22.1 二次函数的图象和性质(第4课时)
人教版九上数学22.1.4二次函数y=ax2+bx+c的图象和性质
二次函数c bx ax y ++=2的图象和性质要点链接★二次函数y=ax ²+bx+c 可配方为:224()24b ac b y a x a a-=++,其顶点坐标为( , ),对称轴直线是 . ★求抛物线顶点和对称轴的方法:(1)直接代入顶点公式24(,)24b ac b a a --,对称轴公式2bx a=- (2)将函数y=ax ²+bx+c 配方成y=a (x-h )²+k 的形式得到顶点坐标和对称轴. ★a 、b 、c 与图象的关系:1.a 正负决定抛物线的 :a >0时, ;a <0时, .|a |决定抛物线的开口大小:|a |越大,则 ,|a |越小,则 .2.a 、b 同时决定 :①当b =0时,对称轴是 ;②左同右异,即当a 、b 同号时,对称轴在 ;当a 、b 异号时,对称轴在 .3.c 决定抛物线与y 轴 :①当c >0时,抛物线与y 轴交点在 ;②当c <0时,抛物线与y 轴交点在 ;③当c =0时,抛物线经过 . 题型一 直接利用c bx ax y ++=2获取图象信息例1 下列对于二次函数x x y -=2的图象描述正确的是( )A.开口向下B.对称轴是y 轴C.经过原点D.在对称轴右侧部分是下降的 【变式训练1】对于二次函数12842--=x x y 下列说法正确的是( ) A.图象开口向下 B.顶点坐标是(-1,3) C.当0<x 时,y 随x 的增大而减小 D.图象的对称轴是直线1-=x题型二 确定抛物线c bx ax y ++=2的解析式 角度a 利用平移规律确定抛物线的解析式例2 把抛物线322+-=x x y 沿x 轴向右平移2个单位长度,得到抛物线的解析式为 角度b 利用待定系数法确定抛物线的解析式例3 抛物线c bx ax y ++=2经过A (-2,4),B (6,4)两点,且顶点在x 轴上,则抛物线的解析式为 .【变式训练2】若函数k h x a y +-=2)(的图象经过原点,最小值为-8且形状与抛物线3222+--=x x y 相同,则此函数的解析式为 ;题型三 根据抛物线c bx ax y ++=2确定a 、b 、c 的关系例4 已知二次函数y=ax ²+bx+c (a≠0)的图象如图所示,有下列结论:①0<abc ;②c a b -<;③b c 32<;④)1)((≠+<+m b am m b a .其中正确的结论是 (只填序号)例4图 变式3图【变式训练3】已知二次函数y=ax ²+bx+c (a ≠0)的图象如图,现有下列结论:①abc >0;②0<++c b a ;③b =2a ;④a+b >0.其中正确的结论是 (只填序号). 题型四 二次函数y=ax ²+bx+c 与一次函数的双图象问题例5 一次函数y=ax+b (a ≠0)与二次函数y=ax ²+bx+c 在同一坐标系中的图象可能是( )题型五 二次函数y=ax ²+bx+c 的实际应用例6 某小说中有这样一个情节,科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如下表):由这些数据,科学家推测出植物每天高度增长量y 是温度x 的二次函数,有下列说法: ①该植物在0℃时,每天高度增长量最大;②该植物在-6℃时,每天高度增长量仍能保持在20mm 以上;③该植物与大多数植物不同,6℃以上的环境下高度几乎不增长,其中正确的有( )A.0个B.1个C.2个D.3个【变式训练4】某学校开展了多场足球比赛,在某场比赛中,一个足球被从地面上向上踢出,它距离地面的高度h (m )可以用公式t v t h 025+-=表示,其中)(s t 表示足球被踢出后经过的时间,)/(0s m v 是足球被踢出时的速度,如果要求足球的最大高度达到20m ,那么足球被踢出时的速度应该达到( )A.5m/sB.10m/sC.20m/sD.40m/s题型六 二次函数的动态问题例7 如图,已知关于x 的二次函数y=x ²+bx+c 的图象与x 轴交于点A (1,0)和点B ,与y 轴交于点C (0,3),抛物线的对称轴与x 轴交于点D.(1)求二次函数的解析式.(2)在y 轴上是否存在一点P ,使△PBC 为等腰三角形?若存在,请求出点P 的坐标.(3)有一个动点M 从点A 出发,以每秒1个单位长度的速度在AB 上向点B 运动,另一个点N 从点D 与点M 同时出发,以每秒2个单位长度的速度在抛物线的对称轴上运动,当点M 到达点B 时,点M 、N 同时停止运动,问点M ,N 运动到何处时,△MNB 的面积最大,试求出最大面积.【变式训练5】如图,已知抛物线y=x²+bx+c过点A(1,0),C(0,-3).(1)求此抛物线对应的函数解析式,并确定其顶点.(2)在抛物线上存在一动点P,使△ABP的面积为10,请求出点P的坐标.中考演练考法一 二次函数c bx ax y ++=2的图象和性质例1.(2018成都)关于二次函数1422-+=x x y ,下列说法正确的是( ) A.图象与y 轴的交点坐标为(0,1) B.图象的对称轴在y 轴的右侧 C.当0<x 时,y 的值随x 值的增大而减小 D.y 的最小值为-3【变式训练1】(2018攀枝花)抛物线222+-=x x y 的顶点坐标为( ) A.(1,1) B.(-1,1) C.(1,3) D.(-1,3) 考法二 求二次函数的解析式 例2.(2018宁波)已知抛物线c bx x y ++-=221经过点)23,0(),0,1(. (1)求该抛物线的函数解析式; (2)将抛物线c bx x y ++-=221平移,使其顶点恰好落在原点,写出一种平移的方法及平移后的函数解析式.【变式训练2】(2018乌鲁木齐)把抛物线3422+-=x x y 向左平移1个单位长度,得到抛物线的解析式为 .【变式训练3】(2018湖州)已知抛物线)0(32≠-+=a bx ax y 经过点)0,3(),0,1(-,求b a ,的值考法三 抛物线c bx ax y ++=2与一次函数的双图象问题例3.(2017阜新)二次函数c bx ax y ++=2的图象如图所示,则一次函数c ax y +=的图象可能是( )【变式训练4】(2018德州)函数122+-=x ax y 和a ax y -=(a 是常数且0≠a )在同一平面直角坐标系中的图象可能是( )考法四 二次函数c bx ax y ++=2的图象与c b a ,,的关系例4.(2018日照)已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,有下列结论:①0<abc ;②02<-b a ;③22)(c a b +>;④若点),1(),,3(21y y -都在抛物线上,则有21y y >.其中正确的结论有( )A.4个B.3个C.2个D.1个例4图 变式5图【变式训练5】(2017遵义)如图,抛物线c bx ax y ++=2经过点(-1,0),对称轴为l ,有下列结论:①0>abc ;②0=+-c b a ;③02<+c a ;④0<+b a .其中,所有正确的结论是( )A.①③B.②③C.②④D.②③④考法五 二次函数的综合应用例5.(2018宁夏)如图,抛物线c bx x y ++-=231经过点)0,33(A 和点B (0,3),且这个抛物线的对称轴为直线l ,顶点为C.(1)求抛物线的解析式;(2)连接AB 、AC 、BC ,求△ABC 的面积.【变式训练6】(2018南通)在平面直角坐标系xOy 中,已知抛物线k k x k x y 25)1(222-+--=(k 为常数).(1)若抛物线经过点),1(2k ,求k 的值;(2)若抛物线经过点),2(1y k 和点),2(2y ,且21y y >,求k 的取值范围;(3)若将抛物线向右平移1个单位长度得到新的抛物线,当1≤x ≤2时,新抛物线对应的函数有最小值23-,求k 的值.课后作业1.用配方法将二次函数982--=x x y 化为k h x a y +-=2)(的形式为( )A.7)4(2+-=x yB.25)4(2--=x yC.7)4(2++=x yD.25)4(2-+=x y2.如图,二次函数bx ax y +=2的图象开口向下,且经过第三象限的点P.若点P 的横坐标为-1,则一次函数b x b a y +-=)(的图象大致是( )3.如图,抛物线c bx ax y ++=2的对称轴为直线x=1,且过点(3,0),有下列结论:①0>abc ;②a-b+c <0;③3a-c >0.其中正确结论的个数有( ) A.1 B.2 C.3 D.44.二次函数342++=x x y 的图象是由c bx ax y ++=2的图象向右平移1个单位长度,再向下平移2个单位长度得到的,则=a ,=b ,=c . 5.已知抛物线y=ax ²+bx+c 的图象如图,则|a-b+c |+|2a+b |= .6.已知如图,抛物线y=ax ²+bx+c 经过A (1,0),B (5,0),C (0,5)三点.(1)求抛物线的解析式;(2)求抛物线的顶点坐标、对称轴;(3)若过点C 的直线与抛物线交于点E (4,m ),连接CB ,BE ,并求出△CBE 的面积.人教版九上数学22.1.4二次函数y=ax2+bx+c的图象和性质7.如图,已知抛物线过点A(4,0),B(-2,0),C(0,-4).(1)求抛物线的解析式;(2)如图,点M是抛物线AC上段上的一个动点,当图中阴影部分的面积最小时,求点M的坐标.11 / 11。
2024年人教版九年级数学上册教案及教学反思全册第22章22.1.2 二次函数的图象和性质教案
22.1二次函数的图象和性质22.1.2二次函数y=ax2的图象和性质一、教学目标【知识与技能】1.会用描点法画二次函数y=ax2的图象,理解抛物线的有关概念;2.掌握二次函数y=ax2的性质,能确定二次函数y=ax2的表达式.【过程与方法】通过画出简单的二次函数探索出二次函数y=ax2的性质及图象特征.【情感态度与价值观】使学生经历探索二次函数y=ax2图象性质的过程,培养学生观察、思考、归纳的良好思维习惯.二、课型新授课三、课时1课时四、教学重难点【教学重点】1.二次函数y=ax2的图象的画法及性质;2.能确定二次函数y=ax2的解析式.【教学难点】1.用描点法画二次函数y=ax2的图象,探索其性质;2.能依据二次函数y=ax2的有关性质解决问题.五、课前准备课件、三角尺、铅笔等.六、教学过程(一)导入新课1.你们喜欢打篮球吗?(出示课件2)2.你们知道投篮时,篮球运动的路线是什么曲线?怎样计算篮球达到最高点时的高度?学生自主思考.(二)探索新知探究一:二次函数y=ax2的图象的画法出示课件4:画出二次函数y=x2的图象.学生分组画y=x2的图象,教师巡视,对于不正确的给予指导.⑴列表:在y=x2中自变量x可以是任意实数,列表表示几组对应值:⑵描点:根据表中x,y的数值在坐标平面中描点(x,y)(出示课件5)⑶连线:如图,再用平滑曲线顺次连接各点,就得到y=x2的图象.当取更多个点时,函数y=x 2的图象如下:(出示课件6)教师归纳:二次函数y=x 2的图象形如物体抛射时所经过的路线,我们把它叫做抛物线.这条抛物线关于y 轴对称,y 轴就是它的对称轴.对称轴与抛物线的交点叫做抛物线的顶点.出示课件7:画出二次函数y=-x 2的图象.学生分组画y=-x 2的图象,教师巡视,对于不正确的给予指导.⑴列表:⑵描点:⑶连线:x …-3-2-10123…y =-x 2……探究二:二次函数y=ax2的图象性质出示课件8:教师问:根据你以往学习函数图象性质的经验,说说二次函数y=x2的图象有哪些性质,并与同伴交流.学生交流后,师生共同总结如下:1.y=x2的图象是一条抛物线;2.图象开口向上;3.图象关于y轴对称;4.顶点(0,0);5.图象有最低点.出示课件9:教师问:说说二次函数y=-x2的图象有哪些性质,并与同伴交流.学生交流后,师生共同总结如下:1.y=-x2的图象是一条抛物线;2.图象开口向下;3.图象关于y轴对称;4.顶点(0,0);5.图象有最高点.教师归纳:(出示课件10)二次函数y=ax2的图象性质:1.顶点都在原点(0,0);2.图像关于y轴对称;3.当a>0时,开口向上;当a<0时,开口向下.师生共同探究:观察下列图象,抛物线y=ax2与y=-ax2(a>0)的关系是什么?(出示课件11)教师强调:二次项系数互为相反数,开口相反,大小相同,它们关于x轴对称.探究三:二次函数y=ax2的性质出示课件12:观察图形,y随x的变化如何变化?教师归纳:(出示课件13)对于抛物线y=ax2(a>0),当x>0时,y随x取值的增大而增大;当x<0时,y随x取值的增大而减小.师生共同探究:观察图形,y随x的变化如何变化?(出示课件14)教师归纳:(出示课件15)对于抛物线y =ax 2(a<0)当x>0时,y 随x 取值的增大而减小;当x<0时,y 随x 取值的增大而增大.出示课件16:在同一直角坐标系中,画出函数221,22y x y x ==的图象.将全班同学进行适当分组,分别完成两个图象的画图,并结合图象给予恰当的描述.解:分别填表,再画出它们的图象,如图:x ...-4-3-2-101234 (212)y x =······x ···-2-1.5-1-0.500.51 1.52···22y x =······出示课件17:师生共同探究:二次函数2221,,22y x y x y x ===的图象开口大小与a 的大小有什么关系?教师归纳:当a>0时,a 越大,开口越小.出示课件18:在同一直角坐标系中,画出函数221,22y x y x =-=-的图象.将全班同学进行适当分组,分别完成两个图象的画图,并结合图象给予恰当的描述.解:分别填表,再画出它们的图象,如图:x ···-4-3-2-101234···212y x =-······x ···-2-1.5-1-0.500.51 1.52···22y x =-······出示课件19:师生共同探究:二次函数2221,,22y x y x y x =-=-=-的图象开口大小与a 的大小有什么关系?教师归纳:当a<0时,a 越小(即a 的绝对值越大),开口越小.对于抛物线y=ax 2,|a|越大,抛物线的开口越小.师生共同完善认知:(出示课件20)出示课件21:填一填:(1)函数y=4x2的图象的开口,对称轴是,顶点是;(2)函数y=-3x2的图象的开口,对称轴是,顶点是,顶点是抛物线的最点;⑶函数32的图象的开口,对称轴是,顶点是,顶点是抛物线的最点;⑷函数y=-0.2x2的图象的开口,对称轴是,顶点是.学生独立思考后,口答如下:⑴向上;y轴;(0,0)⑵向下;y轴;(0,0);高⑶向上;y轴;(0,0);低⑷向下;y轴;(0,0)出示课件22:例已知y=(m+1)x m2+m是二次函数,且其图象开口向上,求m的值和函数解析式.学生自主思考后,师生共同解答如下:解:依题意有:解②,得m 1=-2,m 2=1.由①,得m>-1.因此m=1.此时,二次函数为y=2x 2.出示课件23:已知24(2)kk y k x +-=+是二次函数,且当x>0时,y 随x 增大而增大,则k=.学生独立思考后,自主解答如下:解:24(2)k k y k x+-=+是二次函数,即二次项的系数不为0,x 的指数等于2.又因当x>0时,y 随x 增大而增大,即说明二次项的系数大于0.因此,24220k k k ⎧+-=⎨+⎩>,解得k=2.探究四:二次函数y =ax 2的实际应用出示课件24:师生共同认知:二次函数y=ax 2是刻画客观世界许多现象的一种重要模型.出示课件25:例已知正方形的周长为Ccm,面积为Scm 2,(1)求S 与C 之间的二次函数关系式;(2)画出它的图象;(3)根据图象,求出当S=1cm 2时,正方形的周长;(4)根据图象,求出C 取何值时,S≥4cm 2.学生独立思考后,师生共同解答.(出示课件26)解:(1)∵正方形的周长为Ccm,∴正方形的边长为4Ccm,∴S 与C 之间的关系式为S=216C ;(2)作图如图:(3)当S=1cm 2时,C 2=16,即C=4cm;(4)若S≥4cm 2,即216C ≥4,解得C≥8,或c≤-8(舍去),因此C ≥8cm.出示课件27:已知二次函数y=2x 2.(1)若点(-2,y 1)与(3,y 2)在此二次函数的图象上,则y 1_____y 2;(填“>”“=”或“<”);(2)如图,此二次函数的图象经过点(0,0),长方形ABCD 的顶点A、B 在x 轴上,C、D 恰好在二次函数的图象上,B 点的横坐标为2,求图中阴影部分的面积之和.学生独立思考后,自主解答:(出示课件28)(2)解:∵二次函数y=2x2的图象经过点C,∴当x=2时,y=2×22=8.∵抛物线和长方形都是轴对称图形,且y轴为它们的对称轴,∴OA=OB,∴在长方形ABCD内,左边阴影部分面积等于右边空白部分面积,∴S阴影部分面积之和=2×8=16.教师总结如下:(出示课件29)二次函数y=ax2的图象关于y轴对称,因此左右两部分折叠可以重合,在二次函数比较大小中,我们根据图象中点具有的对称性转变到同一变化区域中(全部为升或全部为降),根据图象中函数值高低去比较;对于求不规则的图形面积,采用等面积割补法,将不规则图形转化为规则图形以方便求解.(三)课堂练习(出示课件30-34)1.已知抛物线y=ax2(a>0)过点A(-2,y1),B(1,y2)两点,则下列关系式一定正确的是()A.y1>0>y2B.y2>0>y1C.y1>y2>0D.y2>y1>02.函数y=2x2的图象的开口,对称轴,顶点是;在对称轴的左侧,y随x的增大而,在对称轴的右侧,y 随x 的增大而.3.函数y=-3x 2的图象的开口,对称轴,顶点是;在对称轴的左侧,y 随x 的增大而,在对称轴的右侧,y 随x 的增大而.4.如图,观察函数y=(k-1)x 2的图象,则k 的取值范围是.5.说出下列抛物线的开口方向、对称轴和顶点:6.已知二次函数y=x 2,若x≥m 时,y 最小值为0,求实数m 的取值范围.开口方向对称轴顶点坐标23x y =23x y -=231x y =231x y -=7.已知:如图,直线y=3x+4与抛物线y=x 2交于A、B 两点,求出A、B两点的坐标,并求出两交点与原点所围成的三角形的面积.参考答案:1.C2.向上;y 轴;(0,0);减小;增大3.向下;y 轴;(0,0);增大;减小4.k>15.6.解:在二次函数y=x 2中,a=1>0因此当x=0时,y 有最小值.∵当x≥m 时,y 最小值=0,∴m≤0.7.解:由题意得234,,y x y x =+⎧⎨=⎩开口方向对称轴顶点坐标23x y =向上y 轴(0,0)23x y -=向下y 轴(0,0)231x y =向上y 轴(0,0)231x y -=向下y 轴(0,0)解得4,1,16,1,x x y y ==-⎧⎧⎨⎨==⎩⎩或因此两函数的交点坐标为A(4,16)和B(-1,1).∵直线y=3x+4与y 轴相交于点C(0,4),即CO=4.两交点与原点所围成的三角形面积S △ABO =S △ACO +S △BOC .在△BOC 中,OC 边上的高就是B 点的横坐标值的绝对值1;在△ACO 中,OC 边上的高就是A 点的横坐标值的绝对值4.因此S △ABO =S △ACO +S △BOC =12×4×1+12×4×4=10.(四)课堂小结1.画二次函数y=ax 2的图象时,有哪些地方是你需关注的?2.你是如何理解并熟记抛物线y=ax 2的性质的?3.本节课你还存在哪些疑问?.(五)课前预习预习下节课(22.1.3第1课时)的相关内容.七、课后作业1.教材41页习题22.1第3,4题2.配套练习册内容八、板书设计:九、教学反思:本课时的设计比较注重让学生动手操作,让学生通过画二次函数的图象初步掌握其性质,画图的过程中需注意引导学生与其他函数的图象与性质进行对比.本课的目的是要让学生通过动手操作,经历探索归纳的思维过程,逐步获得图象传达的信息,熟悉图象语言,进而形成函数思想.。
22.1 二次函数的图象和性质(第4课时)
(1,3)
y/m
O1 2 3 x/m
321
(1,3)
y/m
O1 2 3 x/m
321
小组评价与总结
这节课你有什么收获?
九、作业: 教科书习题22.1,第5题(2)(3),第7题(1).
十、课后反思
是x = h,顶点是(h,0),开口向下,顶点是抛物线的
最高点,a越小,抛物线的开口越小.当x<h时,y随
x的增大而增大,当x>h时,y随x的增大而减小.
小组合作
达标测评
例 要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1 m处达到最高,高度为3 m,水柱落地处离池
象特征和性质.
通过对二次函数 的探究,你能说出二次函数 的图象特征和性质
吗?
归纳:ห้องสมุดไป่ตู้
一般地,当a>0时,抛物线 的对称轴
是x = h,顶点是(h,0),开口向上,顶点是抛物线的
最低点,a越大,抛物线的开口越小.当x<h时,y随
x的增大而减小,当x>h时,y随x的增大而增大.
归纳:
一般地,当a<0时,抛物线 的对称轴
课题
22.1二次函数的图象和性质(第4课时)
课时
1
主备人:张红亮
一、教材内容分析
本课是在学生已经学习了二次函数y = ax 2,y = ax 2 + k的基础上,继续进行二次函数的学习,这是对二次函
数图象和性质研究的延续.
二、学情分析
三、教学目标(知识与技能,过程与方法,情感态度与价值观)
四、教学重点
五、教学难点
六、教学方法
22.1.2第4节二次函数y=a(x-h)2的图象与性质(教案)
一、教学内容
22.1.2第4节二次函数y=a(x-h)^2的图象与性质
1.二次函数y=a(x-h)^2的图象特点
- a>0时,抛物线开口向上;a<0时,抛物线开口向下
- h为抛物线的对称轴,即x=h
-抛物线顶点为(h, 0)
2.二次函数y=a(x-h)^2的性质
(2)强调对称轴(x=h)和顶点((h, k))的概念,解释它们与函数最值、单调性的关系,并通过具体例子进行说明。
(3)详细讲解图象的平移变换,使学生掌握左加右减、上加下减的变换规律,并能运用到具体问题中。
(4)结合实际情境,如物体抛掷、经济模型等,展示二次函数的应用,强调数学知识在实际问题中的运用。
1.提供更多具有代表性的案例,让学生在实际问题中运用所学知识。
2.加强对学生的引导和启发,提高他们在解决问题时的独立思考能力。
3.优化问题设计,使学生在讨论过程中能够更加聚焦主题。
4.针对不同学生的掌握程度,进行有针对性的辅导和答疑。
2.掌握二次函数图象变换方法,提高学生数学建模、数学运算的能力。
-通过图象变换,培养学生建立数学模型,解决实际问题的能力。
-在变换过程中,锻炼学生准确进行数学运算,提高解题效率。
3.培养学生运用二次函数知识解决实际问题的意识,提升数学应用、数据分析的核心素养。
-结合实例分析,引导学生运用所学知识解决生活中与二次函数相关的问题。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“二次函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
22.1二次函数的图象和性质
22.1二次函数的图象和性质4.(中考·丽水)若二次函数y=ax2的图象过点P(-2,4),则该图象必经过点( ) A.(2,4) B.(-2,-4)C.(-4,2) D.(4,-2)5.函数y=ax-2与y=ax2(a≠0)在同一平面直角坐标系中的图象可能是( )(第6题)6.(2015·黔西南州)如图,在Rt△ABC中,∠C=90°,AC=4 cm,BC=6 cm,动点P从点C 沿CA以1 cm/s的速度向A点运动,同时动点Q 从点C沿CB以2 cm/s的速度向B点运动,其中一个动点到达终点时,另一个动点也停止运动,则运动过程中所构成的△CPQ的面积y(cm2)与运动时间x(s)之间的函数图象大致是( )11.对于二次函数:①y=3x2;②y=13x2;③y=43x2,它们的图象在同一坐标系中,开口大小的顺序用序号来表示应是( )A.②>③>① B.②>①>③C.③>①>② D.③>②>①13.已知二次函数y=x2,在-1≤x≤4这个范围内,求函数的最值.14.已知函数y=(m+3)x m2+3m-2是关于x的二次函数.(1)求m的值;(2)当m为何值时,该函数图象的开口向下?(3)当m为何值时,该函数有最小值?17.有一座抛物线形状的拱桥,正常水位时,桥下水面宽度AB为20 m,拱顶距离水面4 m.(1)建立如图所示的直角坐标系,求出该抛物线的解析式;(2)在正常水位的基础上,当水位上升h m时,桥下水面宽度CD为d m,请将d表示成关于h的函数解析式;(3)为保证过往船只顺利通行,桥下水面宽度不得小于18 m,则水深超过正常水位多少米时,会影响过往船只顺利通行?3.已知点A(-3,y1),B(-1,y2),C(2,y3)在抛物线y=23x2上,则y1、y2、y3的大小关系是( )A.y1<y2<y3B.y1>y2>y3C.y1<y3<y2D.y2<y3<y14.已知函数y=(m+3)x m2-3m-26是关于x的二次函数.(1)求m的值;(2)当m为何值时,该函数图象的开口向下?(3)当m为何值时,该函数有最小值?(第6题)6.如图,直线AB过x轴上一点A(2,0),且与抛物线y=ax2相交于B、C两点,B点坐标为(1,1),(1)求直线AB的解析式,及抛物线y=ax2的解析式;(2)求点C的坐标;(3)求S△COB;(4)若抛物线上有一点D(在第一象限内),使得S△AOD =S△COB,求点D的坐标.8.如图,二次函数y=ax2+bx的图象与一次函数y=x+2的图象交于A、B两点,点A的横坐标是-1,点B的横坐标是2.(1)求二次函数的解析式;(2)设点C在二次函数图象的OB段上,求四边形OABC面积的最大值.(第8题)5.(2015·泰安)在同一坐标系中,一次函数y=-mx+n2与二次函数y=x2+m的图象可能是( )14.抛物线y=ax2+k的顶点坐标是(0,2),且形状及开口方向与抛物线y=-12x2相同.(1)确定a,k的值;(2)画出抛物线y=ax2+k.11.〈上海〉如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的解析式是( ) A.y=(x-1)2+2B.y=(x+1)2+2C.y=x2+1D.y=x2+36.已知抛物线y=-13x2+2,当1≤x≤5时,y的最大值是( )A.2 B.23C.53D.73,13.能否通过上下平移二次函数y=13x2的图象,使得到的新的函数图象过点(3,-3)?若能,说出平移的方向和距离;若不能,说明理由.14.抛物线y=ax2+k的顶点坐标是(0,2),且形状及开口方向与抛物线y=-12x2相同.(1)确定a,k的值;(2)画出抛物线y=ax2+k.5.已知二次函数y甲=mx2和y乙=nx2,对任意给定的一个x值都有y甲≥y乙,下列结论可能正确的是________(填序号).①m<n<0;②m>0,n<0;③m<0,n>0;④m>n>0.4.在平面直角坐标系中,函数y=-x+1与y=-32(x-1)2的图象大致是( )8.已知二次函数y=-2(x+h)2,当x<-3时,y随x的增大而增大;当x>-3时,y随x 的增大而减小,则当x=1时,y的值为( ) A.-12 B.12 C.32 D.-3213.抛物线y=ax2向右平移3个单位长度后经过点(-1,4),求a的值和平移后抛物线对应的二次函数解析式.16.如图,已知二次函数y=(x+2)2的图象与x轴交于点A,与y轴交于点B.(1)写出点A、点B的坐标.(2)求S△AOB.(3)写出对称轴的解析式.(4)在对称轴上是否存在一点P,使以P,A,O,B为顶点的四边形为平行四边形?若存在,求出P 点的坐标;若不存在,请说明理由.3.二次函数y=(x-k)2与一次函数y=kx(k >0)在同一平面直角坐标系中的图象大致是( )4.在平面直角坐标系中,函数y=-x+1与y=-32(x-1)2的图象大致是()8.已知二次函数y=-2(x+h)2,当x<-3时,y随x的增大而增大;当x>-3时,y随x 的增大而减小,则当x=1时,y的值为( ) A.-12 B.12 C.32 D.-3214.已知直线y=x+1与x轴交于点A,抛物线y=-2x2平移后的顶点与点A重合.(1)求平移后的抛物线l的解析式;(2)若点B(x1,y1),C(x2,y2)在抛物线l上,且-12<x1<x2,试比较y1,y2的大小.15.已知一条抛物线的开口方向和大小与抛物线y=2x2都相同,而顶点与抛物线y=(x-2)2相同.(1)求该抛物线的解析式;(2)将(1)中的抛物线向左平移3个单位长度会得到怎样的抛物线?(3)直接写出(2)中的抛物线沿坐标轴翻折180°后得到的抛物线的解析式.。
人教版数学九年级上册课件22.1.4二次函数的图像和性质
16
14
12
10
8
6
4
2
15
10
5
5
10
15
一般地,对于二次函数y=ax² +bx+c,我们可以利用配方法 推导出它的对称轴和顶点坐标. 试将式一般转化为顶点 式.
2 b b 2 b 2 a x x a c a 2a 2a
2
y ax2 bx c 2 b a x x c a
b 4ac b2 a x . 2a 4a
二次函数y=ax2+bx+c(a≠0)的图象和性质
抛物线 顶点坐标 对称轴 开口方向 增减性 最值
y=ax2+bx+c(a>0)
b 4ac b 2 2a , 4a
直线 x b 2a
y=ax2+bx+c(a<0)
b 4ac b 2 2a , 4a
直线 x b 2a
向上
在对称轴的左侧,y随着x的增大而减小. 在对称轴的右侧, y随着x的增大而增大.
向下
在对称轴的左侧,y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而减小.
b 4ac b 2 当x 时, 最小值为 2a 4a
b 4ac b 2 当x 时, 最大值为 2a 4a
作用
• 二次函数图象特征与 参数a,b,c的关系.完成 下表.
作用
符号
字母符号
图象特征 图象特征
归纳总结: a的符号决定 开口方向 ,简记为 “上正下负 ”. a,b的符号决定 对称轴位置 ,简记为 “左同右异 ”. c的符号决定 与y轴交点 ,简记为 “ 上正下负 ”
人教版数学九年级上册说课稿22.1.4《二次函数y=ax2+bx+c的图象和性质》
人教版数学九年级上册说课稿22.1.4《二次函数y=ax2+bx+c的图象和性质》一. 教材分析人教版数学九年级上册第22章是关于二次函数的学习,而22.1.4《二次函数y=ax^2+bx+c的图象和性质》是这一章的重要内容。
这部分教材主要通过分析二次函数的图象和性质,使学生能够理解和掌握二次函数的基本特征,以及如何运用这些特征解决实际问题。
教材通过详细的理论推导和丰富的例题,引导学生掌握二次函数的顶点坐标、开口方向、对称轴等关键性质,并能够运用这些性质对二次函数进行分析和判断。
二. 学情分析在九年级的学生已经具备了一定的函数基础,他们已经学习了线性函数和一些非线性函数的知识,对函数的概念和性质有一定的理解。
但是,对于二次函数的图象和性质,他们可能还存在一些困惑和误解。
因此,在教学过程中,我需要关注学生的认知基础,通过复习和引导,帮助他们巩固已有的知识,并建立起二次函数图象和性质的知识体系。
三. 说教学目标1.知识与技能:学生能够理解二次函数的图象和性质,并能够运用这些性质解决实际问题。
2.过程与方法:学生通过观察、分析、归纳等方法,探索二次函数的图象和性质,培养他们的抽象思维和解决问题的能力。
3.情感态度与价值观:学生通过学习二次函数的图象和性质,增强对数学的兴趣和自信心,培养他们的探索精神和合作意识。
四. 说教学重难点1.教学重点:学生能够理解和掌握二次函数的图象和性质,并能够运用这些性质解决实际问题。
2.教学难点:学生对于二次函数的顶点坐标、开口方向、对称轴等性质的理解和运用。
五. 说教学方法与手段在教学过程中,我将采用问题驱动的教学方法,通过引导学生观察、分析、归纳等方法,探索二次函数的图象和性质。
同时,我将利用多媒体教学手段,展示二次函数的图象和性质,帮助学生更好地理解和掌握知识。
六. 说教学过程1.导入:通过复习一次函数和二次函数的知识,引导学生进入对二次函数图象和性质的学习。
2.探究:学生分组讨论,观察和分析二次函数的图象,归纳出二次函数的顶点坐标、开口方向、对称轴等性质。
22.1《二次函数的图象和性质》课件(共5课时)
2.类比探究二次函数 y = ax2 + k 的图象和性质
归纳: 一般地,当 a>0 时,抛物线 y = ax2 + k 的对称轴是 y 轴,顶点是(0,k),开口向上,顶点是抛物线的最 低点,a 越大,抛物线的开口越小.当 x<0 时, y 随 x 的增大而减小,当 x>0 时, y 随 x 的增大而增大.
3.练习、巩固二次函数的定义
练习2 填空: (1)一个圆柱的高等于底面半径,则它的表面积 S 与底面半径 r 之间的关系式是__S_=__4_π_r_2_; (2) n 支球队参加比赛,每两队之间进行两场比 赛,则比赛场次数 m 与球队数 n 之间的关系式是 ___m_=__n(__n_-_1__)____.
某种产品现在的年产量是 20 t ,计划今后两年增加 产量.如果每一年都比上一年的产量增加 x 倍,那么两 年后这种产品的产量 y 将随计划所定的 x 的值而确定, y 与 x 之间的关系应该怎样表示?
y 20x2 40x 20
2.通过实例,归纳二次函数的定义
这三个函数关系式有什么共同点?
y 6x2 m 1 n2 1 n
2
4.小结
(1)本节课学了哪些主要内容? (2)抛物线 y = ax2 + k 与抛物线 y = ax2 的区别与联 系是什么?
5.布置作业
教科书习题 22.1 第 5 题(1).
九年级 上册
22.1 二次函数的图象和性质 (第4课时)
• 本课是在学生已经学习了二次函数 y = ax2,y = ax2+ k 的基础上,继续进行二次函数的学习,这是对二次函 数图象和性质研究的延续.
2.类比探究 y a(x h)2, y a(x h)2 k 的图 象和性质
人教版九年级数学上册22.1.4《二次函数y=a(x-h)2+k的图象和性质》说课稿
人教版九年级数学上册22.1.4《二次函数y=a(x-h)2+k的图象和性质》说课稿一. 教材分析《二次函数y=a(x-h)2+k的图象和性质》是人教版九年级数学上册第22章第1节的一部分。
这部分内容是在学生已经学习了二次函数的一般形式y=ax^2+bx+c的基础上,进一步探讨二次函数的图象和性质。
通过这部分的学习,学生能够理解二次函数的图象特征,掌握二次函数的顶点式,并能够运用二次函数的性质解决实际问题。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于二次函数的一般形式已经有了一定的了解。
但是,对于二次函数的图象和性质,学生可能还存在一些困惑和疑问。
因此,在教学过程中,我需要关注学生的学习情况,及时解答学生的疑问,帮助学生理解和掌握二次函数的图象和性质。
三. 说教学目标1.知识与技能目标:学生能够理解二次函数的顶点式,掌握二次函数的图象特征,能够运用二次函数的性质解决实际问题。
2.过程与方法目标:通过观察、分析、归纳等方法,学生能够自主探索二次函数的图象和性质,培养学生的数学思维能力。
3.情感态度与价值观目标:学生能够积极参与课堂活动,增强对数学的兴趣和自信心,培养学生的合作意识和探究精神。
四. 说教学重难点1.教学重点:学生能够理解二次函数的顶点式,掌握二次函数的图象特征。
2.教学难点:学生能够运用二次函数的性质解决实际问题,理解二次函数的图象和性质之间的关系。
五. 说教学方法与手段在教学过程中,我将采用以下教学方法和手段:1.情境教学法:通过创设生活情境,激发学生的学习兴趣,引导学生主动参与课堂活动。
2.问题驱动法:通过提出问题,引导学生思考和探究,激发学生的学习动力。
3.合作学习法:学生进行小组讨论和合作,培养学生的合作意识和团队精神。
4.数形结合法:通过绘制二次函数的图象,引导学生观察和分析,帮助学生理解和掌握二次函数的图象和性质。
六. 说教学过程1.导入:通过一个实际问题,引导学生思考二次函数的图象和性质,激发学生的学习兴趣。
人教初中数学 《二次函数的图象和性质(第4课时)》教案 (公开课获奖)
22.1 二次函数的图象和性质教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算.重点难点1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+(3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、(1)2x (2)ba ab- (3)3 五、1.(1)22yx xy- (2)21-a (3)z 1 2.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标(一)教学知识点1.等腰三角形的概念. 2.等腰三角形的性质.3.等腰三角形的概念及性质的应用. (二)能力训练要求1.经历作(画)出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点. 2.探索并掌握等腰三角形的性质. (三)情感与价值观要求 通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质. 2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用. 教学方法 探究归纳法. 教具准备师:多媒体课件、投影仪; 生:硬纸、剪刀. 教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形? [生]有的三角形是轴对称图形,有的三角形不是. [师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形. Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.ABICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,则可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.(演示课件)1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴.[师]你们说的是同一条直线吗?大家来动手折叠、观察.[生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕.(演示课件)等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).(投影仪演示学生证明过程)[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD (SSS ). 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD .所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范.下面我们来看大屏幕.(演示课件)[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. (课件演示)[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD (等边对等角).设∠A=x ,则∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来巩固这节课所学的知识.D CA BD CABDC A BⅢ.随堂练习(一)课本练习 1、2、3. 练习1. 如图,在下列等腰三角形中,分别求出它们的底角的度数.(2)120︒36︒(1)答案:(1)72° (2)30°2.如图,△ABC 是等腰直角三角形(AB=AC ,∠BAC=90°),AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?D CAB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和∠C 的度数.答:∠B=77°,∠C=38.5°.(二)阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业(一)习题13.3 第1、3、4、8题. (二)1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .D C ABEDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC .∴∠P=∠ACD . 又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=C E .板书设计一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一 三、例题分析 四、随堂练习 五、课时小结 六、课后作业 备课资料 参考练习1.如果△ABC 是轴对称图形,则它的对称轴一定是( ) A .某一条边上的高 B .某一条边上的中线 C .平分一角和这个角对边的直线 D .某一个角的平分线 2.等腰三角形的一个外角是100°,它的顶角的度数是( ) A .80° B .20° C .80°和20° D .80°或50° 答案:1.C 2.C3. 已知等腰三角形的腰长比底边多2 cm ,并且它的周长为16 cm .求这个等腰三角形的边长.解:设三角形的底边长为x cm ,则其腰长为(x+2)cm ,根据题意,得 2(x+2)+x=16.解得x=4.E DC A B P所以,等腰三角形的三边长为4 cm 、6 cm 和6 cm .15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算:(1))1)(1(yx x y x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、(1)2x (2)ba ab- (3)3 五、1.(1)22y x xy- (2)21-a (3)z 12.原式=422--a a ,当=a -1时,原式=-31.。
人教版九年级数学上册22.1 二次函数的图象和性质 22.1.4 二次函数y=ax2+bx+c的图象和性质②
当已知抛物线的顶点坐标或对称 轴和最值时,通常设函数的解析式为 项点式,然后代入另一点的坐标,解 关于a的一元一次方程
(a,x1,x2为 常数,a≠0),其中是抛物 线与x轴两个交点的横坐标
当已知抛物线与x轴的两交点坐标 或一个交点的坐标和对称轴时,通常设 函数的解析式为交点式,然后代入另 一点的坐标,解关于a的一元一次方程
情景引入
请你回忆:确定一次函数的解析式需要函数图象上几 个点的坐标?这几个点需要满足什么条件? 请你猜想:确定二次函数的解析式需要几个点的坐标? 这几个点需要满足什么条件?
1
人教版九年级数学上册 第二十二章 二次函数
22.1 二次函数的图象和性质
22.1.4 二次函数y=ax²+bx+c的图象和性质②
15
知识点二:根据 y=a(x -h)2+k(a≠0)求二次函数解析式
学以致用
1.二次函数 y=x²+px+q的最小值是4,且当 x=2时,y=5,则p,q
的值为( ).
A.p=-2,q=15
B.p=-2,q=5或 p=-6,q=13
C.p=-6,q=13
D.p=2,q=-5或 p=6,q=-13
对于二次函数,我们先探究下面问题.
5
知识点一:根据y= ax2 +bx+c(a≠0)求二次函数解析式
新知探究
(1)由几个点的坐标可以确定二次函数?这几个点 应满足什么条件? (2) 如果一个二次函数的图象经过(-1, 10),(1, 4), (2, 7)三 点,能求出这个二次函数的解析式吗?如果能,求出这个 二次函数的解析式.
21
知识点三:根据 y=a(x - x1)(x- x2)(a≠0)求二次函数解析式
数学人教版九年级上册【观评记录】22.1二次函数y=a(x-h)2的图象和性质.1二次函数y=a(x-h)2的图象和性质
22.1二次函数y=a(x-h)2的图象和性质观评记录上课教师:王金鼎上课内容:22.1二次函数第4课时上课时间:2016年9月26日星期一第二节上课地点:初三一班教室听评课人员:侯秀芹、张进英、刘金侠、李瑞莉朱新亭、刘永梅、李伟、周新评课过程:1、上课教师讲解本节课的教学设计和目的。
2、数学组教师进行点评:课堂教学过程中的优点分析:一是对教材的研究深,重点、难点把握好,教学设计严谨,环环相扣,每个教学步骤之间都有逻辑的联系。
二是教师非常理解学生的实际情况,注重学生的基础,并能根据学生的实际情况设计题目,把复杂的问题分解为较简单问题逐步分析,降低了学生学习难度,便于学生理解。
教师以表格的形式总结归纳出二次函数的性质,清晰直观让学生一目了然,并且分析透彻,注重解题的书写格式。
三是充分利用了多媒体教学的手段,提高课堂效率。
借助PPT课件动态地展示二次函数的图象,让抽象思维不强的学生,更加形象地结合图形,分析说出二次函数y=a(x-h)2的有关性质,充分体现了“数形结合”的数学思想。
四是整节课讲练结合,学生参与度较高,学生达到差异性发展。
在课堂教学中实行分组教学,以激发学生学习的主动性和积极性,课堂气氛热烈,师生互动多。
五是合作交流与动手实践相结合,充分获取数学活动经验。
在课堂中,让学生在动手操作中进行独立思考,鼓励学生发表自己的意见,与同伴交流,并充分给足了学生动手、观察、交流、合作的时间和空间,让学生在具体的操作活动中获得知识,体验知识的形成过程,获得学习的主动权。
数学思想方法得到了充分渗透,学生的学习能力和学习品质得到进一步优化。
课堂教学过程中的教学建议:一是梳理知识、理清思路,对某类题、某系列知识进行重点分析、深挖、加固。
在这个过程中教师应多引导学生,对学生在学习过程中遇到的问题,给予一些讲解和点拨就行。
这样看起来教学气氛会稍差,但如果能精心设计练习,一样能收到很好的教学效果。
这样一堂课既有学生自主练习又有教师适时分析引导,动静结合,张弛有度,学生、老师都不会感到累。
人教版九年级上册数学4二次函数的图象和性质
22.1.4 二次函数 )0(2≠++=a c bx ax y 的图象和性质知识点:1、二次函数c bx ax y ++=2的对称轴为 ,顶点坐标为 ,它的最高(低)点在 点,当=x 时,它有最大(小)值,值为 。
2、在抛物线c bx ax y ++=2中,c 为抛物线与 交点的纵坐标。
当0>a 时,图象开口 ,有最 点,且x 时,y 随x 的增大而增大,x 时,y 随x 的增大而减小;当0<a 时,图象开口 ,有最 点,且x 时,y 随x 的增大而增大,x 时,y 随x 的增大而减小;3、抛物线c bx ax y ++=2可由抛物线2ax y =进行左(右)、上(下)平移得到。
一、选择题:1、抛物线742++-=x x y 的顶点坐标为( )A 、(-2,3)B 、(2,11)C 、(-2,7)D 、(2,-3) 2、若抛物线c x x y +-=22与y 轴交于点(0,-3),则下列说法不正确的是( )A 、抛物线开口方向向上B 、抛物线的对称轴是直线1=xC 、当1=x 时,y 的最大值为-4D 、抛物线与x 轴的交点为(-1,0),(3,0) 3、要得到二次函数222-+-=x x y 的图象,需将2x y -=的图象( )A 、向左平移2个单位,再向下平移2个单位B 、向右平移2个单位,再向上平移2个单位C 、向左平移1个单位,再向上平移1个单位D 、向右平移1个单位,再向下平移1个单位4、在平面直角坐标系中,若将抛物线3422+-=x x y 先向右平移3个单位长度,再向上平移2个单位长度,则经过这两次平移后,所得到的抛物线的顶点坐标为( )A 、(-2,3)B 、(-1,4)C 、(1,4)D 、(4,3)5、抛物线c bx x y ++=2的图象向右平移2个单位,再向下平移3个单位,所得图象的解析式为322--=x x y ,则b 、c 的值为( )A 、2,2==c bB 、0,2==c bC 、1,2-=-=c bD 、2,3=-=c b 6、二次函数y=ax 2+bx+1(a ≠0)的图象的顶点在第一象限,且过点(-1,0).设t=a+b+1,则t 值的变化范围是( )A .0<t <1B .0<t <2C .1<t <2D .-1<t <1 7、已知二次函数)0(2≠++=a c bx ax y 的图象如图所示对称轴为x=12-.下列结论中,正确的是( )A .0>abcB .0=+b aC .02>+c bD .b c a 24<+ 8、二次函数c bx ax y ++=2的图像如图所示,反比列函数xay =与正比列函数bx y =在同一坐标系内的大致图像是( )二、填空题:1、抛物线3842-+-=x x y 的开口方向向 ,对称轴是 ,最高点的坐标是 ,函数值得最大值是 。
二次函数y=a(x-h)的图象和性质
(2)若点C(-3,b)在该抛物线上,求b的值;
解:把点C(-3,b)的坐标代入y=-(x+1)2 中,得b=-4,∴b的值是-4.
4.在同一平面直角坐标系中,一次函数y=ax+c和二 次函数y=a(x+c)2的图象可能是( B )
5.关于二次函数y=-2(x+3)2,下列说法正确的 是( D ) A.其图象的开口向上 B.其图象的对称轴是直线x=3 C.其图象的顶点坐标是(0,3) D.当x>-3时,y随x的增大而减小
6.已知抛物线y=-(x+1)2上的两点A(x1,y1),B(x2,y2), 如果x1<x2<-,那么下列结论成立的是( A ) A.y1<y2<0 B.0<y1<y2 C.0<y2<y1 D.y2<y1<0
类型
解:画树状图如图所示. 共有 12 种等可能的结果,其中和为奇数的结果有 8 种, ∴P(小明参加)=182=23, P(小亮参加)=1-23=13. ∵23≠13,∴这个游戏规则不公平.
类型
【2020·德阳】为了加强学生垃圾分类意识,某校对学 1
生进行了一次系统全面的垃圾分类宣传.为了解这次 宣传的效果,从全校学生中随机抽取部分学生进行了 一次测试,测试结果共分为四个等级:A.优秀;B.良 好;C.及格;D.不及格.根据 调查统计结果,绘制了如下 所示的不完整的统计表.
类型
共有 9 种等可能的结果,其中“和为 3 的倍数”的有 3 种, “和为 7 的倍数”的有 3 种,∴P(小杰赢)=39=13,P(小玉 赢)=39=13.因此游戏是公平的.
人教版九年级数学上册第二十二章二次函数《22.1二次函数的图象和性质》第4课时说课稿
人教版九年级数学上册第二十二章二次函数《22.1二次函数的图象和性质》第4课时说课稿一. 教材分析人教版九年级数学上册第二十二章二次函数《22.1二次函数的图象和性质》第4课时,主要讲述了二次函数的图象和性质。
这部分内容是整个初中数学的重要部分,也是学生对数学图形理解和研究的深化。
二次函数的图象和性质不仅涉及到函数的图形表现,还包括了函数的解析表达式以及各种性质。
这些内容对于学生来说,既有新鲜感,又有挑战性。
通过这部分的学习,学生可以更深入地理解函数的概念,提高他们的数学思维能力。
二. 学情分析九年级的学生已经接触过一次函数和二次函数的基本概念,对函数的图形和性质有一定的了解。
但是,他们对二次函数的图象和性质的理解还不够深入,需要通过本节课的学习,进一步巩固和提高。
此外,学生对于数学图形的理解和分析能力参差不齐,需要在教学过程中给予不同的关注和引导。
三. 说教学目标1.知识与技能目标:使学生掌握二次函数的图象和性质,能够运用二次函数的性质解决实际问题。
2.过程与方法目标:通过观察、分析、归纳等方法,培养学生对数学图形的理解和分析能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养他们积极思考、探索问题的习惯。
四. 说教学重难点1.教学重点:二次函数的图象和性质。
2.教学难点:二次函数的性质的推导和应用。
五. 说教学方法与手段本节课采用讲授法、引导发现法、小组合作法等多种教学方法,结合多媒体课件、黑板等教学手段,以学生为主体,教师为引导,充分调动学生的积极性,提高他们的学习效果。
六. 说教学过程1.导入:通过复习一次函数的图象和性质,引出二次函数的图象和性质,激发学生的学习兴趣。
2.讲解:讲解二次函数的图象和性质,引导学生观察、分析、归纳,培养他们的数学思维能力。
3.实践:让学生通过小组合作,探究二次函数的性质,提高他们的实践能力。
4.巩固:通过典型例题的讲解和练习,巩固学生对二次函数图象和性质的理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平移,可以得到抛物线 y = a( x - h )2 +k.平移的方向、
距离要根据 h,k 的值来决定.
2.类比探究 , 的图
象和性质
抛物线 y = a( x - h )2 +k 有如下特点:
(1)当 a>0 时 ,开口向上;当 a<0 时 ,开口向 下. (2)对称轴为 直线 x = h. (3)顶点坐标(h,k). 如果 a>0,当 x<h 时 ,y 随 x 的增大而减小,当 x >h 时 ,y 随 x 的增大而增大;如果 a<0,当 x<h 时 , y 随 x 的增大而增大,当 x>h 时 ,y 随 x 的增大而减小.
象和性质
画出二次函数 y =- (x + 1)2 -1 的图象,你能说出 它的图象特征和性质吗 ?它与抛物线 有什么关
系?你能说出 y = a( x - h )2 +k的图象和性质吗 ?
2.类比探究 , 的图
象和性质
归纳 :
一般地,抛物线 y = a( x - h )2 +k与 y = ax2 形状相
2.类比探究 , 的图
象和性质
抛物线 y = - ( x + 1 )2 , y = - ( x - 1)2 与抛物线
有什么关系? 抛物线 y = a( x - h)2与抛物线 y = ax2 有什么关系?
ห้องสมุดไป่ตู้
2.类比探究 , 的图
九年级 上册
22.1 二次函数的图象和性质 (第4课时)
课件说明
• 本课是在学生已经学习了二次函数 y = ax2,y = ax2+ k 的基础上,继续进行二次函数的学习,这是对二次函 数图象和性质研究的延续.
课件说明
• 学习目标: 会用描点法画出二次函数 y = ( x - h) 2,y =(x - h)2+ k 的图象, 通过图 象了解它们的图 象特征和性质.
(2)抛物线 y = a( x - h ) 2 +k 与抛物线 y = ax2 的区
别与联系是什么?
5.布置作业
教科书习题 22.1,第 5 题(2)(3),第 7题(1).
究,你能说出二次函数 y =a( x - h)2 的图象特征和性质 吗?
2.类比探究 , 的图
象和性质
归纳 :
一般地,当 a>0 时 ,抛物线 y = a( x - h )2 的对称轴
是 x = h,顶点是(h,0),开口向上,顶点是抛物线的 最低点,a 越大,抛物线的开口越小.当 x<h 时 ,y 随 x 的增大而减小,当 x>h 时 ,y 随 x 的增大而增大.
象和性质
在同一直角坐标系中,画出二次函数
y = - ( x + 1 )2 , y = - ( x - 1) 2 的图象,并探究它们的图
象特征和性质.
2.类比探究 , 的图
象和性质
通过对二次函数 y = - ( x + 1 )2 , y = - ( x - 1)2的探
象和性质
归纳 : 当 h>0 时 ,把抛物线 y = ax2 向右平移 h 个单位长
度,就得到抛物线 y = a( x - h) 2;
当 h<0 时 ,把 y = ax2 向左平移|h|个单位长度,
就得到抛物线 y = a( x - h )2.
2.类比探究 , 的图
3.运用性质,巩固练习
例 要修建一个圆形喷水池,在池中心竖直安装一
根水管,在水管的顶端安一个喷水头,使喷出的抛物线
形水柱在与池中心的水平距离为 1 m 处 达到最高,高度
为 3 m,水柱落地处离池 中心 3 m,水管应多长?
y/m 3 (1,3)
2
1
O 1 2 3 x/m
4.小结
(1)本节课学了哪些主要内容?
• 学习重点: 观 察图象,得出上述二次函数的图象特征和性质.
1.复习二次函数 y = ax 2,y = ax 2+k 的图象和 性 质
(1)二次函数 y = ax 2,y = ax 2+k 的图象是什么? (2)它们具有怎样的图象特征和性质? (3)你是怎么研究的?
2.类比探究 , 的图
2.类比探究 , 的图
象和性质
归纳 :
一般地,当 a<0 时 ,抛物线 y = a( x - h )2 的对称轴
是 x = h,顶点是(h,0),开口向下,顶点是抛物线的 最高点,a 越小,抛物线的开口越小.当 x<h 时 ,y 随 x 的增大而增大,当 x>h 时 ,y 随 x 的增大而减小.