇形统计图(如图②):(1)在这次抽样调查中,一共抽查了________名学生;(2)请把图①中的条形统计图补充完整;(3)图②的扇形统计图中D类部分所对应扇形的圆心角的度数为________;(4)如果这所学校共有初中学生1500名,请你估算该校初中学生中对二战历史“非常了解”和“比较了解”的学生共有多少名?20. (10分)(2012·丽水) 如图,等边△OAB和等边△AFE的一边都在x轴上,双曲线y= (k>0)经过边OB的中点C和AE的中点D.已知等边△OAB的边长为4.(1)求该双曲线所表示的函数解析式;(2)求等边△AEF的边长.21. (10分) (2018九上·义乌期中) 如图,在中,,分别是,上的点,,的平分线交于点,交于点 .()直接写出图中所有的相似三角形.22. (12分) (2016·广州) 已知抛物线y=mx2+(1﹣2m)x+1﹣3m与x轴相交于不同的两点A、B(1)求m的取值范围;(2)证明该抛物线一定经过非坐标轴上的一点P,并求出点P的坐标;(3)当<m≤8时,由(2)求出的点P和点A,B构成的△ABP的面积是否有最值?若有,求出该最值及相对应的m值.23. (12分) (2019九上·沙河口期末) 如图1,△ABC中,∠C=90°,点D在AC上,过点D作DE⊥AB于点E,过点D作直线l⊥AC,点E和E′关于l对称,射线DE′与三角形的另一边交于点F.设AD的长度为x,△ABC 在线段DF右侧部分的面积为y,y与x的函数图象如图2所示(其中0≤x≤m,m<x≤8时,函数的解析式不同).(1)填空:AC的长度为________,BC长度为________;(2)求m的值;(3)求y关于x的函数关系式,并写出x的取值范围.参考答案一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给 (共10题;共30分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题:本题有6个小题,每小题4分,共24分. (共6题;共24分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题:本题有7小题,共66分.解答应写出文字说明、证明过程 (共7题;共66分) 17-1、18-1、19-1、19-2、19-3、19-4、20-1、20-2、21-1、22-1、22-2、22-3、23-1、23-2、23-3、。

广东省潮州市中考数学二模考试试卷

广东省潮州市中考数学二模考试试卷

广东省潮州市中考数学二模考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019七上·偃师期中) 温度上升5摄氏度后,又下降了2摄氏度,实际上温度()A . 上升7摄氏度B . 下降7摄氏度C . 上升3摄氏度D . 下降3摄氏度2. (2分)(2016·北仑模拟) 如图是由四个大小相同的立方体组成的几何体,则这个几何体的左视图是()A .B .C .D .3. (2分)(2019·山西) 五台山景区空气清爽,景色宜人.“五一”小长假期间购票进山游客12万人次,再创历史新高.五台山景区门票价格旺季168元/人.以此计算,“五一”小长假期间五台山景区进山门票总收入用科学记数法表示为()A . 2.016×108元B . 0.2016×107元C . 2.016×107元D . 2016×104元4. (2分)如果是二次根式,那么x应满足的条件是()A . x≠2的实数B . x<2的实数C . x>2的实数D . x>0且x≠2的实数5. (2分)下列图形中,是中心对称图形的是()A . 等腰三角形B . 直角三角形C . 正五边形D . 平行四边形6. (2分)(2019七下·萍乡期中) 计算下列各式① ② ③④ 正确有()题A .B .C .D .7. (2分)(2018·梧州) 一组数据:3,4,5,x,8 的众数是 5,则这组数据的方差是()A . 2B . 2.4C . 2.8D . 38. (2分)如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转,若∠BOA的两边分别与函数y=﹣、y=的图象交于B、A两点,则∠OAB的大小的变化趋势为()A . 逐渐变小B . 逐渐变大C . 时大时小D . 保持不变9. (2分) (2017八下·淅川期末) 若关于x的方程﹣ =0无解,则m的值是()A . 3B . 2C . 1D . ﹣110. (2分) (2017九上·深圳月考) 若点A(-6,),B(-1,),C(3,)在反比例函数y=(a为常数)的图象上,则,,大小关系为()A . >>B . >>C . >>D . >>二、填空题 (共4题;共4分)11. (1分)已知等腰三角形的一个内角是70°,则它的底角为________12. (1分)符号叫做二阶行列式,规定它的运算法则为=ad﹣bc,例如=1×4﹣2×3=﹣2.那么,根据阅读材料,化简=________ .13. (1分)若点(a,1)与(﹣2,b)关于原点对称,则ab= ________.14. (1分)(2017·贵港) 如图所示,将两张等宽的长方形纸条交叉叠放,重叠部分是一个四边形ABCD,若AD=6cm,∠ABC=60°,则四边形ABCD的面积等于________cm2 .三、计算题 (共2题;共15分)15. (10分) (2017七下·杭州期中) 解不等式组: .16. (5分)(2017·巴中) 先化简,再求值:(﹣)÷ ,其中x=2y(xy≠0).四、综合题 (共12题;共80分)17. (7分)(2016·南山模拟) 为贯彻政府报告中“大众创业、万众创新”的精神,某镇对辖区内所有的小微企业按年利润w(万元)的多少分为以下四个类型:A类(w<10),B类(10≤w<20),C类(20≤w<30),D类(w≥30),该镇政府对辖区内所有小微企业的相关信息进行统计后,绘制成以下条形统计图和扇形统计图,请你结合图中信息解答下列问题:(1)该镇本次统计的小微企业总个数是________,扇形统计图中B类所对应扇形圆心角的度数为________度,请补全条形统计图________;(2)为了进一步解决小微企业在发展中的问题,该镇政府准备召开一次座谈会,每个企业派一名代表参会.计划从D类企业的4个参会代表中随机抽取2个发言,D类企业的4个参会代表中有2个来自高新区,另2个来自开发区.请用列表或画树状图的方法求出所抽取的2个发言代表都来自高新区的概率.18. (2分)(2017·黄冈模拟) 如图,在一条笔直的东西向海岸线l上有一长为1.5km的码头MN和灯塔C,灯塔C距码头的东端N有20km.一轮船以36km/h的速度航行,上午10:00在A处测得灯塔C位于轮船的北偏西30°方向,上午10:40在B处测得灯塔C位于轮船的北偏东60°方向,且与灯塔C相距12km.(1)若轮船照此速度与航向航行,何时到达海岸线?(2)若轮船不改变航向,该轮船能否停靠在码头?请说明理由.(参考数据:≈1.4,≈1.7)19. (10分) (2019九上·顺德月考) 如图一次函数y=kx+b的图象与反比例函数 (x > 0)的图象交于A(2,–l),B( ,n)两点,直线y=2与y轴交于点C .(1)求反比例函数的解析式;(2)求一次函数的解析式;(3)求△ABC的面积.20. (15分)(2019·温州模拟) 如图,在矩形ABCD中,AB=8,BC=6,点E,F分别从点B,D同时出发沿AB延长线和射线DA以相同的速度运动,连结EF,交射线DB于点G.连结CG.(1)当BE=2时,求BD,EG的长.(2)当点F在线段AD上时,记∠DCG为∠1,∠AFE为∠2,那么的值是否会变化?若不变,求出该比值;若变化,请说明理由.(3)在整个运动过程中,当△DCG为等腰三角形时,求BE长.21. (1分) (2015九上·南山期末) 若x=﹣2是关于x的一元二次方程x2+3x+m+1=0的一个解,则m=________.22. (1分)不透明袋子中装有9个球,其中有2个红球、3个绿球和4个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是________.23. (1分)(2016·张家界) 如图,将矩形ABCD沿GH对折,点C落在Q处,点D落在E处,EQ与BC相交于F.若AD=8cm,AB=6cm,AE=4cm.则△EBF的周长是________cm.24. (1分)(2017·连云港模拟) 如图:已知点A、B是反比例函数y=﹣上在第二象限内的分支上的两个点,点C(0,3),且△ABC满足AC=BC,∠ACB=90°,则线段AB的长为________.25. (1分) (2020九上·玉环期末) 如图,内接于半径为的半,为直径,点是弧的中点,连结交于点,平分交于点,则 ________.若点恰好为的中点时,的长为________.26. (15分) (2018八上·梅县期中) A、B两名同学在同一个学校上学,B同学上学的路上经过A同学家。

广东省潮州市中考数学二模考试试卷

广东省潮州市中考数学二模考试试卷

广东省潮州市中考数学二模考试试卷姓名:________ 班级:________ 成绩:________一、单项选择题(满分30分) (共10题;共20分)1. (2分)二次根式中x的取值范围是()A . x>3B . x≤3且x≠0C . x≤3D . x<3且x≠02. (2分)-2的绝对值等于A . 2B . -2C .D . ±23. (2分)不等式组的解集,在数轴上表示正确的是()A .B .C .D .4. (2分) (2019九上·萧山期中) 已知点在同一个函数的图象上,这个函数可能是()A .B .C .D .5. (2分)已知x2﹣2=y,则x(x﹣2017y)﹣y(1﹣2017x)的值为()A . 2B . 0C . ﹣2D . 16. (2分)(2017·宿迁) 如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=2cm,点P在边AC上,从点A向点C移动,点Q在边CB上,从点C向点B移动.若点P,Q均以1cm/s的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ,则线段PQ的最小值是()A . 20cmB . 18cmC . 2 cmD . 3 cm7. (2分)若关于的一元二次方程kx2-2x-1=0有两个不相等的实数根,则k的取值范围是()A . k>-1B . k>-1且k≠0C . k<1D . k<1且k≠08. (2分) (2017八上·香洲期中) 如图:将一副三角板按如图所示摆放,图中∠α的度数是()A . 75°B . 90°C . 105°D . 120°9. (2分) (2019八下·丰城期末) 小明得到育才学校数学课外兴趣小组成员的年龄情况统计如下表:年龄(岁)13141516人数(人)515x10﹣x那么对于不同x的值,则下列关于年龄的统计量不会发生变化的是()A . 众数,中位数B . 中位数,方差C . 平均数,中位数D . 平均数,方差10. (2分)(2017·东平模拟) 如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为()A . cmB . cmC . cmD . 4cm二、填空题(共6小题,每小题4分,共24分) (共6题;共6分)11. (1分) (2017七上·温岭期末) 节约是一种美德,节约是一种智慧.据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人,350000000用科学记数法表示为________.12. (1分)(2016·石家庄模拟) 分解因式:2x2﹣8=________13. (1分) (2020七下·碑林期末) 如图,圆柱的底面半径为24,高为7π,蚂蚁在圆柱侧面爬行,从点A 爬到点B的最短路程是________.14. (1分) (2019七上·呼和浩特月考) 的分数单位是________,再加________个这样的分数单位就是最小的合数.15. (1分)一个圆锥形零件,高为8cm,底面圆的直径为12cm,则此圆锥的侧面积是________ cm2 .16. (1分)一个直角三角形的两条直角边分别为3cm,4cm,则这个直角三角形斜边上的高为________ cm.三、解答题(一)(共3小题,每小题6分,共18分) (共3题;共20分)17. (5分) (2016七上·延安期中) 有理数a,b,c在数轴上的位置如图所示:试化简:|a+b|﹣|b|﹣|a﹣c|﹣|1﹣c|18. (5分)化简求值:÷(﹣),其中x= +1,y= ﹣1.19. (10分)如图,在边长为1个单位长度的小正方形组成的方格中,点A、B、C都是格点.(1)将△ABC绕点O按逆时针方向旋转180°得到△A1B1C1 ,请画出△A1B1C1;(2)依次连结BC1、B1C,猜想四边形BC1B1C是什么特殊四边形?并说明理由.四、解答题(二)(共3小题,每小题7分,共21分) (共3题;共27分)20. (7分)甲口袋中装有2个相同的小球,它们分别写有数字1和2;乙口袋中装有3个相同的小球,它们分别写有数字3,4和5,从两个口袋中各随机取出1个小球.用画树状图或列表的方法,求取出的2个小球上的数字之和为6的概率.21. (5分)(2019·婺城模拟) 如图,利用一幢已知高度的楼房CD(楼高为20m),来测量一幢高楼AB的高在DB上选取观测点E、F,从E测得楼房CD和高楼AB的顶部C、A的仰角分别为58°、45°.从F测得C,A的仰角分别为22°,70°.求楼AB的高度(精确到1m)(参考数据:tan22°≈0.40,tan58°≈1.60,tan70°≈2.75)22. (15分)(2019·柳州) 如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,2),将线段AB绕点A顺时针旋转90°得到线段AC,反比例函数y= (k≠0,x>0)的图象经过点C.(1)求直线AB和反比例函数y= (k≠0,x>0)的解析式;(2)己知点P是反比例函数y= (k≠0,x>0)图象上的一个动点,求点P到直线AB距离最短时的坐标.五、解答题(三)(共3小题,每小题9分,共27分) (共3题;共41分)23. (15分) (2017八下·东台期中) 如图,在四边形ABCD中,点E,F分别是AD,BC的中点,G,H分别是BD,AC的中点,AB,CD满足什么条件时,四边形EGFH是菱形?请证明你的结论.24. (15分)△ABC中,AB=AC,D为BC的中点,以D为顶点作∠MDN=∠B.(1)如图(1)当射线DN经过点A时,DM交AC边于点E,不添加辅助线,写出图中所有与△ADE相似的三角形.(2)如图(2),将∠MDN绕点D沿逆时针方向旋转,DM,DN分别交线段AC,AB于E,F点(点E与点A不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论.(3)在图(2)中,若AB=AC=10,BC=12,当△DEF的面积等于△ABC的面积的时,求线段EF的长.25. (11分) (2019九上·宿州月考) 如图,,直线l分别交、于点A、C,同旁内角的平分线、相交于点B,、相交于点D.试证明四边形是矩形.参考答案一、单项选择题(满分30分) (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题(共6小题,每小题4分,共24分) (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题(一)(共3小题,每小题6分,共18分) (共3题;共20分) 17-1、18-1、19-1、四、解答题(二)(共3小题,每小题7分,共21分) (共3题;共27分) 20-1、21-1、22-1、22-2、五、解答题(三)(共3小题,每小题9分,共27分) (共3题;共41分) 23-1、25-1、第11 页共11 页。

广东省潮州市九年级中考数学二模试题

广东省潮州市九年级中考数学二模试题

广东省潮州市九年级中考数学二模试题姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2020七上·贵州月考) 下列四组有理数的大小比较正确的是()A .B .C .D .2. (2分) (2016七下·明光期中) 下列计算正确的是()A . a2•a3=a6B . (﹣2xy2)3=﹣8x3y5C . 2a﹣3=D . (﹣a)3÷(2a)2=﹣ a3. (2分)(2020·石家庄模拟) PM2.5是指大气中直径小于或等于的颗粒物,是衡量空气污染程度的重要指标.将0.0000025用科学记数法表示为,则n的值是()A .B .C .D .4. (2分)(2020·宁波模拟) 如图所示,该几何体的左视图是()A .B .C .D .5. (2分)(2020·西安模拟) 一副直角三角板如图叠放在一起,点D在AC上,点F在BA上,BC∥FD,∠A =∠FDE=90°,则∠BFE的度数为()A . 60°B . 65°C . 70°D . 75°6. (2分)(2016·天津) 估计的值在()A . 2和3之间B . 3和4之间C . 4和5之间D . 5和6之间7. (2分)一元二次方程x2+x+3=0的根的情况是()A . 有两个不相等的实数根B . 有两个相等的实数根C . 没有实数根D . 无法确定8. (2分)不等式组的解集为()A . x≥2B . x<3C . 2≤x<3D . x>39. (2分) (2019八上·利辛月考) 用固定的速度向容器里注水,水面的高度h和注水时间t的函数关系的大致图象如图,则该容器可能是()A .B .C .D .10. (2分) (2017八上·滨江期中) 等腰的周长为,则其腰长的取值范围是().A .B .C .D .11. (2分)(2019·内江) 一个等腰三角形的底边长是6,腰长是一元二次方程的一根,则此三角形的周长是()A . 16B . 12C . 14D . 12或1612. (2分) (2019八下·柯桥期末) 如图,在Rt△ABC中,AC=6,BC=8,D为斜边AB上一动点,DE⊥BC,DF⊥AC,垂足分别为E、F.则线段EF的最小值为()A . 6B .C . 5D .二、填空题 (共5题;共9分)13. (5分)设(2x﹣1)4(2x+1)=a5x5+a4x4+a3x3+a2x2+a1x+a0(其中a5表示五次项的系数,依此类推),则a5+a4+a3+a2+a1=________14. (1分) (2019七上·鼓楼期末) 某校七年级学生乘车去郊外秋游,如果每辆汽车坐45人,那么有16人坐不上汽车;如果每辆汽车坐50人,那么有一辆汽车空出9个座位,有x辆汽车,则根据题意可列出方程为________.15. (1分)如图,在平面直角坐标系中直线y=x-2与y轴相交于点A,与反比例函数在第一象限内的图象相交于点B(m,2).将直线y=x-2向上平移后与反比例函数图象在第一象限内交于点C,且△ABC的面积为18,求平移后的直线的函数关系式是________ .16. (1分) (2019八上·伊川月考) 若实数,则 ________.17. (1分)菱形的两条对角线长分别是方程x2﹣7x+12=0的两实根,则菱形的面积为________.三、解答题 (共7题;共61分)18. (10分)(2019·吴兴模拟) 计算:(1)(2) .19. (6分)(2016·德州) 在甲、乙两名同学中选拔一人参加“中华好诗词”大赛,在相同的测试条件下,两人5次测试成绩(单位:分)如下:甲:79,86,82,85,83乙:88,79,90,81,72.回答下列问题:(1)甲成绩的平均数是________,乙成绩的平均数是________;(2)经计算知S甲2=6,S乙2=42.你认为选拔谁参加比赛更合适,说明理由;(3)如果从甲、乙两人5次的成绩中各随机抽取一次成绩进行分析,求抽到的两个人的成绩都大于80分的概率.20. (10分) (2018八上·许昌期末) 如图,在边长为1的小正方形网格中,点A,B,C均落在格点上.(1)直接写出△ABC的面积________.(2)画出△ABC关于直线的轴对称图形△A1B1C1.(3)判断△A1B1C1的形状,并说明理由.21. (5分)莲花山公园管理处计划购买甲、乙两种花木共6000株,甲种花木每株0.5元,乙种花木每株0.8元.相关资料表明:甲、乙两种花木的成活率分别为90%和95%.(1)若购买这批花木共用了3600元,求甲、乙两种花木各购买了多少株?(2)若要使这批花木的成活率不低于93%,且购买花木的总费用最低,应如何选购花木?22. (5分)如图,在一次暖气管道的铺设工作中,工程是由A点出发沿正西方向进行的,在A点的南偏西60°的方向上有一所学校,学校占地是以B点为中心方圆100米的圆形,当工程进行了200米时到达C处,此时B 在C的南偏西30°的方向上,请根据题中所提供的信息计算、分析一下,工程继续进行下去,是否会穿过学校?23. (10分) (2019九上·无锡月考) 已知:如图,△ABC是等边三角形,点D、E分别在BC,AC且BD=CE,AD、BE相交于点M,求证:(1)△AME∽△BAE;(2) BD2=AD×DM.24. (15分)(2017·蒸湘模拟) 已知△ABC为等腰直角三角形,∠ACB=90°,CD是斜边AB上的中线,且CD=2,点E是线段BD上任意一点,以CE为边向左侧作正方形CEFG,EF交BC于点M,连接BG交EF于点N.(1)证明:△CAE≌△CBG;(2)设DE=x,BN=y,求y关于x的函数关系式,并求出y的最大值;(3)当DE=2 ﹣2时,求∠BFE的度数.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共5题;共9分)13-1、14-1、15-1、16-1、17-1、三、解答题 (共7题;共61分)18-1、18-2、19-1、19-2、19-3、20-1、20-2、20-3、21-1、22-1、23-1、23-2、24-1、24-2、24-3、。

广东省潮州市中考数学二模试卷

广东省潮州市中考数学二模试卷

广东省潮州市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2020七上·青岛期末) -的倒数是().A . -3B . 3C . -D .2. (2分)已知地球上海洋面积约为316 000 000km2 , 316 000 000这个数用科学记数法可表示为()A . 3.16×109B . 3.16×108C . 3.16×107D . 3.16×1063. (2分) (2019八下·忻城期中) 下列图形:①平行四边形;②矩形;③菱形;④等边三角形中,是中心对称图形的有()A . ①②③B . ②③④C . ①②④D . ①②③④4. (2分) (2017七上·宁波期中) 下列各对数是互为相反数的是()A . 与B . 与C . 与D . 与5. (2分)(2017·洛阳模拟) 如图是由大小相同的小正方体搭成的几何体的主视图和左视图,搭成这样的几何体最多需要a个这样的小正方体,则a=()A . 16B . 12C . 9D . 86. (2分) (2019八下·顺德月考) 如图,在等边三角形中,为边的中点,为边的延长线上一点,,于点 .下列结论错误的是()A .B .C .D . .7. (2分) (2017九下·潍坊开学考) 某校九年级共有1、2、3、4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是()A .B .C .D .8. (2分)已知圆锥底面圆的半径为6cm,高为8cm,则圆锥的侧面积为()A . 48cm2B . 48πcm2C . 60πcm2D . 120πcm29. (2分) (2017八上·西安期末) 一次函数的图象如图所示,则代数式化简后的结果为().A .B .C .D .10. (2分)(2017·竞秀模拟) 已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A . 当a=1时,函数图象过点(﹣1,1)B . 当a=﹣2时,函数图象与x轴没有交点C . 若a>0,则当x≥1时,y随x的增大而减小D . 不论a为何值,函数图象必经过(2,﹣1)二、填空题 (共8题;共8分)11. (1分)(2012·朝阳) 因式分解:x3﹣9xy2=________.12. (1分)(2017·泰安) 分式与的和为4,则x的值为________.13. (1分) (2019八下·鄂城期末) 一组数据2,3,4,5,3的众数为________.14. (1分)如图,△ABO中,AB⊥OB,AB=, OB=1,把△ABO绕点O旋转120°后,得到△A1B1O,则点A1的坐标为________.15. (1分) (2019九下·锡山月考) 若x2+2x=1,则2x2+4x+3的值是________.16. (1分)若一个三角形的外角平分线与三角形的一边平行,则这个三角形是________三角形.17. (1分) (2016七上·仙游期末) 如图是一组有规律的图案,第1个图案由6个基础图形组成,第2个图案由11个基础图形组成,…,第n(n是正整数)个图案中由________个基础图形组成.(用含n的代数式表示)18. (1分) (2018九上·临渭期末) 若关于x的一元二次方程kx2﹣2x+1=0有实数根,则k的取值范围是________.三、综合题 (共9题;共50分)19. (5分)(2016·深圳模拟) 计算:| ﹣2|+20100﹣(﹣)﹣1+3tan30°.20. (2分) (2015八上·宜昌期中) 如图.(1)在网格中画出△ABC关于y轴对称的△A1B1C1;(2)写出△ABC关于x轴对称的△A2B2C2的各顶点坐标;(3)在y轴上确定一点P,使PA+PB最短.(只需作图保留作图痕迹)21. (2分)(2012·苏州) 先化简,再求值:,其中,a= +1.22. (2分)(2019·山西模拟) 某超市开展早市促销活动,为早到的顾客准备一份简易早餐,餐品为四样A:菜包、B:面包、C:鸡蛋、D:油条.超市约定:随机发放,早餐一人一份,一份两样,一样一个.(1)按约定,“某顾客在该天早餐得到两个鸡蛋”是________事件(填“随机”、“必然”或“不可能”);(2)请用列表或画树状图的方法,求出某顾客该天早餐刚好得到菜包和油条的概率.23. (10分) (2017八下·如皋期中) 在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A 作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=3,AB=4,求菱形ADCF的面积.24. (10分)(2017·南岗模拟) 为了相应“足球进校园”的号召,某体育用品商店计划购进一批足球,第一次用6000元购进A品牌足球m个,第二次又用6000元购进B品牌足球,购进的B品牌足球的数量比购进的A品牌足球多30个,并且每个A品牌足球的进价是每个B品牌足球的进价的.(1)求m的值;(2)若这两次购进的A,B两种品牌的足球分别按照a元/个, a元/个两种价格销售,全部销售完毕后,可获得的利润不低于4800元,求出a的最小值.25. (2分)(2017·西华模拟) 如图,点A、B、C分别是⊙O上的点,∠B=60°,AC=3,CD是⊙O的直径,P 是CD延长线上的一点,且AP=AC.(1)求证:AP是⊙O的切线;(2)求PD的长.26. (2分) (2017八下·南召期末) 小明根据华师版八年级下册教材P37学习内容,对函数y= x2的图象和性质进行了探究,试将如下尚不完整的过程补充完整.(1)自变量x的取值范围是全体实数,x与y的几组对应数值如表:x…﹣4n﹣2﹣101234…y…8 4.520.500.52 4.58…其中n=________;(2)如图,在平面直角三角形坐标系xOy中,已描出了以上表中的部分数值为坐标的点,根据描出的点,画出该函数的大致图象.(3)根据画出的函数图象,小明观察发现:该函数有最小值,没有最大值;当函数值取最小时,自变量x的值为________.(4)进一步探究函数的图象发现:①若点A(xa,ya),点B(xb,yb)在函数y= 的图象上;当xa<xb<0时,ya与yb的大小关系是________;当0<xa<xb时,ya与yb的大小关系是________;②直线y1恰好经过函数的图象上的点(﹣2,2)与(1,0.5);当y<y1时,x的取值范围是________.27. (15分)综合题。

广东省潮州市2019-2020学年第二次中考模拟考试数学试卷含解析

广东省潮州市2019-2020学年第二次中考模拟考试数学试卷含解析

广东省潮州市2019-2020学年第二次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,已知菱形ABCD的对角线AC.BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是()A.53cm B.25cm C.48cm5D.24cm52.已知抛物线y=ax2﹣(2a+1)x+a﹣1与x轴交于A(x1,0),B(x2,0)两点,若x1<1,x2>2,则a 的取值范围是()A.a<3 B.0<a<3 C.a>﹣3 D.﹣3<a<03.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A.12B.14C.16D.1124.﹣12的绝对值是()A.﹣12B.12C.﹣2 D.25.由一些大小相同的小正方体组成的几何体的俯视图如图所示,其中正方形中的数字表示在该位置上的小正方体的个数,那么,这个几何体的左视图是()A.B.C.D.6.若x是2的相反数,|y|=3,则12y x的值是()A.﹣2 B.4 C.2或﹣4 D.﹣2或47.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,则图中相似三角形共有()A.1对B.2对C.3对D.4对8.如图,一段抛物线:y=﹣x(x﹣5)(0≤x≤5),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,得到一“波浪线”,若点P(2018,m)在此“波浪线”上,则m的值为()A.4 B.﹣4 C.﹣6 D.69.在下列四个新能源汽车车标的设计图中,属于中心对称图形的是()A.B.C.D.10.如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤11.- 14的绝对值是()A.-4 B.14C.4 D.0.412.直线y=23x+4与x轴、y轴分别交于点A和点B,点C,D分别为线段AB,OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A .(-3,0)B .(-6,0)C .(-52,0) D .(-32,0) 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知一元二次方程2x 2﹣5x+1=0的两根为m ,n ,则m 2+n 2=_____.14.因式分解:3222x x y xy +=﹣__________.15.若a ﹣3有平方根,则实数a 的取值范围是_____. 16.因式分解:x 2﹣4= .17.如图,在正方形ABCD 中,等边三角形AEF 的顶点E ,F 分别在边BC 和CD 上,则∠AEB =__________.18.不等式组34012412x x +≥⎧⎪⎨-≤⎪⎩的所有整数解的积为__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优势方法是:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降价0.1元,例如:某人买18只计算器,于是每只降价0.1×(18﹣10)=0.8(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元.(1)求一次至少购买多少只计算器,才能以最低价购买?(2)求写出该文具店一次销售x (x >10)只时,所获利润y (元)与x (只)之间的函数关系式,并写出自变量x 的取值范围;(3)一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当10<x≤50时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?20.(6分)先化简,再求值:22124()(1)442a a a a a a a -+-÷--+-,其中a 为不等式组72230a a ->⎧⎨->⎩的整数解.21.(6分)某数学社团成员想利用所学的知识测量某广告牌的宽度(图中线段MN 的长),直线MN 垂直于地面,垂足为点P .在地面A 处测得点M 的仰角为58°、点N 的仰角为45°,在B 处测得点M 的仰角为31°,AB =5米,且A 、B 、P 三点在一直线上.请根据以上数据求广告牌的宽MN 的长. (参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.1,sin31°=0.52,cos31°=0.86,tan31°=0.1.)22.(8分)如图,二次函数的图像与轴交于、两点,与轴交于点,.点在函数图像上,轴,且,直线是抛物线的对称轴,是抛物线的顶点.求、的值;如图①,连接,线段上的点关于直线的对称点恰好在线段上,求点的坐标;如图②,动点在线段上,过点作轴的垂线分别与交于点,与抛物线交于点.试问:抛物线上是否存在点,使得与的面积相等,且线段的长度最小?如果存在,求出点的坐标;如果不存在,说明理由.23.(8分)如图,⊙O是△ABC的外接圆,AB为直径,OD∥BC交⊙O于点D,交AC于点E,连接AD、BD、CD.(1)求证:AD=CD;(2)若AB=10,OE=3,求tan∠DBC的值.24.(10分)某初中学校举行毛笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题:请将条形统计图补全;获得一等奖的同学中有14来自七年级,有14来自八年级,其他同学均来自九年级,现准备从获得一等奖的同学中任选两人参加市内毛笔书法大赛,请通过列表或画树状图求所选出的两人中既有七年级又有九年级同学的概率.25.(10分)八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图. 类别 频数(人数) 频率 小说 0.5 戏剧 4 散文 10 0.25 其他 6 合计1根据图表提供的信息,解答下列问题:八年级一班有多少名学生?请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.26.(12分)如图,AB 是O e 的直径,C 是圆上一点,弦CD AB ⊥于点E ,且DC AD =.过点A 作O e 的切线,过点C 作DA 的平行线,两直线交于点F ,FC 的延长线交AB 的延长线于点G .(1)求证:FG 与O e 相切; (2)连接EF ,求tan EFC ∠的值.27.(12分)为保护环境,我市公交公司计划购买A 型和B 型两种环保节能公交车共10辆.若购买A 型公交车1辆,B 型公交车2辆,共需400万元;若购买A 型公交车2辆,B 型公交车1辆,共需350万元.求购买A 型和B 型公交车每辆各需多少万元?预计在某线路上A 型和B 型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A 型和B 型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.D 【解析】 【分析】根据菱形的性质得出BO 、CO 的长,在RT △BOC 中求出BC ,利用菱形面积等于对角线乘积的一半,也等于BC×AE ,可得出AE 的长度. 【详解】∵四边形ABCD 是菱形, ∴CO=12AC=3,BO=12BD=,AO ⊥BO , ∴2222BC CO BO 345+=+=. ∴ABCD 11S BD AC 682422=⋅=⨯⨯=菱形. 又∵ABCD S BC AE =⋅菱形, ∴BC·AE=24,即()24AE cm 5=. 故选D .点睛:此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分. 2.B 【解析】由已知抛物线2(21)1y ax a x a =-++-求出对称轴212a x a +=+, 解:抛物线:2(21)1y ax a x a =-++-,对称轴212a x a+=+,由判别式得出a 的取值范围.11<x ,22x >,∴21122a a+<<, ①2(21)4(1)0a a a ∆=+-->,18a ≥-. ②由①②得0<<3a . 故选B . 3.C 【解析】 【分析】画树状图求出共有12种等可能结果,符合题意得有2种,从而求解. 【详解】 解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况, ∴两次都摸到白球的概率是:21126=. 故答案为C . 【点睛】本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键. 4.B 【解析】【分析】根据求绝对值的法则,直接计算即可解答.【详解】111()222-=--=,故选:B.【点睛】本题主要考查求绝对值的法则,掌握负数的绝对值等于它的相反数,是解题的关键.5.A【解析】从左面看,得到左边2个正方形,中间3个正方形,右边1个正方形.故选A.6.D【解析】【分析】直接利用相反数以及绝对值的定义得出x,y的值,进而得出答案.【详解】解:∵x是1的相反数,|y|=3,∴x=-1,y=±3,∴y-12x=4或-1.故选D.【点睛】此题主要考查了有理数的混合运算,正确得出x,y的值是解题关键.7.C【解析】∵∠ACB=90°,CD⊥AB,∴△ABC∽△ACD,△ACD∽CBD,△ABC∽CBD,所以有三对相似三角形.故选C.8.C【解析】分析:根据图象的旋转变化规律以及二次函数的平移规律得出平移后解析式,进而求出m的值,由2017÷5=403…2,可知点P(2018,m)在此“波浪线”上C404段上,求出C404的解析式,然后把P(2018,m)代入即可.详解:当y=0时,﹣x(x﹣5)=0,解得x1=0,x2=5,则A1(5,0),∴OA1=5,∵将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…;如此进行下去,得到一“波浪线”,∴A1A2=A2A3=…=OA1=5,∴抛物线C404的解析式为y=(x﹣5×403)(x﹣5×404),即y=(x﹣2015)(x﹣2020),当x=2018时,y=(2018﹣2015)(2018﹣2020)=﹣1,即m=﹣1.故选C.点睛:此题主要考查了二次函数的平移规律,根据已知得出二次函数旋转后解析式是解题关键.9.D【解析】【分析】根据中心对称图形的概念求解.【详解】解:A.不是中心对称图形,本选项错误;B.不是中心对称图形,本选项错误;C.不是中心对称图形,本选项错误;D.是中心对称图形,本选项正确.故选D.【点睛】本题主要考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.10.A【解析】【分析】由抛物线的开口方向判断a与2的关系,由抛物线与y轴的交点判断c与2的关系,然后根据对称轴判定b与2的关系以及2a+b=2;当x=﹣1时,y=a﹣b+c;然后由图象确定当x取何值时,y>2.【详解】①∵对称轴在y轴右侧,∴a、b异号,∴ab<2,故正确;②∵对称轴1,2bx a=-= ∴2a+b=2;故正确; ③∵2a+b=2, ∴b=﹣2a ,∵当x=﹣1时,y=a ﹣b+c <2, ∴a ﹣(﹣2a )+c=3a+c <2,故错误; ④根据图示知,当m=1时,有最大值; 当m≠1时,有am 2+bm+c≤a+b+c , 所以a+b≥m (am+b )(m 为实数). 故正确.⑤如图,当﹣1<x <3时,y 不只是大于2. 故错误. 故选A . 【点睛】本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a 决定 抛物线的开口方向,当a >2时,抛物线向上开口;当a <2时,抛物线向下开口;②一次项 系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >2),对称轴在y 轴 左; 当a 与b 异号时(即ab <2),对称轴在y 轴右.(简称:左同右异)③常数项c 决定抛 物线与y 轴交点,抛物线与y 轴交于(2,c ). 11.B 【解析】 【分析】直接用绝对值的意义求解. 【详解】 −14的绝对值是14. 故选B . 【点睛】此题是绝对值题,掌握绝对值的意义是解本题的关键. 12.C 【解析】 【分析】 【详解】作点D 关于x 轴的对称点D′,连接CD′交x 轴于点P ,此时PC+PD 值最小,如图所示.直线y=23x+4与x轴、y轴的交点坐标为A(﹣6,0)和点B(0,4),因点C、D分别为线段AB、OB的中点,可得点C(﹣3,1),点D(0,1).再由点D′和点D关于x轴对称,可知点D′的坐标为(0,﹣1).设直线CD′的解析式为y=kx+b,直线CD′过点C(﹣3,1),D′(0,﹣1),所以2=-3k+b-2=b⎧⎨⎩,解得:4k=-3b=-2⎧⎪⎨⎪⎩,即可得直线CD′的解析式为y=﹣43x﹣1.令y=﹣43x﹣1中y=0,则0=﹣43x﹣1,解得:x=﹣32,所以点P的坐标为(﹣32,0).故答案选C.考点:一次函数图象上点的坐标特征;轴对称-最短路线问题.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.21 4【解析】【分析】先由根与系数的关系得:两根和与两根积,再将m2+n2进行变形,化成和或积的形式,代入即可.【详解】由根与系数的关系得:m+n=52,mn=12,∴m2+n2=(m+n)2-2mn=(52)2-2×12=214,故答案为:214.【点睛】本题考查了利用根与系数的关系求代数式的值,先将一元二次方程化为一般形式,写出两根的和与积的值,再将所求式子进行变形;如1211+x x 、x 12+x 22等等,本题是常考题型,利用完全平方公式进行转化. 14.()2x x y - 【解析】 【分析】先提取公因式x ,再对余下的多项式利用完全平方公式继续分解. 【详解】解:原式()()2222x x xy y x x y =-+=-,故答案为:()2x x y - 【点睛】本题考查提公因式,熟练掌握运算法则是解题关键. 15.a≥1. 【解析】 【分析】根据平方根的定义列出不等式计算即可. 【详解】根据题意,得30.a -≥ 解得: 3.a ≥ 故答案为 3.a ≥ 【点睛】考查平方根的定义,正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根. 16.(x+2)(x-2).【解析】试题分析:直接利用平方差公式分解因式得出x 2﹣4=(x+2)(x ﹣2). 考点:因式分解-运用公式法 17.75 【解析】因为△AEF 是等边三角形,所以∠EAF=60°,AE=AF ,因为四边形ABCD 是正方形,所以AB=AD ,∠B=∠D=∠BAD=90°. 所以Rt △ABE ≌Rt △ADF (HL ),所以∠BAE=∠DAF. 所以∠BAE+∠DAF=∠BAD-∠EAF=90°-60°=30°, 所以∠BAE=15°,所以∠AEB=90°-15°=75°. 故答案为75.18.1 【解析】【详解】解:34012412xx+≥⎧⎪⎨-≤⎪⎩①②,解不等式①得:43x≥-,解不等式②得:50x≤,∴不等式组的整数解为﹣1,1,1…51,所以所有整数解的积为1,故答案为1.【点睛】本题考查一元一次不等式组的整数解,准确计算是关键,难度不大.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)1;(3);(3)理由见解析,店家一次应卖45只,最低售价为16.5元,此时利润最大.【解析】试题分析:(1)设一次购买x只,由于凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降低0.10元,而最低价为每只16元,因此得到30﹣0.1(x﹣10)=16,解方程即可求解;(3)由于根据(1)得到x≤1,又一次销售x(x>10)只,因此得到自变量x的取值范围,然后根据已知条件可以得到y与x的函数关系式;(3)首先把函数变为y==,然后可以得到函数的增减性,再结合已知条件即可解决问题.试题解析:(1)设一次购买x只,则30﹣0.1(x﹣10)=16,解得:x=1.答:一次至少买1只,才能以最低价购买;(3)当10<x≤1时,y=[30﹣0.1(x﹣10)﹣13]x=,当x>1时,y=(16﹣13)x=4x;综上所述:;(3)y==,①当10<x≤45时,y随x的增大而增大,即当卖的只数越多时,利润更大.②当45<x≤1时,y随x的增大而减小,即当卖的只数越多时,利润变小.且当x=46时,y1=303.4,当x=1时,y3=3.∴y1>y3.即出现了卖46只赚的钱比卖1只赚的钱多的现象.当x=45时,最低售价为30﹣0.1(45﹣10)=16.5(元),此时利润最大.故店家一次应卖45只,最低售价为16.5元,此时利润最大.考点:二次函数的应用;二次函数的最值;最值问题;分段函数;分类讨论. 20.()212a -,1【解析】 【分析】先算减法,把除法变成乘法,求出结果,求出不等式组的整数解,代入求出即可. 【详解】 解:原式=[()212a a --﹣()22a a a +-]4aa-÷ =()2442a a aa a -⋅-- =()212a -,∵不等式组的解为32<a <5,其整数解是2,3,4, a 不能等于0,2,4, ∴a =3, 当a =3时,原式=()2132-=1.【点睛】本题考查了解一元一次不等式组、不等式组的整数解和分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键. 21.1.8米 【解析】 【分析】设PA=PN=x ,Rt △APM 中求得MP =1.6x, 在Rt △BPM 中tan MPMBP BP∠=,解得x=3,MN=MP-NP=0.6x=1.8. 【详解】在Rt △APN 中,∠NAP=45°, ∴PA=PN,在Rt △APM 中,tan MPMAP AP∠=, 设PA=PN=x , ∵∠MAP=58°,∴tan MP AP MAP =⋅∠=1.6x, 在Rt △BPM 中,tan MPMBP BP∠=, ∵∠MBP=31°,AB=5, ∴ 1.60.65xx=+, ∴ x=3,∴MN=MP-NP=0.6x=1.8(米), 答:广告牌的宽MN 的长为1.8米. 【点睛】熟练掌握三角函数的定义并能够灵活运用是解题的关键. 22.(1),;(2)点的坐标为;(3)点的坐标为和【解析】 【分析】(1)根据二次函数的对称轴公式,抛物线上的点代入,即可;(2)先求F 的对称点,代入直线BE ,即可;(3)构造新的二次函数,利用其性质求极值. 【详解】 解:(1)轴,,抛物线对称轴为直线点的坐标为解得或(舍去), (2)设点的坐标为对称轴为直线点关于直线的对称点的坐标为.直线经过点利用待定系数法可得直线的表达式为.因为点在上,即点的坐标为(3)存在点满足题意.设点坐标为,则作垂足为 ①点在直线的左侧时,点的坐标为点的坐标为点的坐标为在中,时,取最小值.此时点的坐标为②点在直线的右侧时,点的坐标为同理,时,取最小值.此时点的坐标为综上所述:满足题意得点的坐标为和考点:二次函数的综合运用.23.(1)见解析;(2)tan∠DBC=12.【解析】【分析】(1)先利用圆周角定理得到∠ACB=90°,再利用平行线的性质得∠AEO=90°,则根据垂径定理得到¼¼AD DC=,从而有AD=CD;(2)先在Rt△OAE中利用勾股定理计算出AE,则根据正切的定义得到tan∠DAE的值,然后根据圆周角定理得到∠DAC=∠DBC,从而可确定tan∠DBC的值.【详解】(1)证明:∵AB为直径,∴∠ACB=90°,∵OD∥BC,∴∠AEO=∠ACB=90°,∴OE⊥AC,∴¼¼AD DC=,∴AD=CD;(2)解:∵AB=10,∴OA=OD=5,∴DE=OD﹣OE=5﹣3=2,在Rt△OAE中,AE225-34,∴tan∠DAE=2142 DEAE==,∵∠DAC=∠DBC,∴tan∠DBC=12.【点睛】垂径定理及圆周角定理是本题的考点,熟练掌握垂径定理及圆周角定理是解题的关键.24.(1)答案见解析;(2)1 3 .【解析】【分析】(1)根据参与奖有10人,占比25%可求得获奖的总人数,用总人数减去二等奖、三等奖、鼓励奖、参与奖的人数可求得一等奖的人数,据此补全条形图即可;(2)根据题意分别求出七年级、八年级、九年级获得一等奖的人数,然后通过列表或画树状图法进行求解即可得.【详解】(1)10÷25%=40(人),获一等奖人数:40-8-6-12-10=4(人),补全条形图如图所示:(2)七年级获一等奖人数:4×14=1(人),八年级获一等奖人数:4×14=1(人),∴九年级获一等奖人数:4-1-1=2(人),七年级获一等奖的同学用M表示,八年级获一等奖的同学用N表示,九年级获一等奖的同学用P1、P2表示,树状图如下:共有12种等可能结果,其中获得一等奖的既有七年级又有九年级人数的结果有4种,则所选出的两人中既有七年级又有九年级同学的概率P=41 123.【点评】此题考查了统计与概率综合,理解扇形统计图与条形统计图的意义及列表法或树状图法是解题关键.25.(1)41(2)15%(3)1 6【解析】【分析】(1)用散文的频数除以其频率即可求得样本总数; (2)根据其他类的频数和总人数求得其百分比即可;(3)画树状图得出所有等可能的情况数,找出恰好是丙与乙的情况,即可确定出所求概率. 【详解】(1)∵喜欢散文的有11人,频率为1.25, ∴m=11÷1.25=41;(2)在扇形统计图中,“其他”类所占的百分比为 ×111%=15%, 故答案为15%;(3)画树状图,如图所示:所有等可能的情况有12种,其中恰好是丙与乙的情况有2种, ∴P (丙和乙)=212=16. 26.(1)见解析;(23【解析】 【分析】(1)连接OC ,AC ,易证ACD ∆为等边三角形,可得60CDA DCA DAC ∠=∠=∠=o ,由等腰三角形的性质及角的和差关系可得∠1=30°,由于FG DA P 可得∠DCG=∠CDA=∠60°,即可求出∠OCG=90°,可得FG 与O e 相切;(2)作EH FG ⊥于点H .设CE a =,则DE a =,2AD a =.根据两组对边互相平行可证明四边形AFCD 为平行四边形,由DC AD =可证四边形AFCD 为菱形,由(1)得60DCG ∠=o ,从而可求出EH 、CH 的值,从而可知FH 的长度,利用锐角三角函数的定义即可求出tan EFC ∠的值. 【详解】(1)连接OC ,AC .∵AB 是O e 的直径,弦CD AB ⊥于点E , ∴CE DE =,AD AC =.∵DC AD =, ∴DC AD AC ==. ∴ACD ∆为等边三角形.∴60CDA DCA DAC ∠=∠=∠=o ,∠DAE=∠EAC=30°,∵OA=OC ,∴∠OAC=∠OCA=30°, ∴∠1=∠DCA-∠OCA=30°, ∵FG DA P ,∴∠DCG=∠CDA=∠60°,∴∠OCG=∠DCG+∠1=60°+30°=90°, ∴FG OC ⊥. ∴FG 与O e 相切.(2)连接EF ,作EH FG ⊥于点H . 设CE a =,则DE a =,2AD a =. ∵AF 与O e 相切, ∴AF AG ⊥. 又∵DC AG ⊥, ∴//AF DC . 又∵FG DA P ,∴四边形AFCD 为平行四边形. ∵DC AD =,∴四边形AFCD 为菱形.∴2AF FC AD a ===,60AFC CDA ∠=∠=o . 由(1)得60DCG ∠=o , ∴3sin 60EH CE =⋅=o ,1cos602CH CE a =⋅=o.∴52FH CH CF a =+=. ∵在Rt EFH ∆中,90EHF ∠=o ,∴332tan 552EH EFC FH a ∠===.【点睛】本题考查圆的综合问题,涉及切线的判定与性质,菱形的判定与性质,等边三角形的性质及锐角三角函数,考查学生综合运用知识的能力,熟练掌握相关性质是解题关键.27.(1)购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)三种方案:①购买A型公交车6辆,则B型公交车4辆;②购买A型公交车7辆,则B型公交车3辆;③购买A型公交车8辆,则B型公交车2辆;(3)购买A型公交车8辆,B型公交车2辆费用最少,最少费用为1100万元.【解析】【详解】详解:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得,解得,答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)设购买A型公交车a辆,则B型公交车(10-a)辆,由题意得,解得:6≤a≤8,因为a是整数,所以a=6,7,8;则(10-a)=4,3,2;三种方案:①购买A型公交车6辆,B型公交车4辆;②购买A型公交车7辆,B型公交车3辆;③购买A型公交车8辆,B型公交车2辆.(3)①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;故购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.【点睛】此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题.。

广东省潮州市中考二模数学考试试卷

广东省潮州市中考二模数学考试试卷

广东省潮州市中考二模数学考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分)(−)2的平方根是x,64的立方根是y,则x+y的值为()A . 3B . 7C . 3或7D . 1或72. (2分)下列式子一定是二次根式的是()A .B .C .D .3. (2分)(2019·新会模拟) 关于x的一元二次方程x2﹣2x+m=0总有实数根,则m应满足的条件是()A . m≥1B . m≤1C . m=1D . m<14. (2分)(2019·南浔模拟) 益阳市某年6月上旬的最高气温如下表所示:日期12345678910最高气温(℃)30283032343226303335那么这10天的最高气温的平均数和众数分别是()A . 32,30B . 31,30C . 32,32D . 30,305. (2分)将一张矩形纸片对折,再对折,将所得矩形撕去一角,打开的图形一定有()条对称轴.A . 一条B . 二条C . 三条D . 四条6. (2分)如图1,AD是△ABC的角平分线,将△ABC折叠使点A落在点D处,折痕为EF,则四边形AEDF一定是().A . 矩形B . 菱形C . 正方形D . 梯形二、填空题 (共12题;共12分)7. (1分) (2020七下·北京期末) 计算: =________8. (1分) (2020·哈尔滨模拟) 因式分解的结果为________.9. (1分)不等式组的解集是________.10. (1分)(2011·无锡) 在函数中,自变量x的取值范围是________.11. (1分) (2020九上·嘉兴月考) 定义:给定关于的函数,对于函数图象上的任意两点( , ),( , ),当时,都有,则称该函数为减函数.根据以上定义,下列函数为减函数的有________.(只需填写序号)① ;② ;③ ;④12. (1分)(2018·成都模拟) 已知实数满足,那么的值为________.13. (1分) (2019七下·西湖期末) 从某服装厂即将出售的一批休闲装中抽检200件,其中不合格休闲装有15件.那么3000件这种休闲装,合格的休闲装的件数约为________.14. (1分)现有甲、乙两个盒子,甲盒子中有编号为4,5,6的3个球,乙盒子中有编号为7,8,9的3个球.小宇分别从这两个盒子中随机地拿出1个球,则拿出的2个球的编号之和大于12的概率为________.15. (1分)(2017·徐汇模拟) 点C是线段AB延长线的点,已知 = , = ,那么 =________.16. (1分)(2018·北海模拟) 如图所示,扇形OMN的圆心角为45°,正方形A1B1C1A2的边长为2,顶点A1 , A2在线段OM上,顶点B1在弧MN上,顶点C1在线段ON上,在边A2C1上取点B2 ,以A2B2为边长继续作正方形A2B2C2A3 ,使得点C2在线段ON上,点A3在线段OM上,……,依次规律,继续作正方形,则A2018M=________.17. (1分) (2019九上·丰润期中) 如图,等腰Rt△ABC中,∠C=90°,BC=6cm ,将△ABC绕点A顺时针旋转15°后得到△AB′C′,则图中阴影部分的面积是________cm2 .18. (1分)(2019·江北模拟) 如图,点B是过点A的直线m上的一动点,过A作直线n⊥m,垂足为A.若⊙A 的直径为8,⊙B的直径为6,设AB=d,当⊙B运动到和⊙A,直线n都相交时,d的取值范围是________.三、解答题 (共7题;共70分)19. (5分)(2017·百色) 已知a=b+2018,求代数式• ÷ 的值.20. (10分) (2020八下·南昌期中) 计算:(1)(2)21. (10分)(2017·兴化模拟) 如图,CD为⊙O的直径,点B在⊙O上,连接BC、BD,过点B的切线AE与CD的延长线交于点A,∠AEO=∠C,OE交BC于点F.(1)求证:OE∥BD;(2)当⊙O的半径为5,si n∠DBA= 时,求EF的长.22. (10分) (2019七下·宜昌期末) 某房地产开发公司计划建 A,B 两种户型的住房 80 套,该公司所筹资金不少于 2090 万元,但不超过 2096 万元,且所筹金全部用于建房,两种户型的建房成本和售价如下表:(1)该公司对两种户型的住房有哪几种建房方案?(2)该公司选用哪种建房方案获得利润最大?最大利润是多少?23. (10分)(2019·菏泽) 如图,是的直径,是的弦,过点作的切线,交的延长线于点,过点作于点,交的延长线于点.(1)求证:;(2)若,,求的半径.24. (10分) (2018九上·西湖期中) 如图,一个滑道由滑坡(AB段)和缓冲带(BC段)组成,滑雪者在滑坡上滑行的距离y1(单位:m)和滑行时间t1(单位s)满足二次函数关系,并测得相关数据:滑行时间t1/s01234滑行距离y1/s04.51428.548滑雪者在缓冲带上滑行的距离y2(单位:m)和滑行时间t2(单位:s)满足:y2=52t2﹣2t22 ,滑雪者从A 出发在缓冲带BC上停止,一共用了23s.(1)求y1和t1满足的二次函数解析式;(2)求滑坡AB的长度.25. (15分)(2017·高淳模拟) 如图,△ABC中,AB=AC,以AC为直径的⊙O与边AB,BC分别交于点D,E.过E的直线与⊙O相切,与AC的延长线交于点G,与AB交于点F.(1)求证:△BDE为等腰三角形;(2)求证:GF⊥AB;(3)若⊙O半径为3,DF=1,求CG的长.参考答案一、选择题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共12题;共12分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共7题;共70分)19-1、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、25-3、。

2023年广东省潮州市潮安区中考数学二模试卷+答案解析

2023年广东省潮州市潮安区中考数学二模试卷+答案解析

2023年广东省潮州市潮安区中考数学二模试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.在实数3,,,0中,最小的数是()A.3B.C.D.02.计算的值为()A. B.0 C. D.3.下列与圆有关的轴对称图形中对称轴最少的是()A. B.C. D.4.中国信息通信研究院测算,年,中国5G商用带动的信息消费规模将超过8万亿元,直接带动经济总产出达万亿元.其中数据万亿用科学记数法表示为()A. B. C. D.5.小冰和小雪自愿参加学校组织的课后托管服务活动,随机选择自主阅读、体育活动、科普活动三项中的某一项,那么小冰和小雪同时选择“体育活动”的概率为()A. B. C. D.6.若,,则()A.2B.3C.6D.127.如图,AB是的弦,点C是优弧AB上的动点不与A、B重合,,垂足为H,点M是BC的中点.若的半径是3,则MH长的最大值是()A.3B.4C.5D.68.如果关于x的不等式组的整数解仅为1,2,3,那么适合这个不等式组的整数对共有()A.42对B.36对C.30对D.11对9.如图,数轴上有三个点,A点表示的数为2,B点表示的数为,且,则点C表示的数的整数部分为()A.1B.2C.3D.410.如图,中,,,分别以AB、AC、BC为边在AB的同侧作正方形ABEF、ACPQ、BCMN,四块阴影部分的面积分别为、、、则等于()A.14B.16C.18D.20二、填空题:本题共5小题,每小题3分,共15分。

11.______.12.若一个n边形的每个外角都等于,则______.13.甲、乙、丙3名学生随机排成一排拍照,其中甲排在中间的概率是______.14.物理学中,在压力F不变的情况下,某物体承受的压强P与它的受力面积S成反比例函数关系,则表中压强与的大小关系为:__________填“>”,“=”或“<”12330015.如图,在正方形ABCD中,对角线AC的长为,以点A为圆心,AB长为半径画弧交AC于点E,则图中阴影部分的面积为______.三、解答题:本题共8小题,共75分。

2024年中考数学二模试卷(广东省卷)(考试版A4)

2024年中考数学二模试卷(广东省卷)(考试版A4)

2024年中考第二次模拟考试(广东省卷)数学本试卷共23小题,满分120分,考试用时90分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将将自己的准考证号、姓名、考场号和座位号填写在答题卡上。

用2B 铅笔在“考场号”和“座位号”栏相应位置填涂自己的考场号和座位号,将条形码粘贴在答题卡“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡上各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效。

4.考生必须保持答题卡的整洁.考试结束后,将本试卷和答题卡一并交回。

一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.中国是最早采用正负数表示相反意义的量的国家.某仓库运进小麦6吨,记为+6吨,那么仓库运出小麦8吨应记为()吨.A .+8B .-8C .±8D .-22.下列图案中,是轴对称图形的是()A .B .C .D .3.赤道长约为40000000m ,用科学记数法可以把数字40000000表示为()A .4×107B .40×106C .400×105D .4000×1034.一条公路两次转弯后又回到原来的方向(即AB CD ),如图所示,如果第一次转弯时140B ∠=︒,那么C ∠应等于()A .140°B .40°C .100°D .180°25.化简:2(11x xx x +=++)A .1B .0C .xD .2x 6.某品牌20寸的行李箱拉杆拉开后放置如图所示,经测量该行李箱从轮子底部到箱子上沿的高度AB 与从轮子底部到拉杆顶部的高度CD 之比是黄金比(约等于0.618).已知80CD =cm ,则AB 约是()A .30cmB .49cmC .55cmD .129cm7.不等式组2234x x ≥-⎧⎨+<⎩的解在数轴上表示为()A .B .C.D.8.某校为庆祝中国共产党建党100周年举行“传承红色基因,沐浴阳光成长”歌咏比赛,七年级8个班通过抽签决定出场顺序,七年级(1)班恰好抽到第1个出场的概率为()A .110B .18C .810D .149.如图,四边形ABCD 内接于O DE ,是O 的直径,连接BD ,若120BCD ∠=︒,则BDE ∠的度数是()A .25︒B .30︒C .32︒D .35︒10.如图,抛物线与x 轴交于点A ,B ,与y 轴交于点G ,正方形CDEF 的边CD 在x 轴上,E ,F 在抛物线上,连结GA ,GB ,ABG 是正三角形,2AB =,则阴影部分的面积为()A 12B .3C .2D .2二、填空题(本大题共5个小题,每小题3分,共15分)11.分解因式:214a -=.12sin45°=.13.长方体的体积为103m 3,底面积为S ,高度为d ,则S 与d 之间的函数关系式为;当S =500时,d =.14.某服装的进价为400元,出售时标价为600元,由于换季,商场准备打折销售,但要保证利润率不低于5%,那么该服装至多打折.15.如图,四边形ABCD 是边长为2的正方形,点P 在正方形ABCD 内,PBC 是等边三角形,则PBD △的面积为.三、解答题(一)(本大题共3小题,第16题10分,第17、18题个7分,共24分)16.(104(1-;(2)一次函数的图像与25y x =-平行且与x 轴交于点(-2,0)求解析式17.新能源电动汽车与燃油汽车相比,因用车成本低逐渐广受大众的喜欢.经试测,燃油汽车的百公里成本是新能源电动汽车的5倍,在不考虑汽车其他损耗的情况下,100元的成本可使新能源电动汽车比燃油汽车多行驶800公里,求新能源电动汽车和燃油汽车的百公里成本.(备注:百公里成本指的是汽车每行驶100公里需要的成本)18.在如图所示平面直角坐标系中,每个小正方形的边长均为1,ABC 的三个顶点坐标分别为()1,1A -,()2,5B -,()5,4C -.4(1)画出ABC 绕点O 顺时针旋转90︒后得到111A B C △;(2)在(1)的条件下,求点A 旋转到点1A 的过程中所经过的路径长(结果保留π).四、解答题(二)(本大题共3小题,每小题9分,共27分)19.如图,在ABC 中,∠ACB为钝角.(1)尺规作图:在边AB 上确定一点D ,使∠ADC =2∠B (不写作法,保留作图痕迹,并标明字母);(2)在(1)的条件下,若∠B =15°,∠ACB =105°,CD =3,AC 3ABC 的面积.20.某校从甲、乙两个班各随机抽取10名学生参加全市义务教育质量监测.样本学生中体育学科的测试成绩(满分100分)如下表,学校进一步对样本学生每周课外锻炼时间进行了问卷调查,并绘制了条形统计图,数据如下:样本学生测试成绩甲班53656565787981828493乙班61636875787878808183平均数方差中位数众数甲班129.6578.565乙班74.553.8578请根据以上调查报告,解答下列问题:(1)请完成样本学生成绩表中所缺数据;(2)甲班有50名学生,估计在这些学生中课外锻炼时间达到3小时以上的人数;(3)从表中分析甲、乙两班样本学生测试成绩(从平均数、方差、中位数、众数中选一个统计量分析即可).21.某县消防大队到某小区进行消防演习.已知,图1是一辆登高云梯消防车的实物图,图2是其工作示意图,起重臂AC 可伸缩()15m 26m AC ≤≤,且起重臂AC 可绕点A 在一定范围内转动,张角为()90150CAE CAE ∠︒∠︒≤≤转动点A 距离地面BD 的高度AE 为3m .(1)当起重臂AC 长度为20m ,张角127CAE ∠=︒,求云梯消防车最高点C 距离地面BD 的高度CF ;(2)已知该小区层高为2.7m ,若某居民家突发险情,请问该消防车有效救援能达到几层?请说明理由.(结果精确到0.1,参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75︒≈ 1.73≈)五、解答题(三)(本大题共2小题,每小题12分,共24分)22.综合与探究:如图,抛物线2y x bx c =-++与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,点A 的坐标是()10-,,点C 的坐标是()03,,点F 在对称轴上运动.(1)求抛物线的解析式及顶点D 的坐标;6(2)如图1,点D 关于y 轴的对称点是点E ,连接FE ,以EF 为边作等腰直角三角形EFG ,使EF FG =,90EFG ∠=︒,点G 恰好落在该抛物线上,求点F 的坐标;(3)点H 在抛物线上运动,请借助图2探究以点O ,B ,F ,H 为顶点的四边形是平行四边形,请直接写出点H 的坐标.23.定义:如果同一平面内的四个点在同一个圆上,则称这四个点共圆,简称“四点共圆”.我们学过了“圆的内接四边形的对角互补”这一定理,它的逆命题“对角互补的四边形四个顶点共圆”是证明“四点共圆”的一种常用方法.除此之外,我们还经常用“同旁张角相等”来证明“四点共圆”.如图1,在线段AB 同侧有两点C ,D .连接AD ,AC ,BC ,BD ,如果C D ∠=∠,那么A ,B ,C ,D “四点共圆”(1)如图2,已知四边形ABCD 中,对角线AC 、BD 相交于点P ,点E 在CB 的延长线上,下列条件:①12∠=∠;②24∠∠=:③5ADC ∠∠=:④PA PC PB PD ⋅=⋅.其中,能判定A ,B ,C ,D “四点共圆”的条件有___________:(2)如图3,直线6y x =+与x 轴交于点A ,与y 轴交于点B ,点C 在x 轴正半轴上,点D 在y 轴负半轴上,若A ,B ,C ,D “四点共圆”,且105ADC ∠=o ,求四边形ABCD 的面积;(3)如图4,已知ABC 是等腰三角形,AB AC =,点D 是线段BC 上的一个动点(点D 不与点B 重合,且BD CD <,连结AD ,作点C 关于AD 的对称点E ,连接EB 并延长交AD 的延长线于F ,连接AE ,DE .①求证:A ,D ,B ,E “四点共圆”;②若AB =AD AF ⋅的值是否会发生变化,若不变化,求出其值:若变化,请说明理由.。

广东省潮州市数学中考二模试卷

广东省潮州市数学中考二模试卷

广东省潮州市数学中考二模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2019·桥西模拟) 如图,数轴上点A、B、C、D表示的数中,表示互为相反数的两个点是()A . 点B和点CB . 点A和点CC . 点B和点DD . 点A和点D2. (2分)(2018·灌南模拟) 如图是由四个大小相同的正方体组合而成的几何体,其主视图是()A .B .C .D .3. (2分)下列图形是中心对称图形的是()A .B .C .D .4. (2分) (2019七上·安陆期中) 中国的陆地面积为,把9600000用科学记数法表示为()A .B .C .D .5. (2分)某校男子足球队的年龄分布情况如下表:年龄(岁)131415161718人数268321则这些队员年龄的众数和中位数分别是()A . 15,15B . 15,14C . 16,15D . 14,156. (2分)分式的值为零时,则x的值为()A . x=3B . x=﹣3C . x=±3D . 以上都不对7. (2分)(2020·江岸模拟) 下列事件不属于随机事件的是()A . 品学兼优的小涛在考试中取得满分B . 太阳从西边升起C . 掷一枚骰子得到的点数为6D . 小王在抽奖活动中获得一等奖8. (2分) (2019七下·新吴期中) 如图,AB//CD,直线l 分别交 AB,CD 于 E,F,∠1=56°,则∠2 的度数是()A . 56°B . 146°C . 134°D . 124°9. (2分)(2019·仁寿模拟) 如果不等式组的解集是x<2,那么m的取值范围是()A . m=2B . m>2C . m<2D . m≥210. (2分) (2019九上·无锡月考) 如图,护林员在离树8m的A处测得树顶B的仰角为45°,已知护林员的眼睛离地面的距离AC为1.6m,则树的高度BD为()A . 8mB . 9.6mC . (4 +1.6)mD . (8 +1.6)m二、填空题 (共6题;共6分)11. (1分) (2019七下·利辛期末) 下列各式① :② :③ ;④ :⑤中分子与分母没有公因式的分式是________.(填序号).12. (1分)(2017·佳木斯) 在一个不透明的袋子中装有除颜色外完全相同的3个白球、若干红球,从中随机摸取1个球,摸到红球的概率是,则这个袋子中有红球________个.13. (1分)点P(1,-2)关于x轴对称的点的坐标是________.14. (1分) (2016九上·孝南期中) 已知,关于x方程kx2+3x﹣1=0有实根,则实数k的取值范围是________.15. (1分)(2019·二道模拟) 如图,在平面直角坐标系中,直线y=x﹣1与函数(k>0,x>0)的图象交于点A,与x轴交于点B,与y轴交于点C.若点B为AC的中点,则k的值为________.16. (1分)(2020·南山模拟) 已知双曲线与直线交于A、B两点(点A在点B的左侧).如图所示,点P是第一象限内双曲线上一动点,BC⊥AP于C,交x轴于F,PA交y轴于E,则下列结论:① ;②AE=EF;③ ;④ .其中正确的是:________.(填序号)三、解答题 (共9题;共83分)17. (5分) (2019七下·老河口期中) 计算:(1)(2)18. (5分) (2018八上·云安期中) 如图在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E,DF⊥AC 于点F.求证:∠B=∠C.19. (5分) (2018九上·汝阳期末) 小明有3支水笔,分别为红色、蓝色、黑色;有2块橡皮,分别为白色、黑色.小明从中任意取出1支水笔和1块橡皮配套使用.试用树状图或表格列出所有可能的结果,并求取出红色水笔和白色橡皮配套的概率.20. (7分) (2019七上·福田期末) 某校最近发布了新的学生午休方案,为了了解学生方案的了解程度,小明和小颖一起对该学校的学生进行了抽样调査,小明将结果整理后绘制成条形统计图(如图)(A代表“完全清楚”,B代表“知道一些”,C代表,“完全不了解”):(1)这次抽样调查了________人;(2)小颖将调查结果绘制成扇形统计图,那么扇形统计图中C部分,对应的扇形的圆心角是多少度?(3)若该学校一共有1000名学生,则根据此次调查,“完全清楚”的学生大约有多少人?21. (10分) (2019九上·翁牛特旗期中) 惠农商场于今年五月份以每件30元的进价购进一批商品.当商品售价为40元时,五月份销售256件.六、七月该商品十分畅销.销售量持续走高.在售价不变的基础上,7月份的销售量达到400件.设六、七这两个月月平均增长率不变.(1)求六、七这两个月的月平均增长率;(2)从八月份起,商场采用降价促销的方式回馈顾客,经调查发现,该商品每降价0.5元,销售量增加5件,当商品降价多少元时,商场获利2640元?22. (10分) (2019九上·淮阴期末) 如图,AB是⊙O的直径,AC是⊙O的切线,切点为A,BC交⊙O于点D,点E是AC的中点.(1)试判断直线DE与⊙O的位置关系,并说明理由.(2)若⊙O半径为2,∠B=60°,求图中阴影部分的面积.23. (15分)(2020·长春模拟) 如图,在△ABC中,∠C=90°,AB=5,AC=4,点P从点C出发,沿C→A→C 以每秒1个单位的速度运动.点Q从点A出发,沿A→B→C以每秒1个单位的速度运动,点Q到达点C时,P、Q两点同时停止运动,点P不与点A、C重合时,以AP、AQ为邻边作 APRQ。

广东省潮州市中考数学二模试卷

广东省潮州市中考数学二模试卷

广东省潮州市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2019七上·准格尔旗期中) 据探测,月球表面白天阳光垂直照射的地方温度高达127℃,而夜晚温度可降低到零下183℃.根据以上数据推算,在月球上昼夜温差有()A . 56℃B . ﹣56℃C . 310℃D . ﹣310℃2. (2分)sin60°=()A .B .C .D .3. (2分) (2019七上·孝感月考) 对于恐龙灭绝的原因,科学界至今仍众说纷纭.其中一种说法是:“也许恐龙在6500 万年前并没有灭绝,而是演变成了新的物种.”数据6500 万写成科学记数法正确的是()A . 6.5×103B . 0.65×104C . 65×102D . 6.5×1074. (2分)(2018·北部湾模拟) 把图中阴影部分的小正方形移动一个,使它与其余四个阴影部分的正方形组成一个既是轴对称又是中心对称的新图形,这样的移法,正确的是()A . 6→3B . 7→16C . 7→8D . 6→155. (2分)若一个几何体的三视图都是正方形,则这个几何体是()A . 长方体B . 正方体C . 圆柱D . 圆锥6. (2分)估算的值在().A . 7和8之间B . 6和7之间C . 3和4之间D . 2和3之间7. (2分)化简的结果是()A . x-1B . x+1C . 1-xD . -x-18. (2分) (2020七下·邢台期末) 若方程组的解x,y满足,则k的取值范围是()A .B .C .D .9. (2分) (2020八下·柳州期末) 如图,菱形中,对角线交于点O,若,,则菱形的面积是()A . 12B . 24C . 10D . 4810. (2分) (2018九下·盐都模拟) 对于反比例函数 y=,下列说法正确的是()A . 图像分布在第二、四象限B . 图像过点(-6,-2)C . 图像与 y 轴的交点是(0,3)D . 当 x<0 时,y 随 x 的增大而减小11. (2分)如图,下列条件中,不能证明△ABC≌△DCB的是()A . AB=DC,AC=DBB . AB=DC,∠ABC=∠DCBC . BO=CO,∠A=∠DD . AB=DC,∠DBC=∠ACB12. (2分)(2018·玉林模拟) 如图,在直角坐标系中,等腰直角△ABO的O点是坐标原点,A的坐标是(﹣4,0),直角顶点B在第二象限,等腰直角△BCD的C点在y轴上移动,我们发现直角顶点D点随之在一条直线上移动,这条直线的解析式是()A . y=﹣2x+1B . y=﹣ x+2C . y=﹣3x﹣2D . y=﹣x+2二、填空题 (共6题;共7分)13. (1分)计算x2•x3的结果为________ .14. (1分)(x>0 , y>0)=________。

潮州市中考数学二模考试试卷

潮州市中考数学二模考试试卷

潮州市中考数学二模考试试卷姓名:________ 班级:________ 成绩:________一、选择题(本大题共12个小题,每小题选对4分。

) (共11题;共44分)1. (4分) (2019七上·南宁月考) 在2,-2,8,6这四个数中,互为相反数的是()A . -2与2B . 2与8 .-2与6 D.6与82. (4分) (2018八上·孝感月考) 下列运算正确的是()A . -2(a+b)=-2a+2bB . (2b2)3=8b5C . 3a2•2a3=6a5D . a6-a4=a23. (4分) (2019八上·扬州月考) 下列图形中,是轴对称图形的是()A .B .C .D .4. (4分)用科学记数法表示927 000正确的是()A . 9.27×106B . 9.27×105C . 9.27×104D . 927×1035. (4分)(2018·聊城) 如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC.若∠A=60°,∠ADC=85°,则∠C的度数是()A . 25°B . 27.5°C . 30°D . 35°6. (4分)(2020·绍兴模拟) 在学校的体育训练中,小杰投实心球的7次成绩就如统计图所示,则这7次成绩的中位数和众数分别是()A . 9.7m,9.8mB . 9.7m,9.7mC . 9.8m,9.9mD . 9.8m,9.8m7. (4分)下列说法中①一个角的两边分别垂直于另一个角的两边,则这两个角相等②数据5,2,7,1,2,4的中位数是3,众数是2③等腰梯形既是中心对称图形,又是轴对称图形④Rt△ABC中,∠C=90°,两直角边a,b分别是方程x2-7x+7=0的两个根,则AB边上的中线长为。

2024年中考数学二模试卷(广州卷)(全解全析)

2024年中考数学二模试卷(广州卷)(全解全析)

2024年中考第二次模拟考试(广卷)数学·全解全析一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.若一个数与它的相反数在数轴上对应的点之间的距离为4,则这个数是()A.-2B.0C.±2D.±4【答案】C【分析】根据相反数的性质,结合数轴确定出所求即可.【详解】解:若一个数与它的相反数在数轴上对应点之间的距离为4,则这个数是±2,故选:C.【点睛】此题考查了数轴,以及相反数,熟练掌握相反数的性质是解本题的关键.2.一个几何体的三视图如图所示,则这个几何体是()A.B.C.D.【答案】D【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行解答即可.【详解】解:根据主视图和左视图为矩形可判断出该几何体是柱体,根据俯视图是两个矩形可判断出该几何体为.故选:D .【点睛】本题考查由三视图想象立体图形.做这类题时要借助三种视图表示物体的特点,从主视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状,综合分析,合理猜想,结合生活经验描绘出草图后,再检验是否符合题意.3.如图,ABC 内接于⊙O ,30A ∠=︒,则BOC ∠的度数为()A .30︒B .60︒C .75°D .120°4.下列运算结果正确的是()A .347a a a +=B .3332a a a ⋅=C .339236a a a ⋅=D .()362-a a =-【答案】D【分析】依次根据合并同类项,同底数幂的乘法(m n mn a a a ⋅=),单项式乘单项式,幂的乘方公式(()m n mn a a =)对各选项判断即可.【详解】A .3a 与4a 不是同类项不能合并,故该选项错误;B .33336a a a a +⋅==,故该选项错误;C .633236a a a ⋅=,故该选项错误;D .()362-a a =-,故该选项正确.故选:D .【点睛】本题考查合并同类项、幂的相关计算和单项式乘单项式.解题的关键是掌握幂的乘方、合并同类项法则、同底数幂的乘法及单项式乘单项式的运算法则.5.一个不等式组12322x x x x-⎧<⎪⎨⎪-≥⎩,那么它的解集在数轴上表示正确的是()A.B.C.D .【答案】B【分析】先求出每个不等式的解集,后把解集表示到数轴上即可.【详解】解:12322 x x x x -⎧<⎪⎨⎪-≥⎩①②,解不等式①,得:1x >-,解不等式②,得:2x ≥,∴该不等式组的解集为2x ≥,其解集在数轴上表示如下:故选:B .【点睛】本题考查了一元一次不等式组的解法,解集的数轴表示,熟练求得不等式组的解集是解题的关键.6.如果当0x >时,反比例函数(0)y k x=≠的函数值随x 的增大而增大,那么一次函数123y kx k =-的图象经过()A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限【答案】B【分析】本题考查了一次函数的图象性质:y kx b =+与y 轴交于()0,b ,当0b >时,()0,b 在y 轴的正半轴上,直线与y 轴交于正半轴;当0b <时,()0,b 在y 轴的负半轴,直线与y 轴交于负半轴.①0,0k b y kx b >>⇔=+的图象在一、二、三象限;②0,0k b y kx b ><⇔=+的图象在一、三、四象限;③0,0k b y kx b <>⇔=+的图象在一、二、四象限;④0,0k b y kx b <<⇔=+的图象在二、三、四象限.反比例函数的图7.某班进行演讲比赛,其中6人的成绩如下:9.4,9.0,9.6,9.6,9.3,9.5(单位:分),则下列说法不正确的是()A.这组数据的众数是9.6分B.这组数据的方差是13 300C.这组数据的平均数是9.4分D.这组数据的中位数是9.5分8.如图,在坡角为30°的斜坡上要栽两棵树,要求它们之间的水平距离AC为9m,则这两棵树之间的坡面AB的长为()A .18mB .33mC .3mD .93m【答案】C【分析】AB 是Rt ABC △的斜边,这个直角三角形中,已知一边和一锐角,满足解直角三角形的条件,可求出AB 的长.【详解】解:如图,30BAC ∠=︒ ,90ACB ∠=︒,9AC =m ,∴AB =2BC ,∴222AC BC AB +=,即22294BC BC +=,解得:33BC =m ,∴63AB =m ,故选:C .【点睛】本题考查了坡度坡角问题,直角三角形的性质,勾股定理.应用问题尽管题型千变万化,但关键是设法化归为解直角三角形问题,必要时应添加辅助线,构造出直角三角形.9.课本习题:“A ,B 两种机器人都被用来搬运化工原料,A 型机器人比B 型机器人每小时多搬运30kg ,A 型机器人搬运900kg 所用时间与B 型机器人搬运600kg 所用时间相等,两种机器人每小时分别搬运多少化工原料?”下列四位同学列方程正确的是()①设A 型机器人每小时搬运x kg 化工原料,则:甲列的方程为:90060030x x =+;乙列的方程为:90060030x x =-②设A 型机器人搬运900kg 化工原料需要x 小时,则:丙列的方程为:90060030x x +=;丁列的方程为:60090030x x+=A .甲、丙B .甲、丁C .乙、丙D .乙、丁【答案】D【分析】分别从不同角度设未知数列出方程进行判断即可.【详解】解:设A 型机器人每小时搬运x kg 化工原料,则B 型机器人每小时搬运(x-30)kg10.已知关于x 的方程()21210---=k x 有实数根,则k 的取值范围为()A .2k ≥B .1k ≥-且12k ≠C .12k -≤≤且12k ≠D .12k -≤≤二、填空题(本大题共6个小题,每小题3分,共18分)11.5月5日,记者从襄阳市文化和旅游局获悉,五一长假期间,我市41家A 级景区全部开放,共接待游客约2270000人次.数据2270000用科学记数法表示为.【答案】62.2710⨯【分析】科学记数法的表现形式为10n a ⨯的形式,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正整数,当原数绝对值小于1时,n 是负整数.【详解】解:2270000用科学记数法表示为62.2710⨯,故答案为:62.2710⨯.【点睛】本题考查了科学记数法—表示较大的数,科学记数法的表现形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键是要正确确定a 的值以及n 的值.12.若二次函数2y x k =+的图像经过点()11,y -,()23,y ,则1y 2y (选填:﹥,﹤,=)【答案】<【分析】本题考查了二次函数的图象与性质,根据二次函数的对称轴和开口方向,判断所给点到对称轴的距离大小即可求解.【详解】解:∵二次函数2y x k =+的对称轴为直线0x =,且图象开口向上,又()011--=,303-=,13<,∴1y 2y <故答案为:<13.明德华兴中学自2021年下学期恢复高中办学后,街舞社按四个年级分A 、B 、C 、D 四个学习小组,小明同学根据各小组的成员人数绘制了条形统计图(1),小华同学绘制了扇形统计图(2),其中m =.【答案】72【分析】用360°乘以D 组的人数和总人数得出D 组所占的百分比即可得出答案.【详解】解:四个小组的总人数为:4+8+12+6=30(人),D 组的人数在扇形统计图中所对应的圆心角的度数为:14.若正方形的面积为36,则该正方形的对角线长为.15.如图,已知BD CD ,分别是ABC ∠和ACE ∠的平分线,连接AD ,46DAC ∠=︒,BDC ∠=.BD CD ,分别是ABC ∠和ACE ∠的平分线,DF BA ⊥,DH AC ⊥,DG BA ⊥,DF DG DH ∴==,DH AC DF BA ⊥⊥ ,,DF DH =,AD ∴平分CAF ∠,46DAC FAD ∴∠=∠=︒,180DAC FAD BAC ∠+∠+∠=︒ ,180464688BAC ∴∠=︒-︒-︒=︒,BD CD ,分别是ABC ∠和ACE ∠的平分线,12DCE ACE ∠=∠∴,12DBC ABC ∠=∠,DCE BDC DBC ACE ABC BAC ∠=∠+∠∠=∠+∠ ,,()1122BDC DBC ACE BAC ABC ∴∠+∠=∠=∠+∠,111222BDC ABC BAC ABC ∴∠+∠=∠+∠,11884422BDC BAC ∴∠=∠=⨯︒=︒,故答案为:44︒.【点睛】本题主要考查了角平分线的判定与性质,三角形外角的定义及性质,熟练掌握角平分线的判定与性质,三角形外角的定义及性质,添加适当的辅助线是解题的关键.16.如图,在Rt △ABC 中∠BAC =90°,点D 和点E 分别是AB ,AC 的中点,点F 和点G 分别在BA 和CA 的延长线上,若BC =10,GF =6,EF =4,则GD 的长为.【答案】35【分析】先利用三角形的中位线的性质求得线段152DE BC ==,然后在ADE ∆,AEF ∆,三、解答题(本大题共9小题,共72分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分4分)解方程:(21)2(21)x x x -=-.如图,点B 在线段AC 上,BD CE ∥,AB EC =,DB BC =.求证:AD EB =.【答案】见解析【分析】首先根据平行线的性质得到ABD C ∠=∠,然后证明出()SAS ABD ECB ≌ ,最后根据全等三角形的性质求解即可.【详解】证明:∵BD CE ∥,∴ABD C ∠=∠,∴在ABD △和ECB 中,AB CE ABD C DB BC =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABD ECB ≌ ,∴AD EB =.【点睛】本题考查的知识点是全等三角形的性质和判定,解题的关键是熟练的掌握全等三角形的判定.19.(本小题满分6分)如图,ABC 在平面直角坐标系中,其中点()3,2A --,点()4,1B -,点()1,3C -.(1)将ABC 向右平移4个单位得到111A B C △,在图中画出111A B C △,并写出点1A 的坐标;(2)求111A B C △的面积.(2)111A 1115323132515222B C S =⨯-⨯⨯-⨯⨯-⨯⨯=-△【点睛】本题考查作图-平移变换,三角形的面积等知识,解题的关键是掌握平移变换的性质学会用割补法求三角形的面积.20.(本小题满分6分)已知三个整式24x x +,44x +,2x .(1)从中选出两个进行加法运算,使所得整式可以因式分解,并进行因式分解;(2)从中选出两个分别作为分式的分子与分母,要求这个分式不是最简分式,并对这个分式进行约分.【答案】(1)见解析(2)见解析【分析】(1)先找出两个整式的和,再看看能否分解因式即可;(2)先找出两个整式分别作为分式的分子与分母,再看看能否约分即可【详解】(1)解:()2244(2)x x x ++=+或()()22242422x x x x x x x ++=+=+;(2)解:()222444x x x x x x x x+++==或()222444x x x x x x x x ==+++.【点睛】本题考查了最简分式,因式分解,约分等知识点,能熟记完全平方公式和能正确约分是解此题的关键.21.(本小题满分8分)小明和小亮是一对双胞胎,他们的爸爸买了两套不同品牌的运动服送给他们,小明和小亮都想先挑选.于是小明设计了如下游戏来决定谁先挑选.游戏规则是:在一个不透明的袋子里装有除数字以外其它均相同的4个小球,上面分别标有数字1,2,3,4.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为奇数,则小明先挑选;否则小亮先挑选.(1)用树状图或列表法求出小明先挑选的概率;(2)你认为这个游戏公平吗?请说明理由.【答案】(1)见解析,23;(2)不公平,见解析【分析】(1)用列表法表示所有可能出现的结果,进而求出相应的概率即可;(2)求出小明、小亮获胜的概率即可.【详解】(1)解:根据题意可列表或树状图如下:第一次第二次12341(1,2)(1,3)(1,4)2(2,1)(2,3)(2,4)3(3,1)(3,2)(3,4)4(4,1)(4,2)(4,3)从表可以看出所有可能结果共有12种,且每种结果发生的可能性相同,符合条件的结果有8种,金百超市经销某品牌童装,单价为每件50元时,每天销量为60件,当单价每件从50元降了20元时,一天销量为100件.设降x元时,一天的销量为y件.已知y是x的一次函数.(1)求y与x之间的关系式;(2)若某天销售童装80件,则该天童装的单价是多少?【答案】(1)y与x之间的关系式为y=2x+60(2)该天童装的单价是每件40元【分析】(1)根据题意先设出y与x的函数关系式y=kx+b,再根据题目中的数据,即可求出该函数的解析式;(2)将y=80代入(1)中函数关系式,求出相应的x的值即可.【详解】(1)因为y是x的一次函数.所以,设y与x的函数关系式为y=kx+b,由题意知,当x=0时,y=60;当x=20时,y=100,所以,60 20100bk b=⎧⎨+=⎩解之得:602 bk=⎧⎨=⎩所以y与x之间的关系式为y=2x+60;(2)当y=80时,由80=2x+60,解得x=10,所以50-10=40(元),所以该天童装的单价是每件40元.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,求出相应的函数关系式.23.(本小题满分10分)已知抛物线224y ax ax a =++-的顶点为点P ,与x 轴分别交于A 、B 两点(A 点在B 点的左侧),与y 轴交于点C(1)直接写出点P 的坐标为;(2)如图,若A 、B 两点在原点的两侧,且3OA OB =,四边形MNEF 为正方形,其中顶点E 、F 在x 轴上,M 、N 位于抛物线上,求点E 的坐标;(3)若线段2AB =,点Q 为反比例函数k y x=与抛物线224y ax ax a =++-在第一象限内的交点,设Q 的横坐标为m ,当13m <<时,求k 的取值范围.【答案】(1)()1,4P --;(2)()52,0E -;(3)12180k <<.【分析】(1)利用配方把解析式配成顶点式即可;(2)根据正方形的性质则可以得出EF EN =,再由抛物线点的特征列出一元二次方程,求解即可得出点E 坐标;(3)利用二次函数和反比例函数的增减性即可求解.【详解】(1)∵()222414y ax ax a a x =++-=+-,∴顶点()1,4P --,故答案为:()1,4--,【点睛】此题考查了二次函数的图象及其性质、反比例函数的性质,熟练运用二次函数与反比例函数的性质是解题的关键.24.(本小题满分12分)问题发现:(1)如图1,在ABC 中,AB BC =,90ABC D ∠=︒.为BC 的中点,以CD 为直角边,在BC 下方作等腰直角CDE ,其中90CDE ∠=︒.以BD 为直角边,在BC 上方作等腰直角BDG ,其中90BDG ∠=︒,AE 与BG 交于点F .求证:AF EF =.类比探究:(2)如图2,若将CDE 绕点C 顺时针旋转90︒,则()1中的结论是否仍然成立?请说明理由;拓展延伸:(3)如图3,在()2的条件下,再将等腰直角CDE 沿直线BC 向右平移k 个单位长度,得到'''C DE ,若AB a =,试求'AF FE 的值.(用含k ,a 的式子表示)【答案】(1)证明见解析(2)成立,理由见解析(3)'AF a FE k a=+【分析】(1)利用AAS 证明ABF △≌EGF △,可得结论;(2)连接EG ,BE ,首先利用SAS 证明DEG △≌DCB △,得GE BC =,DBC DGE ∠∠=,再利用AAS 证明ABF △≌EGF △,得AF EF =;(3)连接'E G ,由()2同理得''BC D ≌''GE D ,再说明ABF △∽'E GF ,得''AF AB a FE GE k a==+.【详解】(1)证明:由题意可得:点E 、D 、G 三点共线,且EG BC AB ==,AB EG ,由题意得,BD GD =,DE DC =,BDG CDE ∠∠=BDG BDE CDE BDE ∠∠∠∠∴-=-,GDE BDC ∠∠∴=,DEG ∴ ≌()DCB SAS ,GE BC ∴=,DBC DGE ∠∠=,AB BC EG ∴==,【点睛】本题是相似形综合题,主要考查了等腰直角三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质、旋转和平移的性质等知识点,熟练掌握旋转相似的基本模型是解题的关键.25.(本小题满分12分)问题探究:数学课上老师让同学们解决这样的一个问题:如图①,已知E 是BC 的中点,点A 在DE 上,且BAE CDE ∠=∠.求证:AB CD =.分析:证明两条线段相等,常用的方法是应用全等三角形或者等腰三角形的性质.本题中要证相等的两条线段不在同一个三角形中,所以考虑从全等三角形入手,而AB 与CD 所在的两个三角形不全等.因此,要证AB CD =,必须添加适当的辅助线构造全等三角形.以下是两位同学添加辅助线的方法.第一种辅助线做法:如图②,延长DE 到点F ,使DE EF =,连接BF ;第二种辅助线做法:如图③,作CG DE ⊥于点G ,BF DE ⊥交DE 延长线于点F .(1)请你任意选择其中一种对原题进行证明:方法总结:以上方法称之为“倍长中线”法,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线构造全等三角形来解决问题.(2)方法运用:如图④,AD 是ABC 的中线,BE 与AD 交于点F 且AE EF =.求证:BF AC =.【答案】(1)证明见解析;(2)证明见解析.【分析】(1)第一种辅助线做法:延长DE 到点F ,使DE EF =,连接BF .只要证明△BEF ≌△CED ,即可解决问题.第二种辅助线做法:作CG DE ⊥于点G ,BF DE ⊥交DE 延长线于点F ,先证明△BEF ≌△CEG ,再证明△ABF ≌△DCG 即可.(2)延长AD 到点A ˊ,使得DA ˊ=AD ,连接BA ˊ,只要证得△BDA ˊ≌△CDA 即可.【详解】(1)第一种辅助线做法:证明:如图1,延长DE 到点F ,使得DE =EF ,连接BF ,∵E 是BC 的中点∴BE =CE在△BEF 与△CED 中BE CE BEF CED DE FE =⎧⎪∠=∠⎨⎪=⎩∴△BEF ≌△CED (SAS )∴BF =CD ,∠F =∠CDE又∵∠BAE =∠CDE∴∠BAE =∠F∴BF =AB∴AB =CD第二种辅助线做法:证明:如图2,作CG ⊥DE 于点G ,BF ⊥DE 交DE 延长线于点E ;则∠F =∠CGE =∠CGD =90°,∵E 是BC 的中点,∴BE =CE在△BEF 与△CEG 中F CGE BEF CEG BE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BEF ≌△CEG (AAS )∴BF =CG ,在△ABF 与△DCG 中,BAE CDE F CGD BF CG ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABF ≌△DCG (AAS ),∴AB =CD .(2)如图3,延长AD 到点A ˊ,使得DA ˊ=AD ,连接BA ˊ,∵AD 是△ABC 的中线,∴BD =CD .在△BDA ˊ与△CDA 中BD CD BDA CDA DA DA =⎧⎪∠=∠⎨⎪=⎩ˊˊ,∴△BDA ˊ≌△CDA (SAS )∴BA ˊ=AC ,∠A ˊ=∠CAD ,又∵AE =EF ,∴∠CAD =∠EFA =∠BFA ˊ,∠Aˊ=∠BFAˊ∴BF =BA ˊ∴BF =AC .【点睛】本题考查全等三角形的判定和性质、等腰三角形的判定和性质、三角形的中线等知识,解题的关键是学会添加辅助线构造全等三角形解决问题,属于中考常考题型.。

2024年广东省潮州市中考数学模拟试卷+答案解析

2024年广东省潮州市中考数学模拟试卷+答案解析

2024年广东省潮州市中考数学模拟试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列图形具有稳定性的是()A.菱形B.三角形C.正方形D.圆形2.点关于x轴对称的点的坐标为()A. B. C. D.3.计算的结果是()A.20B.C.14D.4.若三角形的三边长分别是4、9、a,则a的取值可能是()A.3B.4C.5D.65.分式在实数范围内有意义,则x的取值范围是()A. B. C. D.6.分式可化简为()A. B.1 C. D.7.正方形是轴对称图形,它的对称轴共有()A.1条B.2条C.3条D.4条8.下列关于体育运动的图标是轴对称图形的为()A. B. C. D.9.下列计算正确的是()A. B. C. D.10.如图,在中,,,可直接利用“SSS”可以判定()A.≌B.≌C.≌D.≌11.方程的解为()A. B. C. D.12.如图,在中,分别以A,B为圆心,大于线段AB长度一半的长为半径作弧,相交于点D,E,连结DE,交BC于点若,的周长为10,则BC的长为()A.6B.7C.8D.9二、填空题:本题共4小题,每小题5分,共20分。

13.若是完全平方式,则数______.14.已知一个多边形的内角和为,则这个多边形是__________边形.15.把数用科学记数法表示为______.16.若,,则______.三、解答题:本题共4小题,共32分。

解答应写出文字说明,证明过程或演算步骤。

17.本小题8分因式分解:18.本小题8分如图1,在平面直角坐标系中,的顶点坐标分别为,,①请画出关于x轴对称的图形;②请写出点,的坐标:______,______.要在燃气管道m上建一个泵站P,分别向A,B两镇供气,泵站修在管道的什么地方可使所用输气管道最短?请在图2中画出P点位置,保留作图痕迹,不用写作法.19.本小题8分如图,在中,D为AB上一点,E为AC中点,连接DE并延长至点F,使得,连求证:;若,连接BE,BE平分,CA平分,求的度数.20.本小题8分某校从商场购进A、B两种品牌的营养早餐牛奶,购买A品牌牛奶花费了1500元,购买B品牌牛奶花费了1000元,且购买A品牌牛奶的数量是购买B品牌牛奶数量的2倍.已知购买一公斤B品牌牛奶比购买一公斤A品牌牛奶多花20元.问购买一公斤A品牌、一公斤B品牌的牛奶各需多少元?该校决定再次购进A、B两种品牌牛奶共20公斤,恰逢商场对两种品牌牛奶的售价进行调整,A品牌牛奶售价比第一次购买时提高了,B品牌牛奶按第一次购买时售价的9折出售.如果该校此次购买A、B两种品牌牛奶的总费用不超过1350元,那么该校此次最多可购买多少公斤B品牌牛奶?答案和解析1.【答案】B【解析】解:由题意可得,三角形具有稳定性,菱形,正方形,圆形不具有稳定性,故选:根据三角形具有稳定性直接判断即可得到答案.本题考查三角形的稳定性,关键是三角形性质的应用.2.【答案】A【解析】【分析】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的符号是解题关键.直接利用关于x轴对称点的性质分析得出答案.【解答】解:点关于x轴对称的点的坐标为:故选3.【答案】C【解析】解:原式,故选:C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东省潮州市中考数学二模考试试卷
姓名:________ 班级:________ 成绩:________
一、选择题(共8小题) (共8题;共16分)
1. (2分) (2018九上·徐闻期中) 在等边三角形、平行四边形、矩形、正五边形中,既是轴对称图形又是中心对称图形的是()
A . 等边三角形
B . 平行四边形
C . 矩形
D . 正五边形
2. (2分) 2012年武汉市约有71000个初中毕业生,其中71000这个数用科学计数法表示为
A . 71×103 .
B . 7.1×105 .
C . 7.1×104 .
D . 0.71×105 .
3. (2分)(2019·紫金模拟) 如图,下图经过折叠不能围成一个正方体是()
A .
B .
C .
D .
4. (2分) (2020八上·奉化期末) 实数a,b,c满足a>b且ac<bc,它们在数轴上的对应点的位置可以是()
A .
B .
C .
D .
5. (2分)下列说法正确的个数()
在同一平面内:①两条射线不相交就平行;②过一点有且只有一条直线与已知直线垂直;③有公共顶点且相等的角是对顶角;④直线外一点到已知直线的垂线段叫做这点到直线的距离;⑤过一点有且只有一条直线与已知直线平行.
A . 0个
B . 1个
C . 2个
D . 3个
6. (2分) (2018九上·西湖期末) 已知,则的值为()
A .
B .
C .
D .
7. (2分) (2018七下·平定期末) 某中学开展“阳光体育一小时”活动,根据学校实际情况,决定开设①踢毽子;②篮球;③跳绳;④乒乓球四种运动项目.为了解学生最喜欢哪一种运动项目,随机抽取了一部分学生进行调查,并将调查结果绘制成如下不完整的两个统计图,依据图中信息,得出下列结论中正确的是()
A . 本次共调查300名学生
B . 扇形统计图中,喜欢篮球项目的学生部分所对应的扇形圆心角大小为45°
C . 喜欢跳绳项日的学生人数为60人
D . 喜欢篮球项目的学生人数为30人
8. (2分)已知函数y=(m+1)xm2−5是反比例函数,且图象在第二、四象限内,则m的值是()
A . 2
B . -2
C . ±2
D . -
二、填空题(共8小题) (共8题;共8分)
9. (1分)(2019·海南模拟) 函数的自变量x的取值范围是________.
10. (1分)(2017·碑林模拟) 一个七边形的外角和是________.
11. (1分)(2011·河南) 点A(2,y1)、B(3,y2)是二次函数y=x2﹣2x+1的图象上两点,则y1与y2的大小关系为y1________y2(填“>”、“<”、“=”).
12. (1分) (2019七上·道里期末) 现在时针与分针成平角,再过________分钟时针与分针首次成直角.
13. (1分) (2019八上·孝感月考) 如图,在△ABC中,∠C=90°,∠CAB=60°,按以下步骤作图:
①分别以A,B为圆心,以大于AB的长为半径做弧,两弧相交于点P和Q.
②作直线PQ交AB于 D,交BC于点E,连接AE.若CE=4,则AE=________.
14. (1分)如图,AD为△ABC中线,点G为重心,若AD=6,则AG=________ .
15. (1分)(2017·随州) 在一条笔直的公路上有A、B、C三地,C地位于A、B两地之间,甲车从A地沿这条公路匀速驶向C地,乙车从B地沿这条公路匀速驶向A地,在甲车出发至甲车到达C地的过程中,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图所示.下列结论:①甲车出发2h时,两车相遇;②乙车出发1.5h时,两车相距170km;③乙车出发2 h时,两车相遇;④甲车到达C地时,两车相距40km.其中正确的是________(填写所有正确结论的序号).
16. (1分) (2018七上·金华期中) 水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2;1,用两个相同的管子在容器的5cm高度处连通(即管子端离容器底5cm),现三个容器中,只有甲中有水,水位高1cm,如图所示,若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升0.5cm,则开始注入________分钟的水量后,甲与乙的水位高度之差是0.5cm.
三、解答题(共12小题) (共12题;共110分)
17. (5分)(2018·成华模拟)
(1)计算:
(2)解不等式组,并写出该不等式组的最大整数解.
18. (5分)求不等式组的整数解.
19. (6分) (2020七上·西湖期末) 如图,点C是的边OB上的一点,按下列要求画图并回答问题.
(1)①过点C画OA的垂线,交OA与点D;
②过点C画OB的垂线,交OA与点E;
(2)比较线段CD,CE,OE的大小,并用“<”连接.
20. (10分) (2018九上·郴州月考) 已知关于的一元二次方程方程有两个不相等的实数根.
(1)求的取值范围;
(2)当取最大整数时,不解方程直接写出方程的两根之和与两根之积.
21. (10分)(2017·赤峰模拟) 如图,已知函数y= (x>0)的图象经过点A、B,点B的坐标为(2,2).过点A作AC⊥x轴,垂足为C,过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数y=ax+b的图象经过点A、D,与x轴的负半轴交于点E
(1)若AC= OD,求a、b的值;
(2)若BC∥AE,求BC的长.
22. (10分)(2017·陕西模拟) 如图,C为以AB为直径的⊙O上一点,AD和过点C的切线互相垂直,垂足为点D.
(1)求证:AC平分∠BAD;
(2)若CD=3,AC=5,求⊙O的半径长.
23. (15分) (2017八下·下陆期中) 如图,四边形ABCD中,∠B=90°,AB=BC=3 ,CD=8,AD=10.
(1)求∠BCD的度数.
(2)求四边形ABCD的面积.
24. (11分)(2011·淮安) 如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P在AB上,AP=2,点E、F 同时从点P出发,分别沿PA、PB以每秒1个单位长度的速度向点A、B匀速运动,点E到达点A后立刻以原速度沿
AB向点B运动,点F运动到点B时停止,点E也随之停止.在点E、F运动过程中,以EF为边作正方形EFGH,使它与△ABC在线段AB的同侧.设E、F运动的时间为t/秒(t>0),正方形EFGH与△ABC重叠部分面积为S.
(1)当t=1时,正方形EFGH的边长是________.当t=3时,正方形EFGH的边长是________.
(2)当0<t≤2时,求S与t的函数关系式;
(3)直接答出:在整个运动过程中,当t为何值时,S最大?最大面积是多少?
25. (2分)(2016·乐山) 甲、乙两名射击运动员中进行射击比赛,两人在相同条件下各射击10次,射击的成绩如图所示.
根据图中信息,回答下列问题:
(1)甲的平均数是________,乙的中位数是________;
(2)分别计算甲、乙成绩的方差,并从计算结果来分析,你认为哪位运动员的射击成绩更稳定?
26. (10分) (2017九上·重庆期中) 如图,抛物线y=ax2+bx﹣2与x轴交于A、B两点,与y轴交于点C,已知A(﹣1,0),且tan∠ABC= .
(1)求抛物线的解折式.
(2)在直线BC下方抛物线上一点P,当四边形OCPB的面积取得最大值时,求此时点P的坐标.
(3)在y轴的左侧抛物线上有一点M,满足∠MBA=∠ABC,若点N是直线BC上一点,当△MNB为等腰三角形时,求点N的坐标.
27. (15分)如图①,在Rt△ABC中,∠C=90°.将△ABC绕点C逆时针旋转得到△A′B′C,旋转角为α,且0°<α<180°.在旋转过程中,点B′可以恰好落在AB的中点处,如图②.
(1)求∠A的度数;
(2)当点C到AA′的距离等于AC的一半时,求α的度数.
28. (11分)(2017·莱芜) 已知AB是⊙O的直径,C是圆上一点,∠BAC的平分线交⊙O于点D,过D作DE⊥AC 交AC的延长线于点E,如图①.
(1)求证:DE是⊙O的切线;
(2)若AB=10,AC=6,求BD的长;
(3)如图②,若F是OA中点,FG⊥OA交直线DE于点G,若FG= ,tan∠BAD= ,求⊙O的半径.
参考答案一、选择题(共8小题) (共8题;共16分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
二、填空题(共8小题) (共8题;共8分)
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
三、解答题(共12小题) (共12题;共110分)
17-1、
17-2、
18-1、
19-1、19-2、
20-1、20-2、
21-1、
21-2、22-1、
22-2、
23-1、23-2、24-1、
24-3、
25-1、
25-2、
26-1、
26-2、
26-3、
27-1、
27-2、28-1、
28-2、
28-3、。

相关文档
最新文档