《菱形的判定》导学案

合集下载

菱形的判定导学案

菱形的判定导学案
于是,得到菱形的识别方法:
例:如图, ABCD的两条对角线AC、BD
相交于点O,AB= 5,AC=8,DB=6
求证:四边形ABCD是菱形.
探究2:我们已经知道菱形的四条边都相等,这是菱形的性质。那么
四条边都相等的四边形是菱形吗?我们用下图解释一下:
A
B
C
D
已知:四边形ABCD中,AB=BC=CD=DA
求证:四边形ABCD是菱形
证明:
于是,得到菱形的另一种识别方法:
四、达标测评:(5分钟完成。对子互判,组长统计得分)
B
A
C
D
E
F
1、如图,在ΔABC中,AD是ΔABC的平分线。DE∥AC,交AB于点E;DF∥AB,交AC于点F。试说明四边形AEDF是菱形。
2.如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD.
求证:四边形OCED是菱形
五、学习反思:
三、合作探究:(组长组织对学、群学、组内小展示,做好大展示准备。30分钟完成)
探究1:我们已经知道菱形对角线有互相垂直的性质。那么对角线互相垂直的平行四边形是菱形吗?我们用下图解释一下:
已知:
求证:四边形ABCD是菱形
分析:已知条件已给四边形ABCD是平行四边形,只需证出它有一组邻边相等,再根据菱形定义即可说明四边形ABCD是菱形。大家思考如何证明一组邻边相等呢?是在下面写出证明过程:
课题:18.2.2菱形(二)课型:预习+展示使用时间:
班级:姓名:组号编制人:
一.学握菱形的识别方法并运用它们解决问题
教师复备栏
或学生笔记栏
二.知识回顾:(8分钟完成)
1.菱形的定义:一组相等的是菱形.
2.请口述平行四边形性质、判定方法以及菱形的性质。

菱形的判定导学案

菱形的判定导学案

一、温故知新菱形的对边 。

菱形的四边 。

菱形的性质: 菱形的对角线 。

菱形是 对称图形,又是 对称图形。

菱形的面积= ;二、新知学习根据菱形的定义得到:有一组 相等的的 四边形是菱形。

探究1:平行四边形的对角线互相平分;反之,对角线互相平分的四边形是平行四边形;思考:对角线互相垂直的平行四边形是菱形吗?如果是,如何进行证明呢?已知:平行四边形ABCD 中对角线AC ⊥BD 于O 点求证:平行四边形ABCD 是菱形。

证明:菱形的判定定理: 的 四边形是 。

探究2:思考:菱形的四条边都相等,反之,四条边都相等的平行四边形是菱形吗?如果是,如何进行证明呢? 已知:如图,在四边形ABCD 中,AB=BC=CD=DA,求证:四边形ABCD 是菱形.菱形的定理: 的 是 菱形 。

三、探究3:菱形判定定理的简单应用例1已知:如右图,在□ABCD 中,对角线AC 与BD 相交于点O,AB= 5,OA=2,OB=1. 求证: □ABCD 是菱形.O DA C B2、已知平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别交于点E、F,求证:四边形AFCE是菱形.3、已知平行四边形ABCD的对角线相交于点O,且AB=BD,DE∥AC,CE ∥BD.求证:四边形OCED是菱形.4、如图,在Rt△ABC中,∠B=90°,E是AC的中点,AC=2AB,∠BAC的平分线AD交BC于点D,作AF∥BC,连接DE并延长交AF于点F,连接FC.求证:四边形ADCF是菱形.5、如图,在△ABC中,AD是∠BAC的平分线,DE∥AC,DF∥AB.求证:四边形AEDF是菱形.。

第2课时 菱形的判定(导学案)

第2课时 菱形的判定(导学案)

18.2.2 菱形第2课时菱形的判定一、新课导入1.导入课题用菱形的定义,我们容易得到,一组邻边相等的平行四边形是菱形,除此之外还有没有其他判定方法?(板书课题)2.学习目标(1)能从研究菱形性质的逆命题正确性中得到菱形的判定.(2)能运用菱形的判定方法判定一个四边形是菱形.3.学习重、难点重点:菱形的判定的推导与归纳.难点:菱形的判定的正确运用.二、分层学习1.自学指导(1)自学内容:P57例4的内容.(2)自学时间:10分钟.(3)自学方法:自己写出菱形性质的逆命题,验证它们的正确性,并相互交流.(4)自学参考提纲:①由定义判定一个四边形是菱形:有一组邻边相等的平行四边形是菱形.②运用定义证明四边形是菱形,可先证它是平行四边形,再证它是菱形.③运用“对角线互相垂直的平行四边形是菱形”证明四边形是菱形时,可先证它是平行四边形,再证它是菱形.④要证明一个平行四边形是菱形,只需先证明有一组邻边相等或对角线互相垂直.⑤判断:a.对角线互相垂直的四边形是菱形.(×)b.对角线互相垂直平分的四边形是菱形.(√)2.自学:结合自学指导进行自主学习.3.助学(1)师助生:①明了学情:了解学生在完成判定定理的证明及完成自学提纲时遇到的偏差和困难之处.②差异指导:对学生在菱形判定的证明步骤不当或思路不清之处进行点拨、引导.(2)生助生:学生相互研讨疑难之处.4.强化(1)菱形的判定方法:①按定义判定.②按对角线判定.(2)证明一个四边形是菱形的步骤.1.自学指导(1)自学内容:P57例4以下至P58练习的内容.(2)自学时间:5分钟.(3)自学方法:写出菱形性质“菱形的四条边相等”的逆命题,再作图思考如何证明逆命题的正确性.(4)自学参考提纲:①“菱形的四条边相等”的逆命题是四条边相等的四边形为菱形.②如图,四边形ABCD中,AB=BC=CD=DA,求证:四边形ABCD是菱形.a.若按定义证:先证它是平行四边形,再证它是菱形,要证它是平行四边形,需找两对对角相等.因此可连接对角线.再运用三角形全等得到角相等.请按上述分析填空尝试证明;b.若按对角线来判定,则需先证它是平行四边形,再证对角线垂直,这就只需证它的一组邻边相等,就可得它是菱形.证一组对边平行就可通过连接一组对角线,运用一组内错角相等证得一组对边平行且相等.然后再证对角线垂直.尝试分析填空写出证明过程.c.一个平行四边形的一条边长是9,两条对角线的长分别是12和,则它是菱形吗?为什么?它的面积是多少?解:画出图形如图所示,根据题意,有AD=9,BD=,AC=12,根据平行四边形的性质知116,22AO AC DO BD ====则在△AOD 中,AO 2+DO 2=AD 2,∴△AOD 为直角三角形,∴AO ⊥OD 也即AC ⊥BD,∴平行四边形ABCD 为菱形,其面积为1122⨯⨯= ③完成P 58练习题第1(1)题和第3题.2.自学:结合自学指导自主学习.3.助学(1)师助生:①明了学情:关注学生对P57最后一个“思考”的判断和论证存在的困难在哪里. ②差异指导:引导学生运用两个方法证明“思考”中的结论.(2)生助生:学生相互交流,帮助研讨.4.强化(1)画菱形的方法.(2)菱形的判定:①按定义:有一组邻边相等的平行四边形是菱形;②按对角线:对角线互相垂直的平行四边形是菱形;③按边:四条边相等的四边形是菱形.三、评价1.学生的自我评价(围绕三维目标):交流自己这节课的学习有哪些收获和困惑.2.教师对学生的评价:(1)表现性评价:点评学生的学习积极性和学习成果.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本节课的教学以学生自主探究为主,通过观察和推理,让学生掌握菱形的三种判定方法:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形.在教学的过程中,对于学生难于理解的地方,教师要进行专门的讲解和指导.教学时应充分发挥学生的主动性,并增强与学生的互动和交流.(时间:12分钟满分:100分)一、基础巩固(60分)1.(15分)下列条件中,能判定一个四边形是菱形的条件是(B)A.对角线互相平分的四边形B.对角线互相垂直且平分的四边形C.对角线相等的四边形D.对角线互相垂直的四边形2.(15分) ABCD的对角线AC平分∠BAD ABCD 是(填“是”或“不是”)菱形.3.(15分)中,对角线AC=24,BD=10,一边长为13是菱形.(填“平行四边形”、“矩形”或“菱形”)4.(15分)四边形ABCD是平行四边形,请补充一个条件:AB=BC,使它是菱形.二、综合应用(20分)5.如图,AE∥BF,AC平分∠BAD,且交BF于点C,BO平分∠ABC,且交AE于点D,连接CD,求证:四边形ABCD是菱形.证明:∵AE∥BF,∴∠EAC=∠ACB.又∵AC平分∠BAD,∴∠ACB=∠BAC=∠EAC,∴AB=BC.同理:AB=AD,∴AD=BC,而AD∥BC.∴四边形ABCD是平行四边形.又AB=AD,∴平行四边形ABCD是菱形.三、拓展延伸(20分)6.如图,已知四边形ABCD,对角线AC、BD交于点O.现给出四个条件:①AC⊥BD;②AC平分BD;③AD∥BC;④∠OAD=∠ODA.请你以其中的三个作为题设,以“四边形ABCD是菱形”作为结论.(1)写出一个真命题,并证明;(2)写出一个假命题,并举出一个反例加以说明.解:(1)若①②③,则四边形ABCD是菱形.∵AC⊥BD,AC平分BD,∴∠BOC=∠DOA=90°,BO=OD.又∵AD∥BC,∴∠OBC=∠ODA.∴△BOC≌△DOA,∴OC=OA.∴AC、BD互相垂直且平分,∴四边形ABCD是菱形.(2)若②③④,则四边形ABCD是菱形.反例:当四边形ABCD是矩形时,满足②③④,但不是菱形.。

八年级数学下册 2.6.2《菱形的判定》导学案(新版)湘教版

八年级数学下册 2.6.2《菱形的判定》导学案(新版)湘教版

八年级数学下册 2.6.2《菱形的判定》导学案(新版)湘教版2、6、2菱形的判定教学目标:1、理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行有关的论证和计算;2、在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力、教学重点:菱形的两个判定方法、教学难点:判定方法的证明方法及运用、教学过程:一、忆一忆(1)菱形的定义:一组邻边相等的平行四边形;(2)菱形的性质1 菱形的四条边都相等;性质2 菱形的对角线互相平分,并且每条对角线平分一组对角;(3)运用菱形的定义进行菱形的判定,应具备几个条件?(判定:2个条件)二、探一探:要判定一个四边形是菱形,除根据定义判定外,还有其它的判定方法吗?用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的字,四周围上一根橡皮筋,做成一个四边形、转动木条,这个四边形什么时候变成菱形?通过演示,容易得到:菱形判定方法1 对角线互相垂直的平行四边形是菱形、注意此方法包括两个条件:(1)是一个平行四边形;(2)两条对角线互相垂直、通过教材P109下面菱形的作图,可以得到从一般四边形直接判定菱形的方法:菱形判定方法2 四边都相等的四边形是菱形、例2(补充)已知:如图ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F、求证:四边形AFCE是菱形、证明:∵四边形ABCD是平行四边形,∴AE∥FC、∴∠1=∠2、又∠AOE=∠COF,AO=CO,∴△AOE≌△COF、∴EO=FO、∴四边形AFCE是平行四边形、又EF⊥AC,∴AFCE是菱形(对角线互相垂直的平行四边形是菱形)、三、练一练1、填空:(1)对角线互相平分的四边形是;(2)对角线互相垂直平分的四边形是________;(3)对角线相等且互相平分的四边形是________;(4)两组对边分别平行,且对角线的四边形是菱形、2、画一个菱形,使它的两条对角线长分别为6cm、8cm、3、如图,O是矩形ABCD的对角线的交点,DE∥AC,CE∥BD,DE和CE相交于E,求证:四边形OCED是菱形。

菱形的判定(导学案)-八年级数学下册(人教版)

 菱形的判定(导学案)-八年级数学下册(人教版)

学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________人教版初中数学八年级下册18.2.4菱形的判定导学案一、学习目标:1.经历菱形判定定理的探究过程,掌握菱形的判定定理.2.会用这些菱形的判定方法进行有关的证明和计算.重点:菱形的判定定理的探究.难点:菱形的性质与判定的综合应用.二、学习过程:课前检测忆一忆1.菱形的定义:_____________________________________________.2.菱形的性质:________________________________________________________________________________________.合作探究探究:用一长一短两根细木条,在它们的中点处固定一个小钉,做成一个可转动的十字架,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形呢?_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________猜想:__________________________________________.已知:如图,在□ABCD 中,对角线AC、BD 相交于O 点,且BD⊥AC.求证:□ABCD是菱形.思考:我们知道,菱形的四条边相等.反过来,四条边相等的四边形是菱形吗?已知:如图,四边形ABCD,AB=BC=CD=AD.求证:四边形ABCD是菱形.【归纳】菱形的判定定理1:__________________________________________.菱形的判定定理2:__________________________________________._______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________定理1几何符号语言:∵_________________________,∴_________________________.定理2几何符号语言:∵_________________________,∴_________________________.典例解析例1.如图,□ABCD 的对角线AC、BD 交于点O,且AB=5,AO=4,BO=3.求证:□ABCD是菱形.【针对练习】一个平行四边形的一条边长是9,两条对角线的长分别是12和56,这是一个特殊的平行四边形吗?为什么?求出它的面积.例2.如图,两张等宽的纸条交叉叠放在一起,重合的四边形ABCD 是一个菱形吗?为什么?_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________例3.如图,矩形ABCD 的对角线AC 的垂直平分线与边AD、BC 分别交于点E、F.求证:四边形AFCE是菱形.【针对练习】如图,在△ABC 中,AD 是角平分线,点E、F 分别在AB、AD 上,且AE=AC,EF=ED.求证:四边形CDEF是菱形.例4.如图,在▱ABCD 中,AD >AB ,∠ABC 的平分线交AD 于点F ,EF ∥AB 交BC 于点E .(1)求证:四边形ABEF 是菱形;(2)若AB =5,AE =6,▱ABCD 的面积为36,求BC 的长._______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________【针对练习】如图,在平行四边形ABCD 中,对角线AC,BD 交于点O,过点O 作EF⊥BD,交AD 于点E,交BC 于点F,连接EB,DF.(1)求证:四边形EBFD 为菱形;(2)若∠BAD =105°,∠DBF =2∠ABE ,求∠ABE的度数.学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________达标检测1.平行四边形ABCD 中,AC,BD 是两条对角线,如果添加一个条件,即可推出平行四边形ABCD 是菱形,以下哪个条件不符合要求()A.AC⊥BDB.AC=BDC.AB=BCD.BC=CD2.顺次连接四边形ABCD 各边的中点所得的四边形是菱形,则四边形ABCD 一定是()A.菱形B.对角线互相垂直的四边形C.矩形D.对角线相等的四边形3.如图,AD 是△ABC 的中线,四边形ADCE 是平行四边形,增加下列条件,能判定□ADCE 是菱形的是()A.∠BAC=90°B.∠DAE=90°C.AB=ACD.AB=AE4.如图,已知线段AB,分别以A,B 为圆心,大于12AB 同样长为半径画弧,两弧交于点C,D,连接AC,AD,BC,BD,CD,则下列说法错误的是()A.AB 平分∠CADB.CD 平分∠ACBC.AB ⊥CDD.AB=CD_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________5.如图,将等边三角形ABC 沿射线BC 向右平移到△DCE 的位置,连接AD,BD,则下列结论:①AD=BC;②BD,AC 互相平分;③四边形ACED是菱形.其中正确的是___________.6.一边长为5的平行四边形的两条对角线的长分别为24和26,则平行四边形的面积是_______.7.过矩形ABCD 的对角线AC 的中点O 作EF⊥AC,交BC 边于点E,交AD 边于点F,分别连接AE、CF.若AB=3,∠DCF=30°,则EF 的长为______.8.如图,在△ABC 中,AD 平分∠BAC,DF//AB,DE//AC.求证:四边形AEDF 是菱形._______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________9.如图,在矩形ABCD 中,E,F,G,H 分别是AB,BC,CD,AD 的中点.求证:四边形EFGH是菱形.10.如图,△ABC 中,AC 的垂直平分线MN 交AB 于点D,交AC 于点O,CE//AB 交MN 于E,连接AE、CD.(1)求证:AD=CE;(2)填空:四边形ADCE的形状是_______,并说明理由.学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________11.如图,四边形ABCD 是菱形,∠BAD=60°,点H 为对角线AC 的中点,点E 在AB 的延长线上,CE⊥AB,点F 在AD 的延长线上,CF⊥AD.(1)求证:四边形CEHF 是菱形;(2)若四边形CEHF 的面积为18,求菱形ABCD的面积.。

菱形判定导学案(华师大版)

菱形判定导学案(华师大版)
练习:完成课后练习:1、2.作业:习题20.3必做题1、2、选做题3
达标测试:
1、练习:(1)对角线互相垂直的四边形是菱形。()
(2)对角线互相平分的四边形是菱形。()
(3)两组对边分别相等,且对角线互相垂直的四边形是菱形。()
(4)两组对边分别平行,且对角线_________________的四边形是菱形。
2、综合应用练习
(1)如图,O是矩形ABCD的对角线的交点,DE∥AC,CE∥BD,DE和CE相交于E,求证:四边形OCED是菱形
教后感/学后感
设问:有什么方法来判定一个四边形是菱形?
方法一:对角线互相垂直的平行四边形是菱形
思考:这个命题的前提是什么?结论是什么?自己写出已知、求证、证明.
已知:__________________________________________求证:_________________
证明:
方法二:四边相等的四边形的菱形。
华师大版<<菱形判定>>导学案
年级_____________班级________________姓名____________________
学习目标:
1、会判定一个四边形或平行四边形是菱形;(重点)
2、会用这些定理进行有关的论证和计算;(难点)
3、培养学生的观察能力、动手能力自学能力、计算能力、逻辑思维能力。
导学过程设计:
一、预习准备
1.定义:( )平行四边形是菱形.
2.菱形的性质:㈠_________________________㈡_____________________________㈢_____________________________________________________

菱形判定导学案

菱形判定导学案

19.2.2菱形的判定导学案【学习目标】1.理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行有关的论证和计算;2.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.【学习重难点】菱形的两个判定方法.【学习过程】一、温故知新:1.菱形的定义:2.菱形的性质:边:__________________________;______________________________ 角:__________________________;______________________________对角线:______________________________________________________对称性:.二、学习新知:探究一:如图,四边形是菱形吗?为什么?归纳:有一组邻边相等的平行四边形是菱形探究二:用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形?通过探究,容易得到:对角线的平行四边形是菱形证明上述结论:探究三:李芳同学先画两条等长的线段AB、AD,然后分别以B、D为圆心,AB为半径画弧,得到两弧的交点C,连接BC、CD,就得到了一个四边形,猜一猜,这是什么四边形?请你画一画。

通过探究,容易得到:的四边形是菱形证明上述结论:归纳:菱形的判定方法123三、应用新知:例1. 如图,ABCD 的两条对角线AC 、BD 相交于点O ,AB= 5 ,AC=8,DB=6 求证:四边形ABCD 是菱形.四、达标测评1.判断题,对的画“√”错的画“×”(1).对角线互相垂直的四边形是菱形( )(2).一条对角线垂直另一条对角线的四边形是菱形( )(3)..对角线互相垂直且平分的四边形是菱形( )(4).对角线相等的四边形是菱形( )2.如图,两张等宽的纸条交叉重叠在一起,重叠的部分ABCD 是菱形吗?求证:(1)四边形ABCD 是平行四边形(2) 过A 作AE ⊥BC 于E 点, 过A 作AF ⊥CD 于F .用等积法说明BC =CD .(3) 求证:四边形ABCD 是菱形.A B CDE F3.如图,□ABCD 中,AB ⊥AC ,AB =1,BC =5.对角线AC ,BD 相交于点O ,将直线AC 绕点O 顺时针旋转,分别交BC ,AD 于点E ,F .(1)证明:当旋转角为90°时,四边形ABEF 是平行四边形;(2)试说明在旋转过程中,线段AF 与EC 总保持相等;(3)在旋转过程中,四边形BEDF 可能是菱形吗?如果不能,请说明理由;如果能,画出图形并写出此时AC 绕点O 顺时针旋转的度数.五、回顾与反思:1、今天你学到了哪些知识和方法?2、还有哪些疑惑?中考链接:1、(2011•西宁)如图,矩形ABCD的对角线相交于点O,DE∥CA,AE∥BD.(1)求证:四边形AODE是菱形;(2)若将题设中“矩形ABCD”这一条件改为“菱形ABCD”,其余条件不变,则四边形AODE是.2、(2011•临沂)如图,△ABC中,AB=AC,AD、CD分別是△ABC两个外角的平分线.(1)求证:AC=AD;(2)若∠B=60°,求证:四边形ABCD是菱形.。

菱形的判定定理

菱形的判定定理

《菱形的判定》导学案【学习目标】1.能说出菱形的两个判定定理,并会用它进行相关的论证和计算.2.会根据已知条件画出菱形.3.经历探究菱形判定条件的过程,通过观察、猜想、证明的过程,•培养科学的探索精神.4.在探究过程中加深对菱形的理解,养成主动探索的学习习惯.5.通过菱形与矩形判定方法的类比,进一步体会类比的思想方法的作用.【学习过程】二、预习导学(自主探究)阅读课本57~58页,完成下列问题:1、知识探究①.有一组的平行四边形是菱形.②.对角线的平行四边形是菱形.③.的四边形是菱形.2、自学反馈(1)判断下列说法是否正确:①对角线互相垂直的四边形是菱形;()②对角线互相垂直平分的四边形是菱形;()③对角线互相垂直,且有一组邻边相等的四边形是菱形;()④两条邻边相等,且一条对角线平分一组对角的四边形是菱形.()(2)如图,□ABCD的对角线AC与BD相交于点O,①若AB=AD,则□ABCD是形;②若AC=BD,则□ABCD是形;③若∠ABC是直角,则□ABCD是形;④若∠BAO=∠DAO,则□ABCD是形.BBAD三、合作探究1、知识运用(教师引导学生分析并板书演示)例1 如图,□ABCD 的两条对角线AC 、BD 相交于点O ,AB=5,AC=8,DB=6. 求证:四边形ABCD 是菱形.2、学生模仿(学生代表板演)练习1 如图,AD 是△ABC 的角平分线,DE ∥AC 交AB 于点E ,DF ∥AB 交AC 于点F .试问四边形AEDF 是菱形吗?说明你的理由.请同学们用一句话(几何命题)描述右图中的结论:3、知识运用(教师引导学生分析并画图演示)例2 画一个边长为3cm 并且有一个角是50°的菱形. 4、学生模仿(学生在草稿纸上完成)练习2 画一个两条对角线的长分别为4cm 和6cm 的菱形.四、课堂小结:菱形常用的判定方法有哪些?1.有一组邻边相等的平行四边形是菱形.(定义) 2.对角线互相垂直的平行四边形是菱形.(判定1) 3.有四条边相等的四边形是菱形.(判定2)ABBAC五、课后作业(第1~6题直接在导学案上完成) 1.下列命题中正确的是( )A .一组邻边相等的四边形是菱形B .三条边相等的四边形是菱形C .四条边相等的四边形是菱形D .四个角相等的四边形是菱形2.对角线互相垂直且平分的四边形是( )A .矩形B .一般的平行四边形C .菱形D .以上都不对3.下列条件中,不能判定四边形ABCD 为菱形的是( ) A .AC ⊥BD ,AC 与BD 互相平分 B .AB=BC=CD=DAC .AB=BC ,AD=CD ,且AC ⊥BD D .AB=CD ,AD=BC ,AC ⊥BD4.如图,矩形ABCD 的对角线相交于点O ,DE ∥AC ,CE ∥BD . 求证:四边形OCED 是菱形.5.如图,△ABC 中,AC 的垂直平分线MN 交AB 于点D ,交AC 于点O ,CE ∥AB 交MN 于点E ,连接AE 、CD . 求证:四边形ADCE 是菱形.6.已知线段AC ,请画出以AC 为一条对角线、并且有一个角等于70°的菱形,这样的菱形可以画几个?7.课本随堂练习第1~2题;8.课本习题6.2第1~3题.。

菱形的判定导学案

菱形的判定导学案

菱形(二) 八年级
科目 班级 教务处
数学
类型 学生姓名 学校
上课时间 编写教师 检查时间
A
B
=
=_
5.(总结)由上写出菱形的判定方法二:_______ 利用上图用符号语言表示为:在四边形 ABCD 中, ∵
. ____=____=____=____
∴四边形 ABCD 是

目标三:探究并掌握菱形的判定方法三 阅读 99 页“探究”,利用自制的学具探究菱形的判定方法并完成下面各题 1.由“在一长一短的木条中点处固定一个小钉”可知: = , = ∴四边形 ABCD 是 四边形 2.转动十字,当∠_____= ° 时即 ⊥ 时,四边形变成了菱形. 3. (猜想)对角线互相 的平行四边形是菱形.
三、知识点运用(认真阅读 99 页例 3,完成下面练习) 1、如图在△ABC 中,AD 平分∠BAC 交 BC 于 D 点,过 D 作 DE∥AC 交 AB 于 E 点, 过 D 作 DF∥AB 交 AC 于 F 点. 求证: (1)四边形 AEDF 是平行四边形 (2)∠2﹦∠3 (3)四边形 AEDF 是菱形
B E C

D F
2.已知:如图,顺次连接矩形 ABCD 各边中点,得到四边形 EFGH,求证:四边形 EFGH 是菱形。
A F B
E
D H C
G
2B ABiblioteka CoD14.请利用下图证明你的猜想: 已知:如图,在□ABCD 中,AC 和 BD 是对角线,并且 AC⊥BD 于点 O,求证:□ABCD 是菱形.
B O D C
A
5.总结写出菱形判定方法三: 利用上图用符号语言可以表示为:∵四边形 ABCD 是平行四边形,∵AC___BD,∴□ABCD 是菱形

菱形的判定导学案

菱形的判定导学案

22.5. 菱形(2)————菱形的判定导学案学习目标:1、经历并探索菱形的判定方法2、会利用菱形的判定进行说理一、旧知回顾1、矩形的判定:(1)的平行四边形是矩形。

(2)的平行四边形是矩形。

(3)的四边形是矩形。

2、回顾探索矩形判定的过程首先由矩形的定义得到矩形的第一个判定再由矩形不同于平行四边形的特殊性质→特殊性质的逆命题→猜想矩形的判定→验证猜想→应用判定定理解决问题我们接下来也用相同的方式来探索菱形的判定二、合作探究1、菱形的定义:的平行四边形是菱形。

定义可以作为菱形的判定,这个判定有个条件,分别是和几何语言表示:(如右图)∵∴四边形ABCD是菱形2、填表平行四边形菱形的特殊性质边角对角线对称性(1)菱形的四条边都相等的逆命题是验证:已知四边形ABCD中,AB=BC=CD=DA,求证:四边形ABCD是菱形。

由此得到菱形的第二个判定:的四边形是菱形。

(2)如图,ABCD的两条对角线AC,BD互相垂直,O是这两条对角线的交点。

○1找出图中的全等直角三角形__________________________说明理由。

○2ABCD的四条边都相等吗?○3由此得到菱形的第三个判定方法:对角线_____________________的平行四边形是菱形。

或对角线________________________的四边形是菱形。

三、归纳菱形的判定方法:文字语言:①的平行四边形是菱形(定义)②(四边形)是菱形;(判定定理)③对角线的(平行四边形)是菱形;(判定定理)或对角线且的(四边形)是菱形。

符号语言:①∵_________________________________________;∴。

②∵_________________________________________;∴。

③∵_________________________________________;∴。

或∵_________________________________________;∴。

人教版八年级数学下册18.2.2 菱形(第2课时)菱形的判定导学案

人教版八年级数学下册18.2.2   菱形(第2课时)菱形的判定导学案

18.2.2《菱形的判定》导学案一、学习目标1.掌握菱形的三种判定方法,能根据不同的已知条件,选择适当的判定定理进行推理和计算;2.经历菱形判定定理的探究过程,渗透类比思想,体会研究图形判定的一般思路.二、预习内容自学课本57页至58页,完成下列问题:1、回顾反思 类比猜想说一说,(1)矩形的定义、性质和判定?(2)菱形的定义和性质?2.根据菱形的定义,可以得到第一条判定定理: 。

三、探究学习 探究1、菱形的判定定理1猜想1:对角线互相垂直的平行四边形是菱形已知:□ABCD, 对角线AC ,BD 相交于点O ,且AC ⊥BD求证:□ABCD 是菱形 分析猜想1: 证明:菱形的判定定理1: 对角线互相 是菱形。

符号语言:∵ , (已知)∴□ABCD 是菱形( ) )探究2、菱形的判定定理2□ABCD , AC ⊥BD □ABCD 是菱形菱形的定义猜想2: 四条边相等的四边形是菱形 分析猜想2: 已知:四边形ABCD, AB= BC=CD =DA求证:四边形ABCD 是菱形证明:菱形的判定定理2:四条边的四边形是是菱形。

符号语言: ∵(已知)∴四边形ABCD 是平行四边形( )四、巩固测评1、填空。

(1)如图,若AD=8cm, 那么当AB=______ cm ,BC= _____cm,CD= ___ cm 时,四边形ABCD 是菱形.(2))如图,若AO=8cm, OD=6cm ,则当AD=____ cm,则□ABCD 是菱形.2、下列哪些平行四边形是菱形?为什么?3. 在菱形ABCD 中,不一定成立的( )A 、 四边形ABCD 是平行四边形B 、 AC ⊥BDC 、 △ABD 是等边三角形 D 、 ∠CAB =∠CAD4.菱形的对角线长分别是16cm 、12cm ,周长是 .5.如图,下列条件之一能使平行四边形ABCD 是菱形的为( )①AC ⊥BD ; ②∠BAD =90°; ③AB =BC ; ④AC =BD .A .①③B .②③C .③④D .①②③五、学习心得 。

菱形的判定导学案

菱形的判定导学案

菱形的判定导学案教学目标:1、探索菱形的判定定理并会证明。

2、培养学生分析问题解决问题的能力。

教学重点:菱形判定定理的证明。

教学流程:一、复习回顾:(1)叫做菱形(2)菱形的性质:边:对角线:(3)、平行四边形的判定:两组对边的四边形是平行四边形;一组对边的四边形是平行四边形;对角线的四边形是平行四边形;二、引入新课:结合平行四边形的性质定理与判定定理我们不难发现:性质定理是平行四边形具有什么特点。

反之,当四边形具备了这些特点时,它就是平行四边形。

即性质定理与判定定理互为逆命题;我们还知道平行四边形的定义既是性质定理又是判定定理。

那么,对于菱形来说,除了定义之外,你认为还有什么条件可以判断一个平行四边形(或四边形)是菱形?结合菱形的性质定理先想一想,再与同伴交流。

是菱形;是菱形;下面我们对上面两个命题进行严格的逻辑证明(证明时,考虑用定义解决)。

1、已知:如图,在四边形ABCD中,AB=BC=CD=DA。

求证:四边形ABCD是菱形。

证明:由此得到定理:几何语言:2、已知:如图1-3,在ABCD中,对角线AC与BD交于点O,AC⊥BD.求证: ABCD是菱形证明:由此得到定理:几何语言:3、议一议已知线段AC,你能用尺规作图的方法作一个菱形ABCD,使AC为菱形的一条对角线吗?学生讨论这样做的理由是什么?4、做一做你能用折纸等办法得到一个菱形吗?动手试一试!你能说说小颖这样做的道理吗?5、例题讲解例2 已知:如图,在平行四边形ABCD中,对角线AC与BD相交于点O,AB=5,OA=2,OB=1。

A求证:平行四边形ABCD是菱形。

6、课堂练习:课本P7 习题1、2、3 题。

7、课堂小结:菱形的定义:一组邻边相等的平行四边形是菱形.菱形的判定:四边相等的四边形是菱形。

对角线互相垂直的平行四边形是菱形。

8、课堂检测:练习册4页1------8题9、拓展提升:练习册5页9题、课堂延伸题10、选作:练习册5页中考链接题。

第2课时 菱形的判定导学案

第2课时 菱形的判定导学案

18.2.2 菱形第2课时菱形的判定学习目标:记忆菱形的三种判定方法;重难点:菱形判定方法的应用。

学习过程一、复习旧知菱形的定义是什么?(一组邻边相等的四边形是菱形)性质:(1)边的性质:对边平行,四条边都;(2)角的性质:对角;(3)对角线的性质:两条对角线互相、,每条对角线平分一组对角;(4)对称性:是轴对称图形,有条对称轴,是两条对角线所在的直线.二、探究新知1、菱形的四边都相等。

反过来,四边都相等的四边形是菱形,对吗?答:简单说理:由此得到菱形的判定定理1(从四边形⇒菱形):几何语言表述:在四边形ABCD中∵AB= = =∴2、(1)菱形的定义:一组邻边相等的四边形是菱形由此得到菱形的判定定理---定义法:几何语言表述: 在□ABCD中∵或或或∴(2)教具:两根一长一短的细木条,钉子、橡皮筋.操作:教师在两根细木条的中点处固定一个小钉子,做成一个可转动的十字,再将四周围上一根橡皮筋,做成一个四边形,问:这个四边形是怎样的四边形?(答:).问:将木条转成互相垂直的位置,这时这个平行四边形是怎样的平行四边形呢?为什么?由此得到菱形判定定理3(从平行四边形⇒菱形)---对角线法:你能证明上面的这个判定定理3吗?已知:平行四边形ABCD中,对角线AC⊥BD 求证:四边形ABCD是菱形证明:3、思考:下列命题是否为真命题,如果是,简单说明理由,如果不是,请画图或举反例说明你的理由。

①有一组邻边相等的四边形是菱形;②三边都相等的四边形是菱形;③对角线互相垂直的四边形是菱形; ④对角线互相垂直平分的四边形是菱形归纳方法三、课堂小结菱形的判定方法:(1)从边的条件去考虑:①②定义法 .(2)从对角线的条件去考虑:③对角线互相 ,又是平行四边形.④对角线互相 且 ,只是四边形。

四、课堂作业1、在平行四边形ABCD 中,请你再添加一个条件 ,使得ABCD 是菱形2、如图,AD 是三角形ABC 的角平分线,DE ∥求证:四边形AEDF 是菱形五、课后反思3、如图:矩形ABCD 中,E 、F 、G 、H 分别是各边的中点,求证:EFGH 是菱形(多种方法,看谁的方法最好)F C F D E A B。

菱形的判定导学案

菱形的判定导学案

菱形的判定导学案学习目标:1.能记住菱形的定义它的判定定理。

2.会运用菱形的判定定理解决相关问题。

3.经历数学学习的过程,培养学习数学的兴趣。

学习重点:灵活运用菱形判定定理解决数学问题【学习流程】1、独学(认真阅读课本57-58页内容,先独自初步解决导学案问题,用红笔在画出课本上的重点内容,并用红笔在导学案上对不理解的问题进行标注,A级为基础知识,B级为变式应用,C级为综合应用)18分钟2、对、群学(对于在独学中没学会的问题,先学习对子之间交流,若还解决不了,小组内交流)8分钟3、展示(分组写板,注意书写的要求,聚焦处展评)8分4、整理学案、达标检测8分钟一:基本知识(自学课本57—58页的内容)2、菱形的判定定理有:(1)(2)(3)2.你能证明你的结论吗?①已知:在平行四边形ABCD中,A C⊥BD,求证:平行四边形ABCD是菱形。

A DOB C②已知:在四边形ABCD中,AB=BC=CD=DA,求证:四边形ABCD是菱形。

A DB C二、基础应用:(A级)如图,□ABCD的对角线AC,BD相交于点O,且AB=13,OA=12,OB=5,求证:□ABCD是菱形。

AB CDO(B 级) 如图,O 为矩形ABCD 对角线的交点,DE ∥AC ,CE ∥BD.(1)是判断四边形OCED 的形状,并说明理由。

(2)若AB=6,BC=8,求四边形OCED 的面积。

A D○EB C(C 级)如图,AE ∥BF ,AC 平分∠BAD ,且交BF 于点C ,BD 平分∠ABC ,交AE 于点D ,连接CD ,求证:四边形ABCD 是菱形。

课堂检测1、下列条件中,可以判定一个四边形为菱形的是﹙ ﹚A 两条对角线相等B 两条对角线互相垂直C 两条对角线相等且垂直D 两条对角线互相垂直平分2、 如图,四边形ABCD 的对角线互相平分,要使它变为菱形,需要添加的条件是 。

(只填一个你认为正确的即可)3、如图,在平行四边形ABCD 中,AC 平分∠DAB,AB=3,则平行四边形的周长为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《菱形的判定》导学案
渔渡中学党文州
一、填空题
1.菱形的对角线长为24和10,则菱形的边长为,周长为 .
2.菱形的一边与两条对角线构成的二角之比为5:4,则菱形的各内角
为,,, .
3.菱形的两条对角线分别为3和7,则菱形的面积为 .
4.已知菱形的面积等于80cm2,高等于8cm,则菱形的周长为 .
5.已知菱形ABCD中AE⊥BC,垂足E,F分别为BC,CD的中点,那么∠EAF的度数为 .
6.顺次连结菱形各边的中点,所得的四边形为形.
三、解答题
1.如图,在菱形ABCD中,E是AD的中点,EF⊥AC交CB的延长于F,交AC于M,求证:AB与EF互相平分.
2.如图,在□ABCD中,对角线AC的垂直平分线交AD于E,交BC于F,求证:四边形AFCE 是菱形.
3.已知:如图,四边形ABCD中,AC=BD,E,F,G,H分别为AB,BC,CD,AD的中点,求证:四边形EFGH是菱形.。

相关文档
最新文档