中考第二轮复习:统计与概率测试(含答案)

合集下载

备考2024年中考数学二轮复习-统计与概率_概率_利用频率估计概率-填空题专训及答案

备考2024年中考数学二轮复习-统计与概率_概率_利用频率估计概率-填空题专训及答案

备考2024年中考数学二轮复习-统计与概率_概率_利用频率估计概率-填空题专训及答案利用频率估计概率填空题专训1、(2017抚顺.中考真卷) 一个不透明的袋中装有除颜色外均相同的9个红球,3个白球,若干个绿球,每次摇匀后随机摸出一个球,记下颜色后再放回袋中,经过大量重复实验后,发现摸到绿球的概率稳定在0.2,则袋中约有绿球________个.2、(2017营口.中考真卷) 在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是________个。

3、(2021湘潭.中考模拟) 在一个不透明的布袋中,装有红、黑、白三种只有颜色不同的小球,其中红色小球4个,黑、白色小球的数目相同.小明从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后随机摸出一球,记下颜色;…如此大量摸球实验后,小明发现其中摸出的红球的频率稳定于20%,由此可以估计布袋中的黑色小球有 ________个.4、(2019扬州.中考真卷)扬州某毛绒玩具厂对一批毛绒玩具进行质量抽检的结果如下从这批玩具中,任意抽取的一个毛绒玩具是优等品的概率的估计值是________.(精确到0.01)5、(2017宿迁.中考真卷) 如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为2cm的正方形,使不规则区域落在正方形内,现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.25附近,由此可估计不规则区域的面积是________ cm2.6、(2016镇江.中考真卷) 一只不透明的袋子中装有红球和白球共30个,这些球除了颜色外都相同,校课外学习小组做摸球试验,将球搅匀后任意摸出一个球,记下颜色后放回、搅匀,通过多次重复试验,算得摸到红球的频率是20%,则袋中有________个红球.7、(2017红桥.中考模拟) 在一个不透明的布袋中有除颜色外其它都相同的红、黄、蓝球共200个,某位同学经过多次摸球试验后发现,其中摸到红色球和蓝色球的频率稳定在35%和55%,则口袋中可能有黄球________个.8、(2018宁晋.中考模拟) 在某次试验数据整理过程中,某个事件发生的频率情况如表所示.试验次数1050100200500100020000.2450.2480.2510.2530.2490.2520.251事件发生的频率估计这个事件发生的概率是________(精确到0.01).9、(2020嘉兴.中考模拟) 如图是小明在科学实验课中设计的电路图,任意闭合其中两个开关,能使灯泡L发光的概率是________.10、(2016慈溪.中考模拟) 一个不透明的布袋中,装有红、黄、白、黑四种只有颜色不同的小球,其中红色小球有30个,黄、白、黑色小球的数目相同.为估计袋中黄色小球的数目,每次将袋中小球搅匀后摸出一个小球记下颜色,放回后再次搅匀…多次试验发现摸到红球的频率是,则估计黄色小球的数目是________.11、(2021北.中考模拟) 儿童节期间,游乐场里有一种游戏的规则是:在一个装有6个红球和若干白球(每个球除颜色外,其它都相同)的袋中,随机摸一个球,摸到一个红球就得欢动世界通票一张,已知参加这种游戏的有300人,游乐场为此游戏发放欢动世界通票60张,请你通过计算估计袋中白球的数量是________ 个.12、(2018武汉.中考真卷) 下表记录了某种幼树在一定条件下移植成活情况移植总数n400150035007000900014000成活数m3251336320363358073126280.8130.8910.9150.9050.8970.902成活的频率(精确到0.01)由此估计这种幼树在此条件下移植成活的概率约是________(精确到0.1)13、(2022东洲.中考模拟) 一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球________个.14、(2020海淀.中考模拟) 下表记录了一名篮球运动员在罚球线上投篮的结果:投篮次数n4882124176230287328投中次数m335983118159195223投中频率0.690.720.670.670.690.680.68根据上表,这名篮球运动员投篮一次,投中的概率约为________.(结果精确到0.01)15、(2020朝阳.中考模拟) 下表显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果.抛掷次数n300500700900110013001500170019002000“正面向上”的次数m1372333354415446507498529461004“正面向上”的频率0.4570.4660.4790.4900.4950.5000.4990.5010.4980.502估计此次实验硬币“正面向上”的概率是________.16、(2020溧阳.中考模拟) 如图,正方形二维码的边长为2cm,为了测算图中黑色部分的面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.75左右,据此可估计黑色部分的面积的为________cm2.17、(2020西宁.中考模拟) 如图,正方形二维码的边长为2cm,为了测算图中黑色部分的面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.7左右,据此可估计黑色部分的面积约为cm2.18、(2021白银.中考模拟) 某射手在同一条件下进行射击,结果如下表所示:射击次数()102050100200500…击中靶心次数()8174592182453…击中靶心频率()0.800.850.900.920.910.905…由此表估计这个射手射击1次,击中靶心的概率是.(保留一位小数)19、(2021原州.中考模拟) 在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同.小明通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在20%和45%,则口袋中白色球的个数很可能是.20、某市林业部门要考察某种幼树在一定条件下的移植成活率,实验结果统计如下:移植总数(n)50270400750150035007000900014000成活数(m)47235369662133531806321807312628成活频率()0.940.870.9230.8830.890.9080.9030.8970.902由此可以估计该种幼树移植成活的概率为由此可以估计该种幼树移植成活的概率为.(结果保留小数点后两位).(结果保留小数点后两位)利用频率估计概率填空题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:16.答案:17.答案:18.答案:19.答案:20.答案:。

2020年中考数学二轮专题复习专题:统计与概率(含答案)

2020年中考数学二轮专题复习专题:统计与概率(含答案)

2020年中考数学二轮专题:统计与概率一、选择题(每小题5分,共40分)1.下列说法错误的是()A.在一定的条件下,可能发生也可能不发生的事件称为随机事件B.一组数据中出现次数最多的数据称为这组数据的众数C.方差可以刻画数据的波动程度,方差越大,波动越小;方差越小,波动越大D.全面调查和抽样调查是收集数据的两种方式2.一个布袋里装有2个红球、3个黄球和5个白球,除颜色外其他都相同.搅匀后任意摸出一个球,是白球的概率为()A.12B.310C.15D.7103.抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为()A.500B.800C.1000D.12004.一组数据:1,2,1,4的方差为()A.1B.1.5C.2D.2.55.现有一组数据:1,4,3,2,4,x,若该组数据的中位数是3,则x的值为()A.1B.2C.3D.46.某企业1~6月份利润的变化情况如图1所示,以下说法与图中反映的信息相符的是()图1A.1~6月份利润的众数是130万元B.1~6月份利润的中位数是130万元C.1~6月份利润的平均数是130万元D.1~6月份利润的最大值与最小值的差是40万元7.小李与小陈做猜拳游戏,规定每人每次至少要出一个手指,两人出的手指数之和为偶数时小李获胜,那么小李获胜的概率为()图2A.1325B.1225C.425D.128.正方形ABCD的边长为2,以各边为直径在正方形内画半圆,得到如图3所示阴影部分,若随机向正方形ABCD 内投一粒米,则米粒落在阴影部分的概率为()图3A.π-22B.π-24C.π-28D.π-216二、填空题(每小题5分,共30分)9.某中学为积极响应“全民阅读”活动,助力学生良好阅读习惯的养成,形成浓厚的阅读氛围,随机调查了部分学生平均每天的阅读时间,统计结果如下表所示,则在本次调查中,学生阅读时间的中位数是小时.时间(小时)0.511.522.5人数(人)1222105310.在一个不透明的口袋中,装有一些除颜色外完全相同的红、白、黑三种颜色的小球,已知袋中有红球5个,白球23个,且从袋中随机摸出一个红球的概率是110,则袋中黑球的个数为.11.已知一包糖果共有5种颜色(糖果只有颜色差别),如图4是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是.图412.在一次有12人参加的数学测试中,得100分、95分、90分、85分、75分的人数分别是1,3,4,2,2,那么这组数据的众数是分.13.从2,3,4,6中随机选取两个数记作a和b(a<b),那么点(a,b)在直线y=2x上的概率是.14.下表是甲、乙两名同学近五次数学测试(满分为100分)成绩的统计表:第一次第二次第三次第四次第五次甲9088929491乙9091939492根据上表数据,成绩较好且比较稳定的同学是.三、解答题(共30分)15.(8分)某商场举办抽奖活动,规则如下:在不透明的袋子中有2个红球和2个黑球,这些球除颜色外都相同,顾客每次摸出一个球,若摸到红球,则获得1份奖品;若摸到黑球,则没有奖品.(1)如果小芳只有一次摸球机会,那么小芳获得奖品的概率为;(2)如果小芳有两次摸球机会(摸出后不放回),求小芳获得2份奖品的概率.(请用“画树状图”或“列表”等方法写出分析过程)16.(10分)某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:月销售量/件数177048022018012090人数113334(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.图517.(12分)某中学举行钢笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图.请结合图中相关信息解答下列问题:(1)扇形统计图中,三等奖所在扇形的圆心角的度数是度;(2)请将条形统计图补全;(3)获得一等奖的同学中有14来自七年级,有14来自九年级,其他同学均来自八年级.现准备从获得一等奖的同学中任选2人参加市级钢笔书法大赛,请通过列表或画树状图的方法求所选出的2人中既有八年级同学,又有九年级同学的概率.图6参考答案1.C2.A3.C4.B [解析]这组数据的平均数为x =2,根据方差的计算公式得:s 2=[(1-2)2+(2-2)2+(1-2)2+(4-2)2]×14=1.5,故选B .5.C [解析]除x 外,把这组数据由小到大排列为:1,2,3,4,4,因为数据1,4,3,2,4,x 的中位数是3,所以12(3+x )=3,因此x=3,故选C .6.D [解析]A .1~6月份利润的众数是120万元,故A 错误; B .1~6月份利润的中位数是125万元,故B 错误; C .1~6月份利润的平均数约是128万元,故C 错误; D .1~6月份利润的极差是40万元,故D 正确.故选D .7.A [解析]画树状图如下:共有25种等可能的结果,两人出的手指数之和为偶数的结果有13种, ∴小李获胜的概率为1325,故选A .8.A [解析]因为正方形ABCD 的面积为4,阴影部分的面积为四个半圆的面积与正方形ABCD 的面积之差,即4×12π×222-4=2π-4,所以米粒落在阴影部分的概率为2π-44=π-22. 9.1 [解析]本题考查了中位数的定义,∵学生有52人,把52人的阅读时间从小到大排列后,处于最中间的两个时间数是1和1,∴学生阅读时间的中位数是1小时.10.22 [解析]设袋中黑球的个数为x ,则摸出红球的概率为523+5+x =110,所以x=22. 11.12 [解析]棕色糖果所占的百分比为1-20%-15%-30%-15%=1-80%=20%, 所以P (糖果的颜色为绿色或棕色)=30%+20%=50%=12. 故答案为12.12.90 [解析]∵这组数据中出现次数最多的数是90,∴这组数据的众数是90分.13.13 [解析]本题考查了概率的计算.从2,3,4,6中任选两个数记作a 和b (a<b )共有6种可能:(2,3),(2,4),(2,6),(3,4),(3,6),(4,6), 点(a ,b )在直线y=2x 上的情况有2种:(2,4),(3,6), 因此概率为26=13.14.乙 [解析]x ̅甲=15×(90+88+92+94+91)=91,x ̅乙=15×(90+91+93+94+92)=92,s 甲2=15×[(90-91)2+(88-91)2+(92-91)2+(94-91)2+(91-91)2]=4,s 乙2=15×[(90-92)2+(91-92)2+(93-92)2+(94-92)2+(92-92)2]=2,所以乙的成绩较好且比较稳定. 15.解:(1)12(2)根据题意,画出树状图如下:∴共有12种等可能的结果,两次均摸出红球的结果有2种, ∴获得2份奖品的概率P=16.16.解:(1)这15名销售人员该月销售量数据的平均数为278,中位数为180,众数为90. (2)中位数最适合作为月销售目标.理由如下:在这15人中,月销售量不低于278(平均数)的有2人,月销售量不低于180(中位数)的有8人,月销售量不低于90(众数)的有15人,所以,如果想让一半左右的营业员都能够达到月销售目标,(1)中的平均数、中位数、众数中,中位数最适合作为月销售目标. 17.解:(1)16÷40%=40, 360°×1240=108°. 故填108. (2)如图所示,(3)七年级一等奖人数:4×14=1,九年级一等奖人数:4×14=1, 八年级一等奖人数为2, 画树状图如下:或列表如下:七 八1 八2 九 七 八1,七 八2,七 九,七 八1 七,八1 八2,八1九,八1 八2 七,八2 八1,八2 九,八2 九七,九八1,九八2,九由上可知共有12种等可能的结果,其中选出的两名同学既有八年级同学又有九年级同学的结果共有4种, ∴P (既有八年级同学又有九年级同学)=412=13.。

备考2024年中考数学二轮复习-统计与概率_概率_简单事件概率的计算-单选题专训及答案

备考2024年中考数学二轮复习-统计与概率_概率_简单事件概率的计算-单选题专训及答案

备考2024年中考数学二轮复习-统计与概率_概率_简单事件概率的计算-单选题专训及答案简单事件概率的计算单选题专训1、(2022朝阳.中考模拟) 不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为()A .B .C .D .2、(2018本溪.中考真卷) 小新抛一枚质地均匀的硬币,连续抛三次,硬币落地均正面朝上,如果他第四次抛硬币,那么硬币正面朝上的概率为()A .B .C . 1D .3、(2018泰州.中考模拟) 不透明的布袋中有2个红球和3个白球,所有球除颜色外无其它差别.某同学从布袋里任意摸出一个球,则他摸出红球的概率是( )A .B .C .D .4、(2020江阴.中考模拟) 下列说法中,正确的是()A . 为检测我市正在销售的酸奶质量,应该采用普查的方式B . 若两名同学连续五次数学测试的平均分相同,则方差较大的同学数学成绩更稳定 C . 抛掷一个正方体骰子,朝上的面的点数为奇数的概率是 D . “打开电视,正在播放广告”是必然事件5、(2019宁波.中考模拟) 如图,在4×4的正方形网格中,任选一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是( )A .B .C .D .6、(2019海.中考模拟) 在一个不透明的口袋里有3个红球,2个黄球,4个蓝球,这些球除颜色外全部相同,搅匀后随机从中摸出一个球,不是红球的概率是()A .B .C .D .7、(2019乐清.中考模拟) 一个不透明的盒子里有3个红球、5个白球,它们除颜色外其他都一样。

现从盒子中随机取出一个球,则取出的球是白球的概率是( )A .B .C .D .8、(2018拱墅.中考模拟) 四张分别画有平行四边形、等腰直角三角形、正五边形、圆的卡片,它们的背面都相同,现将它们背面朝上,从中任取一张,卡片上所画图形恰好是中心对称图形的概率是( )A .B .C .D .9、(2019海南.中考模拟) 从﹣2,﹣1,2这三个数中任取两个不同的数相乘,积为正数的概率是()A .B .C .D .10、(2019博罗.中考模拟) 一个不透明的盒子中装有6个大小相同的乒乓球,其中4个是黄球,2个是白球.从该盒子中任意摸出一个球,摸到黄球的概率是()A .B .C .D .11、(2020宜城.中考模拟) 不透明的袋子中装有红球1个、绿球1个、白球2个,除颜色外无其他差别.随机摸出一个小球后不放回,再摸出一个球,则两次都摸到白球的概率是()A .B .C .D .12、(2018深圳.中考模拟) 抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为2的概率是( )A .B .C .D .13、(2019桂林.中考模拟) 同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率为()A .B .C .D .14、(2018贵港.中考真卷) 笔筒中有10支型号、颜色完全相同的铅笔,将它们逐一标上1﹣10的号码,若从笔筒中任意抽出一支铅笔,则抽到编号是3的倍数的概率是()A .B .C .D .15、(2019毕节.中考真卷) 在平行四边形ABCD中,AC,BD是两条对角线,现从以下四个关系:①AB=BC,②AC=BD,③AC⊥BD,④AB⊥BC中任取一个作为条件,即可推出平行四边形ABCD是菱形的概率为( )A .B .C .D . 116、(2018官渡.中考模拟) 下列说法不正确的是()A . 某种彩票中奖的概率是,买1000张该种彩票一定会中奖B . 了解一批电视机的使用寿命适合用抽样调查C . 若甲组数据方差 =0.39,乙组数据方差 =0.27,则乙组数据比甲组数据稳定 D . 在一个装有白球和绿球的袋中摸球,摸出黑球是不可能事件17、(2018青海.中考真卷) 用扇形统计图反映地球上陆地面积与海洋面积所占比例时,陆地面积所对应的圆心角是,当宇宙中一块陨石落在地球上,则落在陆地上的概率是()A .B .C .D .18、(2019路南.中考模拟) 下列说法正确的是()A . 调查某班学生的身高情况,适宜采用抽样调查B . “若m、n互为相反数,则mn=0”,这一事件是必然事件C . 小南抛挪两次硬币都是正面向上,说明抛掷硬币正面向上的概率是1D . “1,3,2,1的中位数一定是2”,这一件是不可能事件19、(2020绍兴.中考模拟) 小军旅行箱的密码是一个三位数,每位上的数字是0至9中的一个,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是()A .B .C .D .20、(2020平阳.中考模拟) 九年级参展作品中有4件获得一等奖,其中有2名作者是男生,2名作者是女生.现在要在抽两人去参加学校总结表彰座谈会,求恰好抽中一男一女的概率()A .B .C .D .21、(2020武汉.中考模拟) 若一个口袋中装有2个红球和一个黑球,对于“从中摸出一个球是红球”这个事件,下列说法正确的是()A . 发生的可能性为B . 是不可能事件C . 随机事件D . 必然事件22、(2020北京.中考模拟) 2019年10月20日,第六届世界互联网大会在浙江乌镇举行,会议发布了15项“世界互联网领先科技成果”,其中有5项成果属于芯片领域.小飞同学要从这15项“世界互联网领先科技成果”中任选1项进行了解,则他恰好选中芯片领域成果的概率为()A .B .C .D .23、(2020龙湾.中考模拟) 一个不透明的袋中装有3个黄球、4个白球和2个黑球,它们除颜色外都相同.从袋中任意摸出一个球,是黄球的概率是()A .B .C .D .24、(2021瓯海.中考模拟) 在同一副扑克牌中抽取5张“方块”,3张“梅花”,2张“黑桃”.将这10张牌背面朝上,从中任意抽取1张,是“黑桃”的概率为()A .B .C .D .25、(2021攸.中考模拟) 在九张质地都相同的卡片上分别写有数字1,2,3,4,5,6,7,8,9,在看不到数字的情况下,从中随机抽取一张卡片,则这张卡片上的数字是3的倍数的概率是()A .B .C .D .26、(2021广西壮族自治区.中考真卷) 如图,小明从入口进入博物馆参观,参观后可从,,三个出口走出,他恰好从出口走出的概率是()A .B .C .D .27、在六张卡片上分别写有6,,3.1415,,0,六个数,从中随机抽取一张,卡片上的数为无理数的概率是()A .B .C .D .28、一个布袋里装有3个红球和5个黄球,它们除颜色外其余都相同从中任意摸出一个球是红球的概率是()A .B .C .D .29、在一个不透明的布袋里装有3个白球,2个黑球,它们除颜色外其余都相同.现随机从布袋中摸出1个球,是白球的概率为()A .B .C .D .30、一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为().A .B .C .D .简单事件概率的计算单选题答案1.答案:D2.答案:A3.答案:B4.答案:C5.答案:D6.答案:D7.答案:C8.答案:B9.答案:C10.答案:A11.答案:B12.答案:A13.答案:A14.答案:C15.答案:B16.答案:A17.答案:D18.答案:D19.答案:A20.答案:21.答案:22.答案:23.答案:24.答案:25.答案:26.答案:27.答案:28.答案:29.答案:30.答案:。

中考数学高频考点《统计与概率》专题训练-带答案

中考数学高频考点《统计与概率》专题训练-带答案

中考数学高频考点《统计与概率》专题训练-带答案一.选择题(共15小题)1.(2024•新华区二模)已知三个数﹣3、5、7,若添加一个数组成一组新数据,且这组新数据唯一的众数与中位数相等,则这个新数据为( )A .3B .4C .5D .72.(2024•新华区二模)某校八年级学生参加每分钟跳绳的测试,并随机抽取部分学生的成绩制成了频数分布直方图(如图),若取每组的组中值作为本小组的均值,则抽取的部分学生每分钟跳绳次数的平均数(结果取整数)为( )A .87次B .110次C .112次D .120次3.(2024•长安区二模)班主任邀请甲、乙、丙三位同学参加圆桌会议.如图,班主任坐在D 座位,三位同学随机坐在A 、B 、C 三个座位,则甲、乙两位同学座位相邻的概率是( )A .23B .13C .14D .12 4.(2024•桥西区二模)如图,某十字路口有交通信号灯,在东西方向上,红灯开启27秒后,紧接着绿灯开启30秒,再紧接着黄灯开启3秒,然后接着又是红灯开启27秒…按这样的规律循环下去,在不考虑其他因素的前提下,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是( )A .920B .1019C .13D .12 5.(2024•裕华区二模)为深入开展全民禁毒宣传教育,某校举行了禁毒知识竞赛,嘉嘉说:“我们班100分的同学最多,一半同学成绩在96分以上”,嘉嘉的描述所反映的统计量分别是( )A .众数和中位数B .平均数和中位数C .众数和方差D .众数和平均数6.(2024•裕华区二模)某班开展了两次跳绳比赛,从班级里随机抽取了20名学生两次跳绳的成绩(单位:个/分钟),并对数据进行整理、描述和分析.如图是这些学生第一次和第二次比赛成绩情况统计图,设每名学生两次跳绳的平均成绩是x 个/分钟,落在130<x ⩽140的范围内的数据有( )A .6个B .5个C .4个D .3个7.(2024•石家庄二模)一个不透明盒子里,共装有10个白球,5个红球,5个黄球,这些球仅颜色不同.小明从中任取一球,下列说法错误的是( )A .摸到白球的可能性最大B .摸到红球和黄球的可能性相同C .摸到白球的可能性为12D .摸到白球、红球、黄球的可能性都为13 8.(2024•藁城区二模)从分别写有“大”“美”“江”“汉”汉字的四张卡片中,随机抽出两张,抽出的卡片上的汉字能组成“江汉”的概率是( )A .18B .16C .14D .12 9.(2024•新华区二模)2024年河北省初中学业水平体育与健康科目考试的抽考项目包含①②③④共四项,由各市教育行政部门抽签决定.某市教育行政部门从四个项目中随机抽取一项,抽到项目①的概率为( )A .12B .13C .14D .15 10.(2024•新乐市二模)在一次体育课上,小明随机调查了30名同学投篮20次投中的次数,数据如表所示:投篮20次投中的次数67 9 12人数 6 7 10 7 则投篮20次投中的次数的中位数和众数分别是( )A .8,9B .10,9C .7,12D .9,911.(2024•裕华区二模)七位评委对参加普通话比赛的选手评分,比赛规则规定要去掉一个最高分和一个最低分,然后计算剩下了5个分数的平均分作为选手的比赛分数,规则“去掉一个最高分和一个最低分”一定不会影响这组数据的( )A .平均数B .中位数C .极差D .众数12.(2024•新华区二模)掷两枚质地均匀的骰子,下列事件是随机事件的是( )A .点数的和为1B .点数的和为6C .点数的和大于12D .点数的和小于1313.(2024•新华区二模)如图,桌面上有3张卡片,1张正面朝上.任意将其中1张卡片正反面对调一次后,这3张卡片中出现2张正面朝上的概率是( )A .1B .23C .13D .19 14.(2024•桥西区二模)有数字4,5,6的三张卡片,将这三张卡片任意摆成一个三位数,摆出的三位数是5的倍数的概率是( )A .16B .14C .13D .12 15.(2024•石家庄二模)下列说法正确的是( )A .了解一批灯泡的使用寿命,应采用抽样调查的方式B .如果某彩票的中奖概率是1%,那么一次购买100张这种彩票一定会中奖C .若甲、乙两组数据的平均数相同,S 甲2=2.5,S 乙2=8.7,则乙组数据较稳定D .“任意掷一枚质地均匀的骰子,掷出的点数是7”是必然事件二.填空题(共2小题)16.(2024•平山县二模)已知一个不透明的袋子中装有4个只有颜色不同的小球,其中1个白球,3个红球.(1)从袋子中随机摸出1个小球是红球的概率是 ;(2)若在原袋子中再放入m 个白球和m 个红球(m >1),搅拌均匀后,使得随机从袋子中摸出1个小球是白球的概率为25,则m 的值为 . 17.(2024•石家庄二模)经过某T 字路口的汽车,可能向左转或向右转,如果两种可能性大小相同,则两辆汽车经过这个T 字路口时,“行驶方向相同”的概率是 .三.解答题(共14小题)18.(2024•石家庄二模)为了解甲、乙两个茶园种植的“龙井”茶叶的品质,现从两个茶园里分别随机抽取了20份茶叶样本,对它们的品质进行评分(满分100分,分数越高代表品质越好)评分用x 表示,共分为四组,A 组:60≤x <70,B 组:70≤x <80,C 组:80≤x <90,D 组:90≤x ≤100.甲茶园20份茶叶的评分从小到大分别为:65,68,72,75,78,80,82,85,85,88,90,90,90,92,95,95,95,95,98,100;乙茶园20份茶叶中有3份的评分为100分,评分在C 组中的数据是:85,88,80,85,82,83. 甲、乙两茶园随机抽取的茶叶评分数据统计分析如下表所示,乙茶园抽取的茶叶评分扇形统计图如图所示:甲茶园 乙茶园 平均数 85.9 87.6中位数89 b众数a95根据以上信息解答下列问题:(1)直接写出统计表中a,b的值;(2)若甲、乙两茶园的茶叶总共有2400份,请估计甲、乙两茶园评分在D组的茶叶共有多少份;(3)本次抽取的40份茶叶样本中,评分为100分的视为“精品茶叶”.茶农要在“精品茶叶”中任选两份参加茶叶展销会,用列表法(或画树状图)求这两份茶叶全部来自乙茶园的概率.19.(2024•裕华区二模)某中学为了解初三同学的体育中考准备情况,随机抽取该年级某班学生进行体育模拟测试(满分30分),根据测试成绩(单位:分)绘制成两幅不完整的统计图(如图1和图2),已知图2中得28分的人数所对圆心角为90°,回答下列问题:(1)条形统计图有一部分污损了,求得分27分的人数;直接写出所调查学生测试成绩中位数和众数.(2)一同学因病错过考试,补测后与之前成绩汇总,发现中位数变大了,求该名同学的补测成绩.(3)已知体育测试的选考项目有:①足球运球绕杆:②篮球运球绕杆;③排球正面双手垫球,求小明和小亮选择同一项目的概率.20.(2024•石家庄二模)某班组织开展课外体育活动,在规定时间内,进行定点投篮,对投篮命中数量进行了统计,并制成下面的统计表和如图不完整的折线统计图(不含投篮命中个数为0的数据).投篮命中数量/个 1 2 3 4 5 6学生人数 1 2 3 7 6 1 根据以上信息,解决下面的问题:(1)在本次投篮活动中,投篮命中的学生共有人,并求投篮命中数量的众数和平均数;(2)补全折线统计图;(3)嘉淇在统计投篮命中数量的中位数时,把统计表中相邻两个投篮命中的数量m,n错看成了n,m (m<n)进行计算,结果错误数据的中位数与原数据的中位数相比发生了改变,求m,n的值.21.(2024•新华区二模)“惜餐为荣,敛物为耻.”为了解落实“光盘行动”的情况,某校调研了七、八年级部分班级某一天的厨余垃圾质量,并作出如下统计分析.【收集数据】七、八年级各随机抽取10个班厨余垃圾质量的数据(单位:kg).【整理数据】进行整理和分析(厨余垃圾质量用x表示,共分为四个等级:A.x<1;B.1≤x<1.5;C.1.5≤x<2;D.x≥2).【描述数据】下面给出了部分信息,绘制如下统计图:七年级10个班厨余垃圾质量:0.6,0.7,0.7,0.7,1.3,1.3,1.6,1.7,2,2.4.八年级10个班厨余垃圾质量中B等级包含的所有数据为:1.1,1.1,1.1,1.3.【分析数据】七、八年级抽取的班级厨余垃圾质量统计表如下:年级平均数中位数众数方差A等级所占百分比七年级 1.3 1.3 a0.352 40%八年级 1.3 b 1.1 0.24 m%根据以上信息,解答下列问题:(1)填空:a=,b=,m=;(2)该校八年级共有30个班,估计八年级这一天厨余垃圾质量符合A等级的班级数;(3)根据以上信息,请你任选一个统计量,分析在此次“光盘行动”中,该校七、八年级的哪个年级落实得更好?并说明理由.22.(2024•桥西区二模)小亮所在的学校共有900名初中学生,小亮同学想了解本校全体初中学生的年龄构成情况、他从全校学生中随机选取了部分学生,调查了他们的年龄(单位:岁),绘制出如图所示的学生年龄扇形统计图.(1)直接写出m的值,并求全校学生中年龄不低于15岁的学生大约有多少人;(2)利用该扇形统计图,你能求出样本的平均数、众数和中位数中的哪些统计量?请直接写出相应的结果;(3)小红认为无法利用该扇形统计图求出样本的方差.你认同她的看法吗?若认同,请说明理由;若不认同,请求出方差.23.(2024•裕华区二模)2024年3月20日,天都一号、二号通导技术试验星由长征八号遥三运载火箭在中国文昌航天发射场成功发射升空,卫星作为深空探测实验室的首发星,将为月球通导技术提供先期验证!临邑县某中学为了解学生对航天知识的掌握情况,学校随机抽取了部分学生进行问卷调查,并将调查结果绘制成了下列两幅统计图(不完整),请根据图中信息,解答下列问题:(1)本次调查一共抽取了名学生,扇形统计图中“比较了解”所对应的圆心角度数是.(2)请你将条形统计图补充完整;(3)若该学校共有1200名学生,根据抽样调查的结果,请问该学校选择“不了解”项目的学生约有多少名?(4)在本次调查中,张老师随机抽取了4名学生进行感悟交流,其中“非常了解”的1人,“比较了解”的2人,“了解”的1人.若从这4人中随机抽取2人,请用画树状图或列表法,求抽取的2人全是“比较了解”的概率.24.(2024•正定县二模)某市教育局以“学习强国”学习平台知识内容为依托,要求市直辖学校利用“豫事办”手机客户端开展“回顾二十大”全民知识竞赛活动,市教育局随机抽取了两所学校各10名教师进行测试(满分10分),并对相关数据进行了如下整理:收集数据:一中抽取的10名教师测试成绩:9.1,7.8,8.5,7.5,7.2,8.4,7.9,7.2,6.9,9.5二中抽取的10名教师测试成绩:9.2,8.0,7.6,8.4,8.0,7.2,8.5,7.4,7.5,8.2分析数据:两组数据的相关统计量如下(规定9.0分及其以上为优秀):平均数中位数方差优秀率一中8.0 7.85 0.666 c二中8.0 b0.33 10%问题解决:根据以上信息,解答下列问题:(1)若绘制分数段频数分布表,则一中分数段0≤x<8.0的频数a=;(2)填空:b=,c=;(3)若一中共有教师280人,二中共有教师350人,估计这两个学校竞赛成绩达到优秀的教师总人数为多少人?(4)根据以上数据,请你对一、二中教师的竞赛成绩做出分析评价.(写出两条即可)25.(2024•新华区二模)在“书香进校园”读书活动中,为了解学生课外读物的阅读情况,随机调查了部分学生的课外阅读量.绘制成不完整的扇形统计图(图1)和条形统计图(图2),其中条形统计图被墨汁污染了一部分.(1)条形统计图中被墨汁污染的人数为人.“8本”所在扇形的圆心角度数为°;(2)求被抽查到的学生课外阅读量的平均数和中位数;(3)随后又补查了m名学生,若已知他们在本学期阅读量都是10本,将这些数据和之前的数据合并后,发现阅读量的众数没改变,求m的最大值.26.(2024•平山县二模)某班进行中考体育适应性练习,球类运动可以在篮球、足球、排球中选择一种.该班体委将测试成绩进行统计后,发现选择足球的同学测试成绩均为7分、8分、9分、10分中的一种(满分为10分),并依据统计数据绘制了如下不完整的扇形统计图(如图1)和条形统计图(如图2).(1)该班选择足球的同学共有人,其中得8分的有人;(2)若小宇的足球测试成绩超过了参加足球测试的同学半数人的成绩,则他的成绩是否超过了所有足球测试成绩的平均分?通过计算说明理由.27.(2024•裕华区二模)为了保护学生视力,防止学生沉迷网络和游戏,促进学生身心健康发展,某学校团委组织了“我与手机说再见”为主题的演讲比赛,根据参赛同学的得分情况绘制了如图所示的两幅不完整的统计图(其中A表示“一等奖”,B表示“二等奖”,C表示“三等奖”,D表示“优秀奖”).请你根据统计图中所提供的信息解答下列问题:(1)获奖总人数为人,m=,A所对的圆心角度数是°;(2)学校将从获得一等奖的4名同学(其中有一名男生,三名女生)中随机抽取两名参加全市的比赛,请利用树状图或列表法求抽取同学中恰有一名男生和一名女生的概率.28.(2024•藁城区二模)甲、乙两个不透明的袋子中,分别装有大小材质完全相同的小球,其中甲口袋中小球编号分别是1、2、3、4,乙口袋中小球编号分别是2、3、4,先从甲口袋中任意摸出一个小球,记下编号为m,再从乙袋中摸出一个小球,记下编号为n.(1)请用画树状图或列表的方法表示(m,n)所有可能情况;(2)规定:若m、n都是方程x2﹣5x+6=0的解时,小明获胜;m、n都不是方程x2﹣5x+6=0的解时,小刚获胜,请说明此游戏规则是否公平?29.(2024•新华区二模)如图,A,B两个带指针的转盘分别被分成三个面积相等的扇形,转盘A上的数字分别是﹣6,﹣1,5,转盘B上的数字分别是6,﹣7,4(两个转盘除表面数字不同外,其他完全相同).小聪和小明同时转动A,B两个转盘,使之旋转(规定:指针恰好停留在分界线上,则重新转一次).(1)转动转盘,转盘A指针指向正数的概率是;(2)若同时转动两个转盘,转盘A指针所指的数字记为a,转盘B指针所指的数字记为b,若a+b>0,则小聪获胜;若a+b<0,则小明获胜;请用列表法或树状图法说明这个游戏是否公平.30.(2024•新乐市二模)打造书香文化,培养阅读习惯.崇德中学计划在各班建图书角,开展“我最喜欢的书籍”为主题的调查活动,学生根据自己的爱好选择一类书籍(A:科技类,B:文学类,C:政史类,D:艺术类,E:其他类).张老师组织数学兴趣小组对学校部分学生进行了问卷调查,根据收集到的数据,绘制了两幅不完整的统计图(如图所示).根据图中信息,请回答下列问题;(1)条形图中的m=,n=,文学类书籍对应扇形圆心角等于度;(2)若该校有2000名学生,请你估计最喜欢阅读政史类书籍的学生人数;(3)甲同学从A,B,C三类书籍中随机选择一种,乙同学从B,C,D三类书籍中随机选择一种,请用画树状图或者列表法求甲乙两位同学选择相同类别书籍的概率.31.(2024•桥西区二模)为加强体育锻炼,某校体育兴趣小组,随机抽取部分学生,对他们在一周内体育锻炼的情况进行问卷调查,根据问卷结果,绘制成如下统计图.请根据相关信息,解答下列问题:某校学生一周体育锻炼调查问卷以下问题均为单选题,请根据实际情况填写(其中0~4表示大于等于0同时小于4)问题:你平均每周体育锻炼的时间大约是A.0~4小时B.4~6小时C.6~8小时D.8小时及以上问题2:你体育锻炼的动力是_____E.家长要求F.学校要求G.自己主动H.其他(1)参与本次调查的学生共有人,选择“自己主动”体育锻炼的学生有人;(2)已知该校有2600名学生,若每周体育锻炼8小时以上(含8小时)可评为“运动之星”,请估计全校可评为“运动之星”的人数;(3)请写出一条你对同学体育锻炼的建议.参考答案与试题解析一.选择题(共15小题)1.(2024•新华区二模)已知三个数﹣3、5、7,若添加一个数组成一组新数据,且这组新数据唯一的众数与中位数相等,则这个新数据为()A.3 B.4 C.5 D.7【解答】解:∵﹣3<5<7∴若添加一个数组成一组新数据,且这组新数据唯一的众数与中位数相等,则这个新数据为5.故选:C.2.(2024•新华区二模)某校八年级学生参加每分钟跳绳的测试,并随机抽取部分学生的成绩制成了频数分布直方图(如图),若取每组的组中值作为本小组的均值,则抽取的部分学生每分钟跳绳次数的平均数(结果取整数)为()A .87次B .110次C .112次D .120次【解答】解:x =62×2+87×8+112×12+137×6+162×22+8+12+6+2≈110次 故选:B .3.(2024•长安区二模)班主任邀请甲、乙、丙三位同学参加圆桌会议.如图,班主任坐在D 座位,三位同学随机坐在A 、B 、C 三个座位,则甲、乙两位同学座位相邻的概率是( )A .23B .13C .14D .12【解答】解:画树状图如下:共有6种等可能的结果,其中甲、乙两位同学座位相邻的结果有4种,即AB 、BA 、BC 、CB ∴甲、乙两位同学座位相邻的概率为46=23故选:A .4.(2024•桥西区二模)如图,某十字路口有交通信号灯,在东西方向上,红灯开启27秒后,紧接着绿灯开启30秒,再紧接着黄灯开启3秒,然后接着又是红灯开启27秒…按这样的规律循环下去,在不考虑其他因素的前提下,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是()A.920B.1019C.13D.12【解答】解:由题意得,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是3027+30+3= 12.故选:D.5.(2024•裕华区二模)为深入开展全民禁毒宣传教育,某校举行了禁毒知识竞赛,嘉嘉说:“我们班100分的同学最多,一半同学成绩在96分以上”,嘉嘉的描述所反映的统计量分别是()A.众数和中位数B.平均数和中位数C.众数和方差D.众数和平均数【解答】解:在一组数据中出现次数最多的数是这组数据的众数,中位数即位于中间位置的数故选:A.6.(2024•裕华区二模)某班开展了两次跳绳比赛,从班级里随机抽取了20名学生两次跳绳的成绩(单位:个/分钟),并对数据进行整理、描述和分析.如图是这些学生第一次和第二次比赛成绩情况统计图,设每名学生两次跳绳的平均成绩是x个/分钟,落在130<x⩽140的范围内的数据有()A .6个B .5个C .4个D .3个【解答】解:观察统计图,可以发现两次活动平均成绩在130<x ⩽140的范围内的数据有5个 故选:B .7.(2024•石家庄二模)一个不透明盒子里,共装有10个白球,5个红球,5个黄球,这些球仅颜色不同.小明从中任取一球,下列说法错误的是( ) A .摸到白球的可能性最大 B .摸到红球和黄球的可能性相同 C .摸到白球的可能性为12D .摸到白球、红球、黄球的可能性都为13【解答】解:∵一个不透明盒子里,共装有10个白球,5个红球,5个黄球 ∴共有20个球 ∴摸到白球的概率为1020=12,摸到红球的概率为520=14,摸到黄球的概率为520=14∵12>14∴摸到白球的可能性最大,摸到红球和黄球的可能性相同,摸到白球的可能性为12故选:D .8.(2024•藁城区二模)从分别写有“大”“美”“江”“汉”汉字的四张卡片中,随机抽出两张,抽出的卡片上的汉字能组成“江汉”的概率是( ) A .18B .16C .14D .12【解答】解:列表如下:大 美 江 汉 大 美大 江大 汉大 美 大美 江美 汉美 江 大江 美江 汉江 汉大汉美汉江汉由表知,共有12种等可能结果,其中抽出的卡片上的汉字能组成“江汉”的有2种结果 所以抽出的卡片上的汉字能组成“江汉”的概率为212=16故选:B .9.(2024•新华区二模)2024年河北省初中学业水平体育与健康科目考试的抽考项目包含①②③④共四项,由各市教育行政部门抽签决定.某市教育行政部门从四个项目中随机抽取一项,抽到项目①的概率为( ) A .12B .13C .14D .15【解答】解:∵市教育行政部门从四个项目中随机抽取一项的可能结果共有4种,抽到项目①的可能结果只有1种∴抽到项目①的概率为14.故选:C .10.(2024•新乐市二模)在一次体育课上,小明随机调查了30名同学投篮20次投中的次数,数据如表所示:投篮20次投中的次数 679 12人数67 10 7 则投篮20次投中的次数的中位数和众数分别是( ) A .8,9B .10,9C .7,12D .9,9【解答】解:将这30人投篮20次投中的次数从小到大排列后,处在之间位置的两个数的平均数为9+92=9(次),因此中位数是9次这30人投篮20次投中的次数是9次的出现的次数最多,共有10人,因此众数是9次 综上所述,中位数是9,众数是9故选:D .11.(2024•裕华区二模)七位评委对参加普通话比赛的选手评分,比赛规则规定要去掉一个最高分和一个最低分,然后计算剩下了5个分数的平均分作为选手的比赛分数,规则“去掉一个最高分和一个最低分”一定不会影响这组数据的( ) A .平均数B .中位数C .极差D .众数【解答】解:去掉一个最高分和一个最低分一定会影响到平均数、极差,可能会影响到众数 一定不会影响到中位数 故选:B .12.(2024•新华区二模)掷两枚质地均匀的骰子,下列事件是随机事件的是( ) A .点数的和为1 B .点数的和为6 C .点数的和大于12D .点数的和小于13【解答】解:A 、两枚骰子的点数的和为1,是不可能事件,故不符合题意;B 、两枚骰子的点数之和为6,是随机事件,故符合题意;C 、点数的和大于12,是不可能事件,故不符合题意;D 、点数的和小于13,是必然事件,故不符合题意;故选:B .13.(2024•新华区二模)如图,桌面上有3张卡片,1张正面朝上.任意将其中1张卡片正反面对调一次后,这3张卡片中出现2张正面朝上的概率是( )A .1B .23C .13D .19【解答】解:∵任意将其中1张卡片正反面对调一次,有3种对调方式,其中只有对调反面朝上的2张卡片才能使3张卡片中出现2张正面朝上 ∴P =23 故选:B .14.(2024•桥西区二模)有数字4,5,6的三张卡片,将这三张卡片任意摆成一个三位数,摆出的三位数是5的倍数的概率是( )A .16B .14C .13D .12【解答】解:三位数有6个,是5的倍数的三位数是:465,645; 三位数是5的倍数的概率为:26=13;故选:C .15.(2024•石家庄二模)下列说法正确的是( ) A .了解一批灯泡的使用寿命,应采用抽样调查的方式B .如果某彩票的中奖概率是1%,那么一次购买100张这种彩票一定会中奖C .若甲、乙两组数据的平均数相同,S 甲2=2.5,S 乙2=8.7,则乙组数据较稳定 D .“任意掷一枚质地均匀的骰子,掷出的点数是7”是必然事件【解答】解:A .了解一批灯泡的使用寿命,应采用抽样调查的方式,是正确的,因此选项A 符合题意;B .如果某彩票的中奖概率是1%,那么一次购买100张这种彩票也不一定会中奖,因此选项B 不符合题意;C .若甲、乙两组数据的平均数相同,S 甲2=2.5,S 乙2=8.7,则甲组数据较稳定,因此选项C 不符合题意;D .“任意掷一枚质地均匀的骰子,掷出的点数是7”是不可能事件,因此选项D 不符合题意;故选:A .二.填空题(共2小题)16.(2024•平山县二模)已知一个不透明的袋子中装有4个只有颜色不同的小球,其中1个白球,3个红球.(1)从袋子中随机摸出1个小球是红球的概率是34;(2)若在原袋子中再放入m 个白球和m 个红球(m >1),搅拌均匀后,使得随机从袋子中摸出1个小球是白球的概率为25,则m 的值为 3 .【解答】解:(1)由题意可得从袋子中随机摸出1个小球是红球的概率是31+3=34故答案为:34;(2)由题意可得1+m 1+m +3+m =25解得m =3 故答案为:3.17.(2024•石家庄二模)经过某T 字路口的汽车,可能向左转或向右转,如果两种可能性大小相同,则两辆汽车经过这个T 字路口时,“行驶方向相同”的概率是 12.【解答】解:画树状图为:共有4种等可能的结果数,其中行驶方向相同的有2种 ∴“行驶方向相同”的概率是 24=12故答案为:12.三.解答题(共14小题)18.(2024•石家庄二模)为了解甲、乙两个茶园种植的“龙井”茶叶的品质,现从两个茶园里分别随机抽取了20份茶叶样本,对它们的品质进行评分(满分100分,分数越高代表品质越好)评分用x 表示,共分为四组,A 组:60≤x <70,B 组:70≤x <80,C 组:80≤x <90,D 组:90≤x ≤100.甲茶园20份茶叶的评分从小到大分别为:65,68,72,75,78,80,82,85,85,88,90,90,90,92,95,95,95,95,98,100;乙茶园20份茶叶中有3份的评分为100分,评分在C 组中的数据是:85,88,80,85,82,83. 甲、乙两茶园随机抽取的茶叶评分数据统计分析如下表所示,乙茶园抽取的茶叶评分扇形统计图如图所示:甲茶园乙茶园平均数85.9 87.6中位数89 b众数a95根据以上信息解答下列问题:(1)直接写出统计表中a,b的值;(2)若甲、乙两茶园的茶叶总共有2400份,请估计甲、乙两茶园评分在D组的茶叶共有多少份;(3)本次抽取的40份茶叶样本中,评分为100分的视为“精品茶叶”.茶农要在“精品茶叶”中任选两份参加茶叶展销会,用列表法(或画树状图)求这两份茶叶全部来自乙茶园的概率.【解答】解:(1)由题意可得,a=95.由扇形统计图可知,乙茶园评分在A组有20×10%=2(份),在B组有20×20%=4(份).将乙茶园评分按照从小到大的顺序排列,排在第10和11的分数为85分和85分∴b=(85+85)÷2=85.(2)乙茶园评分在D组的茶叶有(1﹣10%﹣20%﹣30% )×20=8(份)甲茶园评分在D组的茶叶有10份∴估计甲、乙两茶园评分在D组的茶叶共约有2400×8+1020+20=1080(份).(3)由题意知,甲茶园评分为100分的有1个,乙茶园评分为100分的有3个.将甲茶园“精品茶叶”记为a,乙茶园“精品茶叶”分别记为b,c,d列表如下:a b c da(a,b)(a,c)(a,d)b(b,a)(b,c)(b,d)。

备考2024年中考数学二轮复习-统计与概率_数据收集与处理_条形统计图-填空题专训及答案

备考2024年中考数学二轮复习-统计与概率_数据收集与处理_条形统计图-填空题专训及答案

备考2024年中考数学二轮复习-统计与概率_数据收集与处理_条形统计图-填空题专训及答案条形统计图填空题专训1、(2016呼和浩特.中考真卷) 如图是某市电视台记者为了解市民获取新闻的主要图径,通过抽样调查绘制的一个条形统计图.若该市约有230万人,则可估计其中将报纸和手机上网作为获取新闻的主要途径的总人数大约为________万人.2、(2017南京.中考真卷) 如图是某市2013﹣2016年私人汽车拥有量和年增长率的统计量,该市私人汽车拥有量年净增量最多的是________年,私人汽车拥有量年增长率最大的是________年.3、(2014徐州.中考真卷) 如图是某足球队全年比赛情况统计图:根据图中信息,该队全年胜了________场.4、(2017河东.中考模拟) 为了解学生参加户外活动的情况,和谐中学对学生每天参加户外活动的时间进行抽样调查,并将调查结果绘制成如图两幅不完整的统计图,根据图示,请回答下列问题:(Ⅰ)被抽样调查的学生有 ________ 人,并补全条形统计图________ ;(Ⅱ)每天户外活动时间的中位数是 ________ (小时);(Ⅲ)该校共有2000名学生,请估计该校每天户外活动时间超过1小时的学生有________ 人?5、(2016丹东.中考模拟) 某射击小组进行射击练习,教练将该小组成员的某次射击成绩绘制成统计图(如图),则这组成绩的众数是________ .6、(2017虎丘.中考模拟) 某校在“祖国好、家乡美”主题宣传周里推出五条A、B、C、D、E旅游线路.某校摄影社团随机抽取部分学生举行“最爱旅游路线”投票活动,参与者每人选出一条心中最爱的旅游路线,社团对投票进行了统计,并绘制出如下不完整的条形统计图和扇形统计图.全校2400名学生中,请你估计,选择“C”路线的人数约为________.7、(2017苏州.中考模拟) 在开展“国学诵读”活动中,某校为了解全校1200名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1200名学生一周的课外阅读时间为8小时的人数是________.8、(2017吴中.中考模拟) 某校九年级数学兴趣小组的同学调查了若干名家长对“初中学生带手机上学”现象的看法,统计整理并制作了如下的条形与扇形统计图,则表示“无所谓”的家长人数为________.9、(2017昆山.中考模拟) 某校男子足球队的年龄分布如图的条形图,请求出这些队员年龄的平均数、中位数________10、(2019温州.中考真卷) 某校学生“汉字听写”大赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩为“优良”(80分及以上)的学生有________人.11、(2019黄石.中考模拟) 某校组织了主题为“经典诵读”的小视频征集活动,现从中随机抽取部分作品。

备考2024年中考数学二轮复习-统计与概率_概率_概率公式-综合题专训及答案

备考2024年中考数学二轮复习-统计与概率_概率_概率公式-综合题专训及答案

备考2024年中考数学二轮复习-统计与概率_概率_概率公式-综合题专训及答案概率公式综合题专训1、(2012阜新.中考真卷) 自开展“学生每天锻炼1小时”活动后,我市某中学根据学校实际情况,决定开设A:毽子,B:篮球,C:跑步,D:跳绳四种运动项目.为了了解学生最喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如图统计图.请结合图中信息解答下列问题:(1)该校本次调查中,共调查了多少名学生?(2)请将两个统计图补充完整;(3)在本次调查的学生中随机抽取1人,他喜欢“跑步”的概率有多大?2、(2018苏州.中考真卷) 如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).3、(2019泸西.中考模拟) 一只不透明袋子中装有三只大小、质地都相同的小球,球面上分别标有数字1、﹣2、3,搅匀后先从中任意摸出一个小球(不放回),记下数字作为点A的横坐标,再从余下的两个小球中任意摸出一个小球,记下数字作为点A的纵坐标.(1)用画树状图或列表等方法列出所有可能出现的结果;(2)求点A落在第四象限的概率.4、(2016苏州.中考真卷) 在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为;(2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.5、(2017满洲里.中考模拟) 有3张不透明的卡片,除正面写有不同的数字外,其它均相同.将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字记作一次函数表达式中的k,第二次从余下的两张卡片中再随机抽取一张,上面标有的数字记作一次函数表达式中的b.(1)写出k为负数的概率;(2)求一次函数y=kx+b的图象经过二、三、四象限的概率.(用树状图或列表法求解)6、(2019兰州.中考模拟) 2018年江苏省扬州市初中英语口语听力考试即将举行,某校认真复习,积极迎考,准备了A、B、C、D四份听力材料,它们的难易程度分别是易、中、难、难;a,b是两份口语材料,它们的难易程度分别是易、难.(1)从四份听力材料中,任选一份是难的听力材料的概率是.(2)用树状图或列表法,列出分别从听力、口语材料中随机选一份组成一套完整的模拟试卷的所有情况,并求出两份材料都是难的一套模拟试卷的概率.7、(2019张家港.中考模拟) 一只不透明的口袋里装有1个红球、1个黄球和若干个白球,这些球除颜色外其余都相同,搅匀后从中任意摸出一个是白球的概率为(1)试求袋中白球的个数(2)搅匀后从中任意摸出1个球(不放回),再从余下的球中任意摸出1个球,试用画树状图或列表格的方法,求两次摸出的2个球恰好是1个白球、1个红球的概率,8、(2019金华.中考模拟) 某校5月份举行了八年级生物实验考查,有A和B两个考查实验,规定每位学生只参加其中一个实验的考查,并由学生自己抽签决定具体的考查实验,小明、小丽、小华都参加了本次考查.(1)小丽参加实验A考查的概率是;(2)用列表或画树状图的方法求小明、小丽都参加实验A考查的概率;(3)他们三人都参加实验A考查的概率是.9、(2013温州.中考真卷) 一个不透明的袋中装有5个黄球,13个黑球和22个红球,它们除颜色外都相同.(1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后使从袋中摸出一个是黄球的概率不小于,问至少取出了多少个黑球?10、(2018合肥.中考模拟) 小明、小林是三河中学九年级的同班同学,在四月份举行的自主招生考试中,他俩都被同一所高中提前录取,并将被编入A、B、C三个班,他俩希望能再次成为同班同学.(1)请你用列举法,列出所有可能的结果;(2)求两人再次成为同班同学的概率.11、(2017北.中考模拟) 某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.(1)求转动一次转盘获得购物券的概率;(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?12、(2017金乡.中考模拟) 一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球.(1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是,求从袋中取出黑球的个数.13、(2017贵州.中考真卷) 由于只有1张市运动会开幕式的门票,小王和小张都想去,两人商量采取转转盘(如图,转盘盘面被分为面积相等,且标有数字1,2,3,4的4个扇形区域)的游戏方式决定谁胜谁去观看.规则如下:两人各转动转盘一次,当转盘指针停止,如两次指针对应盘面数字都是奇数,则小王胜;如两次指针对应盘面数字都是偶数,则小张胜;如两次指针对应盘面数字是一奇一偶,视为平局.若为平局,继续上述游戏,直至分出胜负.如果小王和小张按上述规则各转动转盘一次,则(1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.14、(2020云南.中考模拟) 如图,可以自由转动的转盘被平均分成了三等分标有数字﹣2,3,﹣1的扇形区域转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)(1)转动转盘一次,求转出的数字是3的概率;(2)转动转盘两次,设第一次得到的数字为x,第二次得到的数字为y,点M的坐标为(x,y),请用树状图或列表法求点M在反比例函数y=﹣的图象上的概率.15、(2017罗平.中考模拟) 现有A,B两组卡片共5张,A中三张分别写有数字2,4,6,B中两张分别写有3,5,它们除数字外完全一样.(1)随机地从A中抽取一张,求抽到数字为2的概率;(2)随机地分别从A、B中各抽取一张,请你用画树状图或列表的方法表示所有等可能的结果.现制定这样一个游戏规则:若所选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?若不公平,你认为怎样制定游戏规则,对甲乙双方才公平?概率公式综合题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:。

备考2024年中考数学二轮复习-统计与概率_数据分析_方差-综合题专训及答案

备考2024年中考数学二轮复习-统计与概率_数据分析_方差-综合题专训及答案

备考2024年中考数学二轮复习-统计与概率_数据分析_方差-综合题专训及答案方差综合题专训1、(2018义乌.中考模拟) 某校举办了一次成语知识竞赛,满分10分,学生得分均为整数,成绩达到6分及6分以上为合格,达到9分或10分为优秀,这次竞赛中,甲、乙两组学生成绩分布的折线统计图和成绩统计分析表如图所示.(1)求出下列成绩统计分析表中a,b的值:组别平均分中位数方差合格率优秀率甲组 6.8a 3.7690%30%乙组b7.5 1.9680%20%(2)小英同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上面表格判断,小英是甲、乙哪个组的学生;(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你写出两条支持乙组同学观点的理由.2、(2014扬州.中考真卷) 八(2)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):甲789710109101010乙10879810109109(1)甲队成绩的中位数是分,乙队成绩的众数是分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4分2,则成绩较为整齐的是队.3、(2014徐州.中考真卷) 甲、乙两人在5次打靶测试中命中的环数如下:甲:8,8,7,8,9乙:5,9,7,10,9(1)填写下表:平均数众数中位数方差甲880.4乙9 3.2(2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么?(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差.(填“变大”、“变小”或“不变”).4、(2017西城.中考模拟) 某科研小组计划对某一品种的西瓜采用两种种植技术种植.在选择种植技术时,该科研小组主要关心的问题是:西瓜的产量和产量的稳定性,以及西瓜的优等品率.为了解这两种种植技术种出的西瓜的质量情况,科研小组在两块自然条件相同的试验田进行对比试验,并从这两块实验田中各随机抽取20个西瓜,分别称重后,将称重的结果记录如下:表1 甲种种植技术种出的西瓜质量统计表编号123456789103.54.85.4 4.9 4.2 5.0 4.9 4.8 5.8 4.8西瓜质量.(单位:kg)编号111213141516171819205.0 4.8 5.2 4.9 5.1 5.0 4.86.0 5.7 5.0西瓜质量.(单位:kg)表2 乙种种植技术种出的西瓜质量统计表编号123456789104.4 4.9 4.8 4.15.2 5.1 5.0 4.5 4.7 4.9西瓜质量.(单位:kg)编号111213141516171819205.4 5.5 4.0 5.3 4.8 5.6 5.2 5.7 5.0 5.3西瓜质量.(单位:kg)回答下列问题:(1)若将质量为4.5~5.5(单位:kg)的西瓜记为优等品,完成下表:优等品西瓜个数平均数方差甲种种植技术种出的西瓜质量 4.980.27乙种种植技术种出的西瓜质量15 4.970.21(2)根据以上数据,你认为该科研小组应选择哪种种植技术,并请说明理由.5、(2019杭州.中考真卷) 称量五筐水果的质量,若每筐以50千克为基准,超过基准部分的千克数记为正数,不足基准部分的干克数记为负数.甲组为实际称量读数,乙组为记录数据。

中考数学专题复习《统计与概率》经典例题及测试题(含答案)

中考数学专题复习《统计与概率》经典例题及测试题(含答案)

中考数学专题复习《统计与概率》经典例题及测试题(含答案)【专题分析】统计与概率在中考中的常考点有数据的收集方法,平均数、众数和中位数的计算与选择,方差和标准差的计算和应用,统计图的应用及信息综合分析;事件的分类,简单事件的概率计算,画树状图或列表求概率,对频率和概率的理解等.统计与概率在中考中一般以客观题的形式进行考查,选择题、填空题较多,同时考查多个考点的综合性题目一般以解答题的形式进行考查;统计与概率在中考中所占的比重约为6%~12%.【解题方法】解决统计与概率问题常用的数学思想是方程思想和分类讨论思想;常用的数学方法有分类讨论法,整体代入法等.【知识结构】【典例精选】为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果.居民(户)132 4月用电量(千瓦时/户)40505560误的是( )A.中位数是55 B.众数是60C.方差是29 D.平均数是54【思路点拨】根据众数、中位数、方差、平均数的定义及计算公式分别进行计算,即可得出答案.答案:C规律方法:解决此类题目的关键是准确掌握各个统计量的概念及计算方法,分别计算直接选择或排除.若一组数据1,2,x,4的众数是1,那么这组数据的方差是32 .【思路点拨】根据众数的定义求出x的值,再根据平均数的计算公式求出这组数据的平均数,再根据方差公式进行计算即可.【解析】根据众数的意义得到x=1,这组数据的平均数x=1+2+1+44=2,所以这组数据的方差是S2=14[(1-2)2+(2-2)2+(1-2)2+(4-2)2]=14×6=32.规律方法:为了准确而快速地记忆方差的计算公式,可以用下面12个字来理解性的记忆,即“先平均、再作差、平方后、再平均”,也就是说,先求出一组数据的平均数,再将每一个数据都与平均数作差,然后将这些差进行平方,最后求这些差的平方的平均数,其结果就是这组数据的方差.作为宁波市政府民生实事之一的公共自行车建设工作已基本完成,某部门对今年4月份中的7天进行了公共自行车日租车量的统计,结果如下:宁波市4月份某一周公共自行车日租车量统计图(1)求这7天日租车量的众数、中位数和平均数;(2)用(1)中的平均数估计4月份(30天)共租车多少万车次;(3)市政府在公共自行车建设项目中共投入9 600万元,估计2014年共租车3 200万车次,每车次平均收入租车费0.1元,求2014年租车费收入占总投入的百分率(精确到0.1%).【思路点拨】(1)根据众数、中位数和平均数的定义即可求出; (2)4月份天数与平均数的积;(3)租车的次数与每次的租车费的积为租车收入,由租车收入与投入的比即可求出百分率.【自主解答】解:(1)8,8,8.5.(2)30×8.5=255(万车次).(3)3 200×0.1÷9 600=1÷30≈3.3%.答:2014年租车费收入占总投入的3.3%.某中学要在全校学生中举办“中国梦·我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级一班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局.若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)【思路点拨】(1)由题意得,掷一枚质地均匀的骰子,向上一面的点数的等可能的情况共有6种,其中点数为奇数的情况有3种,所以P=36=12;(2)判断游戏是否公平,利用画树状图或列表法表示出所有等可能的情况,求出两人胜出的概率,若概率相同,则游戏公平,否则游戏不公平.【自主解答】解:(1)所求概率P=36=12.(2)游戏公平.理由如下:由上表可知,共有36种等可能的结果,其中小亮、小丽获胜各有9种结果,∴P(小亮胜)=936=14,P(小丽胜)=936=14.∴该游戏是公平的.规律方法:解决判断游戏是否公平的问题,首先应分别计算出两人获胜的概率,然后比较两个概率的大小,若相同则公平,若不相同则不公平.【能力评估检测】一、选择题1.下列事件是随机事件的是( D )A.明天太阳从东方升起B.任意画一个三角形,其内角和是360°C.通常温度降到0 ℃以下,纯净的水结冰D.射击运动员射击一次,命中靶心2.某校为纪念世界反法西斯战争70周年,举行了主题为“让历史照亮未来”的演讲比赛,其中九年级的5位参赛选手的比赛成绩(单位:分)分别为8.6,9.5,9.7,8.7,9,则这5个数据的中位数和平均分分别是( C )A.9.7,9.1 B.9.5,9.1C.9,9.1 D.8.7,93.甲、乙两名同学某学期的四次数学测试成绩(单位:分)如下表:第一次第二次第三次第四次甲 87 95 85 93乙 80 80 90 90S甲=17,S乙=25,下列说法正确的是( )A .甲同学四次数学测试成绩的平均数是89分B .甲同学四次数学测试成绩的中位数是90分C .乙同学四次数学测试成绩的众数是80分D .乙同学四次数学测试成绩较稳定答案: B4.一个袋子中装有6个黑球和3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机从这个袋子中摸出一个球,摸到白球的概率是( B ) A. 19 B. 13 C. 12 D. 235.如图,在一长方形内有对角线长分别为2和3的菱形、边长为1的正六边形和半径为1的圆,则一点随机落在这三个图形内的概率较大的是( B )A .落在菱形内B .落在圆内C .落在正六边形内D .一样大6.小李是9人队伍中的一员,他们随机排成一列队伍,从1开始按顺序报数,小李报到偶数的概率是( B )A. 23B. 49C. 12D. 197.为积极响应创建“全国卫生城市”的号召,某校 1 500名学生参加了卫生知识竞赛,成绩记为A ,B ,C ,D 四等.从中随机抽取了部分学生的成绩进行统计,绘制成如下两幅不完整的统计图,根据图中信息,以下说法不正确的是( )A.样本容量是200B.D等所在扇形的圆心角为15°C.样本中C等所占百分比是10%D.估计全校学生成绩为A等的有900人答案: B8.某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如下表所示:候选人甲乙丙丁测试成绩(百分制)面试86929083 笔试90838392别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取( B ) A.甲 B.乙 C.丙 D.丁9.在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,形状、大小、质地等完全相同,小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色……如此大量摸球实验后,小新发现其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,对此实验,他总结出下列结论:①若进行大量摸球实验,摸出白球的频率稳定于30%;②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是( B )A.①②③ B.①② C.①③ D.②③10.若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数.如796就是一个“中高数”.若十位上的数字为7,则从3,4,5,6,8,9中任选两个数,与7组成“中高数”的概率是( C )A. 12B. 23C. 25D. 35二、填空题11.一组正整数2,3,4,x 从小到大排列,已知这组数据的中位数和平均数相等,那么x 的值是5 .12.如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1,2,3,4,5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为P (偶数),指针指向标有奇数所在区域的概率为 P (奇数),指针落在线上时重转,则P (偶数)< P (奇数)(填“>”“<”或“=”).13.“服务社会,提升自我.”凉山州某学校积极开展志愿者服务活动,来自九年级的5名同学(三男两女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰是一男一女的概率是 35. 三、解答题14.要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.(1)已求得甲的平均成绩为8环,求乙的平均成绩;(2)观察图形,直接写出甲、乙这10次射击成绩的方差S 甲,S 乙 哪个大;(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选7环参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选9环参赛更合适.解:(1)乙的平均成绩:(8+9+8+8+7+8+9+8+8+7)÷10=8(环).(2)根据图象可知,甲的波动小于乙的波动,则S甲<S乙.(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选乙参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选甲参赛更合适.15.在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“通过”(用√表示)或“淘汰”(用×表示)的评定结果.节目组规定:每位选手至少获得两位评委的“通过”才能晋级.(1)请用树状图列举出选手A获得三位评委评定的各种可能的结果;(2)求选手A晋级的概率.解:(1)根据题意画树状图如下:由树状图可知,选手A一共获得8种可能的结果,这些结果的可能性相等.(2)P(A晋级)=48=12.16.为推进“传统文化进校园”活动,某校准备成立“经典诵读”、“传统礼仪”、“民族器乐”和“地方戏曲”等四个课外活动小组.学生报名情况如图(每人只能选择一个小组).(1)报名参加课外活动小组的学生共有30人,将条形图补充完整;(2)扇形图中m=25,n=108;(3)根据报名情况,学校决定从报名“经典诵读”小组的甲、乙、丙、丁四人中随机安排两人到“地方戏曲”小组,甲、乙恰好都被安排到“地方戏曲”小组的概率是多少?请用列表或画树状图的方法说明.解:(1)∵由两种统计图可知,报名参加“地方戏曲”小组的有13人,占13%,∴报名参加课外活动小组的学生共有13÷13%=100(人),参加“民族乐器”小组的有100-32-25-13=30(人).(2)∵m%=25100×100%=25%.∴m=25.n=30100×360=108.(3)画树状图如下:∵共有12种等可能的结果,恰好选中甲、乙的有2种,∴P(选中甲、乙)=212=16.。

备考2024年中考数学二轮复习-统计与概率_数据收集与处理_折线统计图-单选题专训及答案

备考2024年中考数学二轮复习-统计与概率_数据收集与处理_折线统计图-单选题专训及答案

备考2024年中考数学二轮复习-统计与概率_数据收集与处理_折线统计图-单选题专训及答案折线统计图单选题专训1、(2019呼和浩特.中考真卷) 某学校近几年来通过“书香校园”主题系列活动,倡导学生整本阅读纸质课外书籍.下面的统计图是该校2013年至2018年纸质书人均阅读量的情况,根据统计图提供的信息,下列推断不合理的是()A . 从2013年到2016年,该校纸质书人均阅读量逐年增长B . 2013年至2018年,该校纸质书人均阅读量的中位数是46.7本C . 2013年至2018年,该校纸质书人均阅读量的极差是45.3本D . 2013年至2018年,该校后三年纸质书人均阅读量总和是前三年纸质书人均阅读量总和的倍2、(2020磴口.中考模拟) 如图,是根据某市2010年至2014年工业生产总值绘制的折线统计图,观察统计图获得以下信息,其中信息判断错误的是()A . 2010年至2014年间工业生产总值逐年增加B . 2014年的工业生产总值比前一年增加了40亿元C . 2012年与2013年每一年与前一年比,其增长额相同D . 从2011年至2014年,每一年与前一年比,2014年的增长率最大3、(2019通州.中考模拟) 小明和小亮组成团队参加某科学比赛.该比赛的规则是:每轮比赛一名选手参加,若第一轮比赛得分满60则另一名选手晋级第二轮,第二轮比赛得分最高的选手所在团队取得胜利.为了在比赛中取得更好的成绩,两人在赛前分别作了九次测试,如图为二人测试成绩折线统计图,下列说法合理的是( )①小亮测试成绩的平均数比小明的高;②小亮测试成绩比小明的稳定;③小亮测试成绩的中位数比小明的高;④小亮参加第一轮比赛,小明参加第二轮比赛,比较合理.A . ①③B . ①④C . ②③D . ②④4、(2021额尔古纳.中考模拟) 在2014年的体育中考中,某校6名学生的体育成绩统计如图,则这组数据的众数、中位数、方差依次是()A . 18,18,1B . 18,17.5,3C . 18,18,3D . 18,17.5,15、(2019常熟.中考模拟) 在2019年的体育中考中,某校6名学生的体育成绩统计如图,则这组数据的众数、中位数、平均数依次是()A . 48,48,48B . 48,47.5,47.5C . 48,48,48.5D . 48,47.5,48.56、(2017高邮.中考模拟) 体育委员把全班45名同学的体育锻炼时间,并绘制了如图所示的折线统计图,则全班45名同学一周的体育锻炼总时间的众数和中位数分别是()A . 9,9B . 9,10C . 18,9D . 18,187、(2019婺城.中考模拟) 如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和平均数分别是()A . 30,28B . 26,26C . 31,30D . 26,228、(2019秀洲.中考模拟) 某电动车厂2018年第三、四季度各月产量情况如图所示。

初中数学:统计与概率测试题(含答案)

初中数学:统计与概率测试题(含答案)

初中数学:统计与概率测试题(含答案)初中数学:统计与概率测试题(含答案)一、选择题1.学校为了解七年级学生参加课外兴趣小组的情况,随机调查了40名学生,将结果绘制成了如图所示的统计图,则七年级学生参加绘画兴趣小组的频率是()A.0.1B.0.15C.0.25D.0.32.为了了解我市某学校“书香校园”的建设情况,检查组在该校随机抽取40名学生,调查了解他们一周阅读课外书籍的时间,并将调查结果绘制成如图所示的统计图(每小组的时间包含最小值,不包含最大值),根据图中信息估计该校学生一周的课外阅读时间不少于4小时的人数占全校人数的百分比约等于()A.50%B.55%C.60%D.65%3.XXX对本班40名学生的血型作了统计,列出如下的统计表,则本班A型血的人数是()组别。

频率A型。

0.4B型。

0.35AB型。

0.1O型。

0.15A.16人B.14人C.4人D.6人4.在一个密闭不透明的袋子里有若干个白球.为估计白球个数,XXX向其中投入8个黑球,搅拌均匀后随机摸出一个球,记下颜色,再把它放入袋中,不断重复摸球400次,其中88次摸到黑球,则估计袋中大约有白球()A.18个B.28个C.36个D.42个5.一次招聘活动中,共有8人进入复试,他们的复试成绩(百分制)如下:70,100,90,80,70,90,90,80.对于这组数据,下列说法正确的是(。

)A.平均数是80B.众数是90C.中位数是80D.极差是706.学校组织领导、教师、学生、家长对教师的教学质量进行综合评分,满分为100分,XXX得分的情况如下:领导平均给分80分,教师平均给分76分,学生平均给分90分,家长平均给分84分.如果按照1∶2∶4∶1的权进行计算,那么XXX老师的综合评分为()A.84.5分B.83.5分C.85.5分D.86.35分7.某校在体育健康测试中,有8名男生“引体向上”的成绩(单位:次)分别是:14,12,8,9,16,12,7,10,这组数据的中位数和众数分别是()A.10,12B.12,11C.11,12D.12,128.甲、乙两名同学在四次模拟测试中,数学的平均成绩都是112分,方差分别是s²甲=5,s²乙=12,则成绩比较稳定的是()A.甲B.乙C.甲和乙一样D.无法确定9.甲、乙、丙三位同学参加了一次节日活动,他们都得到了一件精美的礼物。

中考数学二轮专题复习试卷:统计与概率(含答案)

中考数学二轮专题复习试卷:统计与概率(含答案)

中考数学二轮专题复习试卷:统计与概率(时间:120分钟 满分:120分)一、选择题(本大题共15个小题,每小题3分,共45分) 1.(四川遂宁)以下问题,不适合用全面调查的是( ) A.了解全班同学每周体育锻炼的时间 B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试D.了解全市中小学生每天的零花钱2.(山东菏泽)在我市举行的中学生春季田径运动会上,参加男子跳高的15名运动员的成绩如表所示:这些运动员跳高的中位数和众数分别是( )A.1.70,1.65B.1.70,1.70C.1.65,1.70D.3,4 3.(山东济宁)下列说法正确的是( ) A.中位数就是一组数据中最中间的一个数 B.8,9,9,10,10,11这组数据的众数是9 C.如果x 1,x 2,x 3,…,x n 的平均数是x,那么()12n x x (x x x x 0-+-+⋯+-=())D.一组数据的方差是这组数据的极差的平方4.(山东青岛)一个不透明的口袋里装有除颜色外都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了100次,其中有10次摸到白球.因此小亮估计口袋中的红球大约有( )个.A.45B.48C.50D.555.(四川内江)今年我市有近4万名考生参加中考,为了解这些考生的数学成绩,从中抽取1 000名考生的数学成绩进行统计分析,以下说法正确的是( ) A.这1 000名考生是总体的一个样本 B.近4万名考生是总体C.每位考生的数学成绩是个体D.1 000名学生是样本容量6.(重庆)为了比较甲乙两种水稻秧苗谁出苗更整齐,每种秧苗各随机抽出50株,分别量出每株长度,发现两组秧苗的平均长度一样,甲、乙的方差分别是 3.5、10.9,则下列说法正确的是( ) A.甲秧苗出苗更整齐 B.乙秧苗出苗更整齐C.甲、乙出苗一样整齐D.无法确定甲、乙出苗谁更整齐7.(浙江温州)小明对九(1)班全班同学“你最喜欢的球类项目是什么?(只选一项)”的问题进行了调查,把所得数据绘制成如图所示的扇形统计图,由图可知,该班同学最喜欢的球类项目是( )A.羽毛球B.乒乓球C.排球D.篮球8.(山东日照)如图是某学校全体教职工年龄的频数分布直方图(统计中采用“上限不在内”的原则,如年龄为36岁统计在36≤x<38小组,而不在34≤x<36小组),根据图形提供的信息,下列说法中错误的是( )A.该学校教职工总人数是50人B.年龄在40≤x<42小组的教职工人数占该学校全体教职工总人数的20%C.教职工年龄的中位数一定落在40≤x<42这一组D.教职工年龄的众数一定在38≤x<40这一组9.(陕西)我省某市五月份第二周连续七天的空气质量指数分别为:111、96、47、68、70、77、105,则这七天空气质量指数的平均数是( )A.71.8B.77C.82D.95.710.(山东枣庄)在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球为白球的概率是23,则黄球的个数为( )A.16B.12C.8D.411.(福建漳州)某日福建省九地市的最高气温统计如下表:针对这组数据,下列说法正确的是( )A.众数是30B.极差是1C.中位数是31D.平均数是2812.(山东泰安)某校开展“节约每一滴水”活动,为了了解开展活动一个月以来节约用水的情况,从八年级的400名同学中选出20名同学统计了各自家庭一个月的节水情况,见表:请你估计这400名同学的家庭一个月节约用水的总量大约是( )A.130 m3B.135 m3C.65 m3D.260 m313.(甘肃天水)一组数据:3,2,1,2,2的众数,中位数,方差分别是( )A.2,1,0.4B.2,2,0.4C.3,1,2 D.2,1,0.214.(山东淄博)假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚卵全部成功孵化,则三只雏鸟中恰有两只雌鸟的概率是( )1352A. B. C. D.688315.(辽宁铁岭)在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有( )A.16个B.15个C.13个D.12个二、填空题(本大题共6个小题,每小题3分,共18分)16.(浙江湖州)某市号召居民节约用水,为了解居民用水情况,随机抽查了20户家庭某月的用水量,结果如表,则这20户家庭这个月的平均用水量是_______t.17.(山东青岛)某校对甲、乙两名跳高运动员的近期跳高成绩进行统计分析,结果如下:,,,2===x1.69 m x1.69 m s0.000 6甲乙甲,则这两名运动员中________的成绩更稳定.2s0.003 15=乙18.(浙江宁波)如图是七(1)班学生参加课外兴趣小组人数的扇形统计图.如果参加外语兴趣小组的是12人,那么参加绘画兴趣小组的人数是______人.19.(湖南株州)市运会举行射击比赛,校射击队从甲、乙、丙、丁四人中选拔一人参赛.在选拔赛中,每人射击10次,计算他们10发成绩的平均数(环)及方差如表.请你根据表中数据选一人参加比赛,最合适的人选是_______.20.甲乙丙丁平均数8.28.08.08.2方差2.11.81.61.420.(湖南岳阳)如图所示的3×3方格形地面上,阴影部分是草地,其余部分是空地,一只自由飞翔的小鸟飞下来落在草地上的概率为______.21.(浙江温州)赵老师想了解本校“生活中的数学知识”大赛的成绩分布情况,随机抽取了100份试卷的成绩(满分为120分,成绩为整数),绘制成如图所示的统计图.由图可知,成绩不低于90分的共有________人.三、解答题(本大题共5个小题,共57分)22.(本小题满分10分)(浙江嘉兴)小敏为了解本市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示优的扇形的圆心角度数;(3)请估计该市这一年(365天)达到优和良的总天数.23.(本小题满分10分)(宁夏)某校要从九年级(一)班和(二)班中各选取10名女同学组成礼仪队,选取的两班女生的身高如下:(单位:厘米)(一)班:168 167 170 165 168 166 171 168 167 170(二)班:165 167 169 170 165 168 170 171 168 167(1)补充完成下面的统计分析表(2)请选一个合适的统计量作为选择标准,说明哪一个班能被选取.24.(本小题满分10分)(浙江温州)一个不透明的袋中装有5个黄球,13个黑球和22个红球,它们除颜色外都相同.(1)求从袋中摸出一个球是黄球的概率;(2)现在袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后,使从袋中摸出一个球是黄球的概率不小于1.3问至少取出了多少黑球?25.(本小题满分12分)(四川雅安)某学校为了增强学生体质,决定开设以下体育课外活动项目:A.篮球B.乒乓球C.羽毛球D.足球.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图.请回答下列问题:(1)这次被调查的学生共有_____人;(2)请你将条形统计图(2) 补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率( 用树状图或列表法解答).26.(本小题满分15分)(浙江衢州)据衢州市国民经济和社会发展统计公报显示,衢州市新开工的住房有商品房、廉租房、经济适用房和公共租赁房四种类型.老王对这四种新开工的住房套数和比例进行了统计,并将统计结果绘制成下面两幅统计图,请你结合图中所给信息解答下列问题:(1)求经济适用房的套数,并补全频数分布直方图;(2)假如申请购买经济适用房的对象中共有950人符合购买条件,老王是其中之一.由于购买人数超过房子套数,购买者必须通过电脑摇号产生,如果对新开工的经济适用房进行电脑摇号,那么老王被摇中的概率是多少?(3)如果新开工廉租房建设的套数比增长10%,那么新开工廉租房有多少套?参考答案1.D2.A3.C4.A5.C6.A7.D8.D9.C10.D 11.A 12.A 13.B 14.B 15.D16.5.8 17.甲 18.5 19.丁 20.1321.2722.解:(1)∵扇形图中空气质量为良所占比例为64%,条形图中空气质量为良的天数为32天,∴被抽取的总天数为:32÷64%=50(天);(2)轻微污染天数是50-32-8-3-1=5天,表示优的圆心角度数为:850×360°=57.6°. 补全条形统计图,如图所示:(3)∵样本中优和良的天数分别为8和32天, ∴一年(365天)达到优和良的总天数:832365292().50+⨯=天 23.解:(1)一班的方差=110[(168-168)2+(167-168)2+(170-168)2+…+(170-168)2]=3.2; 二班的极差为171-165=6; 二班的中位数为168; 补全表格如下:(2)选择方差做标准,∵一班方差<二班方差, ∴一班可能被选取.24.解:(1)摸出一个球是黄球的概率:51P .513228==++(2)设取出x 个黑球.由题意,得:5x 1,403+≥ 解得:25x ,3≥∴x 的最小正整数解是x=9. 答:至少取出9个黑球. 25.解:(1)200 (2)C:60人(3) 所有情况如表所示:由上表可知, 所有结果为 12 种, 其中符合要求的只有2种, ∴P(恰好选中甲、乙)=21.126=26.解:(1)根据题意得:住房总数为1 500÷24%=6 250(套),则经济适用房的数量为6 250×7.6%=475(套),所以经济适用房共有475套.补全直方图(2)老王被摇中的概率为:4751.9502(3)廉租房共有6 250×8%=500(套). 500(1+10%)=550, 所以新开工廉租房550套.。

备考2024年中考数学二轮复习-统计与概率_数据收集与处理_条形统计图-综合题专训及答案

备考2024年中考数学二轮复习-统计与概率_数据收集与处理_条形统计图-综合题专训及答案

备考2024年中考数学二轮复习-统计与概率_数据收集与处理_条形统计图-综合题专训及答案条形统计图综合题专训1、(2016黑龙江.中考真卷) 某学校为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行八百米跑体能测试,测试结果分为A、B、C、D四个等级,请根据两幅统计图中的信息回答下列问题:(1)求本次测试共调查了多少名学生?(2)求本次测试结果为B等级的学生数,并补全条形统计图;(3)若该中学八年级共有900名学生,请你估计八年级学生中体能测试结果为D等级的学生有多少人?2、(2018东胜.中考模拟) 学习了统计知识后,小明就本班同学的上学方式进行了一次调查统计.图(1)和图(2)是他通过采集数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题:(1)求该班学生的人数;(2)在图(1)中,将表示“步行”的部分补充完整;(3)如果全年级共600名同学,请你估算全年级步行上学的学生人数?3、(2017台州.中考模拟) 我市民营经济持续发展,2015年城镇民营企业就业人数突破20万.为了解城镇民营企业员工每月的收入状况,统计局对全市城镇民营企业员工2015年月平均收入随机抽样调查,将抽样的数据按“2000元以内”、“2000元~4000元”、“4000元~6000元”和“6000元以上”分为四组,进行整理,分别用A,B,C,D表示,得到下列两幅不完整的统计图.由图中所给出的信息解答下列问题:(1)本次抽样调查的员工有人,在扇形统计图中x的值为,表示“月平均收入在2000元以内”的部分所对应扇形的圆心角的度数是;(2)将不完整的条形图补充完整,并估计我市2015年城镇民营企业20万员工中,每月的收入在“2000元~4000元”的约多少人?(3)统计局根据抽样数据计算得到,2016年我市城镇民营企业员工月平均收入为4872元,请你结合上述统计的数据,谈一谈用平均数反映月收入情况是否合理?4、(2019衢州.中考真卷) 某校为积极响应“南孔圣地,衢州有礼”城市品牌建设,在每周五下午第三节课开展了丰富多彩的走班选课活动。

备考2024年中考数学二轮复习-统计与概率_概率_概率的简单应用-填空题专训及答案

备考2024年中考数学二轮复习-统计与概率_概率_概率的简单应用-填空题专训及答案

备考2024年中考数学二轮复习-统计与概率_概率_概率的简单应用-填空题专训及答案概率的简单应用填空题专训1、(2019沈阳.中考真卷) 一个口袋中有红球、白球共10个,这些球除颜色外都相同.将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有70次摸到红球.请你估计这个口袋中有________个白球.2、(2021镇江.中考模拟) 一个不透明布袋里有3个红球,4个白球和m个黄球,这些球除颜色外其余都相同,若从中随机摸出1个球是红球的概率为,则m的值为________.3、(2019瑞安.中考模拟) 一个不透明的布袋里装有若干个只有颜色不同的红球和白球,其中3个红球,且从布袋中随机摸出1个球,摸出的球是红球的概率是,则白球的个数是________4、(2018西湖.中考模拟) 标号分别为1,2,3,4,……,n的n张标签(除标号外其它完全相同),任摸一张,若摸得奇数号标签的概率大于0.5,则n可以是________.5、(2019乌鲁木齐.中考模拟) 一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球________个.6、(2018成都.中考模拟) 袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是白球的概率为 ”,则这个袋中白球大约有________个.7、(2019萧山.中考模拟) 一个盒子里装有除颜色外都相同的10个球,其中有a个红球,b个黄球,3个白球.从盒子里随意摸出1个球,摸出黄球的概率是,那么a=________,b=________.8、(2020蔡甸.中考模拟) 经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车先后经过这个十字路口,则至少有一辆汽车向左转的概率是________.9、(2020鄞州.中考模拟) 一个密码箱的密码是六位数,小明没有记住最后一位,最后一位是0到9这10个数字中的一个,则他一次就拨对密码的概率是________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章《统计与概率》自我测试[时间:90分钟分值:100分]一、选择题(每小题3分,满分30分)1.(2011·南京)为了解某初中学校学生的视力情况,需要抽取部分学生进行调查,下列抽取学生的方法最合适的是()A.随机抽取该校一个班级的学生B.随机抽取该校一个年级的学生C.随机抽取该校一部分男生D.分别从该校初一、初二、初三年级中各班随机抽取10%的学生2.(2011·南充)学校商店在一段时间内销售了四种饮料共100瓶,各种饮料的销售量如下表:品牌甲乙丙丁销售量(瓶)12321343建议学校商店进货数量最多的品牌是()A.甲品牌B.乙品牌C.丙品牌D.丁品牌3.(2011·聊城)下列事件属于必然事件是()A.在1个标准大气压下,水加热到100℃沸腾;B.明天我市最高气温为56℃C.中秋节晚上能看到月亮;D.下雨后有彩虹4.(2011·成都)为了解某小区“全民健身”活动的开展情况,某志愿者对居住在该小区的50名成年人一周的体育锻炼时间进行了统计,并绘制成如图所示的条形统计图,根据图中提供的信息,这50人一周的体育锻炼的时间的众数和中位数分别是()A.6小时、6小时B.6小时、4小时;C.4小时、4小时D.4小时、6小时5.(2011·铜仁)某鞋店一天中卖出运动鞋11双,其中各种尺码的鞋的销售量如下表:尺码(cm)23.52424.52525.5销售量(双)1225 1则这11双鞋的尺码组成的一组数据中,众数和中位数分别是()A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.56.(2011·舟山)多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( ) A .极差是47 B .众数是42C .中位数是58D .每月阅读数量超过40的有4个月7.(2011·常德)在某校艺体节的乒乓球比赛中,李东同学顺利进入总决赛,且个人技艺高超,有同学预测“李东夺冠的可能性是80%”,对该同学的说法理解正确的是( ) A .李东夺冠的可能性较小 B .李东和他的对手比赛10局时,他一定会赢8局 C .李东夺冠的可能性较大 D .李东肯定会赢8.(2011·鸡西)某工厂为了选拔1名车工参加直径为5 mm 精密零件的加工技术比赛,随机抽取甲、乙两名车工加工的5个零件,现测得的结果如下表,平均数依次为 x -甲、x -乙,方差依次为S 甲2、S 乙2,则下列关系中完全正确的是( )甲 5.05 5.02 5 4.96 4.97 乙55.0154.975.02A.x -甲<x -乙, S 甲2<S 乙2B.x -甲=x -乙, S 甲2<S 乙2 C.x -甲=x -乙, S 甲2>S 乙2 D.x -甲>x -乙, S 甲2>S 乙29.(2011·枣庄)在围棋盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是25.如果再往盒中放进6颗黑色棋子,取得白色棋子的概率是14,则原来盒中有白色棋子( )A .8颗B .6颗C .4颗D .2颗10.(2011·临沂)如图,A 、B 是数轴上的两点,在线段AB 上任取一点C ,则点C 到表示-1的点的距离不大于...2的概率是( )A.12B.23C.34D.45答案 D二、填空题(每小题3分,满分30分)11.(2011·扬州)数学老师布置10道选择题作业,批阅后得到如下统计表,根据表中数据可知,这45名学生答对题数组成的样本的中位数是________题.答对题数(题)78910人数(人)41816712.(2011·菏泽)在一次信息技术考试中,某兴趣小组8名同学的成绩(单位:分)分别是:7,10,9,8,7,9,9,8,则这组数据的平均数是____________.13.(2011·南充)某灯具厂从1万件同批次产品中随机抽取了100件进行质检,发现其中有5件不合格,估计该厂这一万件产品中不.合格品约为________件.14.(2011·成都)某校在“爱护地球·绿化祖国”的创建活动中,组织学生开展植树造林活动.为了解全校学生的植树情况,学校随机抽查了100名学生的植树情况,将调查数据整理如下表:植树数量(棵)456810人数(人)302225158则这100名同学平均每人植树__________棵;若该校共有1000名学生,请根据以上调查结果估计该校学生的植树总数是__________棵.15.(2011·怀化)在一次爱心捐款中,某班有40名学生拿出自己的零花钱,有捐5元、10元、20元、50元的,右边扇形统计图反映了不同捐款的人数比例,那么这个班的学生平均每人捐款_________元.16.(2011·绍兴)为备战2011年4月11日在绍兴举行的第三届全国皮划艇马拉松赛,甲、乙运动员进行了艰苦的训练,他们在相同条件下各10次划艇成绩的平均数相同,方差分别为0.23,0.20,则成绩较为稳定的是__________(选填“甲”或“乙”).17.(2011·台州)袋子中装有2个黑球和3个白球,这些球的形状、大小、质地等完全相同.随机地从袋子中摸出一个球是白球的概率是________.18.(2011·德州)在4张卡片上分别写有1~4的整数,随机抽取一张后放回,再随机地抽取一张,那么第二次取出的数字能够整除第一次取出的数字的概率是____________.19.(2011·烟台)在如图所示的矩形纸片上作随机扎针实验,则针头扎在阴影区域的概率为__________.20.(2011·黄石)为响应“红歌唱响中国”活动,某乡镇举行了一场“红歌”歌咏比赛,组委会规定:任何一名参赛选手的成绩x满足:60≤x<100,赛后整理所有参赛选手的成绩如下表:分数段频数频率60≤x<70300.1570≤x<80m 0.4580≤x<9060n90≤x<100200.1根据表中提供的信息得到n=___________.三、解答题(每小题8分,满分40分)21.(2011·金华)王大伯几年前承办了甲、乙两片荒山,各栽100棵杨梅树,成活98%,现已挂果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵的产量如折线统计图所示.(1)分别计算甲、乙两山样本的平均数,并估算出甲、乙两山杨梅的产量总和;(2)试通过计算说明,哪个山上的杨梅产量较稳定?22.(2011·广州)某中学九年级(3)班50名学生参加平均每周上网时间的调查,由调查结果绘制了频数分布直方图如图,根据图中信息回答下列问题:(1)求a的值;(2)用列举法求以下事件的概率:从上网时间在6~10小时的5名学生中随机选取2人,其中至少1人的上网时间在8~10小时.23.(2011·义乌)为了解某市九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进行分段(A:50分;B:49-45分;C:44-40分;D:39-30分;E:29-0分)统计如下:学业考试体育成绩(分数段)统计表分数段人数(人)频率A 480.2B a 0.25C 840.35D 36bE 120.05根据上面提供的信息,回答下列问题:(1)在统计表中,a的值为_______,b的值为_________,并将统计图补充完整(温馨提示:作图时别忘了用0.5毫米及以上的黑色签字笔涂黑);(2)甲同学说:“我的体育成绩是此次抽样调查所得数据的中位数. ”请问:甲同学的体育成绩应在什么分数段内?________(填相应分数段的字母)(3)如果把成绩在40分以上(含40分)定为优秀,那么该市今年10440名九年级学生中体育成绩为优秀的学生人数约有多少名?24.(2011·河南)为更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如下的调查问卷(单选).在随机调查了该市全部5 000名司机中的部分司机后,统计整理并制作了如下的统计图:根据以上信息解答下列问题:(1)补全条形统计图,并计算扇形统计图中m=________;(2)该市支持选项B的司机大约有多少人?(3)若要从该市支持选项B的司机中随机选择100名,给他们发放“请勿酒驾”的提醒标志,则支持该选项的司机小李被选中的概率是多少?25.(2011·黄石)2011年6月4日,李娜获得法网公开赛的冠军,圆了中国人的网球梦,也在国内掀起一股网球热.某市准备为青少年举行一次网球知识讲座,小明和妹妹都是网球球迷.要求爸爸去买门票,但爸爸只买回一张门票,那么谁去就成了问题.小明想到一个办法:他拿出一个装有质地、大小相同的2x个红球与3x个白球的袋子,让爸爸摸出一个球,如果摸出的是红球,妹妹去听讲座;如果摸出的是白球,小明去听讲座.(1)爸爸说这个办法不公平,请你用概率的知识解释原因;(2)若爸爸从袋中取出3个白球,再用小明提出的办法来确定谁去听讲座,请问摸球的结果是对小明有利还是对妹妹有利?说明理由.参考答案一、选择题(每小题3分,满分30分)1.(2011·南京)为了解某初中学校学生的视力情况,需要抽取部分学生进行调查,下列抽取学生的方法最合适的是()A.随机抽取该校一个班级的学生B.随机抽取该校一个年级的学生C.随机抽取该校一部分男生D.分别从该校初一、初二、初三年级中各班随机抽取10%的学生答案 D解析选取的样本要具有代表性.2.(2011·南充)学校商店在一段时间内销售了四种饮料共100瓶,各种饮料的销售量如下表:品牌甲乙丙丁销售量(瓶)12321343建议学校商店进货数量最多的品牌是()A.甲品牌B.乙品牌C.丙品牌D.丁品牌答案 D解析丁品牌的销售量43瓶是最多的.3.(2011·聊城)下列事件属于必然事件是()A.在1个标准大气压下,水加热到100℃沸腾;B.明天我市最高气温为56℃C.中秋节晚上能看到月亮;D.下雨后有彩虹答案 A解析据物理常识,在1个标准大气压下,水加热到100℃沸腾,是必然事件.4.(2011·成都)为了解某小区“全民健身”活动的开展情况,某志愿者对居住在该小区的50名成年人一周的体育锻炼时间进行了统计,并绘制成如图所示的条形统计图,根据图中提供的信息,这50人一周的体育锻炼的时间的众数和中位数分别是()A.6小时、6小时B.6小时、4小时;C.4小时、4小时D.4小时、6小时答案 A解析从条形统计图中,可获得信息:一周的体育锻炼时间为6小时的这个数据出现次数最多,为20次,所以众数是6;50个数据中,第25、26个数据都是6,所以中位数是6. 5.(2011·铜仁)某鞋店一天中卖出运动鞋11双,其中各种尺码的鞋的销售量如下表:尺码(cm) 23.5 24 24.5 25 25.5 销售量(双)12251则这11双鞋的尺码组成的一组数据中,众数和中位数分别是( ) A .25,25 B .24.5,25 C .25,24.5 D .24.5,24.5 答案 A解析 25是出现次数最多的数据,所以众数是25;第6个数据是25,所以中位数是25. 6.(2011·舟山)多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( ) A .极差是47 B .众数是42C .中位数是58D .每月阅读数量超过40的有4个月答案 C解析 将所得到的数据按从小到大的顺序排列28、36、42、58、58、70、75、83,可知第4、第5个数据都是58,所以中位数是(58+58)÷2=58.7.(2011·常德)在某校艺体节的乒乓球比赛中,李东同学顺利进入总决赛,且个人技艺高超,有同学预测“李东夺冠的可能性是80%”,对该同学的说法理解正确的是( ) A .李东夺冠的可能性较小 B .李东和他的对手比赛10局时,他一定会赢8局 C .李东夺冠的可能性较大 D .李东肯定会赢 答案 C解析 李东夺冠的可能性是80%,指李东夺冠的概率是80%,夺冠的可能性较大. 8.(2011·鸡西)某工厂为了选拔1名车工参加直径为5 mm 精密零件的加工技术比赛,随机抽取甲、乙两名车工加工的5个零件,现测得的结果如下表,平均数依次为 x -甲、x -乙,方差依次为S 甲2、S 乙2,则下列关系中完全正确的是( )甲 5.05 5.02 5 4.96 4.97 乙55.0154.975.02A.x -甲<x -乙, S 甲2<S 乙2B.x -甲=x -乙, S 甲2<S 乙2C.x -甲=x -乙, S 甲2>S 乙2D.x -甲>x -乙, S 甲2>S 乙2 答案 C解析 计算得x -甲=5,x -乙=5,S 甲2=0.00108,S 乙2=0.00028, 所以x -甲=x -乙,S 甲2>S 乙2.9.(2011·枣庄)在围棋盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是25.如果再往盒中放进6颗黑色棋子,取得白色棋子的概率是14,则原来盒中有白色棋子( )A .8颗B .6颗C .4颗D .2颗 答案 C解析 据题意,得⎩⎨⎧x x +y =25,x x +y +6=14,解之,得⎩⎪⎨⎪⎧x =4y =6.,经检验符合所列方程组的条件.10.(2011·临沂)如图,A 、B 是数轴上的两点,在线段AB 上任取一点C ,则点C 到表示-1的点的距离不大于...2的概率是( )A.12B.23C.34D.45答案 D解析 线段AB 的长=|-3-2|=5,到点-1的距离等于2的两点之间的线段长是4, 所以概率是45.二、填空题(每小题3分,满分30分)11.(2011·扬州)数学老师布置10道选择题作业,批阅后得到如下统计表,根据表中数据可知,这45名学生答对题数组成的样本的中位数是________题.答对题数(题) 7 8 9 10 人数(人)418167答案 9解析 从小到大排列45个数据,第23个数据是9,所以中位数是9.12.(2011·菏泽)在一次信息技术考试中,某兴趣小组8名同学的成绩(单位:分)分别是:7,10,9,8,7,9,9,8,则这组数据的平均数是____________. 答案 8.375解析 平均数x -=18×(7×2+10+9×3+8×2)=8.375.13.(2011·南充)某灯具厂从1万件同批次产品中随机抽取 了100件进行质检,发现其中有5件不合格,估计该厂这一万件产品中不.合格品约为________件. 答案 500解析 估计不合格品有5100×10000=500(件).14.(2011·成都)某校在“爱护地球·绿化祖国”的创建活动中,组织学生开展植树造林活动.为了解全校学生的植树情况,学校随机抽查了100名学生的植树情况,将调查数据整理如下表:植树数量(棵) 4 5 6 8 10 人数(人)302225158则这100名同学平均每人植树 __________棵;若该校共有1000名学生,请根据以上调查结果估计该校学生的植树总数是__________棵.答案 5.8;5800解析 平均数x -=1100×(4×30+5×22+6×25+8×15+10×8)=5.8(棵);总数是1000×5.8=5800(棵).15.(2011·怀化)在一次爱心捐款中,某班有40名学生拿出自己的零花钱,有捐5元、10元、20元、50元的,右边扇形统计图反映了不同捐款的人数比例,那么这个班的学生平均每人捐款_________元.答案 16解析 捐5元,10元,20元,50元的学生数分别是40×60%=24(人),40×10%=4(人),40×10%=4(人),40×20%=8(人),所以平均数x -=140×(5×24+10×4+20×4+50×8)=16(元).16.(2011·绍兴)为备战2011年4月11日在绍兴举行的第三届全国皮划艇马拉松赛,甲、乙运动员进行了艰苦的训练,他们在相同条件下各10次划艇成绩的平均数相同,方差分别为0.23,0.20,则成绩较为稳定的是__________(选填“甲”或“乙”). 答案 乙解析 因为S 甲2=0.23>S 乙2=0.20,所以乙的成绩较为稳定.17.(2011·台州)袋子中装有2个黑球和3个白球,这些球的形状、大小、质地等完全相同.随机地从袋子中摸出一个球是白球的概率是________.答案 35解析 袋子中共有2+3=5个球,摸出一个球是白球的概率是35.18.(2011·德州)在4张卡片上分别写有1~4的整数,随机抽取一张后放回,再随机地抽取一张,那么第二次取出的数字能够整除第一次取出的数字的概率是____________. 答案 12解析 树状图如下:总共有12种情况,第二次取出的数字能够整除第一次取出的数字的概率是816=12.19.(2011·烟台)在如图所示的矩形纸片上作随机扎针实验,则针头扎在阴影区域的概率为__________.答案 14解析 根据矩形是中心对称图形,可知阴影部分面积之和是整个矩形面积的14,所以概率是14.20.(2011·黄石)为响应“红歌唱响中国”活动,某乡镇举行了一场“红歌”歌咏比赛,组委会规定:任何一名参赛选手的成绩x 满足:60≤x <100,赛后整理所有参赛选手的成绩如下表:分数段 频数 频率 60≤x <70 30 0.15 70≤x <80 m 0.45 80≤x <90 60 n 90≤x <100200.1根据表中提供的信息得到n =___________. 答案 0.3解析 各分数段的频率之和为1,所以n =1-0.15-0.45-0.1=0.3.三、解答题(每小题8分,满分40分)21.(2011·金华)王大伯几年前承办了甲、乙两片荒山,各栽100棵杨梅树,成活98%,现已挂果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵的产量如折线统计图所示.(1)分别计算甲、乙两山样本的平均数,并估算出甲、乙两山杨梅的产量总和; (2)试通过计算说明,哪个山上的杨梅产量较稳定?解 (1)甲山上4棵树的产量分别为:50千克、36千克、40千克、34千克,所以甲山产量的样本平均数为:x -甲=50+36+40+344=40(千克);乙山上4棵树的产量分别为:36千克、40千克、48千克、36千克,所以乙山产量的样本平均数为:x -乙=36+40+48+364=40(千克);甲、乙两山杨梅的产量总和为:2×100×98%×40=7840(千克). (2)S 甲2=14[ ()50-402+()36-402+()40-402+ ]()34-402=38(千克2 ),S 乙2=14[ ()36-402+()40-402+()48-402+ ]()36-402=24(千克2),∴S 甲2>S 乙2.∴乙山上的杨梅产量较稳定.22.(2011·广州)某中学九年级(3)班50名学生参加平均每周上网时间的调查,由调查结果绘制了频数分布直方图如图,根据图中信息回答下列问题: (1)求a 的值;(2)用列举法求以下事件的概率:从上网时间在6~10小时的5名学生中随机选取2人,其中至少1人的上网时间在8~10小时.解(1)a=50-6-25-3-2=14.(2)设上网时间为6~8小时的三个学生为A1、A2、A3,上网时间为8~10小时的2名学生为B1、B2,则共有A1A2,A1A3,A1B1,A1B2,A2A3,A2B1,A2B2,A3B1,A3B2,B1B2共10种可能,其中至少1人上网时间在8~10小时的共有7种可能,故P(至少1人的上网时间在8~10小时)=710.23.(2011·义乌)为了解某市九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进行分段(A:50分;B:49-45分;C:44-40分;D:39-30分;E:29-0分)统计如下:学业考试体育成绩(分数段)统计表分数段人数(人)频率A 480.2B a 0.25C 840.35D 36bE 120.05根据上面提供的信息,回答下列问题:(1)在统计表中,a的值为_______,b的值为_________,并将统计图补充完整(温馨提示:作图时别忘了用0.5毫米及以上的黑色签字笔涂黑);(2)甲同学说:“我的体育成绩是此次抽样调查所得数据的中位数. ”请问:甲同学的体育成绩应在什么分数段内?________(填相应分数段的字母)(3)如果把成绩在40分以上(含40分)定为优秀,那么该市今年10440名九年级学生中体育成绩为优秀的学生人数约有多少名?解 (1)60,0.15. (补图略) (2)C(3)(0.2+0.25+0.35)×10440=8352(名).答:该市九年级考生中体育成绩为优秀的学生人数约有8352名.24.(2011·河南)为更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如下的调查问卷(单选).在随机调查了该市全部5 000名司机中的部分司机后,统计整理并制作了如下的统计图:根据以上信息解答下列问题:(1)补全条形统计图,并计算扇形统计图中m =________; (2)该市支持选项B 的司机大约有多少人?(3)若要从该市支持选项B 的司机中随机选择100名,给他们发放“请勿酒驾”的提醒标志,则支持该选项的司机小李被选中的概率是多少?解 (1)C 选项的频数为90,正确补全条形统计图略;20. (2)支持选项B 的人数大约为:5000×23%=1150. (3)小李被选中的概率P =1001150=223.25.(2011·黄石)2011年6月4日,李娜获得法网公开赛的冠军,圆了中国人的网球梦,也在国内掀起一股网球热.某市准备为青少年举行一次网球知识讲座,小明和妹妹都是网球球迷.要求爸爸去买门票,但爸爸只买回一张门票,那么谁去就成了问题.小明想到一个办法:他拿出一个装有质地、大小相同的2x 个红球与3x 个白球的袋子,让爸爸摸出一个球,如果摸出的是红球,妹妹去听讲座;如果摸出的是白球,小明去听讲座. (1)爸爸说这个办法不公平,请你用概率的知识解释原因;(2)若爸爸从袋中取出3个白球,再用小明提出的办法来确定谁去听讲座,请问摸球的结果是对小明有利还是对妹妹有利?说明理由.解(1)∵红球有2x个,白球有3x个,∴P(红球)=2x2x+3x=25,P(白球)=3x2x+3x=35,∴P(红球)< P(白球),∴这个办法不公平.(2)取出3个白球后,红球有2x个,白球有(3x-3)个,∴P(红球)=2x5x-3,P(白球)=3x-35x-3,x为正整数,∴P(红球)-P(白球) =3-x5x-3.①当x<3时,则P(红球)> P(白球),∴对妹妹有利;②当x=3时,则P(红球)=P(白球),∴对妹妹、小明是公平的;③当x>3时,则P(红球)< P(白球),∴对小明有利.。

相关文档
最新文档