七年级上册数学第1课时 有理数的减法 (2)
2.1.2 有理数的减法(第1课时 有理数的减法法则)(教学设计)七年级数学上册(人教版2024)
2.1.2 有理数的减法(第1课时)教学设计一、内容和内容解析1.内容本节课是人教版(2024)《义务教育教科书•数学》七年级上册(以下统称“教材”)第二章“有理数的运算”2.1有理数的加法与减法第3课时,内容包括有理数的减法法则.2.内容解析本节课首先通过实例(北京冬季某一天的最高气温与最低气温的差是多少)引出有理数的减法,之后从减法是加法的逆运算出发,通过一些具体的有理数,探究两个有理数的差是多少,以及是否可以利用加法进行减法的运算,在此基础上引出有理数减法法则,给出了两个有理数减法法则的字母表示.之后通过例题,让学生及时巩固有理数减法法则的理解和应用.需要注意的是,一定要注意让学生养成依据规则办事的习惯,即两个有理数相减,应先将有理数的减法改写为有理数的加法,再根据有理数加法的法则进行运算,防止学生学习有理数减法的初始阶段忙乱出错.在初步熟悉用有理数减法法则进行运算的基础上,进一步挖掘:“在小学,只有当a大于或等于b时(其中a,b是0或正数),我们才能计算a-b(如2-1,1-1).现在,a小于b时,你能计算a-b(如1-2,(-1)-1)吗?一般地,在有理数范围内,较小的数减去较大的数,所得的差的符号是什么?”,进一步深化学生对有理数减法运算的适用性、减法运算的结果的认识.让学生明白,在小学、在非负有理数范围内,我们只能做“大数减去小数”的减法,而在有理数范围内,“小数”是可以减去“大数”的,且“小数减去大数所得的差是负数”,从而进一步体会引入负数的必要性和优越性.基于以上分析,确定本节课的教学重点为:有理数减法的法则及其简单应用.二、目标和目标解析1.目标(1)了解有理数减法的意义,理解有理数的减法与有理数的加法互为逆运算.(2)掌握有理数的减法法则,会熟练地进行有理数的减法运算.2.目标解析(1)有理数减法的意义就是已知两个有理数的和与其中的一个加数,求另一个加数的运算,从而体会有理数的减法运算与有理数的加法运算互为逆运算.(2)有理数的减法法则是:减去一个数,等于加上这个数的相反数.利用有理数的减法法则进行有理数的减法运算,应先将有理数的减法运算转化为有理数的加法运算,再根据有理数的加法法则确定运算结果的符号,最后确定结果的绝对值大小.三、教学问题诊断分析本节课是在小学对“数及其运算”的基础上展开新的内容,但学生对于小学阶段数的运算的认识经验仅停留在“认识”,还没有形成发挥这些经验作用的意识.对运算法则的理解也是非常困难的事情,更加需要数学活动经验的积累,并发挥这些经验的作用以逐步认清运算规则的“合理性”.本节课核心内容是有理数减法运算,是训练学生运算能力的重要载体,运算能力是数学的核心能力,课上要强调纸笔运算,强化运算技能的指导.基于以上分析,确定本节课的教学难点为:有理数减法法则的理解与应用.四、教学过程设计(一)复习旧知,引入新课计算:(1)5 + 20 = (2)(-3)+(-29)=(3)(-7)+ 13 = (4)23 +(-52)=(5)(-8)+ 8 = (6)27 +0 =(7)0 +(-5)=师生活动:学生思考回答.教师根据学生回答的情况加以补充,并提出问题:我们实际问题中有时还要涉及有理数的减法,进而引入新知.【设计意图】通过复习上节课学习的有理数的加法,了解掌握情况,同时为学习有理数的减法运算将要转化为加法运算进行知识铺垫与知识储备.(二)新知探究问题1:北京冬季某一天的气温为-3~3℃. 这一天北京的温差是多少?(1)根据你的生活经验,你会说出这天的温差吗?(2)你还能从温度计上看出3℃比-3℃高℃吗?(3)你会列式求该天北京的温差?追问:观察式子3-(-3)=3+(+3),你发现了什么?从结果中你能看出减-3相当于加哪个数吗?师生活动:学生进行讨论,教师引导学生进行计算、观察,教师不必急于归纳,允许学生从不同角度观察得出温差为6℃,如采用温度计从6℃数到零下3℃等,只要学生的方法合理,都应肯定.教师可适时小结:刚才,我们用多种方法得出了3-(-3) =6,可是,如果每次进行减法运算都要这样做的话,太麻烦了.看来我们还要继续努力,争取找到更简洁的方法.然后教师进一步提出问题2.【设计意图】通过生活中的现象提出问题,引入有理数的减法,引起学生的学习兴趣,使学生关注身边的数学现象.此处可先让学生回顾加法与减法互为逆运算关系,有助于学生理解3-(-3)=6.问题2:将上式中的3,换成0,-1,-5,用上面的方法考虑:0-(-3),-1-(-3),-5-(-3).追问:这些数减-3的结果与它们加+3的结果相同吗?问题3:换几个数再试一试.计算:9-8= ,9+(-8)= .15-7= ,15+(-7)= .从以上两式中,你可以得到什么结论?师生活动:教师引导学生进行计算、观察,多次尝试更换被减数后,此时学生对减法法则已有一定的认识,学生回答问题,教师归纳,从而得出有理数减法法则,板书法则及用字母表示的形式.有理数减法法则:减去一个数,等于加这个数的相反数.a-b=a+(-b)让学生明确:减法运算转化成加法运算要点:两变一不变(“两变”一是指将运算符号由“-”号变为“+”号,二是将减数变为它的相反数;“一不变”是指被减数和减数的位置不能交换).【设计意图】通过观察、比较、讨论、归纳,发现有理数的减法法则,感受转化的数学思想.此处也是让学生验证前面所提的猜想的正确性,用字母把减法法则表示出来,有利于学生的理解和记忆.(三)典例分析例:计算下列各题:(1)-3-(-5);(2)0-7;(3)2-5;(4)7.2-(-4.8);(5)11 3524⎛⎫--⎪⎝⎭.解:(1)-3-(-5)=-3+5=2;(2)0-7=0+(-7)=-7;(3)2-5=2+(-5)=-3;(4)7.2-(-4.8)=7.2+4.8=12;(5)11113 3535824244⎛⎫⎛⎫⎛⎫--=-+-=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.师生活动:师生共同完成.在完成过程中教师示范前两小题,给学生一个规范的过程,同时结合法则讲解法则的运用,剩下几个小题学生尝试完成,体验法则的运用.教师要提醒学生注意0-7这个式子,是学生容易出错的一个问题.【设计意图】通过例题,加深对有理数减法法则的理解和运用,渗透转化的数学思想,让学生归纳一些运算的规律、特征,提高学生的运算能力.(四)思考探索1. 在小学,只有当a大于或等于b时(其中a,b是0或正数),我们才能计算a-b(如2-1,1-1).现在,a小于b时,你能计算a-b(如1-2,(-1)-1)吗?2. 一般地,在有理数范围内,较小的数减去较大的数,所得的差的符号是什么?(负号,所得的数是负数.)师生活动:学生思考,教师引导学生进行观察,回答问题,师生共同归纳.【设计意图】使学生加深对法则的理解与掌握,同时引导学生体会引入负数的好处.(五)当堂巩固1. 计算:(1)5-10;(2)(+3)-(-9);(3)(-6)-(-10);(4)0-(-7);(5)(-3.6)-2.7;(6)13 24⎛⎫--⎪⎝⎭.(答案:(1)-5;(2)12;(3)4;(4)7;(5)-6.3;(6)54 .)2. 计算:(1)比3℃低10℃的温度;(2)比-2℃低8℃的温度.解:(1)3-10=-7(℃);(2)-2-8=-10(℃).3. 世界上最高的山峰是珠穆朗玛峰,其海拔大约是8848.86米,吐鲁番盆地的海拔大约是-155米,两处高度相差多少米?解:8848.86-(-155)=8848.86+155=9003.86(米).答:两地高度差是9003.86米.4. 甲地的海拔为5米,乙地比甲地低6米,则乙地的海拔为多少米?解:5-6=-1(m)答:乙地的海拔为-1米.师生活动:学生独立完成,学生代表板书,学生互相评价.【设计意图】使学生加深对有理数减法法则的理解与掌握.(六)能力提升1. 下列说法正确的是( B )A. 两数之差一定小于被减数;B. 减去一个负数,差一定大于被减数;C. 减去一个正数,差一定大于被减数;D. 0减去任何数,差都是负数.2. 若a>0,b<0,则a-b一定是( A )A.正数B.负数C.0D.不能确定3. 设m>0,n<0,则下列各式的符号是正数还是负数?(1)m-n(2)-m+n解:(1)m-n=m+(-n),因为m>0,n<0,所以-n>0,所以,m+(-n)是两个正数相加,所以m+(-n)>0(2)因为m>0,n<0,所以-m是负数,n是负数,所以-m+n是两个负数的和,所以结果是负数.师生活动:学生独立思考,如有困难,先在组内讨论说明思路,教师适时引导点拨. 【设计意图】加深对有理数减法法则的进一步理解与掌握,提升能力.(七)感受中考1.(2024•天津)计算3-(-3)的结果等于()A.-6 B.0C.3D.6【解答】解:原式=3+3=6,故答案为:D.2.(2024•台湾)算式31()74--之值为何?()A.1928B.528C.411D.23【解答】解:31()74--3174=+1928=.故选:A.3.(2024•长沙)“玉兔号”是我国首辆月球车,它和着陆器共同组成“嫦娥三号”探测器.“玉兔号”月球车能够耐受月球表面的最低温度是-180℃、最高温度是150℃,则它能够耐受的温差是()A.-180℃B.150℃C.30℃D.330℃【解答】解:由题意得,150-(-180)=150+180=330(℃),故选:D.【设计意图】通过对最近几年的中考试题的训练,使学生提前感受到中考考什么,进一步了解考点.(八)课堂小结这节课你有什么收获?1. 内容总结:减去一个数等于加上这个数的相反数,即:a-b=a+(-b).2. 注意事项:进行减法运算,要注意两变一不变,减号变成了加号,减数的符号也改变了,但被减数的符号不改变.3. 有理数减法转化成加法进行运算. 这里体现了化不熟悉知识为熟悉知识的转化的数学思想.师生活动:学生思考、归纳、交流.教师补充归纳.【设计意图】让学生自己对本节课所学知识进行梳理,重点让学生理解内化“转化”这种常见的数学思想方法.(九)布置作业P34:习题2.1:第3、4题.五、教学反思在数系及其运算的扩充过程中,核心的问题是在添加了一类“新数”后,所引进的新数之间的运算如何归结到原有的数之间的运算而定义运算法则,进而使原有的运算律在新的数系中得以保持.这样的思想当然不能直接教给学生,因为他们还不能理解这样做到底有什么意义,但应该注意采用自然渗透的方式,使学生受到数学思想方法的熏陶.有理数减法法则的理解及运用是按以下方法突破的:有理数减法运算是通过转化为有理数加法运算实现的,其间让学生充分、自然而然地体会转化化归的数学思想.有理数减法运算时教师应强调让学生注意:①“两变一不变”,“两变”一是指将运算符号由“-”号变为“+”号,二是将减数变为它的相反数;“一不变”是指被减数和减数的位置不能交换.②不要把减法运算与异号两数相加弄混淆.。
七年级上册数学教案设计1.3.2第1课时有理数的减法法则2(附模拟试卷含答案)
1.3.2有理数的减法第1课时有理数的减法法则教学目标:1.经历探索有理数减法法则的过程,理解有理数减法法则.2.会熟练进行有理数减法运算.教学重点:有理数减法法则和运算.教学难点:有理数减法法则的推导.教与学互动设计(一)创设情景,导入新课观察温度计:你能从温度计看出4℃比-3℃高出多少度吗?学生普遍能直观地看出4℃比-3℃高7℃,进一步地假定某地一天的气温是-3~4℃,那么温差(最高气温减最低气温,单位℃)如何用算式表示?按照刚才观察到的结果,可知4-(-3)=7 ①,而4+(+3)=7 ②,∴由①②可知:4-(-3)=4+(+3) ③,上述结论的获得应放手让学生回答.(二)动手实践,发现新知观察、探究、讨论:从③式能看出减-3相当于加哪个数吗?结论:减去-3等于加上-3的相反数+3.(三)类比探究,总结提高如果将4换成-1,还有类似于上述的结论吗?先让学生直观观察,然后教师再利用“减法是与加法相反的运算”引导学生换一个角度去验算.计算(-1)-(-3)就是要求一个数x,使x与-3相加得-1,因为2与-3相加得-1,所以x应是2,即(-1)-(-3)=2 ①,又因为(-1)+(+3)=2 ②,由①②有(-1)-(-3)=-1+(+3) ③,即上述结论依然成立.试一试:如果把4换成0、-5,用上面的方法考虑0-(-3),(-5)-(-3),这些数减-3的结果与它加上+3的结果相同吗?让学生利用“减法是加法的相反运算”得出结果,再与加法算式的结果进行比较,从而得出这些数减-3的结果与它们加+3的结果相同的结论.再试:把减数-3换成正数,结果又如何呢?计算9-8与9+(-8);15-7与15+(-7)从中又能有新发现吗?让学生通过计算总结如下结论:减去一个正数等于加上这个正数的相反数.归纳:由上述实验可发现,有理数的减法可以转化为加法来进行.减法法则:减去一个数,等于加上这个数的相反数.用字母表示:a-b=a+(-b).(在上述实验中,逐步渗透了一种重要的数学思想方法——转化)(四)例题分析,运用法则【例】计算:(1)(-3)-(-5); (2)0-7;(3)7.2-(-4.8); (4)-3-5.(五)总结巩固,初步应用总结这节课我们学习了哪些数学知识和数学思想?你能说一说吗?教师引导学生回忆本节课所学内容,学生回忆交流,教师和学生一起补充完善,使学生更加明晰所学的知识.2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.下列几何体是棱锥的是( )A. B. C.D.2.下列说法中,正确的有( ) ①经过两点有且只有一条直线; ②两点之间,直线最短; ③同角(或等角)的余角相等; ④若AB=BC ,则点B 是线段AC 的中点. A .1个 B .2个 C .3个 D .4个 3.下列说法错误的是( ) A.倒数等于本身的数只有±1 B.两点之间的所有连线中,线段最短 C.-23x yz π的系数是3π-,次数是4D.角的两边越长,角就越大4.在有理数范围内定义运算“*”,其规则为a*b=﹣23a b+,则方程(2*3)(4*x )=49的解为( ) A.﹣3B.﹣55C.﹣56D.555.在矩形ABCD 中放入六个长、宽都相同的小长方形,所标尺寸如图所示,求小长方形的宽AE 。
有理数的减法教案(2课时)
2.2有理数的减法(第1课时)【教学目标】知识目标:掌握有理数的减法法则,熟练地进行有理数的减法运算。
能力目标:培养学生观察、归纳的数学能力及初步掌握数学学习转化的数学思想。
情感目标:过积极参与探索有理数的减法法则及其应用的数学活动,体会相应的数学思想、数学与现实生活的紧密联系,增强应用意识,提高学生的学习兴趣。
【教学重点、难点】重点:有理数的减法的运算法则,以及法则的应用。
难点:在实际生活中,正、负关系的确定以及原有知识的掌握。
【教学方法】观察、归纳、合作交流、对比、类比等。
【教学过程】一、创设情境,激发兴趣一天, 厦门的最高温度是9℃,哈尔滨的最高气温是-7℃,那么这一天厦门的最高温度比哈尔滨的最高气温高多少摄氏度?列出算式.由学生回答结果,在学生回答的基础上,让学生用式子加以表示:9-(-7)=16.提出问题:怎么进行这里的减法运算呢?有理数的减法法则是什么?二、合作学习,共同归纳1.不妨我们看一个简单的问题:9 -(-7)=16. 9 +(?)=16.大家注意观察上面的两个算式,你能发现什么规律?先个人研究,而后交流.比较两式,可以发现: 9“减去-7”与“加上+7”结果是相等的,即减法变加法9 -(-7)=9+7.变相反数2.归纳:全班交流,从上述结果我们可以发现规律:减去一个数,等于加上这个数的相反数.这就是有理数减法法则,由此可见,有理数的减法运算实质转化为加法运算.三、实践应用,拓展延伸应用1:计算:(1)5-(-5)(2)0-7-5 (3)(-1.3)-(-2.1)(4)113-212(5)(-6)+(-5)在学生口答的基础上,由教师引导归纳::(1)有理数减法是转化为有理数加法实施的.在进行减法运算时,首先应弄清减数的符号(是“+”号,还是“-”号);(2)将有理数减法转化为加法时,要同时改变两个符号:一个是运算符号由“-”变以“+”号;另一个是减数的性质符号.应用2:某天北京中午的气温是零上3℃,到午夜气温下降了9℃,那么北京午夜的气温是多少摄氏度?此例说明,在有理数范围内,不存在“不够减”的减法。
1.3.2有理数的减法(第二课时)(教学设计)七年级数学上册(人教版)
1.3.2 有理数的减法(第二课时)教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第一章“有理数”1.3.3 有理数的减法(第二课时),内容包括:有理数加减法的混合运算及其应用.2.内容解析《有理数的减法》是人教版教科书《数学》七年级上册第一章第三节第二课时的内容.本节课主要学习有理数的加减混合运算的学习远接小学阶段关于非负有理数的加减混合法运算,近承本章有理数的加法和减法运算.通过对有理数的加减法运算的学习,学生将对加减法运算有进一步的认识和理解,也为后继对有理数的混合运算、实数、整式、方程等运算的学习奠定了坚实的基础.同时也为生活中的地理、物理等各类问题的解决提供帮助.基于以上分析,确定本节课的教学重点为:理解加减法统一成加法的意义,能熟练地进行有理数加减法的混合运算.二、目标和目标解析1.目标(1)理解加减法统一成加法的意义,能熟练地进行有理数加减法的混合运算.(运算能力)(2)通过加减法的相互转化,培养应变能力、计算能力.(转化思想、运算能力)2.目标解析使学生理解加减法统一成加法的意义,能熟练地进行有理数加减法的混合运算.经历探索有理数的加减混合运算可以统一成加法,加法运算可以写成省略括号及括号前“+”号形式的过程.培养学生敢于面对数学活动中的困难,并有独立克服困难和运用知识解决问题的成功体验.通过学生间合作、交流、竞争等活动方式,培养学生的合作、互助精神和竞争意识.三、教学问题诊断分析学生已经学习了有理数的基础知识,认识了正、负数;理解了相反数、绝对值等概念;学习了有理数的加法运算、减法运算,这就为学习有理数加减混合运算奠定了基础.而本节的有理数加减混合运算,其核心是通过把减法运算转化为加法运算,向学生渗透转化思想,理解它的关键就是要正确加法的运算律合理的进行简便运算.本节课的易错点是混合运算时将算式简单的写成“和”的形式,即便于数学,也便于运算,教学中要结合实际问题总结规律,提升计算能力因此,本节课通过有理数的加减混合学习进一步提升学生的运算能力.基于以上学情分析,确定本节课的教学难点为:法则中减法到加法的转变过程,在实际情境中体会减法运算的意义并利用有理数的减法法则解决实际问题.四、教学过程设计(一)复习回顾1.有理数的加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加.(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0;(3)一个数同0相加,仍得这个数.2.有理数的减法法则:减去一个数,等于加这个数的相反数.(二)情境引入一架飞机作特技表演,起飞后的高度变化如下表:此时飞机比起飞点高了多少千米?方法一:4.5+(3.2)+1.1+(1.4)=1.3+1.1+(1.4)=2.4+(1.4)=1(千米)方法二:=1(千米)比较以上两种算法,你发现了什么?(三)自学导航尝试计算:(20)+(+3)(5)(+7)分析:1.算式中都含有什么运算?2.动脑思考这个算式应该怎样解决?把你的想法和同桌交流一下?3.请按照你的思路动笔做一做?解:原式=(20)+(+3)+(+5)+(7)=[(20)+(7)]+[(+5)+(+3)]=(27)+(+8)=19这里使用了哪些运算律?【点睛】引入相反数后,加减混合运算可以统一为加法运算:().a b c a b c +-=++-(四)考点解析例1.把下列算式写成和的形式:(1)125+31(9)(+7); (2)0(6)(11)13.解:(1)原式=(12)+(5)+31+9+(7);(2)原式=0+6+11+(13).【迁移应用】1.式子2(3)+(+1)(4)写成和的形式为( )A.(2)+(+3)+(+1)+(4)B.(2)+(3)+(+1)+(4)C.(2)+(+3)+(+1)+(+4)D.(2)+(3)+(+1)+(+4)2.把下列算式写成和的形式:(1)2(8)+(3)5; (2)4.7(8.9)7.5+(6).解:(1)原式=2+8+(3)+(5);(2)原式=4.7+8.9+(7.5)+(6).(五)自学导航算式(20)+(+3)+(+5)+(7)是 , , , 这四个数的和.为书写简单,省略算式中的括号和加号写为________________这个算式可以读作 的和, 或读作 .快速练习:同桌互相出算式,并读出两种读法.(六)考点解析例2.把(+9)(+10)+(2)(8)+(+3)写成省略括号和加号的形式,并说出它的两种读法.分析:第一步:统一成加法;第二步:省略括号和加号;第三步:按照两种读法规则读出算式.解:(+9)(+10)+(2)(8)+(+3)=9+(10)+(2)+8+3=9102+8+3.读法一:正9、负10、负2、正8、正3的和.读法二:9减10减2加8加3.【迁移应用】1.式子20+35+7正确的读法是( )A.负20加3减5加7的和B.负20加3减负5加7的和C.负20加3减5加7D.负20加3减负5加72.下列各式中,与式子12+3不相等的是( )A.(1)+(2)+(+3)B.(1)2+(+3)C.(1)+(2)(3)D.(1)(2)(3)(七)合作探究在数轴上,点A,B分别表示数a,b. 利用有理数减法,分别计算下列情况下点A,B之间的距离: a=2,b=6;a=0,b=6;a=2,b=6;a=2,b=6.你能发现点A,B之间的距离与数a,b之间的关系吗?A,B之间的距离分别为:62=4;60=6;2(6)=8;(2)(6)=4.A,B之间的距离分别为:|2-6|=4;|0-6|=6;|-6-2|=8;|-6-(-2)|=4.数轴上两点A、B的距离|AB|与这两点所对应的数a、b的关系为:|AB|=|a-b|.(八)考点解析例3.计算:(1)(5)(10)+(32)(7); (2)835(1.93)(+35)+(3.07)(6);(3)(23)+(35)(78)(+13)(+25)(18). 解:(1)原式=(5)+(+10)+(32)+(+7)=[(5)+(32)]+(10+7)=37+17=20(2)原式=835+(+1.93)+(35)+(3.07)+(+6) =[(835)+(35)]+[(+1.93)+(3.07)]+(+6)=9.2+(1.14)+6=10.34+6=4.34(3)原式=2335+781325+18=23133525+78+18=11+1=1【迁移应用】计算:(1)2.4(3.7)+(4.6)3.7; (2)23+(16)(25)+12−110;(3)(+1.5)(414)+3.75(+812).=7;(2)原式=2316+25+12−110=2316+12+25−110=13+310=130; (3)原式=1.5+414+3.75812 =1.5812+414+3.75=10+8=2.例4.计算:(1)[1.4(3.6+5.2)4.3](1.5); (2)43.8[(3.7+4)6.9].解:(1)原式=(1.41.64.3)+1.5=4.5+1.5=3:(2)原式=43.8(0.36.9)=43.8(6.6)=43.8+6.6=6.8.例5.在班级元旦联欢会上,主持人邀请李强、张华两位同学参加一个游戏,游戏规则是每人每次抽取四张卡片,如果抽到红色卡片,那么加上卡片上的数;如果抽到蓝色卡片,那么减去卡片上的数.比较两人所抽4张卡片的计算结果较小的为同学们唱歌.李强同学抽到如图①所示的四张卡片,张华同学抽到如图②所示的四张卡片.李强、张华谁会为同学们唱歌呢?解:李强同学所抽卡片的计算结果:12+(32)(5)+4=1232+5+4=12−32+5+4=2+9=7.张华同学所抽卡片的计算结果:−76(113)0+5=−76+113+5=516.因为7>516 所以张华会为同学们唱歌.【迁移应用】2020年的“新冠肺炎”疫情的蔓延,使得医用口罩销量大幅增加,某口罩加工厂每名工人计划每天生产300个医用口罩,每人每周计划生产2100个口罩,由于种种原因,实际每天生产量与计划量相比有出入.如表是工人小王某周的生产情况(超产记为正,减产记为负):(1)根据表格记录的数据,求出小王本周实际生产口罩数量;(2)若该厂实行每周计件工资制,每生产一个口罩可得0.5元,若超额完成每周计划工作量,则超过部分每个另外奖励0.15元,若完不成每周的计划量,则少生产一个扣0.2元,求小王这一周的工资总额是多少?解:(1)由题意得,2100+(524+139+158)=2110(个),∴小王本周实际生产口罩数量是2110个;(2)∵本周多生产口罩数为524+139+158=10(个),∴小王这一周的工资总额是 21000.510(0.50.15)1056.5⨯+⨯+= (元)例6.【古代数学文化】“九宫图”源于我国古代的“洛书”(如图①),是世界上最早的矩阵,又称幻方.用今天的数学符号表示,洛书就是一个三阶幻方(如图若图③是一个三阶幻方,同一横行、同一竖列、同一斜对角线上的3个数之和相等,求图中a,b 的值.分析:利用同一横行(或同一竖列或同一斜对角线)上的3个数之和相等求a,b.解:由题意可知,4+a+2=1+1+3,b+5+(2)=1+1+3,所以a=3,b=0.【迁移应用】观察图,找出规律.【解析】因为5+(2)3=10,6+6(4)=4,7+(10)(17)=0,所以 =11+(12)7=8. (九)小结梳理有理数加减法混合运算的步骤为:方法一:减法转化成加法1.减法变加法:a+bc=a+b+(c)2.运用加法交换律使同号两数分别相加;3.按有理数加法法则计算.方法二:省略加号和括号法1.省略括号;2.同号放一起;3.进行加减运算.五、教学反思。
1.3.2有理数减法第二课时
4.5+(-3.2)+1.1+(-1.4)
4.5-3.2+1.1-1.4
有理数加减法混 合运算
小学里的加减法混合运算的顺序是怎么样的?
例如, 1 + 2 + 8 - 5 =3 =11
是如何运算的?
运算顺序: 从左到右,依次计算
=6
有理数加减法混合运算顺序又是怎么样的呢?
例1
计算(-20)+(+3)-(-5)-(+7)
解:原式= (-20)+(+3)+(+5)+(-7) = [(-20)+(-7)] + [(+3)+(+5)] =(-27)+(+8) = -19
例2 用计算器计算 -5.13 + 4.62 +(-8.47)-(-2.3) 解:原式= -5.13+4.62-8.47+2.3 =-6.68
按 键 (-) 5.13 + 4.62 - 8.47 + 2.3 = -5.13 -5.13+ 显 示
用计算器可以处理 比较复杂的计算
-5.13+4.62
-5.13+4.62-
-5.13+4.62-8.47 -5.13+4.62-8.47+ -5.13+4.62-8.47+2.3 -6.68
练
习
1. 计算: ① (-7)-(+5)+(-4)-(-10);
② -2.4 +
3.5 - 4.6 + 3.5
义务教育课程标准实验教科书
七年级上册
人民教育出版社有理数的减法(第二课时)
人教七年级数学上册-有理数的减法(附习题)
拓展延伸 3.一种股票第一天的最高价比开盘价高0.3元,
最低价比开盘价低0.2元;第二天的最高价比开盘价 高0.2元,最低价比开盘价低0.1元;第三天的最高 价等于开盘价,最低价比开盘价低0.13元,计算每 天的最高价与最低价的差,以及这些差的平均值.
解:第一天:0.3-(-0.2)=0.5元 第二天:0.2-(-0.1)=0.3元 第三天:0-(-0.13)=0.13元 平均值:(0.5+0.3+0.13)÷3=0.31元
例4 计算:
(1)(-3)-(-5); (3) 7.2-(-4.8);
(2)0-7;
(4) (-3 1 )-5 1 . 24
(1)(-3)-(-5); 解:=(-3)+5
=2
(2)0-7; 解:= 0+(-7)
=-7
(3) 7.2-(-4.8); 解:= 7.2+4.8 =12
(4) (-3 1 )-5 1 . 24
1.3.2 有理数的减法
第1课时 有理数的减法
新课导入
北京某天气温是-3ºC~3ºC,这天的温差 是多少摄氏度呢?
3-(-3)
温差是指最高气温 减最低气温.
• 学习目标: 1. 知道有理数的减法法则. 2. 能熟练地运用有理数的减法法则进行有理数 的减法运算. 3. 通过加与减两种运算的对立统一关系,建立 “转化”的数学思想.
解: (-3 1 ) (-5 1)
2
4
-8 3 4
练习:教材第23页 1.计算:
(1) 6-9;-3
(2) (+4)-(-7);11
(3)(-5)-(-8);3 (4) 0 -(-5);5
(5)(-2.5)-5.9 ; (6) 1.9 -(-0.6).2.5 -8.4
七年级数学上册第1章有理数的减法第2课时有理数的加减混合运算教案新版湘教版(含反思)
七年级数学上册教案新版湘教:第2课时有理数的加减混合运算1.经历加减混合运算的过程,进一步巩固对加法法则和减法法则的理解,并能熟练进行有理数的加减混合运算.2.通过减法到加法的转化,让学生初步体会转化、化归的数学思想.3.在经历减法到加法的转化过程中,让学生体会运算法则的多样化,激发学生学习的兴趣.【教学重点】有理数的加减混合运算.【教学难点】有理数的加法法则和减法法则的结合,并熟练地进行有理数的加减混合运算.一、情景导入,初步认知1.上节课我们已经学习了有理数的减法法则,那么有理数的减法法则是什么?2.当有理数的加法法则和减法法则同时出现时,我们应该如何进行运算?【教学说明】提出问题让学生思考解决方法,能有效提高学生学习的主动性.二、思考探究,获取新知计算:8-(-3)+(-5)-7在上面的计算过程中,我们把加减运算都统一成了加法运算,原来的算式就转化为求几个正数或负数的和.在上面的计算中,我们可以把算式8+3+(-5)+(-7)中的括号及它前面的加号省略不写,写成8+3-5-7.【教学说明】经过上面教学活动,便于学生形成自己的数学体系,真正的掌握.另外教学中注重培养学生的反思能力,不但能提高学生学习的效果,在学生的一生发展中,也能起到举足轻重的作用.三、运用新知,深化理解1.计算:2.有理数a,b在数轴上的位置如图所示,有下列关系式:①a-b>0;②a+b>0;③b-a>0.其中,正确的个数是().A.0B.1C.2D.3答案:B3.计算下列各式:解:(1)方法一:4.一个病人每天下午需要测量一次血压,下表是该病人周一至周五血压变化情况,该病人上个周日的血压为160单位.(1)该病人哪一天的血压最高?哪一天血压最低?(2)与上周比,本周五的血压是升了还是降了?解:(1)该病人周四的血压最高,周二的血压最低.(2)∵+25-15+13+15-20=18,∴与上周比,本周五的血压升了.【教学说明】练习是知识巩固的有效手段,从简单运用法则运算的练习到复杂的练习使学生进一步掌握法则的应用,提高运算能力.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题1.4”中第9、10、11题.本节是在前面学习了有理数的加法和减法的基础上进行的,学生在加法和减法的运算上掌握得较好,但在混合运算上有待加强,需要进一步的运算练习.。
人教版初中七年级上册数学《有理数的减法》教案
1.3.2 有理数的减法第1课时有理数的减法【知识与技能】1.经历探索有理数减法法则的过程,理解有理数减法法则.2.会熟练进行有理数减法运算.【过程与方法】1.体验把减法运算转化为加法运算,渗透转化思想.2.经历探索有理数减法法则的过程,发展学生的逻辑思维能力.【情感态度】在数学学习中获得成功的体验,尊重并充分理解他人的见解.【教学重点】有理数减法法则和运算.【教学难点】有理数减法法则的推导.一、情境导入,初步认识抢答游戏(1)-7+ =+5,(2)+(-3)=12,(3)(-72)+ =-30二、思考探究,获取新知问题大家看这幅画面(由实物投影仪显示课本第1页引言中的画面),这是北京冬季里某一天的气温为-3~3℃,它确切的含义是什么?这一天的温差是多少?观察、讨论得出最高温度为3℃,最低温度为-3℃,这天温差为6℃.思考能不能列算式?生:3-(-3)鼓励学生充分探索,提示减法是加法的逆运算,思考该如何转化.观察下列两式:(?)+(-3)=4根据有理数加法法则,有(+7)+(-3)=4因而为:4-(-3)=7观察总结比较下列两式:4-(-3)=74+3=7因而有:4-(-3)=4+3你能发现什么吗?再举一组数:计算(-5)-(+3)=-5+.学生活动3+(?)=-5因为3+(-8)=-5所以(-5)-(+3)=-8又-5+(-3)=-8【归纳结论】减去一个数,等于加上这个数的相反数,字母表示为:a-b=a+(-b).三、典例精析,掌握新知例1计算题.例2 根据题意列出式子计算.(1)一个加数是1.8,和是-0.81,求另一个加数.(2)-13的绝对值的相反数与23的相反数的差.解:(1)另一个数为-0.81-1.8=-2.61;(2)-|-1/3|-(-2/3)=13.例3若|a|=8,|b|=3,且a<b,求a-b.解:由题知a=±8,b=±3,且a<b,故a=-8,b=3或-3.所以a-b=-8-3=-11或a-b=-8-(-3)=-5,即:a-b=-11或-5.例4若a<0,b>0,则:(1)|a-b|= .(2)若|a+b|+|a-b|=-2a,则应添加什么条件?【分析】去绝对值首先必须考虑绝对值里面的数的正负,在(2)中,要使结果为-2a,即前一个绝对值为-a-b,后一个绝对值为b-a,即a+b必须为负,从而确定成立的条件.【答案】(1)b-a (2)a+b<0.【教学说明】这类题一般由结论反过来推导条件,根据结论的特征作推断.四、运用新知,深化理解1.(1)0℃比-10℃高多少度?列算式为,转化为加法是,运算结果为.(2)减法法则为减去一个数,等于这个数的,即把减法转为.(3)比-18小5的数是,比-18小-5的数是.(4)A、B两地海拔高度为100米、-20米,B地比A地低米.2.下列说法正确的是()A.正数与正数的差是正数B.负数与负数的差是正数C.正数减去负数差为正数D.0减去正数差为正数3.下列说法正确的个数是()①减去一个数等于加上这个数;②零减去一个数,仍得这个数;③两个相反数相减得零;④有理数减法中,被减数不一定比减数或差大;⑤减去一个负数,差一定大于被减数;⑥减去一个正数,差不一定小于被减数A.2个B.3个C.4个D.5个4.计算题.(1)(-7)-(-4)-(+5);(2)(-9)-[(-10)-(-2)];(3)111434 --+--(4)(5)(4)(4)-8.2-9.2-1.6-(-5).5.若|a|=5,|b|=7,且|a+b|=-(a+b),求a-b的值.6.全班学生分为五个组进行游戏,每组的基本分为100分,答对一题加50分,答错一题扣50分,游戏结束时,各组的分数如下:(1)第一名超出第二名多少分?(2)第一名超出第五名多少分?7.设A是-4的相反数与-12的绝对值的差,B是比-6大5的数.求:(1)A-B;(2)B-A;(3)从(1)、(2)的计算结果,你能知道A-B与B-A之间有什么关系?【教学说明】本栏目安排了7道题,目的是巩固有理数的减法知识,其中1~3题可让学生口答,4~7题可由学生上台板演,教师评讲.【答案】1.(1)0-(-10) 0+10 10(2)加上相反数加法(3)-23 -13(4)1202.C3.A4.(1)-8(2)-1(3)-513(4)-145.12或26.(1)200(2)7507.A=-8,B=-1.(1)-7(2)7(3)互为相反数关系五、师生互动,课堂小结有理数减法法则是一个转化法则,减数变为它的相反数,从而将减法转化为加法.可见,引进负数后对加法和减法,可以用统一的加法来解决.不论是正数、负数还是零,都符合有理数减法法则,在使用法则时,注意减号变加号的同时把减数变成它的相反数,而被减数不变.1.布置作业::从教材习题1.3中选取.2.完成练习册中本课时的练习.本课时教学应注重让学生抓住两个问题:1.理解有理数减法法则,并通过比较分析,找到与有理数加法法则的异同点,从而发现知识间的联系,在联系中把握新知识.2.认识转化思想的应用,并牢牢记住从减法向加法的转化过程中,要同时进行两次符号的变化.作者留言:非常感谢!您浏览到此文档。
人教版七年级数学上册:1.3.2有理数的减法(2) 教案
《1.3.2有理数的减法(2)》教案教学目标:1、知识与技能:(1)理解加减法混合运算统一为加法运算的意义;(2)学会把加减法统一成加法;(3)会正确熟练地进行有理数加减混合运算。
2、过程和方法通过有理数的加减法的运算,发展学生的运算能力.3、情感态度与价值观培养学生的程序意识,提高学生的学习积极性与学习数学的兴趣,以及学好数学的信心.教学重点、难点教学重点:把加、减混合运算统一成加法运算.教学难点:把加、减法统一成加法运算,并用加法运算律合理地进行运算.课前准备1、教师准备:课本、教案,教学直尺。
2、学生自备:课本、练习本、笔,直尺。
教学过程:(一)课前预习23—24页。
(5分钟)(二)旧知再现(4分钟)问题:我们前面学习了有理数的加法法则,[教师让学生回答]8+(-3)=58-(+3)=5探索有理数的减法法则:减去一个数等于加上这个数的相反数[减法——加法] a-b=a+(-b)(三)情景引入(8分钟)1.问题.一架飞机作特技表演,起飞后的高度变化如下表:高度的变化(单位/km): 升4.5 降3.2 升1.1 降1.4记作(单位/km): +4.5 -3.2 +1.1 -1.4此时飞机比起飞点高了多少千米?2.组织学生小组讨论并得出答案.学生可能出现的算式:(1)+4.5+(-3.2)+1.1+(-1.4)(2)4.5-3.2+1.1-1.43.引出课题:有理数加减法混合运算.(四)活动探索(11分钟)1.回顾小学加减法混合运算的顺序.(从左到右,依次计算)2.计算.(-22)+(+4)-(-6)一(+5)为例来说明.鼓励生来进行独立计算.要注意给学生充裕的时间,让学生算出答案,估计学生能解决这个问题.3.教师引导:这个式子中有加法,也有减法,我们可不可以利用有理数的减法法则,把这个算式改变一下?再给算一算,你发现了什么?解:(-22)+(4)一(-6)一(+5)=(-22)+(+4)+(+6)+(-5)=[(-22)+(-5)]+[(+4)+(+6)]=(-27)+(+10)=-17问:这里使用了哪些运算律?学生小组合作,探讨把减法转化为加法,再利用运算来简化计算.教师巡回观祭,注意作适当指导,若学生不能进一步计算,也可以在他们把减法转化为加法后,提示他们使用运算律.充分鼓励学生大胆发现,勇敢交流.(如:计算结果与前面的算法是一样的;把减法都转化为加法可以使用运算律,计算会简单些等) 4.归纳得出:(1)减法可以转化为加法.(2)加减混合运算可以统一为加法运算.如:a+b-c=a+b+(-C).5.省略加号的和.教师引导:式子(-22)+(+4)+(+6)+(-5)是-22,+4,+6,-5这四个数的和,为了书写简单,可以省略式中的括号和加号,把它写为-22+4+6-5,读作: “负22正4正6负5的和”,或读作“负22加4加6减5”,鼓励学生使用第一种读法;并让学生体会两种读法的区别. 参考书本例6的规范书写运算过程.通过这两种算法,为加减混合运算统一成加减法运算打下伏笔.一方面让学生体会混合运算中运算顺序确定的重要性,另一方面,先让学生按从左到右的顺序来计算,也是为了与接下去的加减混合运算统一成加法运算再利用运算律进行简侠便计算作出比较.鼓励学生自己比较计算两种计算方法,方法二由于采用运算律变得简单,而使用运算律的前提是把加减混合运算统一成加法运算,这里也让学生体会把加减混合运算统一成加减运算的意义.这里采用加号的和的读法,旨在让学业生更好地理解加法混合运算的本质,进一步体会在混合运算中使用加法运算律来的方便.(五)巩固练习。
初中数学_有理数的减法(第二课时)教学设计学情分析教材分析课后反思
《有理数的减法(2)》教学设计【教材分析】《有理数的减法》是人教版教科书《数学》七年级上册第一章第三节第二课时的内容。
本节课主要学习有理数的加减混合运算的学习远接小学阶段关于非负有理数的减减混合法运算,近承本章有理数的加法和减法运算。
通过对有理数的加减法运算的学习,学生将对加减法运算有进一步的认识和理解,也为后继对有理数的混合运算、实数、整式、方程等运算的学习奠定了坚实的基础。
同时也为生活中的地理、物理等各类问题的解决提供帮助。
【设计理念】数学课程标准中指出:应放手让学生经历探索的过程,在观察、操作、推理、归纳、总结过程中掌握知识、发展空间观念,从而提高学生自主解决问题的能力。
【教学目标】知识与技能:使学生理解加减法统一成加法的意义,能熟练地进行有理数加减法的混合运算。
过程与方法:经历探索有理数的加减混合运算可以统一成加法,加法运算可以写成省略括号及括号前“+”号形式的过程。
情感、态度与价值观:培养学生敢于面对数学活动中的困难,并有独立克服困难和运用知识解决问题的成功体验。
通过学生间合作、交流、竞争等活动方式,培养学生的合作、互助精神和竞争意识。
【教学重点】有理数的减法法则的理解和应用,及学生合作意识和探究能力的培养。
【教学难点】法则中减法到加法的转变过程,在实际情境中体会减法运算的意义并利用有理数的减法法则解决实际问题。
【教法学法】自主探究法小组合作学习法归纳总结学习方式【教具学具准备】多媒体课件【教学流程】一、情境导入认定目标1、请说出有理数的减法法则。
2.(化简)-(-5)+(-1.2)-(+3)+(+0.2)3.计算:(1)0-(-9)(2)9.5-10(3)23-(-11)(4)(-7)-(-13)【设计意图】为进一步学习有理数减法法则奠定牢固的基础。
情境问题:一架飞机作特技表演, 起飞后的高度变化如下表:此时,飞机比起飞点高了多少千米?)(1)4.1(1.13.1)4.1(1.1)2.3(5.41千米解法=-++=-++-+)(14.11.13.14.11.12.35.42千米解法=-+=-+-比较以上两种解法,你发现了什么?(省略了括号和加号,结果不变。
人教版七年级上册数学第一章《1.3.2有理数的减法》(2课时,教案+课件)
人教版七年级上册数学第一章《1.3.2 有理数 的减法 》(2 课时, 教案+课 件)
达标检测
2. 一电脑公司仓库在8月1日库存某种型号 的电脑20台,8月2日到6日该种型号的电脑 进出记录如下表,问到8月6日止,库存该 种电脑多少台
人教版七年级上册数学第一章《1.3.2 有理数 的减法 》(2 课时, 教案+课 件)
尝试应用
把下式写成省略加号的和的形式,并把它读出来 (-3)+(-8)-(-6)+(-7)
解:原式=(-3)+(-8)+(+6)+(-7) =-3-8+6-7
读作“-3,-8,+6,-7的和 或负3减8加6减7
人教版七年级上册数学第一章《1.3.2 有理数 的减法 》(2 课时, 教案+课 件)
课文讲解
算式 (20) (3) (5) (7)
是-20,3,5,-7 这四个数的和,为书写简单, 可以省略算式中的括号和加号,把它写为
20 3 5 7
这个算式可以读作“负20、正3、正5、负7的 和”,或读作“负20加3加5减7”.
人教版七年级上册数学第一章《1.3.2 有理数 的减法 》(2 课时, 教案+课 件)
知识探究
在数轴上,点 A,B 分别表示 a,b.利用有理数减法, 分别计算下列情况下点 A,B 之间的距离;
a=2,b=6;a=0,b=6;a=2,b=-6; a=-2,b=-6. 你能发现点 A, B 之间的距离与数 a,b 之间的关系吗? A,B之间的距离就是a,b中较大的数减去较小的数的差
人教版七年级上册数学第一章《1.3.2 有理数 的减法 》(2 课时, 教案+课 件)
浙教七年级数学上册《有理数的减法》课件第一课时
和小学里的减法相比,你觉得有哪些相同和不同之处?
谈谈你的感受.
我的收获
谈谈这节课你有什么收获? 1 、学习了有理数学科网 减法法则:减去一个 数,等于加上这个数的相反数.
2 、掌握了有理数减法的运算步骤: (1)把减法变为加法;(2)按有理数加法计算.
50+(-20)=30
50+(-10)= 40 50+ 0 = 50 50+10= 60
你能得出什么结论?
有理数减法法则
减去一个数,等于加上这个数的相反数 有理数减法法则能用字母来表示吗?
a-b=a+(-b)
注意: 减法可以转化为加法
(1)减号变为加号 (2)减数变为它的相反数
2.有理数减法的运算步骤: (1)把减法转化为加法; (2)按有理数加法计算
1、书籍是朋友,虽然没有热情,但是非常忠实。2022年4月22日星期五2022/4/222022/4/222022/4/22 2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年4月2022/4/222022/4/222022/4/224/22/2022 3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/4/222022/4/22April 22, 2022
例2 我国吐鲁番盆地最低点的海拔高度是 -155米,死海的湖面低于海平面392米, 哪里的海拔高度更低?低多少米?
解:死海的湖面低于海平面392米,即海拔高度是 -392米。 -392-(-155) =-392+155
人教版七年级上册数学第1章 1.3.2有理数的减法(第 2课时)课件
20 21 2 3 1 2 0.25
3 4 3
0 212 3 1 2 0.25 3 43
21 2 2 3 1 1 33 44
21 3
18
将下列各式写成省略加号的和的形式,并按
要求交换加数的位置.
(1)(+16)+(-29)-(-7)-(+11)+(+9); (使正负号相同的加数结合在一起)
第一章 有理数
学习新知
检测反馈
一架飞机进行特技表演,雷达记录起飞后的高
度变化如下表:
高度变化
上升4.5千米 下降3.2千米 上升1.1千米 下降1.4千米
记作
+4.5千米 -3.2千米 +1.1千米 -1.4千米
方法一:①4.5+(-3.2)+1.1+(-1.4)
=1.3+1.1+(-1.4)
=2.4+(-1.4)
(写成带有加号的和的形式): (-0.5)+(-2.3)+(+4.5)+(-3.7) ;
(2)-4.7,+5.2,-7.4,+9.8,-6.6的和
(写成省略加号的和的形式):
-4.7+5.2-7.4+9.8-6.6
.
3.有理数的加减混合运算统一成加法后,一般也
应注意运算的合理性,适当运用运算律.应注意:
76、人生生命贵太相过知短,暂何,用今金天与放钱弃。了明20天.7.不12一20定.7能.1得22到0.。7.192时。12分092时0年1分7月121-2J日ul星-20期7日.12二.2〇02二0 〇年七月十二日
花一样美丽,感谢你的阅读。 87、勇放气眼通前往方天,堂只,要怯我懦们通继往续地,狱收。获的09季:01节0就9:0在1前:45方7.。122.02.072.102S2u0n.d7a.1y2, 2J0u.l7y.12,。22002200年7月12日星期日二〇二〇年七月十 二日 8、拥有梦想只是一种智力,实现梦想才是一种能力。09:0109:01:457.12.2020Sunday, July 12, 2020
七年级数学人教版(上册)【知识讲解】第1课时有理数的减法法则
A.9 月 2 日 21:00
B.9 月 2 日 7:00
C.9 月 1 日 7:00
D.9 月 2 日 5:00
12.【数形结合思想】a,b,c 三个数在数轴上的位置如图所示, 则下列结论中错误的是( C )
A.a+b<0 C.a-b>0
B.a+c<0 D.b-c<0
13 .【 分 类 讨 论 思 想 】 已 知 |x| = 5 , y = 3 , 则 x - y 的 值 为 2或-8 .
解:(2)d=|m-n|.数轴上两点之间的距离,等于这两点在数轴上 对应的数的差的绝对值.
(3)已知 A,B 两点在数轴上表示的数分别为 x 和-1,则 A,B 两点间的距离 d 可表示为 |x+1| ;如果 d=3,求 x 的值.
解:(3)当 d=3 时,|x+1|=3, 所以 x=2 或-4.
B.0-7=-7
C.-7-2=-5
D.5.3-(-4.7)=10
6.计算: (1)(+6)-9. 解:原式=(+6)+(-9) =-3. (2)7.2-(-4.8). 解:原式=7.2+4.8 =12.
(3)17-25. 解:原式=17+(-25) =-(25-17) =-8. (4)0-2 022. 解:原式=0+(-2 022) =-2 022.
第一章 有理数 1.3 有理数的加减法
1.3.2 有理数的减法
第1课时 有理数的减法法则
知识点 1 有理数的减法法则 1.在下列横线上填上适当的数. (1)(-8)-(-2)=(-8)+ 2 = -6 . (2)(-5)-4=(-5)+ (-4) = -9 . (3)0-(-3.5)=0+ 3.5 = 3.5 . (4)7-(-7)=7+ 7 = 14 .
七年级数学上册(人教版)1.3.2有理数的减法(第2课时有理数加减混合运算)优秀教学案例
3.理解有理数加减混合运算的规则,能够正确地进行有理数加减混合运算。
4.能够运用有理数减法知识解决生活中的实际问题,提高学生的应用能力。
(二)过程与方法
1.通过情境创设和实例分析,引导学生自主探究有理数的减法,培养学生的独立思考和探究能力。
2.教师要求学生在作业中运用有理数减法解决实际问题,培养学生的应用能力。
3.教师及时批改学生的作业,给予学生反馈,关注学生的学习进步和问题所在,指导学生进行有针对性的改进。
4.教师组织学生进行作业展示和评价,鼓励学生分享自己的学习心得和方法,促进学生之间的相互学习和共同进步。
五、案例亮点
1.生活情境的创设:通过购物找零等生活情境的引入,使学生能够直观地理解有理数减法的基本概念和法则,并能够将抽象的数学运算与实际生活联系起来,提高了学生的学习兴趣和积极性。
(三)学生小组讨论
1.设计具有挑战性的问题,让学生在小组内进行讨论和探究,引导学生深入理解有理数减法的运算规律。
2.组织学生进行小组内的交流和合作,让学生共同解决有理数减法的实际问题,培养学生的团队协作能力。
3.鼓励学生提出问题,培养学生的批判性思维和独立思考能力,使学生在问题解决中不断巩固和提高有理数减法知识。
2.利用数轴和图形辅助,帮助学生直观地理解有理数减法的过程,提高学生的空间想象能力。
3.引导学生运用交流和合作的方式,共同解决有理数减法运算问题,培养学生的团队协作能力。
4.设计有理数减法运算的练习题,让学生在实践中巩固减法知识,提高学生的运算速度和准确性。
(三)情感态度与价值观
1.激发学生对有理数减法的兴趣,培养学生的数学学习热情,增强学生对数学学科的自信。
七年级数学人教版(上册)【知识讲解】1.3.2有理数的减法第2课时课件
随堂检测
1.下列交换加数的位置的变形中,正确的是( D ) A.1-4+5-4=1-4+4-5 B. 1 3 1 1 1 3 1 1
3464 4436 C.1-2+3-4=2-1+4-3 D.4.5-1.7-2.5+1=4.5-2.5+1-1.7
2.若a= -2,b=3,c= -4 ,则a-(b-c)的值为_-__9___.
思考
在数轴上,点 A,B 分别表示 a,b.利用有理数减法,分别 计算下列情况下点 A,B 之间的距离;
a=2,b=6;
a=0,b=6;
a=2,b=-6;
a=-2,b=-6.
你能发现点 A, B 之间的距离与数 a,b 之间的关系吗?
归纳总结
1.有理数加减混合运算的一般步骤: (1)将减法转化为_加__法__. (2)省略_括__号__和_加__号__. (3)运用加法_交__换__律和_结__合__律,将同号两数相加. (4)按有理数_加__法__法则计算. 2.数轴上两点间的距离:在数轴上,设A,B两点表示的数分 别为a,b(a>b),则点A,B之间的距离等于_a_-_b_.
课堂小结 有理数加减法混合运算的步骤为:
方法一:减法转化成加法 1.减法变加法:a+b-c=a+b+(-c) 2.运用加法交换律使同号两数分别相加; 3.按有理数加法法则计算 方法二:省略括号法 1.省略括号; 2.同号放一起; 3.进行加减运算.
布置作业 书面作业:完成相关书本作业
再见
3.-4,-5,+7这三个数的和比这三个数的绝对值的和小
___1_8____. 4.计算1-2+3-4+5+ …+99-100=___-5__0___.
人教版2024年新版七年级数学上册课件:2.1.2 第1课时 有理数的减法法则
新知探究
在小学,只有当a大于或等于b时(其中a,b是0或正数),
我们才能计算a-b (如2-1,1-1) . 现在,当a小于b时,你
能计算a-b (如1-2,(-1)-1)吗?
能. 1-2=1+(-2)=-1,(-1)-1=(-1)+(-1)=-2.
一般地,在有理数范围内,较小的数减去较大的数,
所得差的符号是什么?
负号
新知探究
在数学发展史中,在较小的正数减去
较大的正数的运算能正常进行,并与
已有的运算不矛盾,是引入负数的一
个重要原因.
典型例题
例2
计算.
(1)比 2 ℃ 低 8 ℃ 的温度;
(2)比 -3 ℃ 低 6 ℃ 的温度.
解:(1)2-8=- 6(℃);
(2)-3-6=- 9(℃).
因为6+ (-3) =3,所以这个数应该是 6,即
3-(-3) =6
①
另一方面,我们知道
3+ (+3) =6
②
3-(-3) =3+ (+3)
③
由①②,得
从③式能看出减
-3相当于加哪个
数吗? 加+3
新知探究
探究
把3分别换成0,-1,-5,用上面的方法考虑.
-2
+2 (-5)-(-3) =____.
+3 (-1)-(-3) =____;
变成相反数
典型例题
例1
计算:
(1)(-3)-(-5); (2)0-7; (3)2-5;
(4) 7.2-(-4.8);
(5)(- )- .
解:(1) (-3)-(-5)=(-3)+5=2;
七年级数学上1.3.2 有理数的减法(2)教案新人教版
课题:有理数的减法(2)
教学目标
1,理解加减法混合运算统一为加法运算的意义,学会把加减法统一
成加法.
2,会正确熟练地进行有理数加减混合运算,发展学生的运算能力.
3,会使用计算器进行有理数的加、减混合运算,培养学生的程序意
识,提高学生的学习积极性与学习数学的兴趣,以及学好数学的信
心.
教学难点把加、减混合运算统一成加法运算
知识重点
本节的重点是能把加、减法统一成加法运算,并用加法运算律合理
地进行运算。
教学过程(师生活动)设计理念
设置情境
引入课题
一架飞机作特技表演,起飞后的高度变化如下表:
此时飞机比起飞点高了多少千米?
(组织学生小组讨论并得出答案)
学生可能出现的算式:
(1)))
提出课题:有理数加减法混合运算.
创设一个有趣的
真实情境来激发
学生学习加减混
合计算的兴趣
分析问题1,回顾小学加减法混合运算的顺序.(从左到右,依次通过这两种算。
人教版七年级数学上册有理数的加减法有理数的减法第1课时 有理数的减法
A.-5
B.1
C.-1或5
D.1或-5
16.(202X·永州模拟)在数轴上表示数-1和202X的两点分别为A和B,则A
和B两点间的距离为( C )
A.2015 B.202X
C.202X D.202X
17.(1)已知甲、乙两数之和为-18,其中甲数是-7,则乙数为_-__1_1___; (2)-13的绝对值的相反数与32的相反数的差是__13 _____. 18.(1)若|x|=7,|y|=2,且 x<y,则 x-y 的值为_-__9_或__-__5__; (2)已知|x|=5,|y|=4,且 x+y<0,则 x-y 的值为_-__1_或__-__9__.
①a-b_>___0,c-b_<___0,c-a__<__0; ②若|a|=2,|c|=4,求a-b-c的值; 解:根据题意:a=2,c=-4,b=-2.所以a-b-c=2-(-2)-(-4)=8
(2)已知|a|=3,|b|=10,|c|=5,且a,b异号,b,c同号,求a-b-(-c)的 值. 解:由题意,当a=3,b=-10,c=-5时,a-b-(-c)=3-(-10)-5=8; 当a=-3,b=10,c=5时,a-b-(-c)=-3-10-(-5)=-8
19.计算:
(1)0-57; (2)8.5-(-2);
解:-57 解:10.5
(3)(-43)-(-32); (4)(-213)-423;解:-23 解:-7
(5)-|-23|-(+2)-(-223).
解:0
20.(阿凡题:1069913)(1)已知有理数a,b,c对应的点在数轴上的位置如图所示, 且a与b互为相反数.
七年级数学上册(人教版)
第一章 有理数
人教版七年级数学上册有理数的减法法则第课时课件
解:因为
7 8
8 9
=
7 8
8 9
63 72
64 72
1 72
0,
所以 7 8 . 89
总结
两分数大小非常接近时,常用作差法比较大小, 对于任意两个有理数a、b有: (1)a-b>0⇔a>b; (2)a-b=0⇔a=b; (3)a-b<0⇔a<b.
当堂练习
5.求出下列每对数在数轴上对应点之间的距离及 这两数的差:
由表中数据分析 :本周内气温最高是多少? 气温最低是多少?哪天的温差最大?温差最大是多少?
当堂练习
导引:温差最大即温度差的绝对值最大. 解:本周内气温最高是11 ℃, 气温最低是-13 ℃,周日的温差最大, 温差最大是11-(-1)=12(℃).
课堂小结
1.有理数的减法法则: 减去一个数,等于加上这个数的相反数. 即 a -b = a +(-b)
2.计算(口答):
(1)6-9;
(2)(+4)-(-7);
(3)(-5)-(-8) ;
(4)(-4)-9;
(5)0-(-5);
(6)0-5.
答案:1.(1)3.2 -0.8 (2)-47 2.(1)-3 (2)11 (3)3 (4)-13
(5)5 (6)-5
当堂练习
3.已知│a│= 5,│b│= 3,且a>0,b<0,a-b= 8 .
-5℃高多少摄氏度吗?用式子如何
表示?
5―(―5)=10
问题2: 5+(+5) = ? 结论:由上面两个式子我们不难得 出: 5―(―5) = 5+(+5)
讲授新课
问题3:用上面的方法考虑: 0―(―3)=_3__,0+(+3)=_3__; 1―(―3)=_4__,1+(+3)=__4__; ―5―(―3)=_-_2_,―5+(+3)=-_2__.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.3.2 有理数的减法
第1课时有理数的减法
一、新课导入
1.课题导入:
观察温度计:你能从温度计看出4 ℃比-3 ℃高出多少度吗?假定某地一天的气温是-3 ℃~4 ℃,那么这天的温差(最高气温减最低气温,单位℃)是多少?如何用算式表示?这节课我们来学习有理数的减法.
2.学习目标:
(1)知道有理数的减法法则.
(2)能熟练地运用有理数的减法法则进行有理数的减法运算.
(3)通过加与减两种运算的对立统一关系,建立“转化”的数学思想.
3.学习重、难点:
重点:有理数的减法法则及其运用.
难点:有理数减法法则的推导.
二、分层学习
1.自学指导:
(1)自学内容:探究有理数减法法则.
(2)自学时间:10分钟.
(3)自学方法:利用减法是加法的逆运算,将求两个数的差,
转化为求两个数的和的形式.
(4)探究提纲:
①减法是加法的逆运算,计算4-(-3),就是求出一个数x,使得x+(-3)=4,因为7+(-3)=4,所以x=7,即4-(-3)=7 a
另一方面,我们知道4+(+3)=7 b
由a、b两式,有4-(-3)=4+(+3) c
从c式可以看出减-3相当于加(+3).
②用上面的方法计算:
0-(-3)=0+(+3) (-1)-(-3)=(-1)+(+3)(-5)-(-3)=(-5)+(+3)又按加法运算法则可得:
0+(+3)=3 (-1)+(+3)=2 (-5)+(+3)=-2
由此得到:一个数减-3等于加“+3”.若把减数“-3”换成其他负数,结果又如何?
结果同样成立
③把减数为“负数”改为“正数”,再看看情况怎样?
如计算:a.9-8=1,9+(-8)=1 b.15-7=8,15+(-7)=8
从中又有什么新发现?
减去一个正数,等于加上这个数的相反数.
④数-3与+3,8与-8,7与-7有什么关系?
由上面的结果,可得有理数减法法则:减去一个数,等于加上这个数的相反数,用数学式子表示可写成:
a-b=a+(-b).
2.自学:同学们结合探究提纲进行探究、学习.
3.助学:
(1)师助生:
①明了学情:了解学生能否会把求两个数的差的问题利用逆运算转化为有理数的加法来解决.
②差异指导:对个别学习有困难的学生进行点拨、指导.
(2)生助生:小组内相互交流、研讨.
4.强化:有理数减法法则.
1.自学指导:
(1)自学内容:自学教材第22页例4及其后面的“思考”.
(2)自学时间:5分钟.
(3)自学要求:认真阅读例4的解题过程,体会有理数减法法则如何运用,并思考其后的问题.
(4)自学参考提纲:
①仿照例4的解法计算:
a.6-9
b.(+4)-(-7)
c.(-5)-(-8)
d.0-(-5)
e.(-2.5)-5.9
f.1.9-(-0.6)
-3 11 3 5 -8.4 2.5
②下列括号内应填上什么数?
(1)(-2)-(-5)=(-2)+(5);(2)0-(-4)=0+(4);
(3)(-6)-3=(-6)+(-3 );(4)1-(+37)=1+(-37).
③根据例4的计算结果,你能归纳出两数差的符号是什么吗?
当a>b时,a-b>0;当a<b时,a-b<0.
2.自学:同学们可结合自学指导进行自学.
3.助学:
(1)师助生:
①明了学情:了解学生是否能应用减法法则进行减法运算.
②差异指导:对个别不会运用法则准确计算的同学进行法则运用
步骤指导.
(2)生助生:通过相互交流探讨解决自学中的疑难问题.
4.强化:
(1)知识要点:
①在进行有理数减法运算时,要注意两变一不变:“两变”即减号变成加号,减数的符号要改变;“不变”是指被减数不变.
②两数差的符号的确定:若a>b,则a-b>0;若a<b,则a-b<0;若a=b,则a-b=0.
(2)练习、计算:
①比2 ℃低8 ℃的温度;
②比-3 ℃低6 ℃的温度.
解:①2-8=-6 ℃;②-3-6=-9 ℃
三、评价
1.学生的自我评价(围绕三维目标):学生谈自己是如何认识减法法则的推出过程和运用法则的思考方法.
2.教师对学生的评价:
(1)表现性评价:教师对学生在学习过程中的表现进行点评.
(2)纸笔评价:课堂评价检测.
3.教师的自我评价(教学反思):
本课时教学应注重让学生抓住两个问题:
一是理解有理数减法法则,并通过比较分析,找到与有理数加法法则的异同点,从而发现知识间的联系,在联系中把握新知识.
二是认识转化思想的应用,并牢牢记住从减法向加法的转化过程中,要同时进行两次符号的变化.
一、基础巩固(65分)
1.(25分)计算.
(1)(-8)-8=-16 (2)(-8)-(-8)=0 (3)8-(-8)=16 (4)8-8=0
(5)0-6=-6 (6)0-(-6)=6 (7)16-47=-31 (8)28-(-74)=102
(9)(-3.8)-(+7)=-10.8 (10)(-5.9)-(-6.1)=0.2
2.(40分)计算.
二、综合应用(20分)
3.(10分)如图,陆地上最高处是珠穆朗玛峰的峰顶,最低处位于亚洲西部名为死海的湖,两处高度相差多少?
解:两地高度相差:8844.43-(-415)=8844.43+415=9259.43m 答:两地高度相差9259.43m.
4.(10分)某地一周内每天的最高气温与最低气温记录如下表,哪天的温差最大?哪天的温差最小?
解:周日的温差最大,周一的温差最小.
三、拓展延伸(15分)
5.(15分)填空.
(1)16+11=27 (2)7+(-3)=4 (3)(-9)+18=9 (4)12+(-12)=0 (5)(-8)+(-7)=-15 (6)19+(-13)=6。